1
|
Chiang JY, Lin TH, Cheng JX, Pan WY. Polyethyleneimine/fucoidan polyplexes as vaccine carriers for enhanced antigen loading and dendritic cell activation. Int J Biol Macromol 2025:141336. [PMID: 39986515 DOI: 10.1016/j.ijbiomac.2025.141336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 02/06/2025] [Accepted: 02/18/2025] [Indexed: 02/24/2025]
Abstract
Vaccination is one of the most effective strategies for preventing infectious diseases. Recently, most research has centered on the development of protein subunit vaccines due to their safety. However, their low immunogenicity remains a challenge. Nanoparticle vaccines offer advantages by protecting proteins from degradation and acting as adjuvants to stimulate the immune system. Herein, a polyplexe (OVA@PEI/Fu) formed by the electrostatic interaction between positively charged polyethyleneimine (PEI) and negatively charged fucoidan was prepared for the encapsulation of a model antigen, ovalbumin (OVA). Experimental results revealed that the incorporation of fucoidan in the polyplexes not only enhanced OVA loading efficiency but also contributed adjuvant effects, significantly boosting dendritic cell activation and maturation in vitro compared to OVA@PEI polyplexes. In vivo experiments showed that the OVA@PEI/Fu can induce strong anti-OVA specific antibody responses, as well as OVA-specific CD4+ and CD8+ T cell responses. The carrier developed in the present study shows promise as a platform for protein-based subunit vaccines.
Collapse
Affiliation(s)
- Jian-Yi Chiang
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan
| | - Tsai-Hsuan Lin
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan
| | - Jia-Xiang Cheng
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan
| | - Wen-Yu Pan
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan; Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan; Department of Laboratory Medicine, Taipei Medical University Hospital, Taipei 110, Taiwan.
| |
Collapse
|
2
|
Hou T, Liu X, Zhang S, Tang K, Liu S, Liu J, Fan X, Wang Z. Anti-inflammatory Effects of the Fucoidan from Sea Cucumber Apostichopus japonicus. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2025; 27:32. [PMID: 39832054 DOI: 10.1007/s10126-025-10410-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 01/06/2025] [Indexed: 01/22/2025]
Abstract
Fucoidan from Apostichopus japonicus (Aj-FUC) has shown anti-inflammatory activity, whereas its mechanism was not explicated. This study investigated the anti-inflammatory potential and mechanism of the fucoidan from green and purple A. japonicus (G-FUC and P-FUC) in lipopolysaccharide (LPS)-treated RAW264.7 cells. Results showed that Aj-FUCs at 25-400 µg/mL had no toxicity to cells after 24 h stimulation and promoted cell phagocytic activity. ELISA results indicated that Aj-FUC reduced the nitric oxide (NO), tumor necrosis factor α (TNF-α), interleukin-1β (IL-1β), and IL-6 levels and increased IL-10 level. The Aj-FUC suppressed transcription of inflammatory-related genes (tnf-α, il-1β, il-6, nlrp3, inos, cox-2, tlr4, trif, and nf-κb) in LPS-treated RAW264.7 cells, among which G-FUC had stronger anti-inflammatory effects. Moreover, Aj-FUC upregulated the mRNA expression of autophagic genes (beclin1, lc3II, and lamp2). The immunoblotting and immunofluorescence analyses of Beclin-1 and LC3II supported that Aj-FUC enhanced autophagy activity. After autophagy inhibited by 3-methyladenine, the mRNA expressions of tnf-α, il-6, il-1β, and nlrp3 were significantly upregulated in LPS-induced cells treated with Aj-FUC, suggesting the suppressed inflammation by Aj-FUC mediated via autophagy. Summarily, the present study demonstrated that Aj-FUC showed anti-inflammatory effects by elevating autophagy activity in LPS-induced macrophages.
Collapse
Affiliation(s)
- Tingting Hou
- College of Animal Science and Technology, Northwest A&F University, 22 Xinong Road, Yangling, Xianyang, 712100, Shaanxi, China
| | - Xiaolin Liu
- College of Animal Science and Technology, Northwest A&F University, 22 Xinong Road, Yangling, Xianyang, 712100, Shaanxi, China
| | - Shuai Zhang
- College of Animal Science and Technology, Northwest A&F University, 22 Xinong Road, Yangling, Xianyang, 712100, Shaanxi, China
| | - Kui Tang
- College of Animal Science and Technology, Northwest A&F University, 22 Xinong Road, Yangling, Xianyang, 712100, Shaanxi, China
| | - Shilin Liu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Jialiang Liu
- Shandong Oriental Ocean Science and Technology Company, Yantai, 264000, Shandong, China
| | - Xiaoteng Fan
- College of Animal Science and Technology, Northwest A&F University, 22 Xinong Road, Yangling, Xianyang, 712100, Shaanxi, China
| | - Zaizhao Wang
- College of Animal Science and Technology, Northwest A&F University, 22 Xinong Road, Yangling, Xianyang, 712100, Shaanxi, China.
| |
Collapse
|
3
|
Zhang W, Park HB, An EK, Kim SJ, Ryu D, Kim D, Lim D, Hwang J, Kwak M, You S, Lee PCW, Jin JO. Fucoidan from Durvillaea Antarctica enhances the anti-cancer effect of anti-PD-L1 antibody by activating dendritic cells and T cells. Int J Biol Macromol 2024; 280:135922. [PMID: 39322135 DOI: 10.1016/j.ijbiomac.2024.135922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/08/2024] [Accepted: 09/20/2024] [Indexed: 09/27/2024]
Abstract
Immune checkpoint inhibitors are showing groundbreaking results in tumor immunotherapy. However, there are cases where treatment efficiency is insufficient due to limitations in immune activity, and various trials to overcome this are being studied. In this study, we investigated the immune activation ability of fucoidan extracted from Durvillaea antarctica (FDA) and whether it can enhance the anti-cancer effects of immune checkpoint inhibitors. FDA treatment resulted in an elevation of co-stimulator and major histocompatibility complex molecule expression, as well as the production of pro-inflammatory cytokines in bone marrow-derived and splenic dendritic cells (DCs). Administration of 50 mg/kg FDA increased the number of splenic CD8 T cells by >1.4-fold compared to PBS administration. Additionally, 50 mg/kg FDA increased the production of IFN-γ in CD4 and CD8 T cells by 4.3-fold and 7.2-fold, respectively, compared to the PBS control. FDA promoted immune cell activation was TLR4 dependent. Furthermore, anti-PD-L1 antibody administration inhibited CT-26 tumor growth by approximately 3-fold compared to the PBS control group, whereas combined treatment with FDA and anti-PD-L1 antibody showed an 8.4-fold tumor growth inhibition effect compared to the PBS control group. Therefore, FDA may be used to enhance the anti-cancer effects of immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Wei Zhang
- Shanghai Public Health Clinical Center, Shanghai Medical College, Fudan University, Shanghai 201508, China
| | - Hae-Bin Park
- Department of Microbiology, Brain Korea 21 project, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, South Korea
| | - Eun-Koung An
- Department of Microbiology, Brain Korea 21 project, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, South Korea
| | - So-Jung Kim
- Department of Microbiology, Brain Korea 21 project, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, South Korea
| | - Dayoung Ryu
- Department of Biochemistry and Molecular Biology, Brain Korea 21 project, Asan Medical Center, University of Ulsan College of Medicine, 05505, South Korea
| | - Dayoung Kim
- Department of Microbiology, Brain Korea 21 project, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, South Korea
| | - Daeun Lim
- Department of Microbiology, Brain Korea 21 project, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, South Korea
| | - Juyoung Hwang
- Department of Chemistry, Pukyong National University, Busan 48513, South Korea
| | - Minseok Kwak
- Department of Chemistry, Pukyong National University, Busan 48513, South Korea
| | - SangGuan You
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, 120 Gangneung Daehangno, Gangneung, Gangwon 210-702, South Korea
| | - Peter C W Lee
- Department of Biochemistry and Molecular Biology, Brain Korea 21 project, Asan Medical Center, University of Ulsan College of Medicine, 05505, South Korea
| | - Jun-O Jin
- Department of Microbiology, Brain Korea 21 project, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, South Korea.
| |
Collapse
|
4
|
Lu Y, Zhu X, Hu C, Li P, Zhao M, Lu J, Xia G. A fucoidan-gelatin wound dressing accelerates wound healing by enhancing antibacterial and anti-inflammatory activities. Int J Biol Macromol 2022; 223:36-48. [PMID: 36336154 DOI: 10.1016/j.ijbiomac.2022.10.255] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022]
Abstract
Microbial infections and the slow regression of inflammation are major impediments to wound healing. Herein, a tilapia fish skin gelatin-fucose gum-tannic acid (Gel&Fuc-TA) hydrogel wound dressing (Gel&Fuc-TA) was designed to promote wound healing by mixing and reacting tannic acid (TA) with tilapia fish skin gelatin (Gel) and fucoidan (Fuc). Gel&Fuc-TA hydrogel has a good network structure as well as swelling and release properties, and shows excellent antibacterial, antioxidant, cell compatibility, and hemostatic properties. Gel&Fuc-TA hydrogel can promote the expression of vascular endothelial growth factor (VEGF), platelet endothelial cell adhesion molecule-1 (CD-31), and alpha-smooth muscle actin (α-SMA), enhance collagen deposition, and accelerate wound repair. Gel&Fuc-TA hydrogel can change the wound microbiome, reduce wound microbiome colonization, and decrease the expression of microbiome-related proinflammatory factors, such as lipopolysaccharide (LPS), Toll-like receptor 2 (TLR2), and Toll-like receptor 4 (TLR4). Gel&Fuc-TA hydrogel effectively regulates the conversion of wound macrophages to the M2 (anti-inflammatory phenotype) phenotype, decreases the expression of interleukin-6 (IL-6), interleukin-1β (IL-1β) and tumor necrosis factor-alpha (TNF-α), and increases the expression of arginase-1 (Arg-1), interleukin-10 (IL-10) and transforming growth factor-beta (TGF-β), thereby reducing the inflammatory response. In summary, Gel&Fuc-TA hydrogel prepared using a rational green cross-linking reaction can effectively accelerate wound healing.
Collapse
Affiliation(s)
- Yapeng Lu
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Key Laboratory of Seafood Processing of Haikou, College of Food Science and Engineering, Hainan University, Hainan 570228, China
| | - Xiaopeng Zhu
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Key Laboratory of Seafood Processing of Haikou, College of Food Science and Engineering, Hainan University, Hainan 570228, China
| | - Chao Hu
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Key Laboratory of Seafood Processing of Haikou, College of Food Science and Engineering, Hainan University, Hainan 570228, China
| | - Peng Li
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Key Laboratory of Seafood Processing of Haikou, College of Food Science and Engineering, Hainan University, Hainan 570228, China
| | - Meihui Zhao
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Key Laboratory of Seafood Processing of Haikou, College of Food Science and Engineering, Hainan University, Hainan 570228, China
| | - Jinfeng Lu
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Key Laboratory of Seafood Processing of Haikou, College of Food Science and Engineering, Hainan University, Hainan 570228, China
| | - Guanghua Xia
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Key Laboratory of Seafood Processing of Haikou, College of Food Science and Engineering, Hainan University, Hainan 570228, China; Collaborative Innovation Center of Provincial and Ministerial Co-Construction for Marine Food Deep Processing, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
5
|
Jayawardena TU, Nagahawatta DP, Fernando IPS, Kim YT, Kim JS, Kim WS, Lee JS, Jeon YJ. A Review on Fucoidan Structure, Extraction Techniques, and Its Role as an Immunomodulatory Agent. Mar Drugs 2022; 20:755. [PMID: 36547902 PMCID: PMC9782291 DOI: 10.3390/md20120755] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 12/02/2022] Open
Abstract
Functional ingredients for human health have recently become the focus of research. One such potentially versatile therapeutic component is fucose-containing sulfated polysaccharides (FCSPs), referred to as fucoidans. The exploitation of marine brown algae provides a rich source of FCSPs because of their role as a structural component of the cell wall. Fucoidans are characterized by a sulfated fucose backbone. However, the structural characterization of FCSPs is impeded by their structural diversity, molecular weight, and complexity. The extraction and purification conditions significantly influence the yield and structural alterations. Inflammation is the preliminary response to potentially injurious inducements, and it is of the utmost importance for modulation in the proper direction. Improper manipulation and/or continuous stimuli could have detrimental effects in the long run. The web of immune responses mediated through multiple modulatory/cell signaling components can be addressed through functional ingredients, benefiting patients with no side effects. In this review, we attempted to address the involvement of FCSPs in the stimulation/downregulation of immune response cell signaling. The structural complexity and its foremost influential factor, extraction techniques, have also attracted attention, with concise details on the structural implications of bioactivity.
Collapse
Affiliation(s)
- Thilina U. Jayawardena
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, Trois-Rivières, QC G8Z 4M3, Canada
- Department of Marine Life Sciences, Jeju National University, Jeju 63243, Republic of Korea
| | - D. P. Nagahawatta
- Department of Marine Life Sciences, Jeju National University, Jeju 63243, Republic of Korea
| | - I. P. S. Fernando
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 4-10 Ag/For Building, Edmonton, AB T6G 2PG, Canada
| | - Yong-Tae Kim
- Department of Food Science and Biotechnology, Kunsan National University, Gunsan 54150, Republic of Korea
| | - Jin-Soo Kim
- Department of Seafood Science & Technology, Institute of Marine Industry, Gyeongsang National University, Tongyeong 53064, Republic of Korea
| | - Won-Suk Kim
- Pharmaceutical Engineering, Silla University, Busan 46958, Republic of Korea
| | - Jung Suck Lee
- Department of Seafood Science & Technology, Institute of Marine Industry, Gyeongsang National University, Tongyeong 53064, Republic of Korea
| | - You-Jin Jeon
- Department of Marine Life Sciences, Jeju National University, Jeju 63243, Republic of Korea
- Marine Science Institute, Jeju National University, Jeju 63243, Republic of Korea
| |
Collapse
|
6
|
Zaitseva OO, Sergushkina MI, Khudyakov AN, Polezhaeva TV, Solomina ON. Seaweed sulfated polysaccharides and their medicinal properties. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
7
|
Natural Marine Products: Anti-Colorectal Cancer In Vitro and In Vivo. Mar Drugs 2022; 20:md20060349. [PMID: 35736152 PMCID: PMC9229715 DOI: 10.3390/md20060349] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/24/2022] [Accepted: 05/24/2022] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer, a malignant tumor with high mortality, has a poor prognosis due to drug resistance and toxicity in clinical surgery and chemotherapy. Thus, finding safer and more efficient drugs for clinical trials is vital and urgent. Natural marine compounds, with rich resources and original chemical structures, are applied widely in anticancer treatments. We provide a systematic overview of recently reported marine compounds such as alkaloids, peptides, terpenoids, polysaccharides, and carotenoids from in vitro, in vivo, and clinical studies. The in vitro studies summarized the marine origins and pharmacological mechanisms, including anti-proliferation, anti-angiogenesis, anti-migration, anti-invasion, the acceleration of cycle arrest, and the promotion of tumor apoptosis, of various compounds. The in vivo studies outlined the antitumor effects of marine compounds on colorectal cancer model mice and evaluated their efficacy in terms of tumor inhibition, hepatotoxicity, and nephrotoxicity. The clinical studies summarized the major chemical classifications and targets of action of the clinical drugs that have entered clinical approval and completed approval for marine anticancer. In summary, we present the current situation regarding the application of natural anti-colorectal cancer marine compounds and prospects for their clinical application.
Collapse
|
8
|
Potential Antiviral Properties of Industrially Important Marine Algal Polysaccharides and Their Significance in Fighting a Future Viral Pandemic. Viruses 2021; 13:v13091817. [PMID: 34578399 PMCID: PMC8473461 DOI: 10.3390/v13091817] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 08/27/2021] [Indexed: 12/16/2022] Open
Abstract
Over the decades, the world has witnessed diverse virus associated pandemics. The significant inhibitory effects of marine sulfated polysaccharides against SARS-CoV-2 shows its therapeutic potential in future biomedical applications and drug development. Algal polysaccharides exhibited significant role in antimicrobial, antitumor, antioxidative, antiviral, anticoagulant, antihepatotoxic and immunomodulating activities. Owing to their health benefits, the sulfated polysaccharides from marine algae are a great deal of interest globally. Algal polysaccharides such as agar, alginate, carrageenans, porphyran, fucoidan, laminaran and ulvans are investigated for their nutraceutical potential at different stages of infection processes, structural diversity, complexity and mechanism of action. In this review, we focus on the recent antiviral studies of the marine algae-based polysaccharides and their potential towards antiviral medicines.
Collapse
|
9
|
Balasubramanian B, Shanmugam S, Park S, Recharla N, Koo JS, Andretta I, Kim IH. Supplemental Impact of Marine Red Seaweed ( Halymenia palmata) on the Growth Performance, Total Tract Nutrient Digestibility, Blood Profiles, Intestine Histomorphology, Meat Quality, Fecal Gas Emission, and Microbial Counts in Broilers. Animals (Basel) 2021; 11:1244. [PMID: 33925270 PMCID: PMC8146337 DOI: 10.3390/ani11051244] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/25/2021] [Accepted: 04/23/2021] [Indexed: 12/12/2022] Open
Abstract
The present study was conducted to evaluate the dietary effects of a marine red seaweed, Palmaria palmata, on the growth performance, blood profile, nutrient digestibility, meat quality, fecal gas emission, microbial population, and intestinal morphology of broilers. A total of 720 Ross 308 broiler chicks (1 day old), with an average body weight of 45 ± 0.50 g, were assigned to one of five dietary treatments (randomized complete block design) in a 42-day feeding trial. The five dietary treatments consisted of a basal diet (0% supplementation; control), and diets supplemented with 0.05%, 0.01%, 0.15%, or 0.25% red seaweed. Eight replicates were prepared per treatment, with each replicate consisting of 18 chicks in a cage. The results showed that there tended to be a greater increase in body weight in the seaweed-supplemented groups from day (d) 14 to 28 (p = 0.087) and d 28 to 42 (p = 0.082) compared to the control group, regardless of feed intake. Feed intake in the seaweed-supplemented groups increased linearly from d 14 to 28. A linear relationship between seaweed supplementation and the feed conversion ratio was observed from d 14 to 28 and throughout the whole experiment. The dietary inclusion of seaweed was linearly related to levels of albumin, creatinine, uric acid, and white blood cells in the broilers. Additionally, the total tract digestibility of dry matter increased linearly with an increase in seaweed supplementation. The dietary inclusion of seaweed had a beneficial effect on fecal microbes as Lactobacillus sp. counts increased and Escherichia coli and Salmonella sp. counts decreased on day 42. Histopathological examination of the intestine confirmed that seaweed dietary supplementation enhanced the heights and widths of the villi. Furthermore, the emission of fecal gases (NH3 and H2S) decreased linearly in broilers fed seaweed-supplemented diets. Dietary supplementation with seaweed led to improvements in meat quality traits, such as reductions in drip loss, water holding capacity, and cooking loss, as well as increases in relative organ weights. Based on these positive effects, dietary supplementation with seaweed in broilers can be considered a dietary option in poultry production.
Collapse
Affiliation(s)
| | - Sureshkumar Shanmugam
- Department of Animal Resource and Science, Dankook University, Cheonan 31116, Korea;
| | - Sungkwon Park
- Department of Food Science and Biotechnology, College of Life Science, Sejong University, Seoul 05006, Korea; (S.P.); (N.R.); (J.S.K.)
| | - Neeraja Recharla
- Department of Food Science and Biotechnology, College of Life Science, Sejong University, Seoul 05006, Korea; (S.P.); (N.R.); (J.S.K.)
| | - Jin Su Koo
- Department of Food Science and Biotechnology, College of Life Science, Sejong University, Seoul 05006, Korea; (S.P.); (N.R.); (J.S.K.)
| | - Ines Andretta
- Department of Animal Science, Faculdade de Agronomia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 91540-000, Brazil;
| | - In Ho Kim
- Department of Animal Resource and Science, Dankook University, Cheonan 31116, Korea;
| |
Collapse
|
10
|
Vo TS. The role of algal fucoidans in potential anti-allergic therapeutics. Int J Biol Macromol 2020; 165:1093-1098. [PMID: 33031853 DOI: 10.1016/j.ijbiomac.2020.09.252] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/14/2020] [Accepted: 09/29/2020] [Indexed: 12/15/2022]
Abstract
Allergic diseases are among the commonest causes of chronic ill-health and are rapidly rising the prevalence and complexity. Although the current drugs are efficacy for treatment of allergic diseases, however the extensive clinical use of these drugs has led to the diverse and undesirable side effects. Thus, the extensive studies of alternative anti-allergic agents from natural products are essential for a long-term purpose. Marine environment covers a huge source of extremely potential secondary metabolites for drug discovery. Among them, fucoidans from brown seaweeds have been evidenced to possess various biological activities and health benefit effects. Notably, a great deal of interest has been expressed regarding anti-allergic activity of fucoidans. Consequently, this contribution presents an overview of potential anti-allergic therapeutics of fucoidans from brown seaweeds to emphasize its functions in prevention as well as treatment of allergic diseases.
Collapse
Affiliation(s)
- Thanh Sang Vo
- Faculty of Food Technology, Thu Dau Mot University, Binh Duong province, Viet Nam.
| |
Collapse
|
11
|
Lopes AH, Silva RL, Fonseca MD, Gomes FI, Maganin AG, Ribeiro LS, Marques LMM, Cunha FQ, Alves-Filho JC, Zamboni DS, Lopes NP, Franklin BS, Gombault A, Ramalho FS, Quesniaux VFJ, Couillin I, Ryffel B, Cunha TM. Molecular basis of carrageenan-induced cytokines production in macrophages. Cell Commun Signal 2020; 18:141. [PMID: 32894139 PMCID: PMC7487827 DOI: 10.1186/s12964-020-00621-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 07/02/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Low molecular weight carrageenan (Cg) is a seaweed-derived sulfated polysaccharide widely used as inflammatory stimulus in preclinical studies. However, the molecular mechanisms of Cg-induced inflammation are not fully elucidated. The present study aimed to investigate the molecular basis involved in Cg-induced macrophages activation and cytokines production. METHODS Primary culture of mouse peritoneal macrophages were stimulated with Kappa Cg. The supernatant and cell lysate were used for ELISA, western blotting, immunofluorescence. Cg-induced mouse colitis was also developed. RESULTS Here we show that Cg activates peritoneal macrophages to produce pro-inflammatory cytokines such as TNF and IL-1β. While Cg-induced TNF production/secretion depends on TLR4/MyD88 signaling, the production of pro-IL-1β relies on TLR4/TRIF/SYK/reactive oxygen species (ROS) signaling pathway. The maturation of pro-IL1β into IL-1β is dependent on canonical NLRP3 inflammasome activation via Pannexin-1/P2X7/K+ efflux signaling. In vivo, Cg-induced colitis was reduced in mice in the absence of NLRP3 inflammasome components. CONCLUSIONS In conclusion, we unravel a critical role of the NLRP3 inflammasome in Cg-induced pro-inflammatory cytokines production and colitis, which is an important discovery on the pro-inflammatory properties of this sulfated polysaccharide for pre-clinical studies. Video abstract Carrageenan (Cg) is one the most used flogistic stimulus in preclinical studies. Nevertheless, the molecular basis of Cg-induced inflammation is not totally elucidated. Herein, Lopes et al. unraveled the molecular basis for Cg-induced macrophages production of biological active IL-1β. The Cg-stimulated macrophages produces pro-IL-1β depends on TLR4/TRIF/Syk/ROS, whereas its processing into mature IL-1β is dependent on the canonical NLRP3 inflammasome.
Collapse
Affiliation(s)
- Alexandre H. Lopes
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Center for Research in Inflammatory Diseases (CRID)Av. Bandeirantes 3900, 14049-900, Ribeirão Preto, SP Brazil
| | - Rangel L. Silva
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Center for Research in Inflammatory Diseases (CRID)Av. Bandeirantes 3900, 14049-900, Ribeirão Preto, SP Brazil
| | - Miriam D. Fonseca
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Center for Research in Inflammatory Diseases (CRID)Av. Bandeirantes 3900, 14049-900, Ribeirão Preto, SP Brazil
| | - Francisco I. Gomes
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Center for Research in Inflammatory Diseases (CRID)Av. Bandeirantes 3900, 14049-900, Ribeirão Preto, SP Brazil
| | - Alexandre G. Maganin
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Center for Research in Inflammatory Diseases (CRID)Av. Bandeirantes 3900, 14049-900, Ribeirão Preto, SP Brazil
| | - Lucas S. Ribeiro
- Institute of Innate Immunity, University Hospitals, University of Bonn, 53127 Bonn, Germany
| | | | - Fernando Q. Cunha
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Center for Research in Inflammatory Diseases (CRID)Av. Bandeirantes 3900, 14049-900, Ribeirão Preto, SP Brazil
| | - Jose C. Alves-Filho
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Center for Research in Inflammatory Diseases (CRID)Av. Bandeirantes 3900, 14049-900, Ribeirão Preto, SP Brazil
| | - Dario S. Zamboni
- Department of Cellular and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP Brazil
| | - Norberto P. Lopes
- Department of Physics and Chemistry, University of São Paulo, Ribeirão Preto, SP Brazil
| | - Bernardo S. Franklin
- Institute of Innate Immunity, University Hospitals, University of Bonn, 53127 Bonn, Germany
| | - Aurélie Gombault
- University of Orleans and CNRS, UMR7355 Experimental and Molecular Immunology, Orleans, France
| | - Fernando Silva Ramalho
- Department of Pathology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP Brazil
| | - Valerie F. J. Quesniaux
- University of Orleans and CNRS, UMR7355 Experimental and Molecular Immunology, Orleans, France
| | - Isabelle Couillin
- University of Orleans and CNRS, UMR7355 Experimental and Molecular Immunology, Orleans, France
| | - Bernhard Ryffel
- University of Orleans and CNRS, UMR7355 Experimental and Molecular Immunology, Orleans, France
| | - Thiago M. Cunha
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Center for Research in Inflammatory Diseases (CRID)Av. Bandeirantes 3900, 14049-900, Ribeirão Preto, SP Brazil
| |
Collapse
|
12
|
Branched architecture of fucoidan characterized by dynamic and static light scattering. Colloid Polym Sci 2020. [DOI: 10.1007/s00396-020-04706-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
13
|
Ikeda-Ohtsubo W, López Nadal A, Zaccaria E, Iha M, Kitazawa H, Kleerebezem M, Brugman S. Intestinal Microbiota and Immune Modulation in Zebrafish by Fucoidan From Okinawa Mozuku ( Cladosiphon okamuranus). Front Nutr 2020; 7:67. [PMID: 32671088 PMCID: PMC7327095 DOI: 10.3389/fnut.2020.00067] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 04/20/2020] [Indexed: 12/11/2022] Open
Abstract
Fucoidan represents fucose-rich sulfated polysaccharides derived from brown seaweeds, which exerts various biological activities applicable for functional foods and therapeutic agents. The objective of the present study was to investigate in vivo effects of fucoidan extracted from Okinawa mozuku (Cladosiphon okamuranus), common edible seaweed in Japan, on immune responses and microbiota composition in zebrafish. We treated larvae and adult zebrafish with Okinawa mozuku (OM) fucoidan by immersion (100 and 500 μg/mL, 3 days) and by feeding (3 weeks), respectively. The effect of OM fucoidan on immune responses in zebrafish larvae was evaluated by live imaging of neutrophils and macrophages as well as quantitative polymerase chain reaction of pro- and anti-inflammatory cytokine genes. Whole microbiota of zebrafish larvae and intestinal microbiota of adult zebrafish treated with OM fucoidan were analyzed by Illumina MiSeq pair-end sequencing of the V3-V4 region of 16S rRNA genes. Fucoidan treatment only slightly affected the composition of the larvae microbiota and the number of neutrophils and macrophages, while pro- and anti-inflammatory cytokine gene expression levels were upregulated in the larvae treated with 500 μg/mL OM fucoidan. In contrast, feeding of OM fucoidan clearly altered the intestinal microbiota composition of adult zebrafish, which was characterized by the emergence and predominance of multiple bacterial operational taxonomic units (OTUs) affiliated with Rhizobiaceae and Comamonadaceae at the expense of E. coli-related Enterobacteriaceae, the dominant OTUs throughout the studied samples. These changes were accompanied by decreased expression levels of pro-inflammatory cytokine il1b in the intestines of the adult zebrafish. Our current study provides the first insights into in vivo modulatory effects of fucoidan on microbiota and immune responses of unchallenged zebrafish, which underscores the potential of fucoidan to play a modulatory role in the diet-microbiota-host interplay.
Collapse
Affiliation(s)
- Wakako Ikeda-Ohtsubo
- Cell Biology and Immunology Group, Department of Animal Sciences, Wageningen University and Research, Wageningen, Netherlands
- Host-Microbe Interactomics Group, Department of Animal Sciences, Wageningen University and Research, Wageningen, Netherlands
- Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
- Livestock Immunology Unit, International Education and Research Center for Food Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Adrià López Nadal
- Cell Biology and Immunology Group, Department of Animal Sciences, Wageningen University and Research, Wageningen, Netherlands
| | - Edoardo Zaccaria
- Host-Microbe Interactomics Group, Department of Animal Sciences, Wageningen University and Research, Wageningen, Netherlands
| | | | - Haruki Kitazawa
- Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
- Livestock Immunology Unit, International Education and Research Center for Food Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Michiel Kleerebezem
- Host-Microbe Interactomics Group, Department of Animal Sciences, Wageningen University and Research, Wageningen, Netherlands
| | - Sylvia Brugman
- Cell Biology and Immunology Group, Department of Animal Sciences, Wageningen University and Research, Wageningen, Netherlands
- Host-Microbe Interactomics Group, Department of Animal Sciences, Wageningen University and Research, Wageningen, Netherlands
| |
Collapse
|
14
|
Zhao Y, Yan B, Wang Z, Li M, Zhao W. Natural Polysaccharides with Immunomodulatory Activities. Mini Rev Med Chem 2020; 20:96-106. [DOI: 10.2174/1389557519666190913151632] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 10/18/2018] [Accepted: 05/25/2019] [Indexed: 11/22/2022]
Abstract
Natural polysaccharide is a kind of natural macromolecular which can be extracted from
plants, fungi, algae, animals, and bacteria. The monosaccharide compositions and glucosidic bonds of
polysaccharides from different origins vary substantially. Natural polysaccharides have been shown to
possess complex, important and multifaceted biological activities including antitumor, anticoagulant,
antioxidative, antiviral, immunomodulatory, antihyperlipidemic and antihepatotoxic activities. Their
properties are mainly due to their structural characteristics. It is necessary to develop polysaccharide
immunomodulators with potential for preventive or therapeutic action. The present paper summarizes
the structural features, immunostimulatory activity and the immunomodulatory mechanisms of natural
polysaccharides. In particular, it also provides an overview of representative natural polysaccharide
immunomodulators.
Collapse
Affiliation(s)
- Yue Zhao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, 38 Tongyan Road, Haihe Education Park, Tianjin 300353, China
| | - Bocheng Yan
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, 38 Tongyan Road, Haihe Education Park, Tianjin 300353, China
| | - Zhaoyu Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, 38 Tongyan Road, Haihe Education Park, Tianjin 300353, China
| | - Mingjing Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, 38 Tongyan Road, Haihe Education Park, Tianjin 300353, China
| | - Wei Zhao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, 38 Tongyan Road, Haihe Education Park, Tianjin 300353, China
| |
Collapse
|
15
|
Kuznetsova TA, Smolina TP, Makarenkova ID, Ivanushko LA, Persiyanova EV, Ermakova SP, Silchenko AS, Zaporozhets TS, Besednova NN, Fedyanina LN, Kryzhanovsky SP. Immunoadjuvant Activity of Fucoidans from the Brown Alga Fucus evanescens. Mar Drugs 2020; 18:E155. [PMID: 32168741 PMCID: PMC7143619 DOI: 10.3390/md18030155] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/06/2020] [Accepted: 03/09/2020] [Indexed: 11/24/2022] Open
Abstract
Thе study presents the results of a comparative evaluation of the effect of structural modifications of fucoidans from the brown alga Fucus evanescens (native, highly purified рroduct of fucoidan enzymatic hydrolysis, a new regular 1→3;1→4-α-L-fucan, sulphated mainly at C2 and acetylated at C4 of the fucose residue) on the effector functions of innate and adaptive immunity cells in vitro and in vivo. Using flow cytometry, we found that all examined fucoidans induce the maturation of dendritic cells, enhance the ability of neutrophils to migrate and adhere, activate monocytes and enhance their antigen-presenting functions, and increase the cytotoxic potential of natural killers. Fucoidans increase the production of hepatitis B virus (HBs) specific IgG and cytokine Th1 (IFN-γ, TNF-α) and Th2 (IL-4) profiles in vivo. The data obtained suggest that in vitro and in vivo adjuvant effects of the products of fucoidan enzymatic hydrolysis with regular structural characteristics are comparable to those of the native fucoidan. Based on these data, the products of fucoidan enzymatic hydrolysis can be considered as an effective and safe candidate adjuvant to improve the efficacy of prophylactic and therapeutic vaccines.
Collapse
Affiliation(s)
- Tatyana A. Kuznetsova
- Somov Institute of Epidemiology and Microbiology, Vladivostok 690087, Russia; (T.P.S.); (I.D.M.); (L.A.I.); (E.V.P.); (T.S.Z.); (N.N.B.)
| | - Tatyana P. Smolina
- Somov Institute of Epidemiology and Microbiology, Vladivostok 690087, Russia; (T.P.S.); (I.D.M.); (L.A.I.); (E.V.P.); (T.S.Z.); (N.N.B.)
| | - Ilona D. Makarenkova
- Somov Institute of Epidemiology and Microbiology, Vladivostok 690087, Russia; (T.P.S.); (I.D.M.); (L.A.I.); (E.V.P.); (T.S.Z.); (N.N.B.)
| | - Lydmila A. Ivanushko
- Somov Institute of Epidemiology and Microbiology, Vladivostok 690087, Russia; (T.P.S.); (I.D.M.); (L.A.I.); (E.V.P.); (T.S.Z.); (N.N.B.)
| | - Elena V. Persiyanova
- Somov Institute of Epidemiology and Microbiology, Vladivostok 690087, Russia; (T.P.S.); (I.D.M.); (L.A.I.); (E.V.P.); (T.S.Z.); (N.N.B.)
| | - Svetlana P. Ermakova
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Vladivostok 690022, Russia; (S.P.E.); (A.S.S.)
| | - Artem S. Silchenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Vladivostok 690022, Russia; (S.P.E.); (A.S.S.)
| | - Tatyana S. Zaporozhets
- Somov Institute of Epidemiology and Microbiology, Vladivostok 690087, Russia; (T.P.S.); (I.D.M.); (L.A.I.); (E.V.P.); (T.S.Z.); (N.N.B.)
| | - Natalya N. Besednova
- Somov Institute of Epidemiology and Microbiology, Vladivostok 690087, Russia; (T.P.S.); (I.D.M.); (L.A.I.); (E.V.P.); (T.S.Z.); (N.N.B.)
| | - Lydmila N. Fedyanina
- Far Eastern Federal University, School of Biomedicine, Vladivostok, 690922, Russia; (L.N.F.); (S.P.K.)
| | - Sergey P. Kryzhanovsky
- Far Eastern Federal University, School of Biomedicine, Vladivostok, 690922, Russia; (L.N.F.); (S.P.K.)
| |
Collapse
|
16
|
You L, Gong Y, Li L, Hu X, Brennan C, Kulikouskaya V. Beneficial effects of three brown seaweed polysaccharides on gut microbiota and their structural characteristics: An overview. Int J Food Sci Technol 2019. [DOI: 10.1111/ijfs.14408] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Lijun You
- School of Food Science and Engineering South China University of Technology 381 Wushan Road Guangzhou Guangdong 510640China
| | - Yufeng Gong
- School of Food Science and Engineering South China University of Technology 381 Wushan Road Guangzhou Guangdong 510640China
| | - Laihao Li
- Key Laboratory of Aquatic Product Processing Ministry of Agriculture and Rural Affairs South China Sea Fisheries Research Institute Chinese Academy of Fishery Sciences Guangzhou 510300China
| | - Xiao Hu
- Key Laboratory of Aquatic Product Processing Ministry of Agriculture and Rural Affairs South China Sea Fisheries Research Institute Chinese Academy of Fishery Sciences Guangzhou 510300China
| | - Charles Brennan
- Department of Wine, Food and Molecular Biosciences Lincoln University Lincoln, Canterbury 7608New Zealand
| | - Viktoryia Kulikouskaya
- Institute of Chemistry of New Materials National Academy of Sciences of Belarus 36F. Skaryna str. Minsk 220141Belarus
| |
Collapse
|
17
|
Chen Y, Li X, Gan X, Qi J, Che B, Tai M, Gao S, Zhao W, Xu N, Hu Z. Fucoidan from Undaria pinnatifida Ameliorates Epidermal Barrier Disruption via Keratinocyte Differentiation and CaSR Level Regulation. Mar Drugs 2019; 17:E660. [PMID: 31771286 PMCID: PMC6950751 DOI: 10.3390/md17120660] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 11/22/2019] [Indexed: 02/06/2023] Open
Abstract
The epidermal barrier acts as a line of defense against external agents as well as helps to maintain body homeostasis. The calcium concentration gradient across the epidermal barrier is closely related to the proliferation and differentiation of keratinocytes (KCs), and the regulation of these two processes is the key to the repair of epidermal barrier disruption. In the present study, we found that fucoidan from Undaria pinnatifida (UPF) could promote the repair of epidermal barrier disruption in mice. The mechanistic study demonstrated that UPF could promote HaCaT cell differentiation under low calcium condition by up-regulating the expression of calcium-sensing receptor (CaSR), which could then lead to the activation of the Catenin/PLCγ1 pathway. Further, UPF could increase the expression of CaSR through activate the ERK and p38 pathway. These findings reveal the molecular mechanism of UPF in the repair of the epidermal barrier and provide a basis for the development of UPF into an agent for the repair of epidermal barrier repair.
Collapse
Affiliation(s)
- Yu Chen
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou 325035, China; (Y.C.); (J.Q.)
| | - Xuenan Li
- Institute of Life Sciences, Wenzhou University, Wenzhou 325035, China; (X.L.); (S.G.); (W.Z.)
| | - Xiaoshuang Gan
- Infinitus (China) Company Ltd, Guangzhou 510000, China; (X.G.); (B.C.); (M.T.)
| | - Junmei Qi
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou 325035, China; (Y.C.); (J.Q.)
| | - Biao Che
- Infinitus (China) Company Ltd, Guangzhou 510000, China; (X.G.); (B.C.); (M.T.)
| | - Meiling Tai
- Infinitus (China) Company Ltd, Guangzhou 510000, China; (X.G.); (B.C.); (M.T.)
| | - Shuang Gao
- Institute of Life Sciences, Wenzhou University, Wenzhou 325035, China; (X.L.); (S.G.); (W.Z.)
| | - Wengang Zhao
- Institute of Life Sciences, Wenzhou University, Wenzhou 325035, China; (X.L.); (S.G.); (W.Z.)
| | - Nuo Xu
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou 325035, China; (Y.C.); (J.Q.)
| | - Zhenlin Hu
- Institute of Life Sciences, Wenzhou University, Wenzhou 325035, China; (X.L.); (S.G.); (W.Z.)
| |
Collapse
|
18
|
An overview of extraction and purification techniques of seaweed dietary fibers for immunomodulation on gut microbiota. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.08.011] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
19
|
Hatamihanza H, Alavi SE, Ebrahimi Shahmabadi H, Akbarzadeh A. Preparation, Characterization and Immunostimulatory Effects of CRD2 and CRD3 from TNF Receptor-1 Encapsulated into Pegylated Liposomal Nanoparticles. Int J Pept Res Ther 2019. [DOI: 10.1007/s10989-019-09882-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
20
|
Lans C. Do recent research studies validate the medicinal plants used in British Columbia, Canada for pet diseases and wild animals taken into temporary care? JOURNAL OF ETHNOPHARMACOLOGY 2019; 236:366-392. [PMID: 30772483 DOI: 10.1016/j.jep.2019.02.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 02/13/2019] [Accepted: 02/13/2019] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE There are insufficient safe and effective treatments for chronic pain in pets. In cases such as osteoarthritis there is no commercially available cure and veterinarians use NSAIDs to manage pain. Pet owners may have to plan for a lifetime of plant-based treatment for the conditions that lead to chronic pain in pets. Phytopharmacotherapies have the advantage of being less toxic, cheap or free, readily available, are more likely to be safe for long-term use and have the potential to reset the immune system to normal functioning. AIM OF THE STUDY To examine the recently published medicinal plant research that matches unpublished data on ethnoveterinary medicines (EVM) used for pets in Canada (British Columbia) to see if the EVM data can provide a lead to the development of necessary drugs. MATERIALS AND METHODS In 2003 semi-structured interviews were conducted with 60 participants who were organic farmers or holisitic medicinal/veterinary practitioners obtained using a purposive sample. A draft manual prepared from the data was then evaluated by participants at a participatory workshop that discussed the plant-based treatments. A copy of the final version of the manual was given to all research participants. In 2018, the recently published research matching the EVM data was reviewed to see if the EVM practices could serve as a lead for further research. RESULTS AND CONCLUSION Medicinal plants are used to treat a range of conditions. The injuries treated in pets in British Columbia included abscesses (resulting from an initial injury), sprains and abrasions. Dogs were also treated with medicinal plants for rheumatoid arthritis, joint pain and articular cartilage injuries. More than 40 plants were used. Anal gland problems were treated with Allium sativum L., Aloe vera L., Calendula officinalis L., Plantago major L., Ulmus fulva Michx., Urtica dioica L. and Usnea longissima Ach. Arctium lappa, Hydrangea arborescens and Lactuca muralis were used for rheumatoid arthritis and joint pain in pets. Asthma was treated with: Linum usitatissimum L., Borago officinalis L., Verbascum thapsus L., Cucurbita pepo L., Lobelia inflata L., and Zingiber officinale Roscoe. Pets with heart problems were treated with Crataegus oxyacantha L., Cedronella canariensis (L.) Willd. ex Webb & Berth, Equisetum palustre L., Cypripedium calceolus L., Pinus ponderosa Douglas ex Lawson, Humulus lupulus L., Valeriana officinalis L., Lobelia inflata L., Stachys officinalis (L.) Trev., and Viscum album L. The following plants were used for epilepsy, motion sickness and anxiety- Avena sativa L., Valeriana officinalis, Lactuca muralis (L.) Fresen., Scutellaria lateriflora L., Satureja hortensis L., and Passiflora incarnata L. Plants used for cancer treatment included Phytolacca decandra, Ganoderma lucidum, Lentinula edodes, Rumex acetosella, Arctium lappa, Ulmus fulva, Rheum palmatum, Frangula purshiana, Zingiber officinale, Glycyrrhiza glabra, Ulmus fulva, Althea officinalis, Rheum palmatum, Rumex crispus and Plantago psyllium. Trifolium pratense was used for tumours in the prostate gland. Also used were Artemisia annua, Taraxacum officinale and Rumex crispus. This review of plants used in EVM was possible because phytotherapy research of the plants described in this paper has continued because few new pharmaceutical drugs have been developed for chronic pain and because treatments like glucocorticoid therapy do not heal. Phytotherapuetic products are also being investigated to address the overuse of antibiotics. There have also been recent studies conducted on plant-based functional foods and health supplements for pets, however there are still gaps in the knowledge base for the plants Stillingia sylvatica, Verbascum thapsus, Yucca schidigera and Iris versicolor and these need further investigation.
Collapse
Affiliation(s)
- Cheryl Lans
- Institute for Ethnobotany and Zoopharmacognosy (IEZ), Rijksstraatweg 158A, 6573 DG Beek, the Netherlands.
| |
Collapse
|
21
|
The protective effect of non-invasive low intensity pulsed electric field and fucoidan in preventing oxidative stress-induced motor neuron death via ROCK/Akt pathway. PLoS One 2019; 14:e0214100. [PMID: 30889218 PMCID: PMC6424404 DOI: 10.1371/journal.pone.0214100] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Accepted: 03/06/2019] [Indexed: 02/06/2023] Open
Abstract
With the expansion of the aged population, it is predicted that neurodegenerative diseases (NDDs) will become a major threat to public health worldwide. However, existing therapies can control the symptoms of the diseases at best, rather than offering a fundamental cure. As for the complex pathogenesis, clinical and preclinical researches have indicated that oxidative stress, a central role in neuronal degeneration, is a possible therapeutic target in the development of novel remedies. In this study, the motor neuron-like cell line NSC-34 was employed as an experimental model in probing the effects induced by the combination of non-invasive low intensity pulsed electric field (LIPEF) and fucoidan on the H2O2-induced neuron damage. It was found that single treatment of the LIPEF could protect the NSC-34 cells from oxidative stress, and the protective effect was enhanced by combining the LIPEF and fucoidan. Notably, it was observed that single treatment of the LIPEF obviously suppressed the H2O2-enhanced expression of ROCK protein and increased the phosphorylation of Akt in the H2O2-treated NSC-34 cells. Moreover, the LIPEF can be easily modified to concentrate on a specific area. Accordingly, this technique can be used as an advanced remedy for ROCK inhibition without the drawback of drug metabolism. Therefore, we suggest the LIPEF would be a promising strategy as a treatment for motor neurodegeneration and warrant further probe into its potential in treating other neuronal degenerations.
Collapse
|
22
|
Li J, Cai C, Yang C, Li J, Sun T, Yu G. Recent Advances in Pharmaceutical Potential of Brown Algal Polysaccharides and their Derivatives. Curr Pharm Des 2019; 25:1290-1311. [PMID: 31237200 DOI: 10.2174/1381612825666190618143952] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 05/31/2019] [Indexed: 02/07/2023]
Abstract
Marine plants, animals and microorganisms display steady growth in the ocean and are abundant carbohydrate resources. Specifically, natural polysaccharides obtained from brown algae have been drawing increasing attention owing to their great potential in pharmaceutical applications. This review describes the structural and biological features of brown algal polysaccharides, including alginates, fucoidans, and laminarins, and it highlights recently developed approaches used to obtain the oligo- and polysaccharides with defined structures. Functional modification of these polysaccharides promotes their advanced applications in biomedical materials for controlled release and targeted drug delivery, etc. Moreover, brown algal polysaccharides and their derivatives possess numerous biological activities with anticancer, anticoagulant, wound healing, and antiviral properties. In addition, we also discuss carbohydrate- based substrates from brown algae, which are currently in clinical and preclinical studies, as well as the marine drugs that are already on the market. The present review summarizes the recent development in carbohydratebased products from brown algae, with promising findings that could rapidly facilitate the future discovery of novel marine drugs.
Collapse
Affiliation(s)
- Jun Li
- Key Laboratory of Marine Drugs, Ministry of Education & Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Chao Cai
- Key Laboratory of Marine Drugs, Ministry of Education & Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
| | - Chendong Yang
- Key Laboratory of Marine Drugs, Ministry of Education & Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Jianghua Li
- Key Laboratory of Marine Drugs, Ministry of Education & Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Tiantian Sun
- Key Laboratory of Marine Drugs, Ministry of Education & Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Guangli Yu
- Key Laboratory of Marine Drugs, Ministry of Education & Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
| |
Collapse
|
23
|
Hentati F, Delattre C, Ursu AV, Desbrières J, Le Cerf D, Gardarin C, Abdelkafi S, Michaud P, Pierre G. Structural characterization and antioxidant activity of water-soluble polysaccharides from the Tunisian brown seaweed Cystoseira compressa. Carbohydr Polym 2018; 198:589-600. [PMID: 30093038 DOI: 10.1016/j.carbpol.2018.06.098] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 06/22/2018] [Accepted: 06/22/2018] [Indexed: 11/25/2022]
Abstract
A fucoidan (CCF) and a sodium alginate (CCSA) were extracted and purified from the Tunisian brown seaweed Cystoseira compressa. CCF was a highly sulfated heterogalactofucan composed of α-(1→3), α-(1→4)-linked l-Fucp as main backbone which could be highly branched (31.84%) at O-3 and O-4 positions of α-(1→4)-l-Fucp and α-(1→3)-l-Fucp by terminal monosaccharides and side chains such as terminal α-l-Fucp, terminal β-d-Galp, β-d-Galp-(1→3)-α-l-Fucp and β-d-Galp-(1→4)-α-l-Fucp. The ratio of α-(1→3)/α-(1→4) linkages was estimated at 3.86:1. CCSA was characterized by HPAEC-PAD, GC/MS-EI, ATR-FTIR, and 1H-NMR. The M/G ratio was M/G = 0.77, indicating that CCSA respectively contained 44% and 56% of mannuronic and guluronic acids. The values of FGG, FMM, FGM (or FMG) blocks as well as the parameter η were estimated. The two polysaccharides exhibited effective antioxidant activities by ferrous ion chelation, ferric ion reduction and DPPH radical-scavenging, outlining their potentials as natural additives.
Collapse
Affiliation(s)
- Faiez Hentati
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut Pascal, F-63000 Clermont-Ferrand, France; Unité de Biotechnologie des Algues, Biological Engineering Department, National School of Engineers of Sfax, University of Sfax, Sfax, Tunisia
| | - Cédric Delattre
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut Pascal, F-63000 Clermont-Ferrand, France
| | - Alina V Ursu
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut Pascal, F-63000 Clermont-Ferrand, France
| | - Jacques Desbrières
- Université de Pau et des Pays de l'Adour, IPREM, Helioparc Pau Pyrénées, 2 avenue P. Angot, 64053 Pau cedex 9, France
| | - Didier Le Cerf
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, PBS, 76000 Rouen, France
| | - Christine Gardarin
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut Pascal, F-63000 Clermont-Ferrand, France
| | - Slim Abdelkafi
- Unité de Biotechnologie des Algues, Biological Engineering Department, National School of Engineers of Sfax, University of Sfax, Sfax, Tunisia
| | - Philippe Michaud
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut Pascal, F-63000 Clermont-Ferrand, France
| | - Guillaume Pierre
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut Pascal, F-63000 Clermont-Ferrand, France.
| |
Collapse
|
24
|
Fucoidan alleviates dyslipidemia and modulates gut microbiota in high-fat diet-induced mice. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.07.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
25
|
Laminarin promotes anti-cancer immunity by the maturation of dendritic cells. Oncotarget 2018; 8:38554-38567. [PMID: 28423736 PMCID: PMC5503553 DOI: 10.18632/oncotarget.16170] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 02/20/2017] [Indexed: 02/02/2023] Open
Abstract
This research evaluates the effects of laminarin on the maturation of dendritic cells and on the in vivo activation of anti-cancer immunity. In vivo treatment of C56BL/6 mice with laminarin increased the expression levels of co-stimulatory molecules and the production of pro-inflammatory cytokines in spleen dendritic cells. Laminarin enhanced ovalbumin antigen presentation in spleen dendritic cells and promoted the proliferation of OT-I and OT-II T cells. Laminarin also induced the maturation of dendritic cells in tumor-draining lymph nodes and protected interferon-γ and tumor necrosis factor-α and proliferation of OT-I and OT-II T cells in tumors. The combination treatment of laminarin and ovalbumin inhibited B16-ovallbumin melanoma tumor growth and its liver metastasis by antigen-specific immune activation, including cytotoxic T lymphocyte activation and interferon-γ production. Thus, these data demonstrated the potential of laminarin as a new and useful immune stimulatory molecule for use in cancer immunotherapy.
Collapse
|
26
|
Xie J, Zou L, Luo X, Qiu L, Wei Q, Luo D, Wu Y, Jiao Y. Structural characterization and immunomodulating activities of a novel polysaccharide from Nervilia fordii. Int J Biol Macromol 2018; 114:520-528. [PMID: 29578012 PMCID: PMC7112443 DOI: 10.1016/j.ijbiomac.2018.03.124] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 02/26/2018] [Accepted: 03/21/2018] [Indexed: 11/29/2022]
Abstract
Nervilia fordii (Hance) Schltr. has been widely used as a medicinal and edible herb in Southwest China and Southeast Asia. In this study, NFP-1, a new water-soluble polysaccharidewith a purity of 97.8%, was purified from water extract of Nervilia fordii by DEAE-cellulose and Sephadex G-100 chromatography. NFP-1 has a relative molecular weight of 950 kDa determined by high performance gel-permeation chromatography (HPGPC). Its monosaccharide compositions were analyzed by high performance liquid chromatography (HPLC) after pre-column derivatizing its hydrolysate with 1-phenyl-3-methyl-5-pyrazolone (PMP). NFP-1 mainly consists of galactose, arabinose, rhamnose, and galacturonic acid. Based on FT-IR, methylation and GC–MS analysis, and NMR, the structure unit of NFP-1 was established as →4)-α-Rhap-(2→ 4)-α-GalpA-(1→2)-α-Rhap-(1→2)-α-Rhap-(4→1)-β-Galp-T containing two branch chains of →2,4)-α-Rhap-(1→5)-α-Araf-(1→3)-α-Araf-(1→, and →2,4)-α-Rhap-(1→4)-β-Galp-(1→. The immunomodulatory assays revealed the dual-functionalities of NFP-1. NFP-1 could significantly induce the secretion of nitric oxide (NO), and promote the secretions of TNF-α, IL-6, and IL-1β in RAW264.7 macrophages. NFP-1 could also significantly inhibit the production of NO, depress the secretions of TNF-α, IL-6 and IL-1β in RAW264.7 macrophages activated by lipopolysaccharide (LPS), and promote the production of IL-10 meanwhile. Our study suggested that Nervilia fordii could be an ideal medicinal or functional food due to its dual immunomodulatory activities.
Collapse
Affiliation(s)
- Jizhao Xie
- School of Pharmaceutical Science, Guangxi Medical University, Nanning 530021, PR China
| | - Luhui Zou
- School of Pharmaceutical Science, Guangxi Medical University, Nanning 530021, PR China
| | - Xuan Luo
- School of Chemistry & Chemical Engineering, Guangxi University, Nanning 530004, PR China
| | - Li Qiu
- School of Pharmaceutical Science, Guangxi Medical University, Nanning 530021, PR China.
| | - Qian Wei
- School of Pharmaceutical Science, Guangxi Medical University, Nanning 530021, PR China
| | - Di Luo
- School of Pharmaceutical Science, Guangxi Medical University, Nanning 530021, PR China
| | - Yunqiu Wu
- School of Pharmaceutical Science, Guangxi Medical University, Nanning 530021, PR China
| | - Yang Jiao
- School of Pharmaceutical Science, Guangxi Medical University, Nanning 530021, PR China
| |
Collapse
|
27
|
Abdollah MRA, Carter TJ, Jones C, Kalber TL, Rajkumar V, Tolner B, Gruettner C, Zaw-Thin M, Baguña Torres J, Ellis M, Robson M, Pedley RB, Mulholland P, T M de Rosales R, Chester KA. Fucoidan Prolongs the Circulation Time of Dextran-Coated Iron Oxide Nanoparticles. ACS NANO 2018; 12:1156-1169. [PMID: 29341587 DOI: 10.1021/acsnano.7b06734] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The magnetic properties and safety of dextran-coated superparamagnetic iron oxide nanoparticles (SPIONs) have facilitated their clinical use as MRI contrast agents and stimulated research on applications for SPIONs in particle imaging and magnetic hyperthermia. The wider clinical potential of SPIONs, however, has been limited by their rapid removal from circulation via the reticuloendothelial system (RES). We explored the possibility of extending SPION circulatory time using fucoidan, a seaweed-derived food supplement, to inhibit RES uptake. The effects of fucoidan on SPION biodistribution were evaluated using ferucarbotran, which in its pharmaceutical formulation (Resovist) targets the RES. Ferucarbotran was radiolabeled at the iron oxide core with technetium-99m (99mTc; t1/2 = 6 h) or zirconium-89 (89Zr; t1/2 = 3.3 days). Results obtained with 99mTc-ferucarbotran demonstrated that administration of fucoidan led to a 4-fold increase in the circulatory half-life (t1/2 slow) from 37.4 to 150 min (n = 4; P < 0.0001). To investigate whether a longer circulatory half-life could lead to concomitant increased tumor uptake, the effects of fucoidan were tested with 89Zr-ferucarbotran in mice bearing syngeneic subcutaneous (GL261) tumors. In this model, the longer circulatory half-life achieved with fucoidan was associated with a doubling in tumor SPION uptake (n = 5; P < 0.001). Fucoidan was also effective in significantly increasing the circulatory half-life of perimag-COOH, a commercially available SPION with a larger hydrodynamic size (130 nm) than ferucarbotran (65 nm). These findings indicate successful diversion of SPIONs away from the hepatic RES and show realistic potential for future clinical applications.
Collapse
Affiliation(s)
- Maha R A Abdollah
- UCL Cancer Institute, University College London (UCL) , Paul O'Gorman Building, 72 Huntley Street, London WC1E 6JD, U.K
- Department of Pharmacology and Biochemistry, Faculty of Pharmacy, The British University in Egypt (BUE) , El Shorouk City, Misr- Ismalia Desert Road, Cairo 11837, Egypt
| | - Thomas J Carter
- UCL Cancer Institute, University College London (UCL) , Paul O'Gorman Building, 72 Huntley Street, London WC1E 6JD, U.K
| | - Clare Jones
- School of Biomedical Engineering & Imaging Sciences, King's College London (KCL) , St Thomas' Hospital, London SE1 7EH, U.K
| | - Tammy L Kalber
- Centre for Advanced Biomedical Imaging, Division of Medicine and Institute of Child Health, University College London , London WC1E 6DD, U.K
| | - Vineeth Rajkumar
- UCL Cancer Institute, University College London (UCL) , Paul O'Gorman Building, 72 Huntley Street, London WC1E 6JD, U.K
| | - Berend Tolner
- UCL Cancer Institute, University College London (UCL) , Paul O'Gorman Building, 72 Huntley Street, London WC1E 6JD, U.K
| | - Cordula Gruettner
- Micromod Partikeltechnologie GmbH , Friedrich-Barnewitz-Str. 4, D-18119 Rostock, Germany
| | - May Zaw-Thin
- Centre for Advanced Biomedical Imaging, Division of Medicine and Institute of Child Health, University College London , London WC1E 6DD, U.K
| | - Julia Baguña Torres
- School of Biomedical Engineering & Imaging Sciences, King's College London (KCL) , St Thomas' Hospital, London SE1 7EH, U.K
| | - Matthew Ellis
- Division of Neuropathology, Department of Neurodegenerative Disease, UCL Institute of Neurology (ION), University College London (UCL) , Queen Square, London WC1N 3BG, U.K
| | - Mathew Robson
- UCL Cancer Institute, University College London (UCL) , Paul O'Gorman Building, 72 Huntley Street, London WC1E 6JD, U.K
| | - R Barbara Pedley
- UCL Cancer Institute, University College London (UCL) , Paul O'Gorman Building, 72 Huntley Street, London WC1E 6JD, U.K
| | - Paul Mulholland
- UCL Cancer Institute, University College London (UCL) , Paul O'Gorman Building, 72 Huntley Street, London WC1E 6JD, U.K
| | - Rafael T M de Rosales
- School of Biomedical Engineering & Imaging Sciences, King's College London (KCL) , St Thomas' Hospital, London SE1 7EH, U.K
| | - Kerry Ann Chester
- UCL Cancer Institute, University College London (UCL) , Paul O'Gorman Building, 72 Huntley Street, London WC1E 6JD, U.K
| |
Collapse
|
28
|
Ulvan from Ulva armoricana (Chlorophyta) activates the PI3K/Akt signalling pathway via TLR4 to induce intestinal cytokine production. ALGAL RES 2017. [DOI: 10.1016/j.algal.2017.10.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
29
|
Okolie CL, C. K. Rajendran SR, Udenigwe CC, Aryee ANA, Mason B. Prospects of brown seaweed polysaccharides (BSP) as prebiotics and potential immunomodulators. J Food Biochem 2017. [DOI: 10.1111/jfbc.12392] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Chigozie Louis Okolie
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture; Dalhousie University; Truro Nova Scotia Canada
- Verschuren Centre for Sustainability in Energy and the Environment; Cape Breton University, Sydney; Nova Scotia Canada
| | - Subin R. C. K. Rajendran
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture; Dalhousie University; Truro Nova Scotia Canada
- Verschuren Centre for Sustainability in Energy and the Environment; Cape Breton University, Sydney; Nova Scotia Canada
| | - Chibuike C. Udenigwe
- School of Nutrition Sciences, Faculty of Health Sciences; University of Ottawa, Ottawa; Ontario Canada
| | - Alberta N. A. Aryee
- Verschuren Centre for Sustainability in Energy and the Environment; Cape Breton University, Sydney; Nova Scotia Canada
- College of Agriculture & Related Sciences; Delaware State University; Dover Delaware
| | - Beth Mason
- Verschuren Centre for Sustainability in Energy and the Environment; Cape Breton University, Sydney; Nova Scotia Canada
| |
Collapse
|
30
|
Park JH, Choi SH, Park SJ, Lee YJ, Park JH, Song PH, Cho CM, Ku SK, Song CH. Promoting Wound Healing Using Low Molecular Weight Fucoidan in a Full-Thickness Dermal Excision Rat Model. Mar Drugs 2017; 15:E112. [PMID: 28387729 PMCID: PMC5408258 DOI: 10.3390/md15040112] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 04/01/2017] [Accepted: 04/05/2017] [Indexed: 12/31/2022] Open
Abstract
Low molecular weight fucoidan (LMF) has been reported to possess anti-inflammatory and antioxidant activities. Thus, we examined the effects of LMF extracted from Undaria pinnatifida on dermal wounds. Five round dermal wounds were created on the dorsal back of rats, and they were then treated topically with distilled water (DW), Madecasol Care™ (MC) or LMF at 200, 100 and 50 mg/mL, twice a day for a week. There were dose-dependent increases in wound contraction in the groups receiving LMF but not in the MC group, compared with the DW. Histopathological examination revealed that LMF treatment accelerated wound healing, which was supported by increases in granular tissue formation on day four post-treatment but a decrease on day seven, accompanied by an evident reduction in inflammatory cells. In the LMF-treated wounds, collagen distribution and angiogenesis were increased in the granular tissue on days four and seven post-treatment. Immunoreactive cells for transforming growth factor-β1, vascular endothelial growth factor receptor-2 or matrix metalloproteinases 9 were also increased, probably due to tissue remodeling. Furthermore, LMF treatment reduced lipid peroxidation and increased antioxidant activities. These suggested that LMF promotes dermal wound healing via complex and coordinated antioxidant, anti-inflammatory and growth factor-dependent activities.
Collapse
Affiliation(s)
- Jun-Hyeong Park
- Department of Anatomy and Histology, College of Korean Medicine, Daegu Haany University, Gyeongsan 38610, Korea.
| | - Seong-Hun Choi
- Department of Anatomy and Histology, College of Korean Medicine, Daegu Haany University, Gyeongsan 38610, Korea.
| | - Soo-Jin Park
- Department of Anatomy and Histology, College of Korean Medicine, Daegu Haany University, Gyeongsan 38610, Korea.
| | - Young Joon Lee
- Department of Preventive Medicine, College of Korean Medicine, Daegu Haany University, Gyeongsan 38610, Korea.
| | - Jong Hyun Park
- Department of Pathology, College of Korean Medicine, Daegu Haany University, Gyeongsan 38610, Korea.
| | - Phil Hyun Song
- Department of Urology, College of Medicine, Yeungnam University, Daegu 42415, Korea.
| | - Chang-Mo Cho
- Faculty of Physical Education, College of Physical Education, Keimyung University, Daegu 42601, Korea.
| | - Sae-Kwang Ku
- Department of Anatomy and Histology, College of Korean Medicine, Daegu Haany University, Gyeongsan 38610, Korea.
| | - Chang-Hyun Song
- Department of Anatomy and Histology, College of Korean Medicine, Daegu Haany University, Gyeongsan 38610, Korea.
| |
Collapse
|
31
|
Hwang PA, Lin XZ, Kuo KL, Hsu FY. Fabrication and Cytotoxicity of Fucoidan-Cisplatin Nanoparticles for Macrophage and Tumor Cells. MATERIALS 2017; 10:ma10030291. [PMID: 28772650 PMCID: PMC5503377 DOI: 10.3390/ma10030291] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 03/03/2017] [Accepted: 03/06/2017] [Indexed: 12/18/2022]
Abstract
Fucoidan, an anionic, sulfated polysaccharide from brown seaweed, is known to exhibit antitumor and immunomodulatory functions. To develop an immune protection and chemotherapeutic agent, fucoidan-cisplatin nanoparticles (FCNPs) were designed. FCNPs were prepared by mixing cisplatin with fucoidan solution or fucoidan with cisplatin solution, followed by dialysis to remove trace elements. The nanoparticles, comprising 10 mg of fucoidan and 2 mg of cisplatin, which exhibited the highest cisplatin content and loading efficiency during the production process, were named as Fu100Cis20. The cisplatin content, cisplatin loading efficiency, nanoparticle size, and zeta potential of Fu100Cis20 were 18.9% ± 2.7%, 93.3% ± 7.8%, 181.2 ± 21.0 nm, and −67.4 ± 2.3 mV, respectively. Immune protection assay revealed that Fu100Cis20-treated RAW264.7 cells were protected from the cytotoxicity of cisplatin. Furthermore, antitumor assay indicated that Fu100Cis20-treated HCT-8 cells showed stronger cytotoxicity than those treated with cisplatin alone. These results suggested that fucoidan-based nanoparticles exhibited suitable particle size and high drug encapsulation, and that Fu100Cis20 has potential application in both immunotherapy and chemotherapy.
Collapse
Affiliation(s)
- Pai-An Hwang
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, No. 2, Beining Road, Keelung City 202, Taiwan.
| | - Xiao-Zhen Lin
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, No. 2, Beining Road, Keelung City 202, Taiwan.
| | - Ko-Liang Kuo
- Seafood Technology Division, Council of Agriculture Fisheries Research Institute, No. 199 Hou-Ih Road, Keelung City 202, Taiwan.
| | - Fu-Yin Hsu
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, No. 2, Beining Road, Keelung City 202, Taiwan.
| |
Collapse
|
32
|
Kim HJ, Joo HG. Paclitaxel inhibits the hyper-activation of spleen cells by lipopolysaccharide and induces cell death. J Vet Sci 2016; 17:453-458. [PMID: 27030196 PMCID: PMC5204022 DOI: 10.4142/jvs.2016.17.4.453] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 12/25/2015] [Accepted: 03/04/2016] [Indexed: 01/12/2023] Open
Abstract
Paclitaxel was isolated from the bark of the Pacific yew, Taxus brevifolia, and used as an anticancer agent. Paclitaxel prevents cancer cell division by inhibiting spindle fiber function, inducing cell death. A recent study demonstrated that paclitaxel binds to myeloid differentiation protein-2 of Toll-like receptor 4 and prevents the signal transduction of lipopolysaccharide (LPS). Paclitaxel converts immune cells hypo-responsive to LPS. In this study, we investigated whether paclitaxel can inhibit the phenotype and function of immune cells. To accomplish this, we used spleen cells, a major type of immune cell, LPS, a representative inflammatory agent and a mitogen for B lymphocytes. LPS profoundly increased the activation and cytokine production of spleen cells. However, paclitaxel significantly inhibited LPS-induced hyper-activation of spleen cells. Furthermore, we found that paclitaxel induced cell death of LPS-treated spleen cells. These results suggest that paclitaxel can inhibit the hyper-immune response of LPS in spleen cells via a variety of mechanisms. These findings suggest that paclitaxel can be used as a modulating agent for diseases induced by hyper-activation of B lymphocytes. Taken together, these results demonstrate that paclitaxel inhibits the function of spleen cells activated by LPS, and further induces cell death.
Collapse
Affiliation(s)
- Hyun-Ji Kim
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, Jeju National University, Jeju 63243, Korea
| | - Hong-Gu Joo
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, Jeju National University, Jeju 63243, Korea
| |
Collapse
|
33
|
Conti BJ, Santiago KB, Cardoso EO, Freire PP, Carvalho RF, Golim MA, Sforcin JM. Propolis modulates miRNAs involved in TLR-4 pathway, NF-κB activation, cytokine production and in the bactericidal activity of human dendritic cells. J Pharm Pharmacol 2016; 68:1604-1612. [DOI: 10.1111/jphp.12628] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 07/26/2016] [Indexed: 01/28/2023]
Abstract
Abstract
Objectives
Dendritic cells (DCs) are antigen-presenting cells, essential for recognition and presentation of pathogens to T cells. Propolis, a resinous material produced by bees from various plants, exhibits numerous biological properties, highlighting its immunomodulatory action. Here, we assayed the effects of propolis on the maturation and function of human DCs.
Methods
DCs were generated from human monocytes and incubated with propolis and LPS. NF-κB and cytokines production were determined by ELISA. microRNA's expression was analysed by RT-qPCR and cell markers detection by flow cytometry. Colony-forming units were obtained to assess the bactericidal activity of propolis-treated DCs.
Key findings
Propolis activated DCs in the presence of LPS, inducing NF-kB, TNF-α, IL-6 and IL-10 production. The inhibition of hsa-miR-148a and hsa-miR-148b abolished the inhibitory effects on HLA-DR and pro-inflammatory cytokines. The increased expression of hsa-miR-155 may be correlated to the increase in TLR-4 and CD86 expression, maintaining LPS-induced expression of HLA-DR and CD40. Such parameters may be involved in the increased bactericidal activity of DCs against Streptococcus mutans.
Conclusion
Propolis modulated the maturation and function of DCs and may be useful in the initial steps of the immune response, providing a novel approach to the development of DC-based strategies and for the discovery of new immunomodulators.
Collapse
Affiliation(s)
- Bruno J Conti
- Department of Microbiology and Immunology, Biosciences Institute, São Paulo State University (UNESP), São Paulo, Brazil
| | - Karina B Santiago
- Department of Microbiology and Immunology, Biosciences Institute, São Paulo State University (UNESP), São Paulo, Brazil
| | - Eliza O Cardoso
- Department of Microbiology and Immunology, Biosciences Institute, São Paulo State University (UNESP), São Paulo, Brazil
| | - Paula P Freire
- Department of Morphology, Biosciences Institute, São Paulo State University (UNESP), São Paulo, Brazil
| | - Robson F Carvalho
- Department of Morphology, Biosciences Institute, São Paulo State University (UNESP), São Paulo, Brazil
| | - Marjorie A Golim
- Botucatu Blood Center, School of Medicine, São Paulo State University (UNESP), São Paulo, Brazil
| | - José M Sforcin
- Department of Microbiology and Immunology, Biosciences Institute, São Paulo State University (UNESP), São Paulo, Brazil
| |
Collapse
|
34
|
Marine bioactive compounds and health promoting perspectives; innovation pathways for drug discovery. Trends Food Sci Technol 2016. [DOI: 10.1016/j.tifs.2016.01.019] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
35
|
Cong Q, Chen H, Liao W, Xiao F, Wang P, Qin Y, Dong Q, Ding K. Structural characterization and effect on anti-angiogenic activity of a fucoidan from Sargassum fusiforme. Carbohydr Polym 2016; 136:899-907. [PMID: 26572427 DOI: 10.1016/j.carbpol.2015.09.087] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 09/22/2015] [Accepted: 09/24/2015] [Indexed: 01/29/2023]
Abstract
A fucoidan FP08S2 was isolated from the boiling-water extract of Sargassum fusiforme, purified by CaCl2 precipitation and chromatography on DEAE-cellulose and Sephacryl S-300. FP08S2 contained fucose, xylose, galactose, mannose, glucuronic acid, and 20.8% sulfate. The sulfate groups were attached to diverse positions of fucose, xylose, mannose, and galactose residues. The backbone of FP08S2 consisted of alternate 1,2-linked α-D-Manp and 1,4-linked β-D-GlcpA. Sugar composition analysis and ESI-MS revealed that the oligosaccharides from branches contained fucose, xylose, galactose, glucuronic acid and sulfate. FP08S2 could significantly inhibit tube formation and migration of human microvascular endothelial cells (HMEC-1) dose-dependently. These results suggested that the fucoidan FP08S2 from brown seaweeds S. fusiforme could be a potent anti-angiogenic agent.
Collapse
Affiliation(s)
- Qifei Cong
- Glycochemistry and Glycobiology Lab, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang, Pudong, Shanghai 201203, China
| | - Huanjun Chen
- Glycochemistry and Glycobiology Lab, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang, Pudong, Shanghai 201203, China
| | - Wenfeng Liao
- Glycochemistry and Glycobiology Lab, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang, Pudong, Shanghai 201203, China
| | - Fei Xiao
- Glycochemistry and Glycobiology Lab, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang, Pudong, Shanghai 201203, China
| | - Peipei Wang
- Glycochemistry and Glycobiology Lab, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang, Pudong, Shanghai 201203, China
| | - Yi Qin
- Glycochemistry and Glycobiology Lab, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang, Pudong, Shanghai 201203, China
| | - Qun Dong
- Glycochemistry and Glycobiology Lab, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang, Pudong, Shanghai 201203, China.
| | - Kan Ding
- Glycochemistry and Glycobiology Lab, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang, Pudong, Shanghai 201203, China.
| |
Collapse
|
36
|
Lin R, Liu X, Meng Y, Xu M, Guo J. Effects of Laminaria japonica polysaccharides on airway inflammation of lungs in an asthma mouse model. Multidiscip Respir Med 2015; 10:20. [PMID: 26110056 PMCID: PMC4479343 DOI: 10.1186/s40248-015-0017-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 05/21/2015] [Indexed: 12/20/2022] Open
Abstract
Background Asthma is a serious chronic inflammatory disease affecting 300 million people worldwide. This aim of this study to investigate the anti-inflammatory and anti-asthmatic effects of Laminaria japonica extract in the ovalbumin (OVA)-induced mouse asthma model. Methods A mouse asthma model was established in SPF Kunming mice by OVA-sensitization followed by inhalation of aerosol allergen for two weeks. Laminaria japonica polysaccharides (LJPS) were given by gavage feeding at 50 mg/kg/day during OVA inhalation challenge period, and their effect on asthma was compared with the standard treatment of Budesonide inhalation. The total inflammatory cells and eosinophils in bronchoalveolar lavage fluid (BALF) were determined. Histopathological changes in lung tissue were studied and scored to determine the degree of inflammation. Levels of IL-12, IL-13, and TGF-β1 in BALF as well as serum levels of IgE were measured. Expressions of IL-12, IL-13, and TGF-β1 in lung tissues were assessed. Results Highly inflammatory lungs infiltrated with significant increased eosinophils were observed in OVA-induced asthmatic mice. The OVA treated mice presented with a lower level of IL-12 and higher levels of IL-13 and TGF-β1 in BALF and lung tissues, as well as an increased level of the serum IgE. Treatment with LJPS (Group B) significantly decreased the numbers of eosinophils in the BALF (P < 0.05) and alleviated lung inflammation compared to the untreated asthma mice (Group A). It also reduced the serum IgE levels, increased expression of IL-12, and decreased the expression of IL-13 and TGF-β1 in BALF and lung (Both P < 0.05) compared with the group A. Conclusions LJPS can significantly inhibit airway inflammation of asthmatic mice, adjust the balance of cytokines, and improve the pulmonary histopathological condition. Our data suggested that LJPS might be a potential therapeutic reagent for allergic asthma.
Collapse
Affiliation(s)
- Rongjun Lin
- Department of Pediatrics, The Affiliated Hospital of Qingdao University Medical College, Qingdao, 266003 China
| | - Xiaomei Liu
- Department of Pediatrics, The Affiliated Hospital of Qingdao University Medical College, Qingdao, 266003 China
| | - Yan Meng
- Department of Pediatrics, People's hospital of Zoucheng city, Jining, 273500 China
| | - Mei Xu
- Department of Pediatrics, People's Hospital of Central District, Zaozhuang, 277101 China
| | - Jianping Guo
- Department of Pediatrics, Women and Children's Hospital of Qingdao, Qingdao, 266011 China
| |
Collapse
|
37
|
Shvetsova SV, Zhurishkina EV, Bobrov KS, Ronzhina NL, Lapina IM, Ivanen DR, Gagkaeva TY, Kulminskaya AA. The novel strain Fusarium proliferatum LE1 (RCAM02409) produces α-L-fucosidase and arylsulfatase during the growth on fucoidan. J Basic Microbiol 2015; 55:471-9. [PMID: 25346501 DOI: 10.1002/jobm.201400309] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Accepted: 09/07/2014] [Indexed: 11/10/2022]
Abstract
Enzymes capable of modifying the sulfated polymeric molecule of fucoidan are mainly produced by different groups of marine organisms: invertebrates, bacteria, and also some fungi. We have discovered and identified a new strain of filamentous fungus Fusarium proliferatum LE1 (deposition number in Russian Collection of Agricultural Microorganisms is RCAM02409), which is a potential producer of fucoidan-degrading enzymes. The strain LE1 (RCAM02409) was identified on the basis of morphological characteristics and analysis of ITS sequences of ribosomal DNA. During submerged cultivation of F. proliferatum LE1 in the nutrient medium containing natural fucoidan sources (the mixture of brown algae Laminaria digitata and Fucus vesiculosus), enzymic activities of α-L-fucosidase and arylsulfatase were inducible. These enzymes hydrolyzed model substrates, para-nitrophenyl α-L-fucopyranoside and para-nitrophenyl sulfate, respectively. However, the α-L-fucosidase is appeared to be a secreted enzyme while the arylsulfatase was an intracellular one. No detectable fucoidanase activity was found during F. proliferatum LE1 growth in submerged culture or in a static one. Comparative screening for fucoidanase/arylsulfatase/α-L-fucosidase activities among several related Fusarium strains showed a uniqueness of F. proliferatum LE1 to produce arylsulfatase and α-L-fucosidase enzymes. Apart them, the strain was shown to produce other glycoside hydrolyses.
Collapse
Affiliation(s)
- Svetlana V Shvetsova
- National Research Center «Kurchatov Institute», B.P. Konstantinov Petersburg Nuclear Physics Institute, Gatchina, Russia; St. Petersburg State Polytechnical University, St. Petersburg, Russia
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Lin CC, Pan IH, Li YR, Pan YG, Lin MK, Lu YH, Wu HC, Chu CL. The adjuvant effects of high-molecule-weight polysaccharides purified from Antrodia cinnamomea on dendritic cell function and DNA vaccines. PLoS One 2015; 10:e0116191. [PMID: 25723174 PMCID: PMC4344241 DOI: 10.1371/journal.pone.0116191] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 12/08/2014] [Indexed: 01/19/2023] Open
Abstract
The biological activity of the edible basidiomycete Antrodia cinnamomea (AC) has been studied extensively. Many effects, such as anti-cancer, anti-inflammatory, and antioxidant activities, have been reported from either crude extracts or compounds isolated from AC. However, research addressing the function of AC in enhancing immunity is rare. The aim of the present study is to investigate the active components and the mechanism involved in the immunostimulatory effect of AC. We found that polysaccharides (PS) in the water extract of AC played a major role in dendritic cell (DC) activation, which is a critical leukocyte in initiating immune responses. We further size purified and identified that the high-molecular weight PS fraction (greater than 100 kDa) exhibited the activating effect. The AC high-molecular weight PSs (AC hmwPSs) promoted pro-inflammatory cytokine production by DCs and the maturation of DCs. In addition, DC-induced antigen-specific T cell activation and Th1 differentiation were increased by AC hmwPSs. In studying the molecular mechanism, we confirmed the activation of the MAPK and NF-κB pathways in DCs after AC hmwPSs treatment. Furthermore, we demonstrated that TLR2 and TLR4 are required for the stimulatory activity of AC hmwPSs on DCs. In a mouse tumor model, we demonstrated that AC hmwPSs enhanced the anti-tumor efficacy of the HER-2/neu DNA vaccine by facilitating specific Th1 responses. Thus, we conclude that hmwPSs are the major components of AC that stimulate DCs via the TLR2/TLR4 and NF-κB/MAPK signaling pathways. The AC hmwPSs have potential to be applied as adjuvants.
Collapse
Affiliation(s)
- Chi-Chen Lin
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan
- Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan
- Department of Medical Research and Education, Taichung Veterans General Hospital, Taichung, Taiwan
| | - I-Hong Pan
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan
| | - Yi-Rong Li
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Yi-Gen Pan
- Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ming-Kuem Lin
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung, Taiwan
| | - Yi-Huang Lu
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan
| | - Hsin-Chieh Wu
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan
| | - Ching-Liang Chu
- Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
39
|
Katai K, Iwamoto A, Kimura Y, Oshima Y, Arioka S, Morimi Y, Omuro A, Nakasa T. Wakame (Undaria pinnatifida ) modulates hyperphosphatemia in a rat model of chronic renal failure. THE JOURNAL OF MEDICAL INVESTIGATION 2015; 62:68-74. [PMID: 25817287 DOI: 10.2152/jmi.62.68] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
In chronic renal failure, inorganic phosphate (Pi) retention speeds up the progression to end-stage renal disease. The current therapy for hyperphosphatemia in patients with chronic renal failure consists of dietary Pi restriction combined with administration of Pi binders, but each therapy has practical problems. Thus, the discovery of foods or nutrients that inhibit Pi absorption may be useful for the treatment of hyperphosphatemia. In the present study, we investigated whether wakame (Undaria pinnatifida) is a useful food for the prevention of hyperphosphatemia in a rat model of renal failure. Feeding a diet containing 5% wakame significantly decreased plasma and urinary Pi levels and increased the amount of fecal Pi. In addition, wakame significantly reduced plasma blood urea nitrogen and plasma Pi levels in 5/6 nephrectomized rats fed a high-Pi diet. Biochemical analyses showed that the reduction of intestinal Pi absorption is the main reason for the decrease in plasma Pi levels in rats fed a diet containing wakame. In addition, feeding alginic acid and fucoidan, major components of wakame fiber, was effective in reducing plasma Pi levels in normal rats. Finally, we concluded that wakame may be a useful food for the prevention of hyperphosphatemia in rodents.
Collapse
Affiliation(s)
- Kanako Katai
- Department of Food science and Nutrition, Faculty of Human Life and Science, Doshisha Women's College of Liberal Arts
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Kim SY, Joo HG. Evaluation of adjuvant effects of fucoidan for improving vaccine efficacy. J Vet Sci 2014; 16:145-50. [PMID: 25549218 PMCID: PMC4483496 DOI: 10.4142/jvs.2015.16.2.145] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 10/29/2014] [Accepted: 11/05/2014] [Indexed: 11/20/2022] Open
Abstract
Fucoidan is a sulfated polysaccharide derived from brown seaweed, including Fucus vesiculosus. This compound is known to have immunostimulatory effects on various types of immune cells including macrophages and dendritic cells. A recent study described the application of fucoidan as a vaccine adjuvant. Vaccination is regarded as the most efficient prophylactic method for preventing harmful or epidemic diseases. To increase vaccine efficacy, effective adjuvants are needed. In the present study, we determined whether fucoidan can function as an adjuvant using vaccine antigens. Flow cytometric analysis revealed that fucoidan increases the expression of the activation markers major histocompatibility complex class II, cluster of differentiation (CD)25, and CD69 in spleen cells. In combination with Bordetella bronchiseptica antigen, fucoidan increased the viability and tumor necrosis factor-α production of spleen cells. Furthermore, fucoidan increased the in vivo production of antigen-specific antibodies in mice inoculated with Mycoplasma hyopneumoniae antigen. Overall, this study has provided valuable information about the use of fucoidan as a vaccine adjuvant.
Collapse
Affiliation(s)
- Su-Yeon Kim
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, Jeju National University, Jeju 690-756, Korea
| | | |
Collapse
|
41
|
Cho M, Lee DJ, Kim JK, You S. Molecular characterization and immunomodulatory activity of sulfated fucans from Agarum cribrosum. Carbohydr Polym 2014; 113:507-14. [PMID: 25256513 DOI: 10.1016/j.carbpol.2014.07.055] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 07/07/2014] [Accepted: 07/23/2014] [Indexed: 12/15/2022]
Abstract
The sulfated-fucans, known as fucoidans, were isolated from Agarum cribrosum and fractionated using ion-exchange chromatography to determine their molecular characteristics and in vitro immunomodulatory activity. The crude and fractionated fucoidans (F1 and F2) consisted mostly of carbohydrates (52.4-56.0%), sulfates (12.7-23.0%) and uronic acid (14.1-21.8%), with a small amount of proteins (3.9-9.3%), and included various levels of fucose (44.0-46.7%), mannose (18.9-26.8%), galactose (16.8-33.0%), xylose (10.7-17.0%) and glucose (3.5-9.5%). The crude and fractionated fucans contained one or two subfractions with average molecular weights (Mw) ranging from 110.1 × 10(3) to 2420 × 10(3)g/mol. The fractionated fucoidan, especially the F1 fraction, strongly stimulated murine macrophages (Raw 264.7 cells), producing a considerable amount of nitric oxide (NO) and inducing expression of inducible NO synthase (iNOS), cyclooxygenase-2 (COX-2) and interleukin-10 (IL-10) transcripts by activation of nuclear factor-kappa B (NF-κB) and mitogen-activated protein kinases (MAPKs) pathways. The maximally immunoenhancing F1 fraction was mainly composed of (1 → 3)-linked fucose, (1 → 2)-linked mannose and (1 → 4)-linked glucuronic acid with sulfates at C-2 or both the C-2 and C-4 positions in (1 → 2,3)- and (1 → 2,3,4)-linked fucose residues.
Collapse
Affiliation(s)
- MyoungLae Cho
- East Sea Research Institute, Korea Institute of Ocean Science and Technology, Uljin 767-813, Gyeongbuk, Republic of Korea
| | - Dong-Jin Lee
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, Gangneung 210-702, Gangwon, Republic of Korea
| | - Jin-Kyung Kim
- Department of Biomedical Science, Catholic University of Daegu, Gyeongsan 712-702, Gyeongbuk, Republic of Korea
| | - SangGuan You
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, Gangneung 210-702, Gangwon, Republic of Korea.
| |
Collapse
|
42
|
Jin JO, Yu Q. Fucoidan delays apoptosis and induces pro-inflammatory cytokine production in human neutrophils. Int J Biol Macromol 2014; 73:65-71. [PMID: 25445688 DOI: 10.1016/j.ijbiomac.2014.10.059] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 10/25/2014] [Accepted: 10/30/2014] [Indexed: 01/19/2023]
Abstract
Although some immune modulatory effects of fucoidan have been elucidated, the effects of fucoidan on the apoptosis and activation of human neutrophils have not been investigated. In this study, we demonstrated that fucoidan purified from the brown seaweed Undaria pinnatifilda delays spontaneous apoptosis of human neutrophils and induces their activation. Fucoidan treatment inhibited apoptotic nuclei changes and phosphatidyl serine (PS) exposure on neutrophils cultured in vitro for 24h. The delay in neutrophil apoptosis mediated by fucoidan was associated with increased levels of the anti-apoptotic protein Mcl-1 and decreased levels of activated caspase-3. Screening of the signaling pathways by specific inhibitors indicated that fucoidan-induced delay in neutrophil apoptosis was dependent on the activation of PI3K/AKT signaling pathway, whereas MAPK signaling pathway was not critical. In addition, fucoidan enhanced the production of IL-6, IL-8 and TNF-α from neutrophils in an AKT-dependent manner. Taken together, these results demonstrated that fucoidan delays human neutrophil apoptosis and induces their production of pro-inflammatory cytokines. This knowledge could facilitate the development of novel therapeutic strategies for infectious diseases and neutropenia by controlling neutrophil homeostasis and function with fucoidan.
Collapse
Affiliation(s)
- Jun-O Jin
- Shanghai Public Health Clinical Center, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Qing Yu
- Department of Immunology and Infectios Diseases, The Forsyth Institute, Cambridge, MA, USA
| |
Collapse
|
43
|
Free-radical degradation by Fe2+/Vc/H2O2 and antioxidant activity of polysaccharide from Tremella fuciformis. Carbohydr Polym 2014; 112:578-82. [DOI: 10.1016/j.carbpol.2014.06.030] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Revised: 06/02/2014] [Accepted: 06/11/2014] [Indexed: 11/19/2022]
|
44
|
Barahona T, Encinas MV, Imarai M, Mansilla A, Matsuhiro B, Torres R, Valenzuela B. Bioactive polysaccharides from marine algae. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.bcdf.2014.09.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
45
|
Liu J, He C, Zhou H, Xu Y, Zhang X, Yan J, Xie H, Cheng S. Effects of TLR4 on β2-glycoprotein I-induced bone marrow-derived dendritic cells maturation. Cell Immunol 2014; 290:226-32. [PMID: 25108557 DOI: 10.1016/j.cellimm.2014.07.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 06/16/2014] [Accepted: 07/23/2014] [Indexed: 10/25/2022]
Abstract
Our previous study has demonstrated that Toll-like receptor 4 (TLR4) can contribute to anti-β2-glycoprotein I/β2-glycoprotein I (anti-β2GPI/β2GPI)-induced tissue factor (TF) expression in human acute monocytic leukemia cell line THP-1. However, the role of TLR4 in the activation of autoimmune response in antiphospholipid syndrome (APS) has rarely been reported. In this study, we focused on the role of TLR4 in β2GPI-induced maturation of bone marrow-derived dendritic cells (BMDCs). iDCs from C3H/HeN mice stimulated with β2GPI were more mature than that from C3H/HeJ mice, yields of CD11c(+)MHCII(+)DCs, CD11c(+)CD80(+)DCs and CD11c(+)CD86(+)DCs and production of some pro-inflammatory cytokines in iDCs from C3H/HeN were higher than those from C3H/HeJ (p<0.05). Moreover, the ability of β2GPI-treated iDCs from C3H/HeJ to stimulate proliferation of allogeneic mixed lymphocytes was lower than that of iDCs from C3H/HeN. In conclusion, our results indicate that TLR4 may play a significant role in β2-glycoprotein I-induced BMDCs maturation.
Collapse
Affiliation(s)
- Jingjing Liu
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212013, PR China; Department of Clinical Laboratory and Hematology, School of Medical Science and Laboratory Medicine of Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Chao He
- Department of Clinical Laboratory and Hematology, School of Medical Science and Laboratory Medicine of Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Hong Zhou
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212013, PR China; Department of Clinical Laboratory and Hematology, School of Medical Science and Laboratory Medicine of Jiangsu University, Zhenjiang, Jiangsu 212013, PR China.
| | - Ya Xu
- Department of Clinical Laboratory and Hematology, School of Medical Science and Laboratory Medicine of Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Xiaolei Zhang
- Department of Clinical Laboratory and Hematology, School of Medical Science and Laboratory Medicine of Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Jinchuan Yan
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212013, PR China.
| | - Hongxiang Xie
- Department of Clinical Laboratory and Hematology, School of Medical Science and Laboratory Medicine of Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Si Cheng
- Department of Clinical Laboratory and Hematology, School of Medical Science and Laboratory Medicine of Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| |
Collapse
|
46
|
Choi YJ, Lee SR, Oh JW. Effects of dietary fermented seaweed and seaweed fusiforme on growth performance, carcass parameters and immunoglobulin concentration in broiler chicks. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2014; 27:862-70. [PMID: 25050025 PMCID: PMC4093169 DOI: 10.5713/ajas.2014.14015] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 02/15/2014] [Accepted: 03/17/2014] [Indexed: 11/27/2022]
Abstract
This study was conducted to investigate the effects of brown seaweed (Undaria pinnatifida) by-product and seaweed fusiforme (Hizikia fusiformis) by-product supplementation on growth performance and blood profiles including serum immunoglobulin (Ig) in broilers. Fermentation of seaweeds was conducted by Bacillus subtilis and Aspergillus oryzae. In a 5-wk feeding trial, 750 one-d-old broiler chicks were divided into 5 groups, and were assigned to the control diet or experimental diets including control+0.5% brown seaweed (BS) by-product, control+0.5% seaweed fusiforme (SF) by-product, control+0.5% fermented brown seaweed (FBS) by-product, and control+0.5% fermented seaweed fusiforme (FSF) by-product. As a consequence, body weight gain (BWG) and gain:feed of seaweed by-product groups were clearly higher, when compared to those of control diet group from d 18 to 35 and the entire experimental period (p<0.05). In mortality rate, seaweed by-product groups were significantly lower when compared to control diet group during entire experimental period (p<0.05). However, Feed Intake of experimental diets group was not different from that of the control group during the entire experimental period. Whereas, Feed Intake of fermented seaweed by-product groups was lower than that of non-fermented seaweed groups (p<0.05). Total organ weights, lipids, and glutamic oxalacetic transaminase (GOT) of all treatment groups were not different from those of control group. However, glutamic pyruvate transaminase (GPT) of all treatment groups was higher than that of control group at d 17 (p<0.05). In case of serum Igs concentration, the concentration of IgA antibody in BS, SF, FSF treatment groups was significantly higher than in control group at d 35 (p<0.01). IgA concentration in FBS supplementation groups was negligibly decreased when compared to the control group. IgM concentration in the serums of all treatment groups was significantly higher than in control group (p<0.05) and in fermented seaweed by-product groups were much higher than in non-fermented seaweed groups (p<0.05). On the other hand, IgG concentrations in all treatment groups were lower than in control group (p<0.05). Taken together, our results suggest that by-product dietary supplementation of BS, SF, FBS, and FSF in poultry may provide positive effects of growth performance and immune response.
Collapse
Affiliation(s)
- Y J Choi
- Department of Animal Biotechnology, Konkuk University, Seoul 143-701, Korea
| | - S R Lee
- Department of Animal Biotechnology, Konkuk University, Seoul 143-701, Korea
| | - J-W Oh
- Department of Animal Biotechnology, Konkuk University, Seoul 143-701, Korea
| |
Collapse
|
47
|
Zhang W, Du JY, Jiang Z, Okimura T, Oda T, Yu Q, Jin JO. Ascophyllan purified from Ascophyllum nodosum induces Th1 and Tc1 immune responses by promoting dendritic cell maturation. Mar Drugs 2014; 12:4148-64. [PMID: 25026264 PMCID: PMC4113820 DOI: 10.3390/md12074148] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 06/06/2014] [Accepted: 06/25/2014] [Indexed: 12/11/2022] Open
Abstract
Marine-derived sulfated polysaccharides have been shown to possess certain anti-virus, anti-tumor, anti-inflammatory and anti-coagulant activities. However, the in vivo immunomodulatory effects of marine-derived pure compounds have been less well characterized. In this study, we investigated the effect of ascophyllan, a sulfated polysaccharide purified from Ascophyllum nodosum, on the maturation of mouse dendritic cells (DCs) in vitro and in vivo. Ascophyllan induced up-regulation of co-stimulatory molecules and production of pro-inflammatory cytokines in bone marrow-derived DCs (BMDCs). Moreover, in vivo administration of ascophyllan promotes up-regulation of CD40, CD80, CD86, MHC class I and MHC class II and production of IL-6, IL-12 and TNF-α in spleen cDCs. Interestingly, ascophyllan induced a higher degree of co-stimulatory molecule up-regulation and pro-inflammatory cytokine production than fucoidan, a marine-derived polysaccharide with well-defined effect for promoting DC maturation. Ascophyllan also promoted the generation of IFN-γ-producing Th1 and Tc1 cells in the presence of DCs in an IL-12-dependent manner. Finally, myeloid differentiation primary response 88 (MyD88) signaling pathway was essential for DC maturation induced by ascophyllan. Taken together, these results demonstrate that ascophyllan induces DC maturation, and consequently enhances Th1 and Tc1 responses in vivo. This knowledge could facilitate the development of novel therapeutic strategies to combat infectious diseases and cancer.
Collapse
Affiliation(s)
- Wei Zhang
- Shanghai Public Health Clinical Center, Shanghai Medical College, Fudan University, Shanghai 201508, China.
| | - Jiang-Yuan Du
- Shanghai Public Health Clinical Center, Shanghai Medical College, Fudan University, Shanghai 201508, China.
| | - Zedong Jiang
- Division of Biochemistry, Faculty of Fisheries, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan.
| | - Takasi Okimura
- Research and Development Division, Hayashikane Sangyo Co., Ltd., Shimonoseki, Yamaguchi 750-8608, Japan.
| | - Tatsuya Oda
- Division of Biochemistry, Faculty of Fisheries, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan.
| | - Qing Yu
- Department of Immunology and Infectious Diseases, The Forsyth Institute, 245 First Street, Cambridge, MA 02142, USA.
| | - Jun-O Jin
- Shanghai Public Health Clinical Center, Shanghai Medical College, Fudan University, Shanghai 201508, China.
| |
Collapse
|
48
|
Jin JO, Zhang W, Du JY, Wong KW, Oda T, Yu Q. Fucoidan can function as an adjuvant in vivo to enhance dendritic cell maturation and function and promote antigen-specific T cell immune responses. PLoS One 2014; 9:e99396. [PMID: 24911024 PMCID: PMC4049775 DOI: 10.1371/journal.pone.0099396] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 05/14/2014] [Indexed: 12/21/2022] Open
Abstract
Fucoidan, a sulfated polysaccharide purified from brown algae, has a variety of immune-modulation effects, including promoting antigen uptake and enhancing anti-viral and anti-tumor effects. However, the effect of fucoidan in vivo, especially its adjuvant effect on in vivo anti-tumor immune responses, was not fully investigated. In this study, we investigated the effect of fucoidan on the function of spleen dendritic cells (DCs) and its adjuvant effect in vivo. Systemic administration of fucoidan induced up-regulation of CD40, CD80 and CD86 expression and production of IL-6, IL-12 and TNF-α in spleen cDCs. Fucoidan also promoted the generation of IFN-γ-producing Th1 and Tc1 cells in an IL-12-dependent manner. When used as an adjuvant in vivo with ovalbumin (OVA) antigen, fucoidan promoted OVA-specific antibody production and primed IFN-γ production in OVA-specific T cells. Moreover, fucoidan enhanced OVA-induced up-regulation of MHC class I and II on spleen cDCs and strongly prompted the proliferation of OVA-specific CD4 and CD8 T cells. Finally, OVA immunization with fucoidan as adjuvant protected mice from the challenge with B16-OVA tumor cells. Taken together, these results suggest that fucoidan can function as an adjuvant to induce Th1 immune response and CTL activation, which may be useful in tumor vaccine development.
Collapse
Affiliation(s)
- Jun-O Jin
- Shanghai Public Health Clinical Center, Shanghai Medical College, Fudan University, Shanghai, China
- * E-mail:
| | - Wei Zhang
- Shanghai Public Health Clinical Center, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jiang-Yuan Du
- Shanghai Public Health Clinical Center, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ka-Wing Wong
- Shanghai Public Health Clinical Center, Shanghai Medical College, Fudan University, Shanghai, China
| | - Tatsuya Oda
- Graduate School of Science and Technology, Nagasaki University, Nagasaki, Japan
| | - Qing Yu
- Department of Immunology and Infectious Diseases, The Forsyth Institute, Cambridge, Massachusetts, United States of America
| |
Collapse
|
49
|
Jang JY, Moon SY, Joo HG. Differential effects of fucoidans with low and high molecular weight on the viability and function of spleen cells. Food Chem Toxicol 2014; 68:234-8. [PMID: 24681238 DOI: 10.1016/j.fct.2014.03.024] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 03/17/2014] [Accepted: 03/19/2014] [Indexed: 10/25/2022]
Abstract
Fucoidan is an edible sulfated polysaccharide purified from brown algae that has multiple biological activities. However, the effects of fucoidans of different molecular weights on immune cells have not been determined. Thus, we treated spleen cells with low- and high-molecular-weight fucoidans (LMF and HMF, respectively). Viability assays demonstrated that HMF enhanced the viability and prevented the death of spleen cells. Furthermore, functional analysis revealed that HMF significantly increased the production of interferon-γ and nitric oxide. In contrast, LMF had low activity and was relatively toxic to spleen cells. Taken together, these results indicate that HMF makes the greatest contribution to the immunostimulatory activity of fucoidan mixtures. Additionally, fucoidans with different molecular weights may have different effects on the viability and function of immune cells. This study increases our understanding of fucoidans, and may broaden their use in the basic research and clinical fields.
Collapse
Affiliation(s)
- Ji-Young Jang
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, Jeju National University, Jeju 690-756, Republic of Korea
| | - Sun-Young Moon
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, Jeju National University, Jeju 690-756, Republic of Korea
| | - Hong-Gu Joo
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, Jeju National University, Jeju 690-756, Republic of Korea.
| |
Collapse
|
50
|
Sharma G, Kar S, Basu Ball W, Ghosh K, Das PK. The curative effect of fucoidan on visceral leishmaniasis is mediated by activation of MAP kinases through specific protein kinase C isoforms. Cell Mol Immunol 2014; 11:263-74. [PMID: 24561457 DOI: 10.1038/cmi.2013.68] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 12/06/2013] [Accepted: 12/12/2013] [Indexed: 01/08/2023] Open
Abstract
Fucoidan can cure both antimony-sensitive and antimony-resistant visceral leishmaniasis through immune activation. However, the signaling events underlying this cellular response remain uncharacterized. The present study reveals that fucoidan induces activation of p38 and ERK1/2 and NF-κB DNA binding in both normal and Leishmania donovani-infected macrophages, as revealed by western blotting and electrophoretic mobility shift assay (EMSA), respectively. Pharmacological inhibition of p38, ERK1/2 or the NF-κB pathway markedly attenuated fucoidan-induced pro-inflammatory cytokine synthesis and inducible nitric oxide synthase (iNOS) gene transcription, resulting in a reduction of parasite clearance. To decipher the underlying mechanism of fucoidan-mediated parasite suppression, the expression and functionality of various protein kinase C (PKC) isoforms were evaluated by immunoblotting and enzyme activity assay. Fucoidan elicited an increase in expression and activity of PKC-α, -βI and -βII isoforms in infected macrophages. Functional knockdown of PKC-α and -β resulted in downregulation of p38 and ERK1/2, along with a marked reduction of IL-12 and TNF-α production in fucoidan-treated infected macrophages. Collectively, these results suggest that the curative effect of fucoidan is mediated by PKC-dependent activation of the mitogen-activated protein kinase (MAPK)/NF-κB pathway, which ultimately results in the production of nitric oxide (NO) and disease-resolving pro-inflammatory cytokines.
Collapse
Affiliation(s)
- Gunjan Sharma
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Susanta Kar
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Writoban Basu Ball
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Kuntal Ghosh
- Department of Biochemistry, Calcutta University, Kolkata, India
| | - Pijush K Das
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| |
Collapse
|