1
|
Nakagawa N, Hashii Y, Kayama H, Okumura R, Nakajima H, Minagawa H, Morimoto S, Fujiki F, Nakata J, Shirakawa T, Katayama T, Takeda K, Tsuboi A, Ozono K. An oral WT1 protein vaccine composed of WT1-anchored, genetically engineered Bifidobacterium longum allows for intestinal immunity in mice with acute myeloid leukemia. Cancer Immunol Immunother 2023; 72:39-53. [PMID: 35699757 PMCID: PMC9813063 DOI: 10.1007/s00262-022-03214-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 04/25/2022] [Indexed: 01/09/2023]
Abstract
Wilms' tumor 1 (WT1) is a promising tumor-associated antigen for cancer immunotherapy. We developed an oral protein vaccine platform composed of WT1-anchored, genetically engineered Bifidobacterium longum (B. longum) and conducted an in vivo study in mice to examine its anticancer activity. Mice were orally treated with phosphate-buffered saline, wild-type B. longum105-A, B. longum 2012 displaying only galacto-N-biose/lacto-N-biose I-binding protein (GLBP), and WT1 protein- and GLBP-expressing B. longum 420. Tumor size reduced significantly in the B. longum 420 group than in the B. longum 105-A and 2012 groups (P < 0.00 l each), indicating B. longum 420's antitumor activity via WT1-specific immune responses. CD8+ T cells played a major role in the antitumor activity of B. longum 420. The proportion of CD103+CD11b+CD11c+ dendritic cells (DCs) increased in the Peyer's patches (PPs) from mice in the B. longum 420 group, indicating the definite activation of DCs. In the PPs, the number and proportion of CD8+ T cells capable of producing interferon-gamma were significantly greater in the B. longum 420 group than in the B. longum 2012 group (P < 0.05 or < 0.01). The production of WT1-specific IgG antibody was significantly higher in the B. longum 420 group than in the 2012 group (P < 0.05). The B. longum 420 group showed the most intense intratumoral infiltration of CD4+ and CD8+ T cells primed by activated DCs in the PPs of mice in the B. longum 420 group. Our findings provide insights into a novel, intestinal bacterium-based, cancer immunotherapy through intestinal immunity.
Collapse
Affiliation(s)
- Natsuki Nakagawa
- Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Osaka Japan
| | - Yoshiko Hashii
- Department Pediatrics, Osaka International Cancer Institute, Osaka, Japan.
| | - Hisako Kayama
- Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka Japan ,WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka Japan ,Institute for Advanced Co-Creation Studies, Osaka University, Suita, Osaka Japan
| | - Ryu Okumura
- Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka Japan ,WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka Japan
| | - Hiroko Nakajima
- Department of Cancer Immunology, Osaka University Graduate School of Medicine, Suita, Osaka Japan
| | - Hikaru Minagawa
- Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Osaka Japan
| | - Soyoko Morimoto
- Department of Cancer Stem Cell Biology, Osaka University Graduate School of Medicine, Suita, Osaka Japan
| | - Fumihiro Fujiki
- Department of Cancer Immunology, Osaka University Graduate School of Medicine, Suita, Osaka Japan
| | - Jun Nakata
- Department of Clinical Laboratory and Biomedical Sciences, Osaka University Graduate School of Medicine, Suita, Osaka Japan
| | - Toshiro Shirakawa
- Division of Advanced Medical Science, Kobe University Graduate School of Science, Technology and Innovation, Kobe, Japan
| | - Takane Katayama
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Kiyoshi Takeda
- Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka Japan ,WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka Japan
| | - Akihiro Tsuboi
- Department of Cancer Immunotherapy, Osaka University Graduate School of Medicine, Suita, Osaka Japan
| | - Keiichi Ozono
- Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Osaka Japan
| |
Collapse
|
2
|
CD40-CD154: A perspective from type 2 immunity. Semin Immunol 2021; 53:101528. [PMID: 34810089 DOI: 10.1016/j.smim.2021.101528] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 12/19/2022]
Abstract
The interaction between CD40 and CD154 (CD40 ligand) is central in immunology, participating in CD4+ T cell priming by dendritic cells (DC), CD4+ T cell help to B cells and classical macrophage activation by CD4+ T cells. However, its role in the Th2 side of immunology including helminth infection remains incompletely understood. Contrary to viral and bacterial stimuli, helminth products usually do not cause CD40 up-regulation in DC, and exogenous CD40 ligation drives Th2-biased systems towards Th1. On the other hand, CD40 and CD154 are necessary for induction of most Th2 responses. We attempt to reconcile these observations, mainly by proposing that (i) CD40 up-regulation in DC in Th2 systems is mostly induced by alarmins, (ii) the Th2 to Th1 shift induced by exogenous CD40 ligation is related to the capacity of such ligation to enhance IL-12 production by myeloid cells, and (iii) signals elicited by endogenous CD154 available in Th2 contexts and by exogenous CD40 ligation are probably different. We stress that CD40-CD154 is important beyond cognate cellular interactions. In such a context, we argue that the proliferation response of B-cells to IL-4 plus CD154 reflects a Th2-specific mechanism for polyclonal B-cell amplification and IgE production at infection sites. Finally, we argue that CD154 is a general immune activation signal across immune polarization including Th2, and propose that competition for CD154 at tissue sites may provide negative feedback on response induction at each site.
Collapse
|
3
|
Cortés A, Muñoz-Antoli C, Esteban JG, Toledo R. Th2 and Th1 Responses: Clear and Hidden Sides of Immunity Against Intestinal Helminths. Trends Parasitol 2017; 33:678-693. [DOI: 10.1016/j.pt.2017.05.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 05/04/2017] [Accepted: 05/05/2017] [Indexed: 12/12/2022]
|
4
|
Functional Impairment of Murine Dendritic Cell Subsets following Infection with Infective Larval Stage 3 of Brugia malayi. Infect Immun 2016; 85:IAI.00818-16. [PMID: 27799335 DOI: 10.1128/iai.00818-16] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 10/28/2016] [Indexed: 01/18/2023] Open
Abstract
Filarial parasites cause functional impairment of host dendritic cells (DCs). However, the effects of early infection on individual DC subsets are not known. In this study, we infected BALB/c mice with infective stage 3 larvae of the lymphatic filarial parasite Brugia malayi (Bm-L3) and studied the effect on fluorescence-activated cell sorter (FACS)-sorted DC subsets. While myeloid DCs (mDCs) accumulated by day 3 postinfection (p.i.), lymphoid DCs (LDCs) and CD8+ plasmacytoid DCs (pDCs) peaked at day 7 p.i. in the spleens and mesenteric lymph nodes (mLNs) of infected mice. Increased tumor necrosis factor alpha (TNF-α) but reduced interleukin 12 (IL-12) and Toll-like receptor 4 (TLR4), -6, and -9 and reciprocal secretion of IL-4 and IL-10 were also observed across all DC subsets. Interestingly, Bm-L3 increased the expression of CD80 and CD86 across all DC subsets but decreased that of major histocompatibility complex class II (MHC-II) on mDCs and pDCs, resulting in their impaired antigen uptake and presentation capacities, but maximally attenuated the T-cell proliferation capacity of only mDCs. Furthermore, Bm-L3 increased phosphorylated p38 (p-p38), but not p-ERK, in mDCs and LDCs but downregulated them in pDCs, along with differential modulation of protein tyrosine phosphatases SHP-1, TCPTP, PTEN, and PTP1B across all DC subsets. Taken together, we report hitherto undocumented effects of early Bm-L3 infection on purified host DC subsets that lead to their functional impairment and attenuated host T-cell response.
Collapse
|
5
|
Liu J, Xiao Q, Zhou R, Wang Y, Xian Q, Ma T, Zhuang K, Zhou L, Guo D, Wang X, Ho WZ, Li J. Comparative Analysis of Immune Activation Markers of CD8 + T Cells in Lymph Nodes of Different Origins in SIV-Infected Chinese Rhesus Macaques. Front Immunol 2016; 7:371. [PMID: 27708644 PMCID: PMC5030343 DOI: 10.3389/fimmu.2016.00371] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 09/07/2016] [Indexed: 01/09/2023] Open
Abstract
Altered T-cell homeostasis, such as expansion of CD8+ T cells to the secondary lymphatic compartments, has been suggested as a mechanism of HIV/simian immunodeficiency virus (SIV)-pathogenesis. However, the role of immune activation of CD8+ T cells in the CD4/CD8 turnover and viral replication in these tissues is not completely understood. In this study, we compared the expression of immune activation markers (CD69 and HLA-DR) on CD8+ T cells in the peripheral blood and lymph nodes (LNs) of SIV-infected/uninfected Chinese rhesus macaques. SIV-infected macaques had significantly higher percentages of CD8+CD69+ and CD8+HLA-DR+ T cells in all these anatomical compartments than uninfected macaques. LNs that located close to the gastrointestinal (GI) tract (colon, mesenteric, and iliac LNs) of SIV-infected macaques had profoundly lower numbers of CD4+ T cells, but no significant difference in expression of activation marker (CD8+CD69+ and CD8+HLA-DR+) as compared with the peripheral lymphatic tissues (axillary and inguinal LNs). The CD4/CD8 ratios were negatively correlated with the activation of CD8+ T cells in the overall LNs, with further associations with CD8+HLA-DR+ in GI LNs while CD8+CD69+ in peripheral LNs. These observations demonstrate that the increase of CD8+ T cell activation is a contributing factor for the decline of CD4/CD8 ratios in GI system.
Collapse
Affiliation(s)
- Jinbiao Liu
- Animal Biosafety Level III Laboratory, Center for Animal Experiment, Wuhan University School of Basic Medical Sciences , Wuhan , China
| | - Qianhao Xiao
- Animal Biosafety Level III Laboratory, Center for Animal Experiment, Wuhan University School of Basic Medical Sciences , Wuhan , China
| | - Runhong Zhou
- Animal Biosafety Level III Laboratory, Center for Animal Experiment, Wuhan University School of Basic Medical Sciences , Wuhan , China
| | - Yong Wang
- Animal Biosafety Level III Laboratory, Center for Animal Experiment, Wuhan University School of Basic Medical Sciences , Wuhan , China
| | - Qiaoyang Xian
- Animal Biosafety Level III Laboratory, Center for Animal Experiment, Wuhan University School of Basic Medical Sciences , Wuhan , China
| | - Tongcui Ma
- Animal Biosafety Level III Laboratory, Center for Animal Experiment, Wuhan University School of Basic Medical Sciences , Wuhan , China
| | - Ke Zhuang
- Animal Biosafety Level III Laboratory, Center for Animal Experiment, Wuhan University School of Basic Medical Sciences , Wuhan , China
| | - Li Zhou
- Animal Biosafety Level III Laboratory, Center for Animal Experiment, Wuhan University School of Basic Medical Sciences , Wuhan , China
| | - Deyin Guo
- Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine , Philadelphia, PA , USA
| | - Xu Wang
- Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine , Philadelphia, PA , USA
| | - Wen-Zhe Ho
- Animal Biosafety Level III Laboratory, Center for Animal Experiment, Wuhan University School of Basic Medical Sciences, Wuhan, China; Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Jieliang Li
- Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine , Philadelphia, PA , USA
| |
Collapse
|
6
|
Méndez-Samperio P. Molecular events by which dendritic cells promote Th2 immune protection in helmith infection. Infect Dis (Lond) 2016; 48:715-20. [PMID: 27348757 DOI: 10.1080/23744235.2016.1194529] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Helminth parasites are a major cause of global infectious diseases, affecting nearly one quarter of the world's population. The common feature of helminth infections is to skew the immune system towards a T-helper 2 (Th2) response that helps to control disease. Dendritic cells (DCs), which are professional antigen-presenting cells, play a critical role for Th2 skewing against helminth parasites. However, the molecular mechanisms by which helminth antigens activate DCs for Th2 polarization have not yet been clearly defined. This review provides a focused update on the major role of DCs for inducing and/or enhancing Th2 immune responses in helminthic infection and will discuss the main signalling-dependent and independent mechanisms by which helminth antigens activate DCs for Th2 skewing.
Collapse
Affiliation(s)
- Patricia Méndez-Samperio
- a Departamento de Inmunología, Escuela Nacional de Ciencias Biologicas, IPN , Prol. Carpio y Plan de Ayala , CDMéxico , México
| |
Collapse
|
7
|
Houston SA, Cerovic V, Thomson C, Brewer J, Mowat AM, Milling S. The lymph nodes draining the small intestine and colon are anatomically separate and immunologically distinct. Mucosal Immunol 2016; 9:468-78. [PMID: 26329428 DOI: 10.1038/mi.2015.77] [Citation(s) in RCA: 139] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 07/19/2015] [Indexed: 02/04/2023]
Abstract
Dendritic cells (DCs) in the small intestine (SI) and colon are fundamental to direct intestinal immune responses; they migrate to the mesenteric lymph nodes (MLNs) and prime T cells. We demonstrate anatomical segregation of lymphatic drainage from the intestine, specifically that DCs from the SI and colon migrate to different nodes within the MLN, here called the sMLN and cMLN. As a consequence, different frequencies of DC subsets observed in the SI and colon are reflected among the DCs in the sMLN and cMLN. Consistent with the SI's function in absorbing food, fed antigen is presented in the sMLN, but not in the cMLN. Furthermore, the levels of expression of CCR9 and α4β7 are increased on T cells in the sMLN compared with the cMLN. DCs from the cMLN and colon are unable to metabolize vitamin A to retinoic acid (RA); thus, DCs may contribute to the differential expression of tissue homing markers observed in the sMLN and cMLN. In summary, the sMLN and cMLN, and the DCs that migrate to these LNs are anatomically and immunologically separate. This segregation allows immune responses in the SI and colon to be controlled independently.
Collapse
Affiliation(s)
- S A Houston
- Centre for Immunobiology, Institute for Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - V Cerovic
- Centre for Immunobiology, Institute for Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - C Thomson
- Centre for Immunobiology, Institute for Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - J Brewer
- Centre for Immunobiology, Institute for Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - A M Mowat
- Centre for Immunobiology, Institute for Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - S Milling
- Centre for Immunobiology, Institute for Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
8
|
CD4(+) T-cell survival in the GI tract requires dectin-1 during fungal infection. Mucosal Immunol 2016; 9:492-502. [PMID: 26349660 PMCID: PMC4677461 DOI: 10.1038/mi.2015.79] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 07/28/2015] [Indexed: 02/04/2023]
Abstract
Dectin-1 is an innate antifungal C-type lectin receptor necessary for protective antifungal immunity. We recently discovered that Dectin-1 is involved in controlling fungal infections of the gastrointestinal (GI) tract, but how this C-type lectin receptor mediates these activities is unknown. Here, we show that Dectin-1 is essential for driving fungal-specific CD4(+) T-cell responses in the GI tract. Loss of Dectin-1 resulted in abrogated dendritic cell responses in the mesenteric lymph nodes (mLNs) and defective T-cell co-stimulation, causing substantial increases in CD4(+) T-cell apoptosis and reductions in the cellularity of GI-associated lymphoid tissues. CD8(+) T-cell responses were unaffected by Dectin-1 deficiency. These functions of Dectin-1 have significant implications for our understanding of intestinal immunity and susceptibility to fungal infections.
Collapse
|
9
|
Obieglo K, Feng X, Bollampalli VP, Dellacasa-Lindberg I, Classon C, Österblad M, Helmby H, Hewitson JP, Maizels RM, Gigliotti Rothfuchs A, Nylén S. Chronic Gastrointestinal Nematode Infection Mutes Immune Responses to Mycobacterial Infection Distal to the Gut. THE JOURNAL OF IMMUNOLOGY 2016; 196:2262-71. [PMID: 26819205 DOI: 10.4049/jimmunol.1500970] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 12/22/2015] [Indexed: 01/13/2023]
Abstract
Helminth infections have been suggested to impair the development and outcome of Th1 responses to vaccines and intracellular microorganisms. However, there are limited data regarding the ability of intestinal nematodes to modulate Th1 responses at sites distal to the gut. In this study, we have investigated the effect of the intestinal nematode Heligmosomoides polygyrus bakeri on Th1 responses to Mycobacterium bovis bacillus Calmette-Guérin (BCG). We found that H. polygyrus infection localized to the gut can mute BCG-specific CD4(+) T cell priming in both the spleen and skin-draining lymph nodes. Furthermore, H. polygyrus infection reduced the magnitude of delayed-type hypersensitivity (DTH) to PPD in the skin. Consequently, H. polygyrus-infected mice challenged with BCG had a higher mycobacterial load in the liver compared with worm-free mice. The excretory-secretory product from H. polygyrus (HES) was found to dampen IFN-γ production by mycobacteria-specific CD4(+) T cells. This inhibition was dependent on the TGF-βR signaling activity of HES, suggesting that TGF-β signaling plays a role in the impaired Th1 responses observed coinfection with worms. Similar to results with mycobacteria, H. polygyrus-infected mice displayed an increase in skin parasite load upon secondary infection with Leishmania major as well as a reduction in DTH responses to Leishmania Ag. We show that a nematode confined to the gut can mute T cell responses to mycobacteria and impair control of secondary infections distal to the gut. The ability of intestinal helminths to reduce DTH responses may have clinical implications for the use of skin test-based diagnosis of microbial infections.
Collapse
Affiliation(s)
- Katja Obieglo
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Xiaogang Feng
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Vishnu Priya Bollampalli
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | | | - Cajsa Classon
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Markus Österblad
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Helena Helmby
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London WC1E 7HT, United Kingdom; and
| | - James P Hewitson
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh EH9 3JT, United Kingdom
| | - Rick M Maizels
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh EH9 3JT, United Kingdom
| | | | - Susanne Nylén
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77 Stockholm, Sweden;
| |
Collapse
|
10
|
Grencis RK. Immunity to Helminths: Resistance, Regulation, and Susceptibility to Gastrointestinal Nematodes. Annu Rev Immunol 2015; 33:201-25. [DOI: 10.1146/annurev-immunol-032713-120218] [Citation(s) in RCA: 141] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Richard K. Grencis
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom;
| |
Collapse
|
11
|
Grencis RK, Humphreys NE, Bancroft AJ. Immunity to gastrointestinal nematodes: mechanisms and myths. Immunol Rev 2015; 260:183-205. [PMID: 24942690 PMCID: PMC4141702 DOI: 10.1111/imr.12188] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Immune responses to gastrointestinal nematodes have been studied extensively for over 80 years and intensively investigated over the last 30–40 years. The use of laboratory models has led to the discovery of new mechanisms of protective immunity and made major contributions to our fundamental understanding of both innate and adaptive responses. In addition to host protection, it is clear that immunoregulatory processes are common in infected individuals and resistance often operates alongside modulation of immunity. This review aims to discuss the recent discoveries in both host protection and immunoregulation against gastrointestinal nematodes, placing the data in context of the specific life cycles imposed by the different parasites studied and the future challenges of considering the mucosal/immune axis to encompass host, parasite, and microbiome in its widest sense.
Collapse
|
12
|
Liu JY, Lu P, Hu LZ, Shen YJ, Zhu YJ, Ren JL, Ji WH, Zhang XZ, Wu ZQ, Yang XZ, Yang J, Li LY, Yang X, Liu PM. CD8α¯ DC is the major DC subset which mediates inhibition of allergic responses by Schistosoma infection. Parasite Immunol 2015; 36:647-57. [PMID: 25099746 DOI: 10.1111/pim.12134] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Accepted: 07/29/2014] [Indexed: 01/24/2023]
Abstract
Our and others' previous studies have shown that Schistosoma japonicum (SJ) infection can inhibit allergic reactions. We recently reported that DCs played an important role in SJ infection-mediated inhibition of allergy, which was associated with enhanced IL-10 and T regulatory cell responses. Here, we further compared the role of CD8α(+) DC and CD8α(-) DC subsets for the inhibitory effect. We sorted CD8α(+) DC (SJCD8α(+) DC) and CD8α(-) DC (SJCD8α(-) DC) from SJ-infected mice and tested their ability to modulate allergic responses in vivo. The data showed that the adoptive transfer of SJCD8α(-) DC was much more efficient than SJCD8α(+) DC for the suppression of allergic airway eosinophilia, mucus overproduction, antigen-specific IgE responses, and Th2 cytokines (IL-4 and IL-5). More importantly, we found that the transfer of SJCD8α(-) DC, but not SJCD8α(+) DC, significantly increased IL-10 and TGF-β production following OVA exposure. As control, the transfer of DC subsets from naïve mice had no significant effect on allergic inflammation. In addition, SJCD8α-DC expressed significantly higher IL-10 but lower IL-12, CD80 and CD86 than SJCD8α(+) DC, fitting a tolerogenic phenotype. The results suggest that CD8α(-) DC is the predominant DC subset which is involved in the parasitic infection-mediated inhibition of allergic inflammation and possibly through enhancing immunomodulatory cytokine (IL-10 and TGF-β) production.
Collapse
Affiliation(s)
- J-Y Liu
- Laboratory of Cellular and Molecular Immunology, Department of Parasitology, Faculty of Basic Medicine Sciences, Tianjin Medical University, Tianjin, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Huang L, Gebreselassie NG, Gagliardo LF, Ruyechan MC, Lee NA, Lee JJ, Appleton JA. Eosinophil-derived IL-10 supports chronic nematode infection. THE JOURNAL OF IMMUNOLOGY 2014; 193:4178-87. [PMID: 25210122 DOI: 10.4049/jimmunol.1400852] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Eosinophilia is a feature of the host immune response that distinguishes parasitic worms from other pathogens, yet a discrete function for eosinophils in worm infection has been elusive. The aim of this study was to clarify the mechanism(s) underlying the striking and unexpected observation that eosinophils protect intracellular, muscle-stage Trichinella spiralis larvae against NO-mediated killing. Our findings indicate that eosinophils are specifically recruited to sites of infection at the earliest stage of muscle infection, consistent with a local response to injury. Early recruitment is essential for larval survival. By producing IL-10 at the initiation of infection, eosinophils expand IL-10(+) myeloid dendritic cells and CD4(+) IL-10(+) T lymphocytes that inhibit inducible NO synthase (iNOS) expression and protect intracellular larvae. The results document a novel immunoregulatory function of eosinophils in helminth infection, in which eosinophil-derived IL-10 drives immune responses that eventually limit local NO production. In this way, the parasite co-opts an immune response in a way that enhances its own survival.
Collapse
Affiliation(s)
- Lu Huang
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853
| | - Nebiat G Gebreselassie
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853
| | - Lucille F Gagliardo
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853
| | - Maura C Ruyechan
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853
| | - Nancy A Lee
- Division of Hematology/Oncology, Department of Biochemistry and Molecular Biology, Mayo Clinic Arizona, Scottsdale, AZ 85259; and
| | - James J Lee
- Division of Pulmonary Medicine, Department of Biochemistry and Molecular Biology, Mayo Clinic Arizona, Scottsdale, AZ 85259
| | - Judith A Appleton
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853;
| |
Collapse
|
14
|
Heylen M, Ruyssers NE, Gielis EM, Vanhomwegen E, Pelckmans PA, Moreels TG, De Man JG, De Winter BY. Of worms, mice and man: an overview of experimental and clinical helminth-based therapy for inflammatory bowel disease. Pharmacol Ther 2014; 143:153-67. [PMID: 24603369 DOI: 10.1016/j.pharmthera.2014.02.011] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 02/25/2014] [Indexed: 12/17/2022]
Abstract
The incidence of inflammatory and autoimmune disorders is highest in well-developed countries which is directly related to their higher hygienic standards: it is suggested that the lack of exposure to helminths contributes to the susceptibility for immune-related diseases. Epidemiological, experimental and clinical data support the idea that helminths provide protection against immune-mediated diseases such as inflammatory bowel disease (IBD). The most likely mechanism for the suppression of immune responses by helminths is the release of helminth-derived immunomodulatory molecules. This article reviews the experimental and clinical studies investigating the therapeutic potential of helminth-based therapy in IBD and also focuses on the current knowledge of its immunomodulatory mechanisms of action highlighting innate as well as adaptive immune mechanisms. Identifying the mechanisms by which these helminths and helminth-derived molecules modulate the immune system will help in creating novel drugs for the treatment of IBD and other disorders that result from an overactive immune response.
Collapse
Affiliation(s)
- Marthe Heylen
- Laboratory of Experimental Medicine and Pediatrics, Division of Gastroenterology, University of Antwerp, Antwerp, Belgium
| | - Nathalie E Ruyssers
- Laboratory of Experimental Medicine and Pediatrics, Division of Gastroenterology, University of Antwerp, Antwerp, Belgium
| | - Els M Gielis
- Laboratory of Experimental Medicine and Pediatrics, Division of Gastroenterology, University of Antwerp, Antwerp, Belgium
| | - Els Vanhomwegen
- Laboratory of Experimental Medicine and Pediatrics, Division of Gastroenterology, University of Antwerp, Antwerp, Belgium
| | - Paul A Pelckmans
- Laboratory of Experimental Medicine and Pediatrics, Division of Gastroenterology, University of Antwerp, Antwerp, Belgium; Antwerp University Hospital, Division of Gastroenterology & Hepatology, Antwerp, Belgium
| | - Tom G Moreels
- Laboratory of Experimental Medicine and Pediatrics, Division of Gastroenterology, University of Antwerp, Antwerp, Belgium; Antwerp University Hospital, Division of Gastroenterology & Hepatology, Antwerp, Belgium
| | - Joris G De Man
- Laboratory of Experimental Medicine and Pediatrics, Division of Gastroenterology, University of Antwerp, Antwerp, Belgium
| | - Benedicte Y De Winter
- Laboratory of Experimental Medicine and Pediatrics, Division of Gastroenterology, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
15
|
Giannoukakis N, Trucco M. Dendritic cell therapy for Type 1 diabetes suppression. Immunotherapy 2013; 4:1063-74. [PMID: 23148758 DOI: 10.2217/imt.12.76] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
While dendritic cell-based therapy is a clinical reality for human malignancies, until now, some conceptual concerns have served to delay its consideration to treat human autoimmune diseases, even in light of almost two decades' worth of overwhelmingly supportive preclinical animal studies. This article provides an overview of the development of dendritic cell-based therapy for Type 1 diabetes mellitus, given that this is the best-studied autoimmune disorder and that there is a good understanding of the underlying immunology. This article also highlights data from the authors' pioneering Phase I clinical trial with tolerogenic dendritic cells, which hopes to motivate the clinical translation of other dendritic cell-based approaches, to one or more carefully selected Type 1 diabetic patient populations.
Collapse
Affiliation(s)
- Nick Giannoukakis
- Department of Pathology, University of Pittsburgh School of Medicine, Children's Hospital of Pittsburgh, Rangos Research Center, 4401 Penn Avenue, Pittsburgh, PA 15224, USA
| | | |
Collapse
|
16
|
Reynolds LA, Filbey KJ, Maizels RM. Immunity to the model intestinal helminth parasite Heligmosomoides polygyrus. Semin Immunopathol 2012; 34:829-46. [PMID: 23053394 PMCID: PMC3496515 DOI: 10.1007/s00281-012-0347-3] [Citation(s) in RCA: 150] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Accepted: 09/13/2012] [Indexed: 02/07/2023]
Abstract
Heligmosomoides polygyrus is a natural intestinal parasite of mice, which offers an excellent model of the immunology of gastrointestinal helminth infections of humans and livestock. It is able to establish long-term chronic infections in many strains of mice, exerting potent immunomodulatory effects that dampen both protective immunity and bystander reactions to allergens and autoantigens. Immunity to the parasite develops naturally in some mouse strains and can be induced in others through immunization; while the mechanisms of protective immunity are not yet fully defined, both antibodies and a host cellular component are required, with strongest evidence for a role of alternatively activated macrophages. We discuss the balance between resistance and susceptibility in this model system and highlight new themes in innate and adaptive immunity, immunomodulation, and regulation of responsiveness in helminth infection.
Collapse
Affiliation(s)
- Lisa A. Reynolds
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, EH9 3JT UK
| | - Kara J. Filbey
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, EH9 3JT UK
| | - Rick M. Maizels
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, EH9 3JT UK
- Institute of Immunology and Infection Research, University of Edinburgh, West Mains Road, Edinburgh, EH9 3JT UK
| |
Collapse
|
17
|
McSorley HJ, O'Gorman MT, Blair N, Sutherland TE, Filbey KJ, Maizels RM. Suppression of type 2 immunity and allergic airway inflammation by secreted products of the helminth Heligmosomoides polygyrus. Eur J Immunol 2012; 42:2667-82. [PMID: 22706967 PMCID: PMC4916998 DOI: 10.1002/eji.201142161] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Revised: 05/11/2012] [Accepted: 06/06/2012] [Indexed: 01/23/2023]
Abstract
Allergic asthma is less prevalent in countries with parasitic helminth infections, and mice infected with parasites such as Heligmosomoides polygyrus are protected from allergic airway inflammation. To establish whether suppression of allergy could be mediated by soluble products of this helminth, we tested H. polygyrus excretory-secretory (HES) material for its ability to impair allergic inflammation. When HES was added to sensitising doses of ovalbumin, the subsequent allergic airway response was suppressed, with ablated cell infiltration, a lower ratio of effector (CD4(+) CD25(+) Foxp3(-) ) to regulatory (CD4(+) Foxp3(+) ) T (Treg) cells, and reduced Th1, Th2 and Th17 cytokine production. HES exposure reduced IL-5 responses and eosinophilia, abolished IgE production and inhibited the type 2 innate molecules arginase-1 and RELM-α (resistin-like molecule-α). Although HES contains a TGF-β-like activity, similar effects in modulating allergy were not observed when administering mammalian TGF-β alone. HES also protected previously sensitised mice, suppressing recruitment of eosinophils to the airways when given at challenge, but no change in Th or Treg cell populations was apparent. Because heat-treatment of HES did not impair suppression at sensitisation, but compromised its ability to suppress at challenge, we propose that HES contains distinct heat-stable and heat-labile immunomodulatory molecules, which modulate pro-allergic adaptive and innate cell populations.
Collapse
Affiliation(s)
| | | | | | | | | | - Rick M Maizels
- Institute of Immunology and Infection Research University of Edinburgh, Edinburgh, EH9 3JT, UK
| |
Collapse
|
18
|
Whelan RAK, Hartmann S, Rausch S. Nematode modulation of inflammatory bowel disease. PROTOPLASMA 2012; 249:871-886. [PMID: 22086188 PMCID: PMC3459088 DOI: 10.1007/s00709-011-0342-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Accepted: 10/11/2011] [Indexed: 05/31/2023]
Abstract
Inflammatory bowel disease (IBD) is a chronic disease arising due to a culmination of genetic, environmental, and lifestyle-associated factors and resulting in an excessive pro-inflammatory response to bacterial populations in the gastrointestinal tract. The prevalence of IBD in developing nations is relatively low, and it has been proposed that this is directly correlated with a high incidence of helminth infections in these areas. Gastrointestinal nematodes are the most prevalent parasitic worms, and they efficiently modulate the immune system of their hosts in order to establish chronic infections. Thus, they may be capable of suppressing unrelated inflammation in disorders such as IBD. This review describes how nematodes, or their products, suppress innate and adaptive pro-inflammatory immune responses and how the mechanisms involved in the induction of anti-nematode responses regulate colitis in experimental models and clinical trials with IBD patients. We also discuss how refinement of nematode-derived therapies should ultimately result in the development of potent new therapeutics of clinical inflammatory disorders.
Collapse
Affiliation(s)
- Rose A. K. Whelan
- Department of Molecular Parasitology, Humboldt University of Berlin, 10115 Berlin, Germany
| | - Susanne Hartmann
- Department of Molecular Parasitology, Humboldt University of Berlin, 10115 Berlin, Germany
| | - Sebastian Rausch
- Department of Molecular Parasitology, Humboldt University of Berlin, 10115 Berlin, Germany
| |
Collapse
|
19
|
Abstract
Helminth parasites infect almost one-third of the world's population, primarily in tropical regions. However, regions where helminth parasites are endemic record much lower prevalences of allergies and autoimmune diseases, suggesting that parasites may protect against immunopathological syndromes. Most helminth diseases are spectral in nature, with a large proportion of relatively asymptomatic cases and a subset of patients who develop severe pathologies. The maintenance of the asymptomatic state is now recognized as reflecting an immunoregulatory environment, which may be promoted by parasites, and involves multiple levels of host regulatory cells and cytokines; a breakdown of this regulation is observed in pathological disease. Currently, there is much interest in whether helminth-associated immune regulation may ameliorate allergy and autoimmunity, with investigations in both laboratory models and human trials. Understanding and exploiting the interactions between these parasites and the host regulatory network are therefore likely to highlight new strategies to control both infectious and immunological diseases.
Collapse
|
20
|
Maizels RM, Hewitson JP, Murray J, Harcus YM, Dayer B, Filbey KJ, Grainger JR, McSorley HJ, Reynolds LA, Smith KA. Immune modulation and modulators in Heligmosomoides polygyrus infection. Exp Parasitol 2012; 132:76-89. [PMID: 21875581 PMCID: PMC6485391 DOI: 10.1016/j.exppara.2011.08.011] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2011] [Revised: 08/09/2011] [Accepted: 08/15/2011] [Indexed: 01/12/2023]
Abstract
The intestinal nematode parasite Heligmosomoides polygyrus bakeri exerts widespread immunomodulatory effects on both the innate and adaptive immune system of the host. Infected mice adopt an immunoregulated phenotype, with abated allergic and autoimmune reactions. At the cellular level, infection is accompanied by expanded regulatory T cell populations, skewed dendritic cell and macrophage phenotypes, B cell hyperstimulation and multiple localised changes within the intestinal environment. In most mouse strains, these act to block protective Th2 immunity. The molecular basis of parasite interactions with the host immune system centres upon secreted products termed HES (H. polygyrus excretory-secretory antigen), which include a TGF-β-like ligand that induces de novo regulatory T cells, factors that modify innate inflammatory responses, and molecules that block allergy in vivo. Proteomic and transcriptomic definition of parasite proteins, combined with biochemical identification of immunogenic molecules in resistant mice, will provide new candidate immunomodulators and vaccine antigens for future research.
Collapse
Affiliation(s)
- Rick M Maizels
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh EH9 3JT, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Hewitson JP, Filbey KJ, Grainger JR, Dowle AA, Pearson M, Murray J, Harcus Y, Maizels RM. Heligmosomoides polygyrus elicits a dominant nonprotective antibody response directed against restricted glycan and peptide epitopes. THE JOURNAL OF IMMUNOLOGY 2011; 187:4764-77. [PMID: 21964031 DOI: 10.4049/jimmunol.1004140] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Heligmosomoides polygyrus is a widely used gastrointestinal helminth model of long-term chronic infection in mice, which has not been well-characterized at the antigenic level. We now identify the major targets of the murine primary Ab response as a subset of the secreted products in H. polygyrus excretory-secretory (HES) Ag. An immunodominant epitope is an O-linked glycan (named glycan A) carried on three highly expressed HES glycoproteins (venom allergen Ancylostoma-secreted protein-like [VAL]-1, -2, and -5), which stimulates only IgM Abs, is exposed on the adult worm surface, and is poorly represented in somatic parasite extracts. A second carbohydrate epitope (glycan B), present on both a non-protein high molecular mass component and a 65-kDa molecule, is widely distributed in adult somatic tissues. Whereas the high molecular mass component and 65-kDa molecules bear phosphorylcholine, the glycan B epitope itself is not phosphorylcholine. Class-switched IgG1 Abs are found to glycan B, but the dominant primary IgG1 response is to the polypeptides of VAL proteins, including also VAL-3 and VAL-4. Secondary Ab responses include the same specificities while also recognizing VAL-7. Although vaccination with HES conferred complete protection against challenge H. polygyrus infection, mAbs raised against each of the glycan epitopes and against VAL-1, VAL-2, and VAL-4 proteins were unable to do so, even though these specificities (with the exception of VAL-2) are also secreted by tissue-phase L4 larvae. The primary immune response in susceptible mice is, therefore, dominated by nonprotective Abs against a small subset of antigenic epitopes, raising the possibility that these act as decoy specificities that generate ineffective humoral immunity.
Collapse
Affiliation(s)
- James P Hewitson
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh EH9 3JT, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Li Z, Liu G, Chen Y, Liu Y, Liu B, Su Z. The phenotype and function of naturally existing regulatory dendritic cells in nematode-infected mice. Int J Parasitol 2011; 41:1129-37. [PMID: 21827765 DOI: 10.1016/j.ijpara.2011.06.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Revised: 06/21/2011] [Accepted: 06/22/2011] [Indexed: 02/06/2023]
Abstract
Immunosuppression associated with chronic helminth infections has been documented in many studies and regulatory T (Treg) cells have been shown to mediate the nematode-induced immunosuppression, but the role of dendritic cells (DCs) in the induction of Treg cell response and immunosuppression has not yet been fully determined. We analysed the response and function of DCs in mesenteric lymph node (MLNs) of mice infected with a gastrointestinal nematode, Heligmosomoides polygyrus, and observed a substantial expansion of DCs in MLNs following the infection. The CD11c(+) DCs in MLNs of infected mice showed reduced expression of co-stimulatory molecules CD40, CD86 and MHC-II, and production of inflammatory cytokines IL-12 and IL-6. Analysis of MLN DC subsets defined by CD11c and CD45RB expression showed that the CD11c(low)CD45RB(mid) subset increased rapidly following H. polygyrus infection and the CD11c(mid)CD45RB(high) subset expanded from the third week after infection. In the co-culture of sorted DC subsets with ovalbumin-(OVA-)specific T cell receptor (TCR) transgenic CD4(+) T cells, CD11c(low)CD45RB(mid) DCs induced a low proliferation response and a high level of IL-10 production in CD4(+) T cells, whereas CD11c(mid)CD45RB(high) DCs induced more IFN-γ and IL-4 producing CD4(+) T cells. Intracellular staining revealed that CD11c(low)CD45RB(mid) DCs promoted CD4(+) Foxp3(+) differentiations. These results indicate that nematode infections selectively induce expansion of the CD11c(low)CD45RB(mid) regulatory DC subset that promotes development of Foxp3(+) and IL-10 producing Treg cells. The Treg cell responses and immunoregulatory cytokines induced by this regulatory DC subset in turn play an important role in mediation of the nematode-induced immunosuppression.
Collapse
Affiliation(s)
- Zhaotao Li
- Laboratory of Immunobiology, Center for Infectious Diseases and Immunology, State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, PR China
| | | | | | | | | | | |
Collapse
|
23
|
Smith KA, Hochweller K, Hämmerling GJ, Boon L, MacDonald AS, Maizels RM. Chronic helminth infection promotes immune regulation in vivo through dominance of CD11cloCD103- dendritic cells. THE JOURNAL OF IMMUNOLOGY 2011; 186:7098-109. [PMID: 21576507 DOI: 10.4049/jimmunol.1003636] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Gastrointestinal helminth infections are extremely prevalent in many human populations and are associated with downmodulated immune responsiveness. In the experimental model system of Heligmosomoides polygyrus, a chronic infection establishes in mice, accompanied by a modulated Th2 response and increased regulatory T cell (Treg) activity. To determine if dendritic cell (DC) populations in the lymph nodes draining the intestine are responsible for the regulatory effects of chronic infection, we first identified a population of CD11c(lo) nonplasmacytoid DCs that expand after chronic H. polygyrus infection. The CD11c(lo) DCs are underrepresented in magnetic bead-sorted preparations and spared from deletion in CD11c-diptheria toxin receptor mice. After infection, CD11c(lo) DCs did not express CD8, CD103, PDCA, or Siglec-H and were poorly responsive to TLR stimuli. In DC/T cell cocultures, CD11c(lo) DCs from naive and H. polygyrus-infected mice could process and present protein Ag, but induced lower levels of Ag-specific CD4(+) T cell proliferation and effector cytokine production, and generated higher percentages of Foxp3(+) T cells in the presence of TGF-β. Treg generation was also dependent on retinoic acid receptor signaling. In vivo, depletion of CD11c(hi) DCs further favored the dominance of the CD11c(lo) DC phenotype. After CD11c(hi) DC depletion, effector responses were inhibited dramatically, but the expansion in Treg numbers after H. polygyrus infection was barely compromised, showing a significantly higher regulatory/effector CD4(+) T cell ratio compared with that of CD11c(hi) DC-intact animals. Thus, the proregulatory environment of chronic intestinal helminth infection is associated with the in vivo predominance of a newly defined phenotype of CD11c(lo) tolerogenic DCs.
Collapse
Affiliation(s)
- Katherine A Smith
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh EH9 3JT, United Kingdom
| | | | | | | | | | | |
Collapse
|
24
|
Dendritic cells in the gut: interaction with intestinal helminths. J Biomed Biotechnol 2010; 2010:250563. [PMID: 20224759 PMCID: PMC2836138 DOI: 10.1155/2010/250563] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2009] [Revised: 11/30/2009] [Accepted: 12/18/2009] [Indexed: 11/29/2022] Open
Abstract
The mucosal environment in mammals is highly tolerogenic; however, after exposure to pathogens or danger signals, it is able to shift towards an inflammatory response. Dendritic cells (DCs) orchestrate immune responses and are highly responsible, through the secretion of cytokines and expression of surface markers, for the outcome of such immune response. In particular, the DC subsets found in the intestine have specialized functions and interact with different immune as well as nonimmune cells. Intestinal helminths primarily induce Th2 responses where DCs have an important yet not completely understood role. In addition, this cross-talk results in the induction of regulatory T cells (T regs) as a result of the homeostatic mucosal environment. This review highlights the importance of studying the particular relation “helminth-DC-milieu” in view of the significance that each of these factors plays. Elucidating the mechanisms that trigger Th2 responses may provide the understanding of how we might modulate inflammatory processes.
Collapse
|