1
|
Bettinsoli V, Melzi G, Marchese I, Pantaleoni S, Passoni FC, Corsini E. New approach methodologies to assess wanted and unwanted drugs-induced immunostimulation. Curr Res Toxicol 2025; 8:100222. [PMID: 40027547 PMCID: PMC11872130 DOI: 10.1016/j.crtox.2025.100222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 01/16/2025] [Accepted: 01/28/2025] [Indexed: 03/05/2025] Open
Abstract
This review examines various classes of drugs, focusing on their therapeutic and adverse effects, particularly in relation to immunostimulation. We emphasize the potential of new approach methodologies (NAMs) to study both expected and unexpected immunostimulatory effects. By evaluating the modes of action of different immunostimulatory drugs, we aim to provide insights into effectively assessing unwanted immunostimulatory responses. The review begins by exploring drugs that stimulate the immune system-including immunostimulants, monoclonal antibodies, chemotherapeutics, and nucleic acid-based drugs-to outline NAMs that could be employed to evaluate immunostimulation.
Collapse
Affiliation(s)
- Valeria Bettinsoli
- Department of Pharmacological and Biomolecular Sciences ‘Rodolfo Paoletti’, Università degli Studi di Milano, Via Balzaretti 9 20133 Milan, Italy
- Department of Pharmacy, Università degli Studi di Napoli Federico II, Naples, Italy
| | - Gloria Melzi
- Department of Pharmacological and Biomolecular Sciences ‘Rodolfo Paoletti’, Università degli Studi di Milano, Via Balzaretti 9 20133 Milan, Italy
| | - Irene Marchese
- Department of Pharmacological and Biomolecular Sciences ‘Rodolfo Paoletti’, Università degli Studi di Milano, Via Balzaretti 9 20133 Milan, Italy
| | - Sofia Pantaleoni
- Department of Pharmacological and Biomolecular Sciences ‘Rodolfo Paoletti’, Università degli Studi di Milano, Via Balzaretti 9 20133 Milan, Italy
| | - Francesca Carlotta Passoni
- Department of Pharmacological and Biomolecular Sciences ‘Rodolfo Paoletti’, Università degli Studi di Milano, Via Balzaretti 9 20133 Milan, Italy
| | - Emanuela Corsini
- Department of Pharmacological and Biomolecular Sciences ‘Rodolfo Paoletti’, Università degli Studi di Milano, Via Balzaretti 9 20133 Milan, Italy
| |
Collapse
|
2
|
Ding X, Zhou Y, He J, Zhao J, Li J. Enhancement of SARS-CoV-2 mRNA Vaccine Efficacy through the Application of TMSB10 UTR for Superior Antigen Presentation and Immune Activation. Vaccines (Basel) 2024; 12:432. [PMID: 38675814 PMCID: PMC11053782 DOI: 10.3390/vaccines12040432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/05/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
The development of effective vaccines against SARS-CoV-2 remains a critical challenge amidst the ongoing global pandemic. This study introduces a novel approach to enhancing mRNA vaccine efficacy by leveraging the untranslated region (UTR) of TMSB10, a gene identified for its significant mRNA abundance in antigen-presenting cells. Utilizing the GEO database, we identified TMSB10 among nine genes, with the highest mRNA abundance in dendritic cell subtypes. Subsequent experiments revealed that TMSB10's UTR significantly enhances the expression of a reporter gene in both antigen-presenting and 293T cells, surpassing other candidates and a previously optimized natural UTR. A comparative analysis demonstrated that TMSB10 UTR not only facilitated a higher reporter gene expression in vitro but also showed marked superiority in vivo, leading to enhanced specific humoral and cellular immune responses against the SARS-CoV-2 Delta variant RBD antigen. Specifically, vaccines incorporating TMSB10 UTR induced significantly higher levels of specific IgG antibodies and promoted a robust T-cell immune response, characterized by the increased secretion of IFN-γ and IL-4 and the proliferation of CD4+ and CD8+ T cells. These findings underscore the potential of TMSB10 UTR as a strategic component in mRNA vaccine design, offering a promising avenue to bolster vaccine-induced immunity against SARS-CoV-2 and, potentially, other pathogens.
Collapse
Affiliation(s)
- Xiaoyan Ding
- College of Basic Medicine, Third Military Medical University, Chongqing 400038, China; (X.D.); (Y.Z.); (J.H.); (J.Z.)
- Department of Pediatrics, Ludwig-Maximilians University of Munich, 80337 Munich, Germany
| | - Yuxin Zhou
- College of Basic Medicine, Third Military Medical University, Chongqing 400038, China; (X.D.); (Y.Z.); (J.H.); (J.Z.)
| | - Jiuxiang He
- College of Basic Medicine, Third Military Medical University, Chongqing 400038, China; (X.D.); (Y.Z.); (J.H.); (J.Z.)
| | - Jing Zhao
- College of Basic Medicine, Third Military Medical University, Chongqing 400038, China; (X.D.); (Y.Z.); (J.H.); (J.Z.)
| | - Jintao Li
- College of Basic Medicine, Third Military Medical University, Chongqing 400038, China; (X.D.); (Y.Z.); (J.H.); (J.Z.)
| |
Collapse
|
3
|
Driedonks TAP, Ressel S, Tran Ngoc Minh T, Buck AH, Nolte‐‘t Hoen ENM. Intracellular localisation and extracellular release of Y RNA and Y RNA binding proteins. JOURNAL OF EXTRACELLULAR BIOLOGY 2024; 3:e123. [PMID: 38938676 PMCID: PMC11080805 DOI: 10.1002/jex2.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/01/2023] [Accepted: 11/02/2023] [Indexed: 06/29/2024]
Abstract
Cells can communicate via the release and uptake of extracellular vesicles (EVs), which are nano-sized membrane vesicles that can transfer protein and RNA cargo between cells. EVs contain microRNAs and various other types of non-coding RNA, of which Y RNA is among the most abundant types. Studies on how RNAs and their binding proteins are sorted into EVs have mainly focused on comparing intracellular (cytoplasmic) levels of these RNAs to the extracellular levels in EVs. Besides overall transcriptional levels that may regulate sorting of RNAs into EVs, the process may also be driven by local intracellular changes in RNA/RBP concentrations. Changes in extracellular Y RNA have been linked to cancer and cardiovascular diseases. Although the loading of RNA cargo into EVs is generally thought to be influenced by cellular stimuli and regulated by RNA binding proteins (RBP), little is known about Y RNA shuttling into EVs. We previously reported that immune stimulation alters the levels of Y RNA in EVs independently of cytosolic Y RNA levels. This suggests that Y RNA binding proteins, and/or changes in the local Y RNA concentration at EV biogenesis sites, may affect Y RNA incorporation into EVs. Here, we investigated the subcellular distribution of Y RNA and Y RNA binding proteins in activated and non-activated THP1 macrophages. We demonstrate that Y RNA and its main binding protein Ro60 abundantly co-fractionate in organelles involved in EV biogenesis and in EVs. Cellular activation led to an increase in Y RNA concentration at EV biogenesis sites and this correlated with increased EV-associated levels of Y RNA and Ro60. These results suggest that Y RNA incorporation into EVs may be controlled by local intracellular changes in the concentration of Y RNA and their protein binding partners.
Collapse
Affiliation(s)
- Tom A. P. Driedonks
- Department Biomolecular Health Sciences, Fac. Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
- Department CDL ResearchUniversity Medical Centre UtrechtUtrechtThe Netherlands
| | - Sarah Ressel
- Institute of Immunology & Infection Research, School of Biological SciencesUniversity of EdinburghEdinburghUK
| | - Thi Tran Ngoc Minh
- Department Biomolecular Health Sciences, Fac. Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Centre for Biomolecular Research and Utrecht Institute of Pharmaceutical SciencesUtrecht UniversityUtrechtThe Netherlands
| | - Amy H. Buck
- Institute of Immunology & Infection Research, School of Biological SciencesUniversity of EdinburghEdinburghUK
| | - Esther N. M. Nolte‐‘t Hoen
- Department Biomolecular Health Sciences, Fac. Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| |
Collapse
|
4
|
Zhou Y, Jiao J, Yang R, Wen B, Wu Q, Xu L, Tong X, Yan H. Temozolomide-based sonodynamic therapy induces immunogenic cell death in glioma. Clin Immunol 2023; 256:109772. [PMID: 37716612 DOI: 10.1016/j.clim.2023.109772] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 08/10/2023] [Accepted: 09/11/2023] [Indexed: 09/18/2023]
Abstract
BACKGROUND In our previous study, we found for the first time that temozolomide (TMZ), the first-line chemotherapeutic agent for glioblastoma (GBM), can generate a large amount of reactive oxygen species (ROS) under ultrasound irradiation. Sonodynamic therapy (SDT) using TMZ as the sonosensitizer produced more potent antitumor effects than TMZ alone. Here, we further evaluate the effects of TMZ-based SDT on subcellular structures and investigate the immunogenic cell death (ICD)-inducing capability of TMZ-based SDT. METHODS The sonotoxic effects of TMZ were explored in LN229 and GL261 glioma cells. The morphology of endoplasmic reticulum and mitochondria was observed by transmission electron microscopy. The nuclear DNA damage was represented by γ-H2AX staining. Bone marrow-derived dendritic cells (BMDCs) were employed to assess ICD-inducing capability of TMZ-based SDT. A cyclic arginine-glycine-aspartic (c(RGDyC))-modified nanoliposome drug delivery platform was used to improve the tumor targeting of SDT. RESULTS TMZ-based SDT had a greater inhibitory effect on glioma cells than TMZ alone. Transmission electron microscopy revealed that TMZ-based SDT caused endoplasmic reticulum dilation and mitochondrial swelling. In addition, endoplasmic reticulum stress response (ERSR), nuclear DNA damage and mitochondrial permeability transition pore (mPTP) opening were promoted in TMZ-based SDT group. Most importantly, we found that TMZ-based SDT could promote the "danger signals" produced by glioma cells and induce the maturation and activation of BMDCs, which was associated with the mitochondrial DNA released into the cytoplasm in glioma cells. In vivo experiments showed that TMZ-based SDT could remodel glioma immune microenvironment and provoke durable and powerful anti-tumor immune responses. What's more, the engineered nanoliposome vector of TMZ conferred SDT tumor targeting, providing an option for safer clinical application of TMZ in combination with SDT in the future. CONCLUSIONS TMZ-based SDT was capable of triggering ICD in glioma. The discovery of TMZ as a sonosensitizer have shown great promise in the treatment of GBM.
Collapse
Affiliation(s)
- Yan Zhou
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin 300350, China
| | - Jiji Jiao
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin 300350, China
| | - Rongyan Yang
- College of Environmental Science and Engineering of Nankai University, Tianjin 300350, China
| | - Binli Wen
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin 300350, China
| | - Qiaoli Wu
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgical Institute, Tianjin Huanhu Hospital, Tianjin 300350, China
| | - Lixia Xu
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin 300350, China; Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgical Institute, Tianjin Huanhu Hospital, Tianjin 300350, China.
| | - Xiaoguang Tong
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin 300350, China; Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgical Institute, Tianjin Huanhu Hospital, Tianjin 300350, China.
| | - Hua Yan
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin 300350, China; Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgical Institute, Tianjin Huanhu Hospital, Tianjin 300350, China.
| |
Collapse
|
5
|
Paul MB, Schlief M, Daher H, Braeuning A, Sieg H, Böhmert L. A human Caco-2-based co-culture model of the inflamed intestinal mucosa for particle toxicity studies. IN VITRO MODELS 2023; 2:43-64. [PMID: 39872873 PMCID: PMC11756451 DOI: 10.1007/s44164-023-00047-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/03/2023] [Accepted: 03/07/2023] [Indexed: 01/30/2025]
Abstract
The intestinal barrier is a complex interface of the human body, possessing the largest contact surface to nutrients and antigens and containing a major part of the immune system. It has to deal with continuous exposure to a broad mixture of essential, harmful, or useless substances and particles. In the context of plastic pollution and the ubiquitous occurrence of micro- and nanoplastics, oral exposure to such particles is of particular interest. Standard intestinal in vitro models, however, are unable to mimic the role of the immune system in the particle-exposed intestine. To allow for a closer look on the effect of particles on the intestinal immune system, we here developed a co-culture model to enable investigation of the epithelial brush border monolayer in a healthy and inflamed state. The model is based on well-established Caco-2 intestinal epithelial cells cultured in a Transwell™ system. Intraepithelial immune cells were mimicked by THP-1-derived M0-macrophages and MUTZ-3-derived dendritic cells. To fulfill the requirements needed for the investigation of particles, the co-culture system was developed without an additional matrix layer. Cell-cell contacts were established between interstitial and immune cells, and the Caco-2 standard cell culture medium was used, which is well-characterized for its role in defining the identity of particle dispersions. The model was characterized using confocal microscopy, membrane integrity measurements, and cytokine release assays from inflamed and healthy cells. Finally, the new co-culture model was used for investigation on polylactic acid, melamine formaldehyde resin, and polymethylmethacrylate plastic micro- and nanoparticles. Supplementary Information The online version contains supplementary material available at 10.1007/s44164-023-00047-y.
Collapse
Affiliation(s)
- Maxi B. Paul
- Department of Food Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| | - Marén Schlief
- Department of Food Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| | - Hannes Daher
- Department of Food Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| | - Albert Braeuning
- Department of Food Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| | - Holger Sieg
- Department of Food Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| | - Linda Böhmert
- Department of Food Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| |
Collapse
|
6
|
He Y, Hu X, Zhang H, Chen X, Sun H. Adjuvant effect of two polysaccharides from the petals of Crocus sativus and its mechanisms. Int J Biol Macromol 2022; 204:50-61. [PMID: 35122804 DOI: 10.1016/j.ijbiomac.2022.01.169] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 01/22/2022] [Accepted: 01/28/2022] [Indexed: 12/21/2022]
Abstract
Two polysaccharides from Crocus sativus petals (PCSPs), PCSPA and PCSPB, presented immunopotentiatory activity through activating macrophages via MAPK and NF-κB pathway. In this study, two PCSPs were investigated for the adjuvant effects and underlying mechanisms using ovalbumin (OVA) in mice. PCSPA and PCSPB remarkably not only boosted the OVA-specific IgG antibody and its isotype titers, but strengthened splenocyte proliferation and natural killer cell activities in immunized mice. Both PCSPs also dramatically triggered the production of Th1- and Th2-cytokines and facilitated the gene expression of Th1- and Th2-cytokines and transcription factors in OVA-stimulated splenocytes. In mechanisms, two PCSPs rapidly elicited the gene and protein expression of cytokines and chemokines, promoted the recruitment and antigen uptake of immune cells in the injected-muscles, and augmented the migration and antigen transport of immune cells to the draining lymph nodes. These findings demonstrated that PCSPs enhanced and improved immune responses and simultaneously elicited Th1- and Th2-immune responses to OVA through activating innate immune microenvironment, and that they could act as promising vaccine adjuvant candidates.
Collapse
Affiliation(s)
- Yanfei He
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; College of Biotechnology and Pharmaceutical Engineering, West Anhui University, Lu'an 237012, China
| | - Xiaoying Hu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Huifang Zhang
- Medical College, Jinhua Polytechnic, Jinhua 321000, China
| | - Xiangfeng Chen
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hongxiang Sun
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
7
|
Understanding and improving cellular immunotherapies against cancer: From cell-manufacturing to tumor-immune models. Adv Drug Deliv Rev 2021; 179:114003. [PMID: 34653533 DOI: 10.1016/j.addr.2021.114003] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 10/05/2021] [Accepted: 10/08/2021] [Indexed: 12/14/2022]
Abstract
The tumor microenvironment (TME) is shaped by dynamic metabolic and immune interactions between precancerous and cancerous tumor cells and stromal cells like epithelial cells, fibroblasts, endothelial cells, and hematopoietically-derived immune cells. The metabolic states of the TME, including the hypoxic and acidic niches, influence the immunosuppressive phenotypes of the stromal and immune cells, which confers resistance to both host-mediated tumor killing and therapeutics. Numerous in vitro TME platforms for studying immunotherapies, including cell therapies, are being developed. However, we do not yet understand which immune and stromal components are most critical and how much model complexity is needed to answer specific questions. In addition, scalable sourcing and quality-control of appropriate TME cells for reproducibly manufacturing these platforms remain challenging. In this regard, lessons from the manufacturing of immunomodulatory cell therapies could provide helpful guidance. Although immune cell therapies have shown unprecedented results in hematological cancers and hold promise in solid tumors, their manufacture poses significant scale, cost, and quality control challenges. This review first provides an overview of the in vivo TME, discussing the most influential cell populations in the tumor-immune landscape. Next, we summarize current approaches for cell therapies against cancers and the relevant manufacturing platforms. We then evaluate current immune-tumor models of the TME and immunotherapies, highlighting the complexity, architecture, function, and cell sources. Finally, we present the technical and fundamental knowledge gaps in both cell manufacturing systems and immune-TME models that must be addressed to elucidate the interactions between endogenous tumor immunity and exogenous engineered immunity.
Collapse
|
8
|
Uetz-von Allmen E, Samson GPB, Purvanov V, Maeda T, Legler DF. CAL-1 as Cellular Model System to Study CCR7-Guided Human Dendritic Cell Migration. Front Immunol 2021; 12:702453. [PMID: 34603281 PMCID: PMC8482423 DOI: 10.3389/fimmu.2021.702453] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 08/31/2021] [Indexed: 11/23/2022] Open
Abstract
Dendritic cells (DCs) are potent and versatile professional antigen-presenting cells and central for the induction of adaptive immunity. The ability to migrate and transport peripherally acquired antigens to draining lymph nodes for subsequent cognate T cell priming is a key feature of DCs. Consequently, DC-based immunotherapies are used to elicit tumor-antigen specific T cell responses in cancer patients. Understanding chemokine-guided DC migration is critical to explore DCs as cellular vaccines for immunotherapeutic approaches. Currently, research is hampered by the lack of appropriate human cellular model systems to effectively study spatio-temporal signaling and CCR7-driven migration of human DCs. Here, we report that the previously established human neoplastic cell line CAL-1 expresses the human DC surface antigens CD11c and HLA-DR together with co-stimulatory molecules. Importantly, if exposed for three days to GM-CSF, CAL-1 cells induce the endogenous expression of the chemokine receptor CCR7 upon encountering the clinically approved TLR7/8 agonist Resiquimod R848 and readily migrate along chemokine gradients. Further, we demonstrate that CAL-1 cells can be genetically modified to express fluorescent (GFP)-tagged reporter proteins to study and visualize signaling or can be gene-edited using CRISPR/Cas9. Hence, we herein present the human CAL-1 cell line as versatile and valuable cellular model system to effectively study human DC migration and signaling.
Collapse
Affiliation(s)
- Edith Uetz-von Allmen
- Biotechnology Institute Thurgau (BITg) at the University of Konstanz, Kreuzlingen, Switzerland
| | - Guerric P B Samson
- Biotechnology Institute Thurgau (BITg) at the University of Konstanz, Kreuzlingen, Switzerland.,Graduate School for Cellular and Biomedical Sciences (GCB), University of Bern, Bern, Switzerland
| | - Vladimir Purvanov
- Biotechnology Institute Thurgau (BITg) at the University of Konstanz, Kreuzlingen, Switzerland
| | - Takahiro Maeda
- Department of Laboratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Daniel F Legler
- Biotechnology Institute Thurgau (BITg) at the University of Konstanz, Kreuzlingen, Switzerland.,Theodor Kocher Institute, University of Bern, Bern, Switzerland.,Department of Biology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
9
|
Prins MMC, van Roest M, Vermeulen JLM, Tjabringa GS, van de Graaf SFJ, Koelink PJ, Wildenberg ME. Applicability of different cell line-derived dendritic cell-like cells in autophagy research. J Immunol Methods 2021; 497:113106. [PMID: 34324891 DOI: 10.1016/j.jim.2021.113106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 07/09/2021] [Accepted: 07/20/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIMS Immortalized cell lines have been long used as substitute for ex vivo murine and human material, but exhibit features that are not found in healthy tissue. True human dendritic cells (DC) cannot be cultured or passaged as opposed to immortalized cell lines. Research in the fields of immunogenic responses and immunotolerance in DCs has increased over the last decade. Autophagy has gained interest in these fields as well, and has been researched extensively in many other cell types as well. Here we have studied the applicability of cell line-derived dendritic cell-like cells of six myeloid cell lines aimed at research focussed on autophagy. METHODS Six myeloid leukaemia cell lines were differentiated towards cell line-derived dendritic cell-like cells (cd-DC) using GM-CSF, IL-4, Ionomycine and PMA: HL60, KG1, MM6, MV-4-11, THP1 and U937. Autophagy was modulated using Rapamycin, Bafilomycin A1 and 3MA. Cell lines were genotyped for autophagy-related SNPs using RFLP. Marker expression was determined with FACS analysis and cytokine profiles were determined using Human Cytometric Bead Assay. Antigen uptake was assessed using Fluoresbrite microspheres. RESULTS AND DISCUSSION All researched cell lines harboured SNPs in the autophagy pathways. MM6 and THP1 derived cd-DCs resembled monocyte-derived DCs (moDC) most closely in marker expression, cytokine profiles and autophagy response. The HL60 and U937 cell lines proved least suitable for autophagy-related dendritic cell research. CONCLUSION The genetic background of cell lines should be taken into account upon studying (the effects of) autophagy in any cell line. Although none of the studied cell lines recapitulate the full spectrum of DC characteristics, MM6 and THP1 derived cd-DCs are most suitable for autophagy-related research in dendritic cells.
Collapse
Affiliation(s)
- Marileen M C Prins
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands; Department of Gastroenterology and Hepatology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands.
| | - Manon van Roest
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands.
| | - Jacqueline L M Vermeulen
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands.
| | - G Sandra Tjabringa
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands.
| | - Stan F J van de Graaf
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands; Department of Gastroenterology and Hepatology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands.
| | - Pim J Koelink
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands; Department of Gastroenterology and Hepatology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands.
| | - Manon E Wildenberg
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands; Department of Gastroenterology and Hepatology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
10
|
Vleeshouwers W, van den Dries K, de Keijzer S, Joosten B, Lidke DS, Cambi A. Characterization of the Signaling Modalities of Prostaglandin E2 Receptors EP2 and EP4 Reveals Crosstalk and a Role for Microtubules. Front Immunol 2021; 11:613286. [PMID: 33643295 PMCID: PMC7907432 DOI: 10.3389/fimmu.2020.613286] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 12/18/2020] [Indexed: 11/13/2022] Open
Abstract
Prostaglandin E2 (PGE2) is a lipid mediator that modulates the function of myeloid immune cells such as macrophages and dendritic cells (DCs) through the activation of the G protein-coupled receptors EP2 and EP4. While both EP2 and EP4 signaling leads to an elevation of intracellular cyclic adenosine monophosphate (cAMP) levels through the stimulating Gαs protein, EP4 also couples to the inhibitory Gαi protein to decrease the production of cAMP. The receptor-specific contributions to downstream immune modulatory functions are still poorly defined. Here, we employed quantitative imaging methods to characterize the early EP2 and EP4 signaling events in myeloid cells and their contribution to the dissolution of adhesion structures called podosomes, which is a first and essential step in DC maturation. We first show that podosome loss in DCs is primarily mediated by EP4. Next, we demonstrate that EP2 and EP4 signaling leads to distinct cAMP production profiles, with EP4 inducing a transient cAMP response and EP2 inducing a sustained cAMP response only at high PGE2 levels. We further find that simultaneous EP2 and EP4 stimulation attenuates cAMP production, suggesting a reciprocal control of EP2 and EP4 signaling. Finally, we demonstrate that efficient signaling of both EP2 and EP4 relies on an intact microtubule network. Together, these results enhance our understanding of early EP2 and EP4 signaling in myeloid cells. Considering that modulation of PGE2 signaling is regarded as an important therapeutic possibility in anti-tumor immunotherapy, our findings may facilitate the development of efficient and specific immune modulators of PGE2 receptors.
Collapse
Affiliation(s)
- Ward Vleeshouwers
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Koen van den Dries
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Sandra de Keijzer
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Ben Joosten
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Diane S Lidke
- Department of Pathology, University of New Mexico Health Sciences Center, Albuquerque, NM, United States.,Comprehensive Cancer Center, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| | - Alessandra Cambi
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
11
|
Ackermann M, Dragon AC, Lachmann N. The Immune-Modulatory Properties of iPSC-Derived Antigen-Presenting Cells. Transfus Med Hemother 2021; 47:444-453. [PMID: 33442339 DOI: 10.1159/000512721] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 10/29/2020] [Indexed: 01/08/2023] Open
Abstract
Antigen-presenting cells (APCs), such as dendritic cells (DCs) and macrophages, are important regulators of the immune system, as they connect the innate and adaptive immunity by critically regulating T-cell responses. Thus, APCs are involved in both tissue homeostasis and tolerance, but also coordinate immune responses in case of infection and inflammation. Primary APCs are commonly generated from peripheral blood-derived monocytes and have been used as cell therapeutics in several (pre-)clinical settings, e.g., immune oncology, however, with varying efficiency. One promising alternative to study antigen presentation in vitro and to develop novel cell-based therapies are induced pluripotent stem cells (iPSCs). IPSCs can nowadays be generated from a variety of different cell types using several refined reprogramming techniques. Given their unlimited proliferation and differentiation potential, they hold great promise for regenerative medicine, and recently, first iPSC derivatives have found their way into first clinical studies for cell-based therapies. In this review article, we will give a brief overview of current methods for the generation and applications of primary APCs, but also specifically focus on different strategies for the generation of defined subsets of DCs and macrophages from human PSCs. Moreover, we will highlight the potential but also hurdles for the clinical translation of iPSC-derived APCs.
Collapse
Affiliation(s)
- Mania Ackermann
- Institute of Experimental Hematology, RG Translational Hematology of Congenital Diseases, REBIRTH - Research Center for Translational and Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Anna Christina Dragon
- Institute for Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| | - Nico Lachmann
- Institute of Experimental Hematology, RG Translational Hematology of Congenital Diseases, REBIRTH - Research Center for Translational and Regenerative Medicine, Hannover Medical School, Hannover, Germany
| |
Collapse
|
12
|
Gallo C, Barra G, Saponaro M, Manzo E, Fioretto L, Ziaco M, Nuzzo G, d’Ippolito G, De Palma R, Fontana A. A New Bioassay Platform Design for the Discovery of Small Molecules with Anticancer Immunotherapeutic Activity. Mar Drugs 2020; 18:E604. [PMID: 33260400 PMCID: PMC7760914 DOI: 10.3390/md18120604] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/18/2020] [Accepted: 11/26/2020] [Indexed: 12/12/2022] Open
Abstract
Immunotherapy takes advantage of the immune system to prevent, control, and eliminate neoplastic cells. The research in the field has already led to major breakthroughs to treat cancer. In this work, we describe a platform that integrates in vitro bioassays to test the immune response and direct antitumor effects for the preclinical discovery of anticancer candidates. The platform relies on the use of dendritic cells that are professional antigen-presenting cells (APC) able to activate T cells and trigger a primary adaptive immune response. The experimental procedure is based on two phenotypic assays for the selection of chemical leads by both a panel of nine tumor cell lines and growth factor-dependent immature mouse dendritic cells (D1). The positive hits are then validated by a secondary test on human monocyte-derived dendritic cells (MoDCs). The aim of this approach is the selection of potential immunotherapeutic small molecules from natural extracts or chemical libraries.
Collapse
Affiliation(s)
- Carmela Gallo
- Bio-Organic Chemistry Unit, CNR-Institute of Biomolecular Chemistry, Via Campi Flegrei 34, 80078 Naples, Italy; (G.B.); (M.S.); (E.M.); (G.N.); (G.d.); (R.D.P.)
| | - Giusi Barra
- Bio-Organic Chemistry Unit, CNR-Institute of Biomolecular Chemistry, Via Campi Flegrei 34, 80078 Naples, Italy; (G.B.); (M.S.); (E.M.); (G.N.); (G.d.); (R.D.P.)
| | - Marisa Saponaro
- Bio-Organic Chemistry Unit, CNR-Institute of Biomolecular Chemistry, Via Campi Flegrei 34, 80078 Naples, Italy; (G.B.); (M.S.); (E.M.); (G.N.); (G.d.); (R.D.P.)
| | - Emiliano Manzo
- Bio-Organic Chemistry Unit, CNR-Institute of Biomolecular Chemistry, Via Campi Flegrei 34, 80078 Naples, Italy; (G.B.); (M.S.); (E.M.); (G.N.); (G.d.); (R.D.P.)
| | - Laura Fioretto
- Consorzio Italbiotec, Via Fantoli, 16/15, 20138 Milan, Italy;
| | - Marcello Ziaco
- BioSearch Srl., Villa Comunale c/o Stazione Zoologica “A.Dohrn”, 80121 Naples, Italy;
| | - Genoveffa Nuzzo
- Bio-Organic Chemistry Unit, CNR-Institute of Biomolecular Chemistry, Via Campi Flegrei 34, 80078 Naples, Italy; (G.B.); (M.S.); (E.M.); (G.N.); (G.d.); (R.D.P.)
| | - Giuliana d’Ippolito
- Bio-Organic Chemistry Unit, CNR-Institute of Biomolecular Chemistry, Via Campi Flegrei 34, 80078 Naples, Italy; (G.B.); (M.S.); (E.M.); (G.N.); (G.d.); (R.D.P.)
| | - Raffaele De Palma
- Bio-Organic Chemistry Unit, CNR-Institute of Biomolecular Chemistry, Via Campi Flegrei 34, 80078 Naples, Italy; (G.B.); (M.S.); (E.M.); (G.N.); (G.d.); (R.D.P.)
- Internal Medicine, Clinical Immunology and Translational Medicine, University of Genova and IRCCS-Hospital S. Martino, 16132 Genova, Italy
| | - Angelo Fontana
- Bio-Organic Chemistry Unit, CNR-Institute of Biomolecular Chemistry, Via Campi Flegrei 34, 80078 Naples, Italy; (G.B.); (M.S.); (E.M.); (G.N.); (G.d.); (R.D.P.)
- Department of Biology, University of Naples Federico II, Via Vicinale Cupa Cintia 21, 80126 Naples, Italy
| |
Collapse
|
13
|
Dual-engineered, “Trojanized” macrophages bio-modally eradicate tumors through biologically and photothermally deconstructing cancer cells in an on-demand, NIR-commanded, self-explosive manner. Biomaterials 2020; 250:120021. [DOI: 10.1016/j.biomaterials.2020.120021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 03/29/2020] [Accepted: 04/02/2020] [Indexed: 12/20/2022]
|
14
|
Pappalardo JS, Macairan JR, Macina A, Poulhazan A, Quattrocchi V, Marcotte I, Naccache R. Effects of polydopamine-passivation on the optical properties of carbon dots and its potential use in vivo. Phys Chem Chem Phys 2020; 22:16595-16605. [PMID: 32666968 DOI: 10.1039/d0cp01938k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Passivation of carbon dots via heteroatom doping has been shown to enhance their optical properties and tune their fluorescence signature. Additionally, the incorporation of polymeric precursors in carbon dot synthesis has gained considerable interest with benefits to biological applications namely bioimaging, drug delivery and sensing, among others. In order to combine the desirable attributes of both, fluorescence enhancement and increased biocompatibility, polymers composed of high aromaticity and nitrogen content can be used as efficient carbon dot passivating agents. Here, the synthesis of fluorescent polymer-passivated carbon dots was developed through a microwave-assisted pyrolysis reaction of galactose, citric acid and polydopamine. Passivation of the dots with polydopamine induces a 90 nm red-shift in the fluorescence maxima from 420 to 510 nm. Moreover, passivation results in excitation-independent fluorescence and a 3.5-fold increase in fluorescence quantum yield, which increases from 1.3 to 4.6%. The application of the carbon dots as imaging probes was investigated in in vitro and in vivo model systems. Cytotoxicity studies in J774 and CHO-K1 cell lines revealed reduced cell toxicity for the polydopamine-passivated carbon dots in comparison to their unpassivated counterpart. In BALB/c mice, biodistribution studies demonstrated that regardless of surface passivation, the dots predominantly remained in the circulatory system 90 minutes post inoculation suggesting their potential use for cardiovascular therapies.
Collapse
Affiliation(s)
- Juan Sebastian Pappalardo
- Veterinary Nanomedicine Group, Instituto de Investigaciones Forestales y Agropecuarias Bariloche (IFAB, INTA-CONICET), EEA Bariloche, Instituto Nacional de Tecnología Agropecuaria, San Carlos de Bariloche, Río Negro, R8403DVZ, Argentina
| | | | | | | | | | | | | |
Collapse
|
15
|
Luo XL, Dalod M. The quest for faithful in vitro models of human dendritic cells types. Mol Immunol 2020; 123:40-59. [PMID: 32413788 DOI: 10.1016/j.molimm.2020.04.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 04/06/2020] [Accepted: 04/16/2020] [Indexed: 12/13/2022]
Abstract
Dendritic cells (DCs) are mononuclear phagocytes that are specialized in the induction and functional polarization of effector lymphocytes, thus orchestrating immune defenses against infections and cancer. The population of DC encompasses distinct cell types that vary in their efficacy for complementary functions and are thus likely involved in defending the body against different threats. Plasmacytoid DCs specialize in the production of high levels of the antiviral cytokines type I interferons. Type 1 conventional DCs (cDC1s) excel in the activation of cytotoxic CD8+ T cells (CTLs) which are critical for defense against cancer and infections by intracellular pathogens. Type 2 conventional DCs (cDC2s) prime helper CD4+ T cells for the production of type 2 cytokines underpinning immune defenses against worms or of IL-17 promoting control of infections by extracellular bacteria or fungi. Hence, clinically manipulating the development and functions of DC types could have a major impact for improving treatments against many diseases. However, the rarity and fragility of human DC types is impeding advancement towards this goal. To overcome this roadblock, major efforts are ongoing to generate in vitro large numbers of distinct human DC types. We review here the current state of this research field, emphasizing recent breakthrough and proposing future priorities. We also pinpoint the necessity to develop a consensus nomenclature and rigorous methodologies to ensure proper identification and characterization of human DC types. Finally, we elaborate on how faithful in vitro models of human DC types can accelerate our understanding of the biology of these cells and the engineering of next generation vaccines or immunotherapies against viral infections or cancer.
Collapse
Affiliation(s)
- Xin-Long Luo
- Aix Marseille Univ, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Turing Center for Living Systems, Marseille, France
| | - Marc Dalod
- Aix Marseille Univ, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Turing Center for Living Systems, Marseille, France.
| |
Collapse
|
16
|
Baldin AV, Savvateeva LV, Bazhin AV, Zamyatnin AA. Dendritic Cells in Anticancer Vaccination: Rationale for Ex Vivo Loading or In Vivo Targeting. Cancers (Basel) 2020; 12:cancers12030590. [PMID: 32150821 PMCID: PMC7139354 DOI: 10.3390/cancers12030590] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/29/2020] [Accepted: 03/02/2020] [Indexed: 12/16/2022] Open
Abstract
Dendritic cells (DCs) have shown great potential as a component or target in the landscape of cancer immunotherapy. Different in vivo and ex vivo strategies of DC vaccine generation with different outcomes have been proposed. Numerous clinical trials have demonstrated their efficacy and safety in cancer patients. However, there is no consensus regarding which DC-based vaccine generation method is preferable. A problem of result comparison between trials in which different DC-loading or -targeting approaches have been applied remains. The employment of different DC generation and maturation methods, antigens and administration routes from trial to trial also limits the objective comparison of DC vaccines. In the present review, we discuss different methods of DC vaccine generation. We conclude that standardized trial designs, treatment settings and outcome assessment criteria will help to determine which DC vaccine generation approach should be applied in certain cancer cases. This will result in a reduction in alternatives in the selection of preferable DC-based vaccine tactics in patient. Moreover, it has become clear that the application of a DC vaccine alone is not sufficient and combination immunotherapy with recent advances, such as immune checkpoint inhibitors, should be employed to achieve a better clinical response and outcome.
Collapse
Affiliation(s)
- Alexey V. Baldin
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (A.V.B.); (L.V.S.)
| | - Lyudmila V. Savvateeva
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (A.V.B.); (L.V.S.)
| | - Alexandr V. Bazhin
- Department of General, Visceral and Transplant Surgery, Ludwig-Maximilians University of Munich, 81377 Munich, Germany;
- German Cancer Consortium (DKTK), Partner Site Munich, 80336 Munich, Germany
| | - Andrey A. Zamyatnin
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (A.V.B.); (L.V.S.)
- Belozersky Institute of Physico-Chemical Biology, Department of Cell Signaling, Lomonosov Moscow State University, 119991 Moscow, Russia
- Correspondence: ; Tel.: +74-956-229-843
| |
Collapse
|
17
|
Feray A, Szely N, Guillet E, Hullo M, Legrand FX, Brun E, Pallardy M, Biola-Vidamment A. How to Address the Adjuvant Effects of Nanoparticles on the Immune System. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E425. [PMID: 32121170 PMCID: PMC7152845 DOI: 10.3390/nano10030425] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/21/2020] [Accepted: 02/25/2020] [Indexed: 01/07/2023]
Abstract
As the nanotechnology market expands and the prevalence of allergic diseases keeps increasing, the knowledge gap on the capacity of nanomaterials to cause or exacerbate allergic outcomes needs more than ever to be filled. Engineered nanoparticles (NP) could have an adjuvant effect on the immune system as previously demonstrated for particulate air pollution. This effect would be the consequence of the recognition of NP as immune danger signals by dendritic cells (DCs). The aim of this work was to set up an in vitro method to functionally assess this effect using amorphous silica NP as a prototype. Most studies in this field are restricted to the evaluation of DCs maturation, generally of murine origin, through a limited phenotypic analysis. As it is essential to also consider the functional consequences of NP-induced DC altered phenotype on T-cells biology, we developed an allogeneic co-culture model of human monocyte-derived DCs (MoDCs) and CD4+ T-cells. We demonstrated that DC: T-cell ratios were a critical parameter to correctly measure the influence of NP danger signals through allogeneic co-culture. Moreover, to better visualize the effect of NP while minimizing the basal proliferation inherent to the model, we recommend testing three different ratios, preferably after five days of co-culture.
Collapse
Affiliation(s)
- Alexia Feray
- Université Paris-Saclay, Inserm, Inflammation, Microbiome and Immunosurveillance, 92290 Châtenay-Malabry, France; (A.F.); (N.S.); (E.G.); (M.H.); (M.P.)
| | - Natacha Szely
- Université Paris-Saclay, Inserm, Inflammation, Microbiome and Immunosurveillance, 92290 Châtenay-Malabry, France; (A.F.); (N.S.); (E.G.); (M.H.); (M.P.)
| | - Eléonore Guillet
- Université Paris-Saclay, Inserm, Inflammation, Microbiome and Immunosurveillance, 92290 Châtenay-Malabry, France; (A.F.); (N.S.); (E.G.); (M.H.); (M.P.)
| | - Marie Hullo
- Université Paris-Saclay, Inserm, Inflammation, Microbiome and Immunosurveillance, 92290 Châtenay-Malabry, France; (A.F.); (N.S.); (E.G.); (M.H.); (M.P.)
| | | | - Emilie Brun
- Université Paris-Saclay, CNRS, Institut de Chimie Physique, 91405 Orsay, France;
| | - Marc Pallardy
- Université Paris-Saclay, Inserm, Inflammation, Microbiome and Immunosurveillance, 92290 Châtenay-Malabry, France; (A.F.); (N.S.); (E.G.); (M.H.); (M.P.)
| | - Armelle Biola-Vidamment
- Université Paris-Saclay, Inserm, Inflammation, Microbiome and Immunosurveillance, 92290 Châtenay-Malabry, France; (A.F.); (N.S.); (E.G.); (M.H.); (M.P.)
| |
Collapse
|
18
|
Bar-Or D, Thomas G, Rael LT, Frederick E, Hausburg M, Bar-Or R, Brody E. On the Mechanisms of Action of the Low Molecular Weight Fraction of Commercial Human Serum Albumin in Osteoarthritis. Curr Rheumatol Rev 2020; 15:189-200. [PMID: 30451114 PMCID: PMC6791032 DOI: 10.2174/1573397114666181119121519] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 11/02/2018] [Accepted: 11/03/2018] [Indexed: 01/05/2023]
Abstract
The low molecular weight fraction of commercial human serum albumin (LMWF5A) has been shown to successfully relieve pain and inflammation in severe osteoarthritis of the knee (OAK). LMWF5A contains at least three active components that could account for these antiinflammatory and analgesic effects. We summarize in vitro experiments in bone marrow-derived mesenchymal stem cells, monocytic cell lines, chondrocytes, peripheral blood mononuclear cells, fibroblast-like synoviocytes, and endothelial cells on the biochemistry of anti-inflammatory changes induced by LMWF5A. We then look at four of the major pathways that cut across cell-type considerations to examine which biochemical reactions are affected by mTOR, COX-2, CD36, and AhR pathways. All three components show anti-inflammatory activities in at least some of the cell types. The in vitro experiments show that the effects of LMWF5A in chondrocytes and bone marrow- derived stem cells in particular, coupled with recent data from previous clinical trials of single and multiple injections of LMWF5A into OAK patients demonstrated improvements in pain, function, and Patient Global Assessment (PGA), as well as high responder rates that could be attributed to the multiple mechanism of action (MOA) pathways are summarized here. In vitro and in vivo data are highly suggestive of LMWF5A being a disease-modifying drug for OAK.
Collapse
Affiliation(s)
- David Bar-Or
- Trauma Research Department, Swedish Medical Center, 501 E. Hampden Avenue, Englewood, CO 80113, United States.,Trauma Research Department, St. Anthony Hospital, 1600 W. 2nd Place, Lakewood, CO 80228, United States.,Trauma Research Department, Medical City Plano, 3901 W. 15th Street, Plano, TX 75075, United States.,Trauma Research Department, Penrose Hospital, 2222 N. Nevada Avenue, Colorado Springs, CO 80907, United States.,Trauma Research Department, Research Medical Center, 2315 E. Meyer Boulevard, Kansas City, MO 64132, United States.,Trauma Research Department, Wesley Medical Center, 550 N. Hillside Street, Witchita, KS 67214, United States.,Ampio Pharmaceuticals, Inc., 373 Inverness Parkway, #200, Englewood, CO 80112, United States
| | - Gregory Thomas
- Trauma Research Department, Swedish Medical Center, 501 E. Hampden Avenue, Englewood, CO 80113, United States.,Trauma Research Department, St. Anthony Hospital, 1600 W. 2nd Place, Lakewood, CO 80228, United States.,Trauma Research Department, Medical City Plano, 3901 W. 15th Street, Plano, TX 75075, United States.,Trauma Research Department, Penrose Hospital, 2222 N. Nevada Avenue, Colorado Springs, CO 80907, United States.,Trauma Research Department, Research Medical Center, 2315 E. Meyer Boulevard, Kansas City, MO 64132, United States.,Trauma Research Department, Wesley Medical Center, 550 N. Hillside Street, Witchita, KS 67214, United States.,Ampio Pharmaceuticals, Inc., 373 Inverness Parkway, #200, Englewood, CO 80112, United States
| | - Leonard T Rael
- Trauma Research Department, Swedish Medical Center, 501 E. Hampden Avenue, Englewood, CO 80113, United States.,Trauma Research Department, St. Anthony Hospital, 1600 W. 2nd Place, Lakewood, CO 80228, United States.,Trauma Research Department, Medical City Plano, 3901 W. 15th Street, Plano, TX 75075, United States.,Trauma Research Department, Penrose Hospital, 2222 N. Nevada Avenue, Colorado Springs, CO 80907, United States.,Trauma Research Department, Research Medical Center, 2315 E. Meyer Boulevard, Kansas City, MO 64132, United States.,Trauma Research Department, Wesley Medical Center, 550 N. Hillside Street, Witchita, KS 67214, United States
| | - Elizabeth Frederick
- Trauma Research Department, Swedish Medical Center, 501 E. Hampden Avenue, Englewood, CO 80113, United States.,Trauma Research Department, St. Anthony Hospital, 1600 W. 2nd Place, Lakewood, CO 80228, United States.,Trauma Research Department, Medical City Plano, 3901 W. 15th Street, Plano, TX 75075, United States.,Trauma Research Department, Penrose Hospital, 2222 N. Nevada Avenue, Colorado Springs, CO 80907, United States.,Trauma Research Department, Research Medical Center, 2315 E. Meyer Boulevard, Kansas City, MO 64132, United States.,Trauma Research Department, Wesley Medical Center, 550 N. Hillside Street, Witchita, KS 67214, United States.,Ampio Pharmaceuticals, Inc., 373 Inverness Parkway, #200, Englewood, CO 80112, United States
| | - Melissa Hausburg
- Trauma Research Department, Swedish Medical Center, 501 E. Hampden Avenue, Englewood, CO 80113, United States.,Trauma Research Department, St. Anthony Hospital, 1600 W. 2nd Place, Lakewood, CO 80228, United States.,Trauma Research Department, Medical City Plano, 3901 W. 15th Street, Plano, TX 75075, United States.,Trauma Research Department, Penrose Hospital, 2222 N. Nevada Avenue, Colorado Springs, CO 80907, United States.,Trauma Research Department, Research Medical Center, 2315 E. Meyer Boulevard, Kansas City, MO 64132, United States.,Trauma Research Department, Wesley Medical Center, 550 N. Hillside Street, Witchita, KS 67214, United States
| | - Raphael Bar-Or
- Trauma Research Department, Swedish Medical Center, 501 E. Hampden Avenue, Englewood, CO 80113, United States.,Trauma Research Department, St. Anthony Hospital, 1600 W. 2nd Place, Lakewood, CO 80228, United States.,Trauma Research Department, Medical City Plano, 3901 W. 15th Street, Plano, TX 75075, United States.,Trauma Research Department, Penrose Hospital, 2222 N. Nevada Avenue, Colorado Springs, CO 80907, United States.,Trauma Research Department, Research Medical Center, 2315 E. Meyer Boulevard, Kansas City, MO 64132, United States.,Trauma Research Department, Wesley Medical Center, 550 N. Hillside Street, Witchita, KS 67214, United States.,Ampio Pharmaceuticals, Inc., 373 Inverness Parkway, #200, Englewood, CO 80112, United States
| | - Edward Brody
- SomaLogic, Inc., 2945 Wilderness Place, Boulder, CO 80301, United States
| |
Collapse
|
19
|
Wang C, Du J, Chen X, Zhu Y, Sun H. Activation of RAW264.7 macrophages by active fraction of Albizia julibrissin saponin via Ca2+–ERK1/2–CREB–lncRNA pathways. Int Immunopharmacol 2019; 77:105955. [DOI: 10.1016/j.intimp.2019.105955] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 09/07/2019] [Accepted: 09/30/2019] [Indexed: 12/31/2022]
|
20
|
Backlund CM, Parhamifar L, Minter L, Tew GN, Andresen TL. Protein Transduction Domain Mimics Facilitate Rapid Antigen Delivery into Monocytes. Mol Pharm 2019; 16:2462-2469. [PMID: 31095395 DOI: 10.1021/acs.molpharmaceut.9b00070] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Delivering peptides and proteins with intracellular function represents a promising avenue for therapeutics, but remains a challenge due to the selective permeability of the plasma membrane. The successful delivery of cytosolically active proteins would enable many opportunities, including improved vaccine development through major histocompatibility complex (MHC) class I antigen display. Extended research using cell-penetrating peptides (CPPs) has aimed to facilitate intracellular delivery of exogenous proteins with some success. A new class of polymer-based mimics termed protein transduction domain mimics (PTDMs), which maintain the positive charge and amphiphilic nature displayed by many CPPs, was developed using a poly-norbornene-based backbone. Herein, we use a previously characterized PTDM to investigate delivery of the model antigen SIINFEKL into leukocytes. Peptide delivery into over 90% of CD14+ monocytes was detected in less than 15 min with nominal inflammatory cytokine response and high cell viability. The co-delivery of a TLR9 agonist and antigen using the PTDM into antigen-presenting cells in vitro showed presentation of SIINFEKL in association with MHC class I molecules, in addition to upregulation of classical differentiation markers revealing the ability of the PTDM to successfully deliver cargo intracellularly and show application in the field of immunotherapy.
Collapse
Affiliation(s)
| | - Ladan Parhamifar
- Department of Health Technology , Technical University of Denmark , 2800 Lyngby , Denmark
| | | | | | - Thomas L Andresen
- Department of Health Technology , Technical University of Denmark , 2800 Lyngby , Denmark
| |
Collapse
|
21
|
Kashem SW, Kaplan DH. Isolation of Murine Skin Resident and Migratory Dendritic Cells via Enzymatic Digestion. ACTA ACUST UNITED AC 2019; 121:e45. [PMID: 30040218 DOI: 10.1002/cpim.45] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Dendritic cells (DCs) are a highly specialized subset of professional antigen-presenting cells (APCs) that reside in peripheral and lymphoid tissues. DCs capture antigen in the periphery and migrate to the lymph node where they prime naïve T cells. In addition, DCs have been recently appreciated to have function in innate immunity within tissues. In the skin, heterogeneous populations of DCs reside within the epidermis and the dermis. Analysis of the cutaneous DC subsets is complicated by requirements of distinct enzymatic digestion protocols for isolation of APCs from distinct anatomical compartments of the skin. Here, specific approaches for isolation of DCs from the epidermis, dermis, and the skin-draining lymph nodes of mice are described. © 2018 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Sakeen W Kashem
- Center for Immunology, Department of Dermatology, University of Minnesota, Minneapolis, Minnesota
| | - Daniel H Kaplan
- Department of Dermatology, Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
22
|
Groell F, Jordan O, Borchard G. In vitro models for immunogenicity prediction of therapeutic proteins. Eur J Pharm Biopharm 2018; 130:128-142. [DOI: 10.1016/j.ejpb.2018.06.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 05/09/2018] [Accepted: 06/08/2018] [Indexed: 12/21/2022]
|
23
|
Manh DH, Mizukami S, Dumre SP, Raekiansyah M, Senju S, Nishimura Y, Karbwang J, Huy NT, Morita K, Hirayama K. iPS cell serves as a source of dendritic cells for in vitro dengue virus infection model. J Gen Virol 2018; 99:1239-1247. [PMID: 30058991 DOI: 10.1099/jgv.0.001119] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The lack of an appropriate model has been a serious concern in dengue research pertinent to immune response and vaccine development. It remains a matter of impediment in dengue virus (DENV) studies when it comes to an in vitro model, which requires adequate quantity of dendritic cells (DC) with uniform characters. Other sources of DC, mostly monocyte derived DC (moDC), have been used despite their limitations such as quantity, proliferation, and donor dependent characters. Recent development of human iPS cells with consistent proliferation for long, stable, functional characteristics and desired HLA background has certainly offered added advantages. Therefore, we hypothesised that iPS derived cells would be a reliable alternative to the traditional DCs to be used with an in vitro DENV system. To develop a DENV infection and T cell activation model, we utilised iPS cells (HLA-A*24) as the source of DC. iPS-ML-DC was prepared and DENV infectivity was assessed apart from the major surface markers expression and cytokine production potential. Our iPS-ML-DC had major DC markers expression, DENV infection efficiency and cytokine production properties similar to that of moDC. Moreover, DENV infected iPS-ML-DC demonstrated the ability to activate HLA-matched T cell (but not mismatched) in vitro as evidenced by significantly higher proportion of IFN-γ+ CD69+ T cells compared to non-infected iPS-ML-DC. This affirmed the antigen-specific T cell activation by iPS-ML-DC as a function of antigen presenting cells. To conclude, maturation potential, DENV infection efficiency and T cell activation ability collectively suggest that iPS-ML-DC serves as an attractive option of DC for use in DENV studies in vitro.
Collapse
Affiliation(s)
- Dao Huy Manh
- 1Department of Immunogenetics, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan.,2Nagasaki University Graduate School of Biomedical Sciences Doctoral Leadership Program, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Shusaku Mizukami
- 3Department of Clinical Product Development, NEKKEN, Nagasaki University, Nagasaki, Japan.,1Department of Immunogenetics, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
| | - Shyam Prakash Dumre
- 1Department of Immunogenetics, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
| | | | - Satoru Senju
- 5Department of Immunogenetics, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
| | - Yasuharu Nishimura
- 5Department of Immunogenetics, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
| | - Juntra Karbwang
- 3Department of Clinical Product Development, NEKKEN, Nagasaki University, Nagasaki, Japan
| | - Nguyen Tien Huy
- 3Department of Clinical Product Development, NEKKEN, Nagasaki University, Nagasaki, Japan
| | - Kouichi Morita
- 4Department of Virology, NEKKEN, Nagasaki University, Nagasaki, Japan
| | - Kenji Hirayama
- 1Department of Immunogenetics, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
| |
Collapse
|
24
|
Kim MK, Kim KB, Yoon K, Kacew S, Kim HS, Lee BM. IL-1α and IL-1β as alternative biomarkers for risk assessment and the prediction of skin sensitization potency. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2018; 81:830-843. [PMID: 30020862 DOI: 10.1080/15287394.2018.1494474] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Potential biomarkers of skin sensitization in RAW264.7 mouse macrophages were investigated as alternatives to animal experiments and risk assessment. The concentrations that resulted in a cell viability of 90% (CV90) and 75% (CV75) were calculated by using a water-soluble tetrazolium salt (WST)-1 assay and used to analyze the skin sensitization potency of 23 experimental materials under equivalent treatment conditions. In addition, the expression of interleukin (IL)-1α, IL-1β, IL-31, tumor necrosis factor (TNF)-α, inducible nitric oxide synthase (iNOS), prostaglandin E2 (PGE2), and cyclooxygenase-2 (COX-2) was analyzed utilizing Western blotting. In the cell viability analysis, skin sensitizers were generally more cytotoxic and exhibited increased skin sensitization potency. However, nonsensitizers did not show any marked cytotoxic tendency. Biomarker analysis demonstrated that IL-1α, IL-1β, and the combination of IL-1α and IL-1β (IL-1α + IL-1β) predicted reliably skin sensitization potential (1) sensitivities of 94.4%, 83.3%, and 83.3%, specificities of 100%, 100%, and 100%, and (2) accuracies of 95.7%, 87%, and 87%, respectively. These observations correlated most reliably as indicators for skin sensitization potency. Data suggest that IL-1α and IL-1β may serve as potential biomarkers for skin sensitization and provide an alternative method to animal experiments for prediction of skin sensitization potency and risk assessment.
Collapse
Affiliation(s)
- Min Kook Kim
- a Division of Toxicology, College of Pharmacy , Sungkyunkwan University , Suwon , Gyeonggi-do , South Korea
| | - Kyu-Bong Kim
- b College of Pharmacy , Dankook University , Cheonan , Chungnam , South Korea
| | - Kyungsil Yoon
- c Lung Cancer Branch , Research Institute, National Cancer Center , Goyang , Gyeonggi-do , South Korea
| | - Sam Kacew
- d McLaughlin Centre for Population Health Risk Assessment,University of Ottawa, Ottawa, ON, Canada
| | - Hyung Sik Kim
- a Division of Toxicology, College of Pharmacy , Sungkyunkwan University , Suwon , Gyeonggi-do , South Korea
| | - Byung-Mu Lee
- a Division of Toxicology, College of Pharmacy , Sungkyunkwan University , Suwon , Gyeonggi-do , South Korea
| |
Collapse
|
25
|
Wu L, Zhang H, Jiang Y, Gallo RC, Cheng H. Induction of antitumor cytotoxic lymphocytes using engineered human primary blood dendritic cells. Proc Natl Acad Sci U S A 2018; 115:E4453-E4462. [PMID: 29674449 PMCID: PMC5948994 DOI: 10.1073/pnas.1800550115] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Dendritic cell (DC)-based cancer immunotherapy has achieved modest clinical benefits, but several technical hurdles in DC preparation, activation, and cancer/testis antigen (CTA) delivery limit its broad applications. Here, we report the development of immortalized and constitutively activated human primary blood dendritic cell lines (ihv-DCs). The ihv-DCs are a subset of CD11c+/CD205+ DCs that constitutively display costimulatory molecules. The ihv-DCs can be genetically modified to express human telomerase reverse transcriptase (hTERT) or the testis antigen MAGEA3 in generating CTA-specific cytotoxic T lymphocytes (CTLs). In an autologous setting, the HLA-A2+ ihv-DCs that present hTERT antigen prime autologous T cells to generate hTERT-specific CTLs, inducing cytolysis of hTERT-expressing target cells in an HLA-A2-restricted manner. Remarkably, ihv-DCs that carry two allogeneic HLA-DRB1 alleles are able to prime autologous T cells to proliferate robustly in generating HLA-A2-restricted, hTERT-specific CTLs. The ihv-DCs, which are engineered to express MAGEA3 and high levels of 4-1BBL and MICA, induce simultaneous production of both HLA-A2-restricted, MAGEA3-specific CTLs and NK cells from HLA-A2+ donor peripheral blood mononuclear cells. These cytotoxic lymphocytes suppress lung metastasis of A549/A2.1 lung cancer cells in NSG mice. Both CTLs and NK cells are found to infiltrate lung as well as lymphoid tissues, mimicking the in vivo trafficking patterns of cytotoxic lymphocytes. This approach should facilitate the development of cell-based immunotherapy for human lung cancer.
Collapse
Affiliation(s)
- Long Wu
- School of Pharmacy, Jinan University, 510632 Guangzhou, China
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Huan Zhang
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Yixing Jiang
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Robert C Gallo
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201;
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Hua Cheng
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201;
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201
| |
Collapse
|
26
|
Bosteels C, Lambrecht BN, Hammad H. Isolation of Conventional Murine Lung Dendritic Cell Subsets. ACTA ACUST UNITED AC 2018; 120:3.7B.1-3.7B.16. [PMID: 29512143 DOI: 10.1002/cpim.39] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The lungs are continuously exposed to environmental threats, requiring an adequate and stringent immune response of a heterogeneous set of effector cells. Dendritic cells (DCs) form a dense network in the respiratory mucosa and act as the central regulators of the different components of this response, both sensing the nature of the threats and precisely coordinating the effector mechanisms best suited for overcoming it. The DCs are classically subdivided in two main groups, plasmacytoid DCs (pDCs) and conventional DCs (cDCs), the latter being further subdivided into cDC1s and cDC2s based on ontogeny and their distinct non-redundant functions. This protocol provides different enrichment methods and represents an up-to-date, universal framework that uses a minimal set of highly specific lineage markers to discriminate and sort pure cDC subsets from the murine lung but also across tissues and species which is an added value in intra- and interspecies comparative research. © 2018 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Cédric Bosteels
- Laboratory of Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, Ghent, Belgium.,Department of Internal Medicine, Ghent University, Ghent, Belgium
| | - Bart N Lambrecht
- Laboratory of Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, Ghent, Belgium.,Department of Internal Medicine, Ghent University, Ghent, Belgium
| | - Hamida Hammad
- Laboratory of Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, Ghent, Belgium.,Department of Internal Medicine, Ghent University, Ghent, Belgium
| |
Collapse
|
27
|
Ryerson MR, Shisler JL. Characterizing the effects of insertion of a 5.2 kb region of a VACV genome, which contains known immune evasion genes, on MVA immunogenicity. Virus Res 2018; 246:55-64. [PMID: 29341877 DOI: 10.1016/j.virusres.2018.01.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 01/11/2018] [Accepted: 01/12/2018] [Indexed: 01/07/2023]
Abstract
Modified Vaccinia virus Ankara (MVA) is an attenuated Vaccinia virus (VACV) that is a popular vaccine vector candidate against many different pathogens. Its replication-restricted nature makes it a safe vaccine. However, higher doses or multiple boosts of MVA are necessary to elicit an immune response similar to wild-type VACV. Multiple strategies have been used to create modified MVA viruses that remain safe, but have increased immunogenicity. For example, one common strategy is to delete MVA immunomodulatory proteins in hopes of increasing the host immune response. Here, we take the opposite approach and examine, for the first time, how re-introduction of a 5.2 kb region of VACV DNA (that codes for multiple immunomodulatory proteins) into MVA alters viral immunogenicity. Since antigen presenting cells (APCs) are critical connectors between the innate and adaptive immune system, we examined the effect of MVA/5.2 kb infection in these cells in vitro. MVA/5.2 kb infection decreased virus-induced apoptosis and virus-induced NF-κB activation. MVA.5.2 kb infection decreased TNF production. However, MVA/5.2 kb infection did not alter APC maturation or IL-6 and IL-8 production in vitro. We further explored MVA/5.2 kb immunogenicity in vivo. VACV-specific CD8+ T cells were decreased after in vivo infection with MVA/5.2 kb versus MVA, suggesting that the MVA/5.2 kb construct is less immunogenic than MVA. These results demonstrate the limitations of in vitro studies for predicting the effects of genetic manipulation of MVA on immunogenicity. Although MVA/5.2 kb did not enhance MVA's immunogenicity, this study examined an unexplored strategy for optimizing MVA, and the insight gained from these results can help direct how to modify MVA in the future.
Collapse
Affiliation(s)
- Melissa R Ryerson
- Department of Microbiology, B103 Chemical and Life Science Building, 601 South Goodwin Avenue, University of Illinois, Urbana, IL 61801, USA
| | - Joanna L Shisler
- Department of Microbiology, B103 Chemical and Life Science Building, 601 South Goodwin Avenue, University of Illinois, Urbana, IL 61801, USA.
| |
Collapse
|
28
|
Distinctive Responses in an In Vitro Human Dendritic Cell-Based System upon Stimulation with Different Influenza Vaccine Formulations. Vaccines (Basel) 2017; 5:vaccines5030021. [PMID: 28792466 PMCID: PMC5620552 DOI: 10.3390/vaccines5030021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 07/29/2017] [Accepted: 08/02/2017] [Indexed: 01/02/2023] Open
Abstract
Vaccine development relies on testing vaccine candidates in animal models. However, results from animals cannot always be translated to humans. Alternative ways to screen vaccine candidates before clinical trials are therefore desirable. Dendritic cells (DCs) are the main orchestrators of the immune system and the link between innate and adaptive responses. Their activation by vaccines is an essential step in vaccine-induced immune responses. We have systematically evaluated the suitability of two different human DC-based systems, namely the DC-cell line MUTZ-3 and primary monocyte-derived DCs (Mo-DCs) to screen immunopotentiating properties of vaccine candidates. Two different influenza vaccine formulations, whole inactivated virus (WIV) and subunit (SU), were used as model antigens as they represent a high immunogenic and low immunogenic vaccine, respectively. MUTZ-3 cells were restricted in their ability to respond to different stimuli. In contrast, Mo-DCs readily responded to WIV and SU in a vaccine-specific way. WIV stimulation elicited a more vigorous induction of activation markers, immune response-related genes and secretion of cytokines involved in antiviral responses than the SU vaccine. Furthermore, Mo-DCs differentiated from freshly isolated and freeze/thawed peripheral blood mononuclear cells (PBMCs) showed a similar capacity to respond to different vaccines. Taken together, we identified human PBMC-derived Mo-DCs as a suitable platform to evaluate vaccine-induced immune responses. Importantly, we show that fresh and frozen PBMCs can be used indistinctly, which strongly facilitates the routine use of this system. In vitro vaccine pre-screening using human Mo-DCs is thus a promising approach for evaluating the immunopotentiating capacities of new vaccine formulations that have not yet been tested in humans.
Collapse
|
29
|
Casati S. Contact hypersensitivity: Integrated approaches to testing and assessment. CURRENT OPINION IN TOXICOLOGY 2017. [DOI: 10.1016/j.cotox.2017.05.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
30
|
Zhang J, Sze DMY, Yung BYM, Tang P, Chen WJ, Chan KH, Leung PHM. Distinct expression of interferon-induced protein with tetratricopeptide repeats (IFIT) 1/2/3 and other antiviral genes between subsets of dendritic cells induced by dengue virus 2 infection. Immunology 2017; 148:363-76. [PMID: 27135915 DOI: 10.1111/imm.12615] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 04/02/2016] [Accepted: 04/19/2016] [Indexed: 12/31/2022] Open
Abstract
Dengue virus (DENV) infection is an emerging public health hazard threatening inhabitants of the tropics and sub-tropics. Dendritic cells (DCs) are one of the major targets of DENV and the initiators of the innate immune response against the virus. However, current in vitro research on the DENV-DC interaction is hampered by the low availability of ex vivo DCs and donor variation. In the current study, we attempted to develop a novel in vitro DC model using immature DCs derived from the myeloid leukaemia cell line MUTZ-3 (IMDCs) to investigate the DENV-DC interaction. The IMDCs morphologically and phenotypically resembled human immature monocyte-derived dendritic cells (IMMoDCs). However, the permissiveness of IMDCs to DENV2 was lower than that of IMMoDCs. RT-PCR arrays showed that a group of type I interferon (IFN) -inducible genes, especially IFIT1, IFITM1, and IFI27, were significantly up-regulated in IMMoDCs but not in IMDCs after DENV2 infection. Further investigation revealed that IFIT genes were spontaneously expressed at both transcriptional and protein levels in the naive IMDCs but not in the naive IMMoDCs. It is possible that the poor permissiveness of IMDCs to DENV2 was a result of the high basal levels of IFIT proteins. We conclude that the IMDC model, although less permissive to DENV2, is a useful platform for studying the suppression mechanism of DENV2 and we expand the knowledge of cellular factors that modulate DENV2 infection in the human body.
Collapse
Affiliation(s)
- Jingshu Zhang
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China.,HKU-Pasteur Research Pole, School of Public Health, The University of Hong Kong, Hong Kong, China
| | - Daniel Man-Yuen Sze
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China.,School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology (RMIT) University, Melbourne, VIC, Australia
| | - Benjamin Yat-Ming Yung
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Petrus Tang
- Molecular Regulation and Bioinformatics Laboratory, Department of Public Health and Parasitology, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan.,Graduate Institute of Biomedical Sciences, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan
| | - Wei-June Chen
- Graduate Institute of Biomedical Sciences, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan.,Department of Public Health and Parasitology, College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan
| | - Kwok-Hung Chan
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Polly Hang-Mei Leung
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| |
Collapse
|
31
|
Cunha-Matos CA, Millington OR, Wark AW, Zagnoni M. Real-time assessment of nanoparticle-mediated antigen delivery and cell response. LAB ON A CHIP 2016; 16:3374-3381. [PMID: 27455884 DOI: 10.1039/c6lc00599c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Nanomaterials are increasingly being developed for applications in biotechnology, including the delivery of therapeutic drugs and of vaccine antigens. However, there is a lack of screening systems that can rapidly assess the dynamics of nanoparticle uptake and their consequential effects on cells. Established in vitro approaches are often carried out on a single time point, rely on time-consuming bulk measurements and are based primarily on populations of cell lines. As such, these procedures provide averaged results, do not guarantee precise control over the delivery of nanoparticles to cells and cannot easily generate information about the dynamics of nanoparticle-cell interactions and/or nanoparticle-mediated compound delivery. Combining microfluidics and nanotechnology with imaging techniques, we present a microfluidic platform to monitor nanoparticle uptake and intracellular processing in real-time and at the single-cell level. As proof-of-concept application, the potential of such a system for understanding nanovaccine delivery and processing was investigated and we demonstrate controlled delivery of ovalbumin-conjugated gold nanorods to primary dendritic cells. Using time-lapse microscopy, our approach allowed monitoring of uptake and processing of nanoparticles across a range of concentrations over several hours on hundreds of single-cells. This system represents a novel application of single-cell microfluidics for nanomaterial screening, providing a general platform for studying the dynamics of cell-nanomaterial interactions and representing a cost-saving and time-effective screening tool for many nanomaterial formulations and cell types.
Collapse
Affiliation(s)
- Carlota A Cunha-Matos
- Department of Biomedical Engineering, University of Strathclyde, 106 Rottenrow, Glasgow, G4 0NW, UK
| | - Owain R Millington
- Centre for Biophotonics, Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, UK
| | - Alastair W Wark
- Centre for Molecular Nanometrology, WestCHEM, Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, 99 George St, Glasgow, G1 1RD, UK
| | - Michele Zagnoni
- Centre for Microsystems and Photonics, Electronic and Electrical Engineering, University of Strathclyde, 204 George Street, Glasgow, G1 1XW, UK.
| |
Collapse
|
32
|
Cell-SELEX-based selection and characterization of a G-quadruplex DNA aptamer against mouse dendritic cells. Int Immunopharmacol 2016; 36:324-332. [PMID: 27232653 DOI: 10.1016/j.intimp.2016.04.042] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 04/28/2016] [Indexed: 01/10/2023]
Abstract
Targeting of dendritic cells (DCs) by aptamers increases antigen capture and presentation to the immune system. Our aim was to produce aptamers against DC molecules using the cell-SELEX procedure. For this purpose, 18 rounds of cell-SELEX were performed on mouse macrophage J774A.1 and CT26 as target and control cells, respectively. The selected aptamers were truncated and their binding to mouse macrophages, and immature and mature DCs analyzed. Two macrophage-specific aptamers, Seq6 and Seq7, were identified. A truncated form of Seq7, Seq7-4, 33 nucleotides in length and containing the G-quadruplex, bound macrophages and immature DCs with KD values in the nanomolar range. We anticipate that Seq7-4 has potential as a therapeutic tool in targeting of mouse macrophages and immature DCs to efficiently improve different immunotherapy approaches.
Collapse
|
33
|
Lopušná K, Benkóczka T, Lupták J, Matúšková R, Lukáčiková Ľ, Ovečková I, Režuchová I. Murine gammaherpesvirus targets type I IFN receptor but not type III IFN receptor early in infection. Cytokine 2016; 83:158-170. [PMID: 27152708 DOI: 10.1016/j.cyto.2016.04.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 04/25/2016] [Accepted: 04/26/2016] [Indexed: 02/07/2023]
Abstract
The innate immune response represents a primary line of defense against invading viral pathogens. Since epithelial cells are the primary site of gammaherpesvirus replication during infection in vivo and there are no information on activity of IFN-III signaling against gammaherpesviruses in this cell type, in present study, we evaluated the expression profile and virus-host interactions in mouse mammary epithelial cell (NMuMG) infected with three strains of murine gammaherpesvirus, MHV-68, MHV-72 and MHV-4556. Studying three strains of murine gammaherpesvirus, which differ in nucleotide sequence of some structural and non-structural genes, allowed us to compare the strain-dependent interactions with host organism. Our results clearly demonstrate that: (i) MHV-68, MHV-72 and MHV-4556 differentially interact with intracellular signaling and dysregulate IFN signal transduction; (ii) MHV-68, MHV-72 and MHV-4556 degrade type I IFN receptor in very early stages of infection (2-4hpi), but not type III IFN receptor; (iii) type III IFN signaling might play a key role in antiviral defense of epithelial cells in early stages of murine gammaherpesvirus replication; (iv) NMuMG cells are an appropriate model for study of not only type I IFN signaling, but also type III IFN signaling pathway. These findings are important for better understanding of individual virus-host interactions in lytic as well as in persistent gammaherpesvirus replication and help us to elucidate IFN-III function in early events of virus infection.
Collapse
Affiliation(s)
- Katarína Lopušná
- Institute of Virology, Biomedical Research Center of Slovak Academy of Sciences, Bratislava 845 05, Slovak Republic
| | - Tímea Benkóczka
- Institute of Virology, Biomedical Research Center of Slovak Academy of Sciences, Bratislava 845 05, Slovak Republic
| | - Jakub Lupták
- School of Life Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Radka Matúšková
- Institute of Virology, Biomedical Research Center of Slovak Academy of Sciences, Bratislava 845 05, Slovak Republic
| | - Ľubomíra Lukáčiková
- Institute of Virology, Biomedical Research Center of Slovak Academy of Sciences, Bratislava 845 05, Slovak Republic
| | - Ingrid Ovečková
- Institute of Virology, Biomedical Research Center of Slovak Academy of Sciences, Bratislava 845 05, Slovak Republic
| | - Ingeborg Režuchová
- Institute of Virology, Biomedical Research Center of Slovak Academy of Sciences, Bratislava 845 05, Slovak Republic.
| |
Collapse
|
34
|
Lv X, Chen D, Yang L, Zhu N, Li J, Zhao J, Hu Z, Wang FJ, Zhang LW. Comparative studies on the immunoregulatory effects of three polysaccharides using high content imaging system. Int J Biol Macromol 2016; 86:28-42. [DOI: 10.1016/j.ijbiomac.2016.01.048] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 01/13/2016] [Accepted: 01/13/2016] [Indexed: 12/20/2022]
|
35
|
Freynet O, Marchal-Sommé J, Jean-Louis F, Mailleux A, Crestani B, Soler P, Michel L. Human lung fibroblasts may modulate dendritic cell phenotype and function: results from a pilot in vitro study. Respir Res 2016; 17:36. [PMID: 27044262 PMCID: PMC4820963 DOI: 10.1186/s12931-016-0345-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 03/09/2016] [Indexed: 01/14/2023] Open
Abstract
In human lung fibrotic lesions, fibroblasts were shown to be closely associated with immature dendritic cell (DC) accumulation. The aim of the present pilot study was to characterize the role of pulmonary fibroblasts on DC phenotype and function, using co-culture of lung fibroblasts from patients with idiopathic pulmonary fibrosis (IPF) and from control patients, with a DC cell line MUTZ-3. We observed that co-culture of lung control and IPF fibroblasts with DCs reduced the expression of specific DC markers and down-regulated their T-cell stimulatory activity. This suggests that pulmonary fibroblasts might sustain chronic inflammation in the fibrotic lung by maintaining in situ a pool of immature DCs.
Collapse
Affiliation(s)
- Olivia Freynet
- Inserm U 1152, 46, rue Henri Huchard, Paris, 75018, France.,Université Paris Diderot, Sorbonne Paris Cité, Paris, France.,DHU FIRE, Paris, France.,Assistance Publique-Hôpitaux de Paris, Hôpital Bichat, Service de Pneumologie A, Paris, France
| | - Joëlle Marchal-Sommé
- Inserm U 1152, 46, rue Henri Huchard, Paris, 75018, France.,Université Paris Diderot, Sorbonne Paris Cité, Paris, France.,DHU FIRE, Paris, France
| | - Francette Jean-Louis
- Inserm UMR-S 976, Université Paris Diderot, Sorbonne Paris Cité, Hôpital Saint Louis, Paris, France
| | - Arnaud Mailleux
- Inserm U 1152, 46, rue Henri Huchard, Paris, 75018, France.,Université Paris Diderot, Sorbonne Paris Cité, Paris, France.,DHU FIRE, Paris, France
| | - Bruno Crestani
- Inserm U 1152, 46, rue Henri Huchard, Paris, 75018, France. .,Université Paris Diderot, Sorbonne Paris Cité, Paris, France. .,DHU FIRE, Paris, France. .,Assistance Publique-Hôpitaux de Paris, Hôpital Bichat, Service de Pneumologie A, Paris, France. .,Service de Pneumologie, Hôpital Bichat, 46, rue Henri Huchard, Paris cedex 18, 75018, France.
| | - Paul Soler
- Inserm U 1152, 46, rue Henri Huchard, Paris, 75018, France.,Université Paris Diderot, Sorbonne Paris Cité, Paris, France.,DHU FIRE, Paris, France
| | - Laurence Michel
- Inserm UMR-S 976, Université Paris Diderot, Sorbonne Paris Cité, Hôpital Saint Louis, Paris, France. .,Inserm UMR-S 976, Hôpital Saint-Louis, 1 avenue Claude Vellefaux, 75475, Paris, 75010, France.
| |
Collapse
|
36
|
Pigni M, Ashok D, Acha-Orbea H. Derivation and Utilization of Functional CD8(+) Dendritic Cell Lines. Methods Mol Biol 2016; 1423:39-49. [PMID: 27142007 DOI: 10.1007/978-1-4939-3606-9_3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
It is notoriously difficult to obtain large quantities of non-activated dendritic cells ex vivo. For this reason, we produced and characterized a mouse model expressing the large T oncogene under the CD11c promoter (Mushi mice), in which CD8α(+) dendritic cells transform after 4 months. We derived a variety of stable cell lines from these primary lines. These cell lines reproducibly share with freshly isolated dendritic cells most surface markers, mRNA and protein expression, and all tested biological functions. Cell lines can be derived from various strains and knockout mice and can be easily transduced with lentiviruses. In this article, we describe the derivation, culture, and lentiviral transduction of these dendritic cell lines.
Collapse
Affiliation(s)
- Matteo Pigni
- Department of Biochemistry CIIL, University of Lausanne, Chemin des Boveresses 155, CH-1066, Epalinges, Switzerland
| | - Devika Ashok
- Department of Biochemistry CIIL, University of Lausanne, Chemin des Boveresses 155, CH-1066, Epalinges, Switzerland
| | - Hans Acha-Orbea
- Department of Biochemistry CIIL, University of Lausanne, Chemin des Boveresses 155, CH-1066, Epalinges, Switzerland.
| |
Collapse
|
37
|
Zamanian M, Fraser LM, Agbedanu PN, Harischandra H, Moorhead AR, Day TA, Bartholomay LC, Kimber MJ. Release of Small RNA-containing Exosome-like Vesicles from the Human Filarial Parasite Brugia malayi. PLoS Negl Trop Dis 2015; 9:e0004069. [PMID: 26401956 PMCID: PMC4581865 DOI: 10.1371/journal.pntd.0004069] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 08/18/2015] [Indexed: 01/28/2023] Open
Abstract
Lymphatic filariasis (LF) is a socio-economically devastating mosquito-borne Neglected Tropical Disease caused by parasitic filarial nematodes. The interaction between the parasite and host, both mosquito and human, during infection, development and persistence is dynamic and delicately balanced. Manipulation of this interface to the detriment of the parasite is a promising potential avenue to develop disease therapies but is prevented by our very limited understanding of the host-parasite relationship. Exosomes are bioactive small vesicles (30-120 nm) secreted by a wide range of cell types and involved in a wide range of physiological processes. Here, we report the identification and partial characterization of exosome-like vesicles (ELVs) released from the infective L3 stage of the human filarial parasite Brugia malayi. Exosome-like vesicles were isolated from parasites in culture media and electron microscopy and nanoparticle tracking analysis were used to confirm that vesicles produced by juvenile B. malayi are exosome-like based on size and morphology. We show that loss of parasite viability correlates with a time-dependent decay in vesicle size specificity and rate of release. The protein cargo of these vesicles is shown to include common exosomal protein markers and putative effector proteins. These Brugia-derived vesicles contain small RNA species that include microRNAs with host homology, suggesting a potential role in host manipulation. Confocal microscopy shows J774A.1, a murine macrophage cell line, internalize purified ELVs, and we demonstrate that these ELVs effectively stimulate a classically activated macrophage phenotype in J774A.1. To our knowledge, this is the first report of exosome-like vesicle release by a human parasitic nematode and our data suggest a novel mechanism by which human parasitic nematodes may actively direct the host responses to infection. Further interrogation of the makeup and function of these bioactive vesicles could seed new therapeutic strategies and unearth stage-specific diagnostic biomarkers.
Collapse
Affiliation(s)
- Mostafa Zamanian
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa, United States of America
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
| | - Lisa M Fraser
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa, United States of America
| | - Prince N Agbedanu
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa, United States of America
| | - Hiruni Harischandra
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa, United States of America
| | - Andrew R Moorhead
- Department of Infectious Diseases, University of Georgia, Athens, Georgia, United States of America
| | - Tim A Day
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa, United States of America
| | - Lyric C Bartholomay
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Michael J Kimber
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa, United States of America
- * E-mail:
| |
Collapse
|
38
|
Ruben JM, Visser LL, Heinhuis KM, O’Toole T, Bontkes HJ, Westers TM, Ossenkoppele GJ, de Gruijl TD, van de Loosdrecht AA. A Human Cell Line Model for Interferon-α Driven Dendritic Cell Differentiation. PLoS One 2015; 10:e0135219. [PMID: 26252775 PMCID: PMC4529224 DOI: 10.1371/journal.pone.0135219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 07/20/2015] [Indexed: 11/19/2022] Open
Abstract
The CD34+ MUTZ-3 acute myeloid leukemia cell line has been used as a dendritic cell (DC) differentiation model. This cell line can be cultured into Langerhans cell (LC) or interstitial DC-like cells using the same cytokine cocktails used for the differentiation of their primary counterparts. Currently, there is an increasing interest in the study and clinical application of DC generated in the presence of IFNα, as these IFNα-DC produce high levels of inflammatory cytokines and have been suggested to be more potent in their ability to cross-present protein antigens, as compared to the more commonly used IL-4-DC. Here, we report on the generation of IFNα-induced MUTZ-DC. We show that IFNα MUTZ-DC morphologically and phenotypically display characteristic DC features and are functionally equivalent to “classic” IL-4 MUTZ-DC. IFNα MUTZ-DC ingest exogenous antigens and can subsequently cross-present HLA class-I restricted epitopes to specific CD8+ T cells. Importantly, mature IFNα MUTZ-DC express CCR7, migrate in response to CCL21, and are capable of priming naïve antigen-specific CD8+ T cells. In conclusion, we show that the MUTZ-3 cell line offers a viable and sustainable model system to study IFNα driven DC development and functionality.
Collapse
Affiliation(s)
- Jurjen M. Ruben
- Dept of Hematology, VU University Medical Center, Cancer Center Amsterdam, De Boelelaan 1117, 1081HV Amsterdam, The Netherlands
| | - Lindy L. Visser
- Dept of Hematology, VU University Medical Center, Cancer Center Amsterdam, De Boelelaan 1117, 1081HV Amsterdam, The Netherlands
| | - Kimberley M. Heinhuis
- Dept of Hematology, VU University Medical Center, Cancer Center Amsterdam, De Boelelaan 1117, 1081HV Amsterdam, The Netherlands
| | - Tom O’Toole
- Dept of Molecular Cell Biology and Immunology, VU University Medical Center, Cancer Center Amsterdam, De Boelelaan 1117, 1081HV Amsterdam, The Netherlands
| | - Hetty J. Bontkes
- Dept of Hematology, VU University Medical Center, Cancer Center Amsterdam, De Boelelaan 1117, 1081HV Amsterdam, The Netherlands
| | - Theresia M. Westers
- Dept of Hematology, VU University Medical Center, Cancer Center Amsterdam, De Boelelaan 1117, 1081HV Amsterdam, The Netherlands
| | - Gert J. Ossenkoppele
- Dept of Hematology, VU University Medical Center, Cancer Center Amsterdam, De Boelelaan 1117, 1081HV Amsterdam, The Netherlands
| | - Tanja D. de Gruijl
- Dept of Medical Oncology, VU University medical center-Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Arjan A. van de Loosdrecht
- Dept of Hematology, VU University Medical Center, Cancer Center Amsterdam, De Boelelaan 1117, 1081HV Amsterdam, The Netherlands
- * E-mail:
| |
Collapse
|
39
|
Armitage CW, O'Meara CP, Beagley KW. Chlamydia pneumoniae and Chlamydia Trachomatis Infection Differentially Modulates Human Dendritic Cell Line (MUTZ) Differentiation and Activation. Scand J Immunol 2015; 82:48-54. [PMID: 25833314 DOI: 10.1111/sji.12295] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 03/19/2015] [Indexed: 11/27/2022]
Abstract
Chlamydia trachomatis and Chlamydia pneumoniae are important human pathogens that infect the urogenital/anorectal and respiratory tracts, respectively. Whilst the ability of these bacteria to infect epithelia is well defined, there is also considerable evidence of infection of leucocytes, including dendritic cells (DCs). Using a human dendritic cell line (MUTZ), we demonstrate that the infection and replication of chlamydiae inside DCs is species and serovar specific and that live infection with C. pneumoniae is required to upregulate costimulatory markers CD80, CD83 and human leucocyte antigen (HLA)-DR on MUTZ cells, as well as induce secretion of interleukin (IL)-2, IL-6, IL-8, IL-12 (p70), interferon-gamma and tumour necrosis factor-alpha Conversely, C. trachomatis serovar D failed to upregulate DC costimulatory markers, but did induce secretion of high concentrations of IL-8. Interestingly, we also observed that infection of MUTZ cells with C. pneumoniae or C. trachomatis serovar L2, whilst not replicative, remained infectious and upregulated lymph node migratory marker CCR7 mRNA. Taken together, these data confirm the findings of other groups using primary DCs and demonstrate the utility of MUTZ cells for further studies of chlamydial infection.
Collapse
Affiliation(s)
- C W Armitage
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Qld, Australia
| | - C P O'Meara
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Qld, Australia
| | - K W Beagley
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Qld, Australia
| |
Collapse
|
40
|
Abstract
Aptamers, as a novel class of molecular probes for diagnosis, imaging and targeting therapy, have attracted increasing attention in recent years. Aptamers are generated from libraries of single-stranded nucleic acids against different molecules via the "systematic evolution of ligands by exponential enrichment" (SELEX) method. SELEX is a repetitive process of a sequential selection procedure in which a DNA or RNA library pool is incubated separately with target and control molecules to select specific oligonucleotide aptamers with high affinities and specificities. Cell-SELEX is a modified version of the SELEX process in which whole living cells are used as targets for the aptamers. Dendritic cell (DC) targeting, as a new therapeutic approach, can improve the efficiency of immunotherapy in the treatment of allergies and cancers. DCs use various receptors to continuously induce adaptive immunity via capture and presentation of antigens to naïve T cells. DCs are considered as the best targets in modulating immune responses against cancer, autoimmunity, allergy and transplantation. Aptamers, as a new agent, can be applied in DC targeting. The purpose of this review is to present some general concepts of aptamer production and DC targeting by aptamer molecules.
Collapse
Affiliation(s)
- A Ganji
- a Student Research Committee , Mashhad University of Medical Sciences , Mashhad , Iran .,b Immunology Research Center, Medical School, Mashhad University of Medical Sciences , Mashhad , Iran , and
| | - A Varasteh
- c Allergy Research Center, Medical School, Mashhad University of Medical Sciences , Mashhad , Iran
| | - M Sankian
- b Immunology Research Center, Medical School, Mashhad University of Medical Sciences , Mashhad , Iran , and
| |
Collapse
|
41
|
van de Velde J, Wilbers RHP, Westerhof LB, van Raaij DR, Stavrakaki I, Sonnenberg ASM, Bakker J, Schots A. Assessing the immunomodulatory potential of high-molecular-weight extracts from mushrooms; an assay based on THP-1 macrophages. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2015; 95:344-350. [PMID: 24799300 DOI: 10.1002/jsfa.6726] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 04/28/2014] [Accepted: 04/28/2014] [Indexed: 06/03/2023]
Abstract
BACKGROUND Food is a potential source of immunomodulating compounds that may be used to steer immune responses towards a desired status such as reducing inflammatory disorders. However, to identify and characterize such bioactive compounds, biologically relevant and standardized assays are required. Macrophages play an important role in immunomodulation and are suited for developing cell-based assays. An assay was developed based on macrophages, in a homogeneous differentiation state, using the human monocytic cell line THP-1 previously used to assess immunomodulatory properties of low-molecular-weight allergens, hormones, dietary supplements and therapeutic drugs. RESULTS Zymosan and mushroom polysaccharide extracts lead to a heterogeneous differentiation state of THP-1 monocytes, and these cells secrete low levels of cytokines upon stimulation. Differentiation into macrophages using a low concentration of phorbol 12-myristate 13-acetate improved responsiveness. Elevated levels of cytokines were secreted by cells in a homogenous differentiation state. In addition, it was determined that the assay performs best when using cells at a concentration of (2.5-5) × 10(5) cells mL(-1). CONCLUSION An assay was developed suitable to distinguish the immunomodulatory properties of food compounds in a reproducible manner. It was evaluated using eight mushroom species by measuring the secretion of relevant cytokines TNF-α, IL-1β, IL-6 and IL-10.
Collapse
Affiliation(s)
- Jan van de Velde
- Plant Sciences Group, Wageningen University and Research Centre, Wageningen, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Meng LZ, Feng K, Wang LY, Cheong KL, Nie H, Zhao J, Li SP. Activation of mouse macrophages and dendritic cells induced by polysaccharides from a novel Cordyceps sinensis fungus UM01. J Funct Foods 2014. [DOI: 10.1016/j.jff.2014.04.029] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|
43
|
El-Khoury V, Pierson S, Szwarcbart E, Brons NHC, Roland O, Cherrier-De Wilde S, Plawny L, Van Dyck E, Berchem G. Disruption of autophagy by the histone deacetylase inhibitor MGCD0103 and its therapeutic implication in B-cell chronic lymphocytic leukemia. Leukemia 2014; 28:1636-46. [PMID: 24418989 PMCID: PMC4131250 DOI: 10.1038/leu.2014.19] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 12/04/2013] [Accepted: 12/31/2013] [Indexed: 12/19/2022]
Abstract
Evading apoptosis is a hallmark of B-cell chronic lymphocytic leukemia (CLL) cells and an obstacle to current chemotherapeutic approaches. Inhibiting histone deacetylase (HDAC) has emerged as a promising strategy to induce cell death in malignant cells. We have previously reported that the HDAC inhibitor MGCD0103 induces CLL cell death by activating the intrinsic pathway of apoptosis. Here, we show that MGCD0103 decreases the autophagic flux in primary CLL cells. Activation of the PI3K/AKT/mTOR pathway, together with the activation of caspases, and to a minor extent CAPN1, resulting in cleavage of autophagy components, were involved in MGCD0103-mediated inhibition of autophagy. In addition, MGCD0103 directly modulated the expression of critical autophagy genes at the transcriptional level that may contribute to autophagy impairment. Besides, we demonstrate that autophagy is a pro-survival mechanism in CLL whose disruption potentiates cell death induced by anticancer molecules including HDAC and cyclin-dependent kinase inhibitors. In particular, our data highlight the therapeutic potential of MGCD0103 as not only an inducer of apoptosis but also an autophagy suppressor in both combination regimens with molecules like flavopiridol, known to induce protective autophagy in CLL cells, or as an alternative to circumvent undesired immunomodulatory effects seen in the clinic with conventional autophagy inhibitors.
Collapse
Affiliation(s)
- V El-Khoury
- Laboratory of Experimental Hemato-Oncology, Centre de Recherche Public de la Santé, Luxembourg, Luxembourg
| | - S Pierson
- Laboratory of Experimental Hemato-Oncology, Centre de Recherche Public de la Santé, Luxembourg, Luxembourg
| | - E Szwarcbart
- Laboratory of Experimental Hemato-Oncology, Centre de Recherche Public de la Santé, Luxembourg, Luxembourg
| | - N H C Brons
- Flow Cytometry Core Facility, Centre de Recherche Public de la Santé, Luxembourg, Luxembourg
| | - O Roland
- Laboratory of Experimental Hemato-Oncology, Centre de Recherche Public de la Santé, Luxembourg, Luxembourg
| | | | - L Plawny
- Centre Hospitalier de Luxembourg, Luxembourg, Luxembourg
| | - E Van Dyck
- Laboratory of Experimental Hemato-Oncology, Centre de Recherche Public de la Santé, Luxembourg, Luxembourg
| | - G Berchem
- 1] Laboratory of Experimental Hemato-Oncology, Centre de Recherche Public de la Santé, Luxembourg, Luxembourg [2] Centre Hospitalier de Luxembourg, Luxembourg, Luxembourg
| |
Collapse
|
44
|
Rosalia RA, Quakkelaar ED, Redeker A, Khan S, Camps M, Drijfhout JW, Silva AL, Jiskoot W, van Hall T, van Veelen PA, Janssen G, Franken K, Cruz LJ, Tromp A, Oostendorp J, van der Burg SH, Ossendorp F, Melief CJM. Dendritic cells process synthetic long peptides better than whole protein, improving antigen presentation and T-cell activation. Eur J Immunol 2013; 43:2554-65. [PMID: 23836147 DOI: 10.1002/eji.201343324] [Citation(s) in RCA: 146] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 05/26/2013] [Accepted: 07/05/2013] [Indexed: 12/19/2022]
Abstract
The efficiency of antigen (Ag) processing by dendritic cells (DCs) is vital for the strength of the ensuing T-cell responses. Previously, we and others have shown that in comparison to protein vaccines, vaccination with synthetic long peptides (SLPs) has shown more promising (pre-)clinical results. Here, we studied the unknown mechanisms underlying the observed vaccine efficacy of SLPs. We report an in vitro processing analysis of SLPs for MHC class I and class II presentation by murine DCs and human monocyte-derived DCs. Compared to protein, SLPs were rapidly and much more efficiently processed by DCs, resulting in an increased presentation to CD4⁺ and CD8⁺ T cells. The mechanism of access to MHC class I loading appeared to differ between the two forms of Ag. Whereas whole soluble protein Ag ended up largely in endolysosomes, SLPs were detected very rapidly outside the endolysosomes after internalization by DCs, followed by proteasome- and transporter associated with Ag processing-dependent MHC class I presentation. Compared to the slower processing route taken by whole protein Ags, our results indicate that the efficient internalization of SLPs, accomplished by DCs but not by B or T cells and characterized by a different and faster intracellular routing, leads to enhanced CD8⁺ T-cell activation.
Collapse
Affiliation(s)
- Rodney A Rosalia
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, The Netherlands; Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Hargadon KM. Tumor-altered dendritic cell function: implications for anti-tumor immunity. Front Immunol 2013; 4:192. [PMID: 23874338 PMCID: PMC3708450 DOI: 10.3389/fimmu.2013.00192] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 06/27/2013] [Indexed: 01/20/2023] Open
Abstract
Dendritic cells (DC) are key regulators of both innate and adaptive immunity, and the array of immunoregulatory functions exhibited by these cells is dictated by their differentiation, maturation, and activation status. Although a major role for these cells in the induction of immunity to pathogens has long been appreciated, data accumulated over the last several years has demonstrated that DC are also critical regulators of anti-tumor immune responses. However, despite the potential for stimulation of robust anti-tumor immunity by DC, tumor-altered DC function has been observed in many cancer patients and tumor-bearing animals and is often associated with tumor immune escape. Such dysfunction has significant implications for both the induction of natural anti-tumor immune responses as well as the efficacy of immunotherapeutic strategies that target endogenous DC in situ or that employ exogenous DC as part of anti-cancer immunization maneuvers. In this review, the major types of tumor-altered DC function will be described, with emphasis on recent insights into the mechanistic bases for the inhibition of DC differentiation from hematopoietic precursors, the altered programing of DC precursors to differentiate into myeloid-derived suppressor cells or tumor-associated macrophages, the suppression of DC maturation and activation, and the induction of immunoregulatory DC by tumors, tumor-derived factors, and tumor-associated cells within the milieu of the tumor microenvironment. The impact of these tumor-altered cells on the quality of the overall anti-tumor immune response will also be discussed. Finally, this review will also highlight questions concerning tumor-altered DC function that remain unanswered, and it will address factors that have limited advances in the study of this phenomenon in order to focus future research efforts in the field on identifying strategies for interfering with tumor-associated DC dysfunction and improving DC-mediated anti-tumor immunity.
Collapse
Affiliation(s)
- Kristian M Hargadon
- Hargadon Laboratory, Department of Biology, Hampden-Sydney College , Hampden-Sydney, VA , USA
| |
Collapse
|
46
|
Fallarini S, Paoletti T, Battaglini CO, Ronchi P, Lay L, Bonomi R, Jha S, Mancin F, Scrimin P, Lombardi G. Factors affecting T cell responses induced by fully synthetic glyco-gold-nanoparticles. NANOSCALE 2013; 5:390-400. [PMID: 23175231 DOI: 10.1039/c2nr32338a] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
We have synthesized and characterized nearly monodisperse and highly pure gold nanoparticles (2 and 5 nm) coated with non-immunoactive mono- and disaccharides, modelled after the capsular polysaccharide of serogroup A of the Neisseria meningitidis bacterium. We have used them to test their ability to induce immune cell responses as a consequence of their multivalency. The results indicate that they are indeed immunoactive and that immunoactivity is strongly dependent on size, and larger, 5 nm nanoparticles perform far better than smaller, 2 nm ones. Immune response (activation of macrophages) initiates with the whole nanoparticle recognition by the surface of antigen-presenting cells, independent of the saccharide oligomerization (or charge) on the nanoparticle surface. The induction of T cell proliferation and the increase of IL-2 levels, a consequence of the expression of MHC II involved in antigen presentation, require the presence of a disaccharide on the nanoparticle, not just a monosaccharide. A possible explanation is that, at this stage, the saccharides are detached from the gold surface. These results may provide leads for designing new saccharide-based, nanoparticle-conjugate vaccines.
Collapse
Affiliation(s)
- Silvia Fallarini
- Department of Pharmaceutical Sciences, University of Piemonte Orientale Amedeo Avogadro, Via Bovio 6, 28100 Novara, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Fuertes Marraco SA, Grosjean F, Duval A, Rosa M, Lavanchy C, Ashok D, Haller S, Otten LA, Steiner QG, Descombes P, Luber CA, Meissner F, Mann M, Szeles L, Reith W, Acha-Orbea H. Novel murine dendritic cell lines: a powerful auxiliary tool for dendritic cell research. Front Immunol 2012; 3:331. [PMID: 23162549 PMCID: PMC3491238 DOI: 10.3389/fimmu.2012.00331] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 10/18/2012] [Indexed: 11/13/2022] Open
Abstract
Research in vitro facilitates discovery, screening, and pilot experiments, often preceding research in vivo. Several technical difficulties render Dendritic Cell (DC) research particularly challenging, including the low frequency of DC in vivo, thorough isolation requirements, and the vulnerability of DC ex vivo. Critically, there is not as yet a widely accepted human or murine DC line and in vitro systems of DC research are limited. In this study, we report the generation of new murine DC lines, named MutuDC, originating from cultures of splenic CD8α conventional DC (cDC) tumors. By direct comparison to normal WT splenic cDC subsets, we describe the phenotypic and functional features of the MutuDC lines and show that they have retained all the major features of their natural counterpart in vivo, the splenic CD8α cDC. These features include expression of surface markers Clec9A, DEC205, and CD24, positive response to TLR3 and TLR9 but not TLR7 stimuli, secretion of cytokines, and chemokines upon activation, as well as cross-presentation capacity. In addition to the close resemblance to normal splenic CD8α cDC, a major advantage is the ease of derivation and maintenance of the MutuDC lines, using standard culture medium and conditions, importantly without adding supplementary growth factors or maturation-inducing stimuli to the medium. Furthermore, genetically modified MutuDC lines have been successfully obtained either by lentiviral transduction or by culture of DC tumors originating from genetically modified mice. In view of the current lack of stable and functional DC lines, these novel murine DC lines have the potential to serve as an important auxiliary tool for DC research.
Collapse
Affiliation(s)
- Silvia A Fuertes Marraco
- Department of Biochemistry, Center of Immunity and Infection Lausanne, University of Lausanne Epalinges, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Sensing adenovirus infection: activation of interferon regulatory factor 3 in RAW 264.7 cells. J Virol 2012; 86:4527-37. [PMID: 22345436 DOI: 10.1128/jvi.07071-11] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
We have used the RAW 264.7 murine macrophage-like cell line as a platform to characterize the recognition and early signaling response to recombinant adenoviral vectors (rAdV). Infection of RAW 264.7 cells triggers an early response (2 to 6 h postinfection) that includes phosphorylation of the interferon (IFN) response factor 3 (IRF3) transcription factor, upregulation of IRF3 primary response genes (interferon-stimulated gene 56 [ISG56], beta IFN [IFN-β]), and subsequent type I IFN secondary signaling (STAT1/2 phosphorylation). Using short hairpin RNA (shRNA) lentiviral vectors, we show an essential role for Tank binding kinase 1 (TBK1) in this pathway. Data also support a role for STING (MITA) as an adaptor functioning in response to rAdV infection. Using UV/psoralen (Ps)-inactivated virus to block viral transcription, Ps-inactivated virus stimulated primary (IRF3) and secondary (STAT1/2) activation events to the same degree as untreated virus. IRF3 phosphorylation was not blocked in RAW 264.7 cells pretreated with the RNA polymerase III inhibitor ML60218. However, they were compromised in the type I IFN-dependent secondary response (phosphorylation of STAT1/STAT2). At 24 h postinfection, ML60218-treated cells were compromised in the overall antiviral response. Therefore, initial sensing of rAdV or viral DNA (vDNA) does not depend on viral template transcription, but ML60218 treatment influences cellular cascades required for an antiviral response to rAdV. Using overexpression or knockdown assays, we examined how four DNA sensors influence the antiviral response. Knockdown of DNA Activator of Interferon (DAI) and p204, the murine ortholog to IFI16, had minimal influence on IRF3 phosphorylation. However, knockdown of absent in melanoma 2 (AIM2) and the helicase DDX41 resulted in diminished levels of (pser388)IRF3 following rAdV infection. Based on these data, multiple DNA sensors contribute to an antiviral DNA recognition response, leading to TBK1-dependent IRF3 phosphorylation in RAW 264.7 cells.
Collapse
|
49
|
van de Ven R, Reurs AW, Wijnands PGJTB, van Wetering S, Kruisbeek AM, Hooijberg E, Scheffer GL, Scheper RJ, de Gruijl TD. Exposure of CD34+ precursors to cytostatic anthraquinone-derivatives induces rapid dendritic cell differentiation: implications for cancer immunotherapy. Cancer Immunol Immunother 2012; 61:181-191. [PMID: 21874304 PMCID: PMC11028503 DOI: 10.1007/s00262-011-1039-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Accepted: 05/10/2011] [Indexed: 12/31/2022]
Abstract
Appropriate activation of dendritic cells (DC) is essential for successful active vaccination and induction of cell-mediated immunity. The scarcity of precursor cells, as well as long culture methods, have hampered wide-scale application of DC vaccines derived from CD34(+) precursors, despite their suggested superior efficacy over the more commonly applied monocyte-derived DC (MoDC). Here, employing the CD34(+)/CD14(+) AML-derived human DC progenitor cell line MUTZ3, we show that cytostatic anthraquinone-derivatives (i.e., the anthracenedione mitoxantrone and the related anthracyclin doxorubicin) induce rapid differentiation of CD34(+) DC precursors into functional antigen-presenting cells (APC) in a three-day protocol. The drugs were found to act specifically on CD34(+), and not on CD14(+) DC precursors. Importantly, these observations were confirmed for primary CD34(+) and CD14(+) DC precursors from peripheral blood. Mitoxantrone-generated DC were fully differentiated within three days and after an additional 24 h of maturation, were as capable as standard 9-day differentiated and matured DC to migrate toward the lymph node-homing chemokines CCL19 and CCL21, to induce primary allogeneic T cell proliferation, and to prime functional MART1-specific CD8(+) T lymphocytes. Our finding that anthraquinone-derivatives like mitoxantrone support rapid high-efficiency differentiation of DC precursors may have consequences for in vitro production of DC vaccines as well as for novel immunochemotherapy strategies.
Collapse
Affiliation(s)
- Rieneke van de Ven
- Department of Pathology, VU University Medical Center, de Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
- Division of Immunotherapy, Medical Oncology Laboratory, VU University Medical Center, de Boelelaan 1117-CCA 2.44, 1081 HV, Amsterdam, The Netherlands
| | - Anneke W Reurs
- Department of Pathology, VU University Medical Center, de Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
- DCPrime B.V, De Boelelaan 1085 (W&N), 1081 HV, Amsterdam, The Netherlands
| | - Pepijn G J T B Wijnands
- Department of Pathology, VU University Medical Center, de Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
- DCPrime B.V, De Boelelaan 1085 (W&N), 1081 HV, Amsterdam, The Netherlands
| | | | - Ada M Kruisbeek
- DCPrime B.V, De Boelelaan 1085 (W&N), 1081 HV, Amsterdam, The Netherlands
| | - Erik Hooijberg
- Department of Pathology, VU University Medical Center, de Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - George L Scheffer
- Department of Pathology, VU University Medical Center, de Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Rik J Scheper
- Department of Pathology, VU University Medical Center, de Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
- DCPrime B.V, De Boelelaan 1085 (W&N), 1081 HV, Amsterdam, The Netherlands
| | - Tanja D de Gruijl
- Division of Immunotherapy, Medical Oncology Laboratory, VU University Medical Center, de Boelelaan 1117-CCA 2.44, 1081 HV, Amsterdam, The Netherlands.
| |
Collapse
|
50
|
Hargadon KM, Forrest OA, Reddy PR. Suppression of the maturation and activation of the dendritic cell line DC2.4 by melanoma-derived factors. Cell Immunol 2012; 272:275-82. [DOI: 10.1016/j.cellimm.2011.10.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Revised: 09/09/2011] [Accepted: 10/03/2011] [Indexed: 11/16/2022]
|