1
|
Li M, Wan ZX, Tang YY, Liang XH, Tang YL. TIM-3/Galectin-9 and CD160 expression in salivary adenoid cystic carcinoma. Oral Dis 2024; 30:2262-2274. [PMID: 37455567 DOI: 10.1111/odi.14666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 06/04/2023] [Accepted: 06/19/2023] [Indexed: 07/18/2023]
Abstract
OBJECTIVE Investigating T-cell immunoglobulin and mucin-domain containing-3 (TIM-3), Galectin 9 (Gal-9), CD160 expression and tumor-infiltrating lymphocytes (TILs) and correlation with clinicopathological characteristics of salivary adenoid cystic carcinoma (SACC). METHODS Sixty cases of SACC were detected by immunohistochemical staining to evaluate TIM-3, Gal-9, and CD160 expression and analyze the correlation between TIM-3, Gal-9, CD160 expression and clinicopathologic features by rank-sum test. The association of TILs with TIM-3, Gal-9, and CD160 expression in SACC stromal was done by Chi-square test. RESULTS TIM-3 and CD160 overexpression were correlated with recurrence of SACC (p = 0.029, p = 0.007, respectively). High Gal-9 expression was correlated with pathological classification (p = 0.018). The average percentage of TILs was 18.2% in SACC and most of TILs were more likely to occur in minor salivary glands (p = 0.038). Pairwise positive correlations were observed between the expression of TIM-3, Gal-9, and CD160 in tumor cells as well as in TILs, respectively. CONCLUSION Low density of TILs was characteristic of the SACC microenvironment, with upregulation of TIM-3, Gal-9, and CD160 all occurring. However, TIM-3, Gal-9, and CD160 expression in the stromal dependent on the number of TILs represent potential therapeutic targets in SACC.
Collapse
Affiliation(s)
- Mao Li
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Pathology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zi-Xin Wan
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Pathology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yue-Yang Tang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Pathology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xin-Hua Liang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ya-Ling Tang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Pathology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
2
|
Mälarstig A, Grassmann F, Dahl L, Dimitriou M, McLeod D, Gabrielson M, Smith-Byrne K, Thomas CE, Huang TH, Forsberg SKG, Eriksson P, Ulfstedt M, Johansson M, Sokolov AV, Schiöth HB, Hall P, Schwenk JM, Czene K, Hedman ÅK. Evaluation of circulating plasma proteins in breast cancer using Mendelian randomisation. Nat Commun 2023; 14:7680. [PMID: 37996402 PMCID: PMC10667261 DOI: 10.1038/s41467-023-43485-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 11/09/2023] [Indexed: 11/25/2023] Open
Abstract
Biomarkers for early detection of breast cancer may complement population screening approaches to enable earlier and more precise treatment. The blood proteome is an important source for biomarker discovery but so far, few proteins have been identified with breast cancer risk. Here, we measure 2929 unique proteins in plasma from 598 women selected from the Karolinska Mammography Project to explore the association between protein levels, clinical characteristics, and gene variants, and to identify proteins with a causal role in breast cancer. We present 812 cis-acting protein quantitative trait loci for 737 proteins which are used as instruments in Mendelian randomisation analyses of breast cancer risk. Of those, we present five proteins (CD160, DNPH1, LAYN, LRRC37A2 and TLR1) that show a potential causal role in breast cancer risk with confirmatory results in independent cohorts. Our study suggests that these proteins should be further explored as biomarkers and potential drug targets in breast cancer.
Collapse
Affiliation(s)
- Anders Mälarstig
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.
- Pfizer Worldwide Research Development and Medical, Stockholm, Sweden.
| | - Felix Grassmann
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Institute of Clinical Research and Systems Medicine, Health and Medical University, Potsdam, Germany
| | - Leo Dahl
- Science for Life Laboratory, Department of Protein Science, KTH Royal Institute of Technology, Solna, Sweden
| | - Marios Dimitriou
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Pfizer Worldwide Research Development and Medical, Stockholm, Sweden
| | - Dianna McLeod
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Marike Gabrielson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Karl Smith-Byrne
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Cecilia E Thomas
- Science for Life Laboratory, Department of Protein Science, KTH Royal Institute of Technology, Solna, Sweden
| | - Tzu-Hsuan Huang
- Cancer Immunology Discovery, Pfizer Inc., San Diego, California, USA
| | | | | | | | - Mattias Johansson
- Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France
| | - Aleksandr V Sokolov
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| | - Helgi B Schiöth
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| | - Per Hall
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Department of Oncology, Södersjukhuset, Stockholm, Sweden
| | - Jochen M Schwenk
- Science for Life Laboratory, Department of Protein Science, KTH Royal Institute of Technology, Solna, Sweden
| | - Kamila Czene
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Åsa K Hedman
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Pfizer Worldwide Research Development and Medical, Stockholm, Sweden
| |
Collapse
|
3
|
Bailly E, Macedo C, Ossart J, Louis K, Gu X, Ramaswami B, Bentlejewski C, Zeevi A, Randhawa P, Lefaucheur C, Metes D. Interleukin-21 promotes Type-1 activation and cytotoxicity of CD56 dimCD16 bright natural killer cells during kidney allograft antibody-mediated rejection showing a new link between adaptive and innate humoral allo-immunity. Kidney Int 2023; 104:707-723. [PMID: 37220805 PMCID: PMC10524858 DOI: 10.1016/j.kint.2023.04.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/09/2023] [Accepted: 04/27/2023] [Indexed: 05/25/2023]
Abstract
The role of Natural killer (NK) cells during kidney allograft antibody-mediated rejection (ABMR) is increasingly recognized, but an in-depth characterization of mechanisms that contribute to such immune response is still under investigation. Here, we characterized phenotypic, functional, and transcriptomic profiles of peripheral blood circulating and allograft infiltrating CD56dimCD16bright NK cells during anti-HLA donor-specific antibody (DSA)+ ABMR. Cross-sectional analyses performed in 71 kidney transplant recipients identified a unique phenotypic circulating CD56dimCD16bright NK cell cluster expanded in DSA+ ABMR. This cluster co-expressed high levels of the interleukin-21 Receptor (IL-21R); Type-1 transcription factors T-bet and EOMES, CD160 and natural killer group 2D cytotoxic and activating co-stimulatory receptors. CD160+ IL-21R+ NK cells correlated with elevated plasma IL-21, Ki-67+ ICOS+ (CD278) IL-21-producing circulating T follicular helper cells, enhanced Type-1 pro-inflammatory cytokines, NK cell cytotoxicity, worse microvascular inflammation and graft loss. Single-cell transcriptomic analysis of circulating NK cells delineated an expanded cluster in DSA+ ABMR characterized by elevated pro-inflammatory/cytotoxic pathways, IL-21/STAT3 signaling, and leukocyte trans-endothelial migration pathways. Infiltration of CD160+ IL-21R+ NK cells with similar transcriptomic profile was detected in DSA+ ABMR allograft biopsies, potentially contributing to allograft injury. Thus, the IL-21/IL-21R axis, linking adaptive and innate humoral allo-immunity, or NK cells may represent appealing immunotherapy targets in DSA+ ABMR.
Collapse
Affiliation(s)
- Elodie Bailly
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Human Immunology, Pathophysiology, Immunotherapy, INSERM UMR-S976, Université Paris Cité, Paris, France.
| | - Camila Macedo
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jason Ossart
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Kevin Louis
- Human Immunology, Pathophysiology, Immunotherapy, INSERM UMR-S976, Université Paris Cité, Paris, France
| | - Xinyan Gu
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Bala Ramaswami
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Carol Bentlejewski
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Adriana Zeevi
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Parmjeet Randhawa
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Carmen Lefaucheur
- Human Immunology, Pathophysiology, Immunotherapy, INSERM UMR-S976, Université Paris Cité, Paris, France
| | - Diana Metes
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
4
|
Zhang M, Lam KP, Xu S. Natural Killer Cell Engagers (NKCEs): a new frontier in cancer immunotherapy. Front Immunol 2023; 14:1207276. [PMID: 37638058 PMCID: PMC10450036 DOI: 10.3389/fimmu.2023.1207276] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/03/2023] [Indexed: 08/29/2023] Open
Abstract
Natural Killer (NK) cells are a type of innate lymphoid cells that play a crucial role in immunity by killing virally infected or tumor cells and secreting cytokines and chemokines. NK cell-mediated immunotherapy has emerged as a promising approach for cancer treatment due to its safety and effectiveness. NK cell engagers (NKCEs), such as BiKE (bispecific killer cell engager) or TriKE (trispecific killer cell engager), are a novel class of antibody-based therapeutics that exhibit several advantages over other cancer immunotherapies harnessing NK cells. By bridging NK and tumor cells, NKCEs activate NK cells and lead to tumor cell lysis. A growing number of NKCEs are currently undergoing development, with some already in clinical trials. However, there is a need for more comprehensive studies to determine how the molecular design of NKCEs affects their functionality and manufacturability, which are crucial for their development as off-the-shelf drugs for cancer treatment. In this review, we summarize current knowledge on NKCE development and discuss critical factors required for the production of effective NKCEs.
Collapse
Affiliation(s)
- Minchuan Zhang
- Singapore Immunology Network, Agency for Science, Technology, and Research, Singapore, Singapore
| | - Kong-Peng Lam
- Singapore Immunology Network, Agency for Science, Technology, and Research, Singapore, Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- School of Biological Sciences, College of Science, Nanyang Technological University, Singapore, Singapore
| | - Shengli Xu
- Singapore Immunology Network, Agency for Science, Technology, and Research, Singapore, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
5
|
del Rio ML, de Juan CYD, Roncador G, Caleiras E, Álvarez-Esteban R, Pérez-Simón JA, Rodriguez-Barbosa JI. Genetic deletion of HVEM in a leukemia B cell line promotes a preferential increase of PD-1 - stem cell-like T cells over PD-1 + T cells curbing tumor progression. Front Immunol 2023; 14:1113858. [PMID: 37033927 PMCID: PMC10076739 DOI: 10.3389/fimmu.2023.1113858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 03/13/2023] [Indexed: 04/11/2023] Open
Abstract
INTRODUCTION A high frequency of mutations affecting the gene encoding Herpes Virus Entry Mediator (HVEM, TNFRSF14) is a common clinical finding in a wide variety of human tumors, including those of hematological origin. METHODS We have addressed how HVEM expression on A20 leukemia cells influences tumor survival and its involvement in the modulation of the anti-tumor immune responses in a parental into F1 mouse tumor model of hybrid resistance by knocking-out HVEM expression. HVEM WT or HVEM KO leukemia cells were then injected intravenously into semiallogeneic F1 recipients and the extent of tumor dissemination was evaluated. RESULTS The loss of HVEM expression on A20 leukemia cells led to a significant increase of lymphoid and myeloid tumor cell infiltration curbing tumor progression. NK cells and to a lesser extent NKT cells and monocytes were the predominant innate populations contributing to the global increase of immune infiltrates in HVEM KO tumors compared to that present in HVEM KO tumors. In the overall increase of the adaptive T cell immune infiltrates, the stem cell-like PD-1- T cells progenitors and the effector T cell populations derived from them were more prominently present than terminally differentiated PD-1+ T cells. CONCLUSIONS These results suggest that the PD-1- T cell subpopulation is likely to be a more relevant contributor to tumor rejection than the PD-1+ T cell subpopulation. These findings highlight the role of co-inhibitory signals delivered by HVEM upon engagement of BTLA on T cells and NK cells, placing HVEM/BTLA interaction in the spotlight as a novel immune checkpoint for the reinforcement of the anti-tumor responses in malignancies of hematopoietic origin.
Collapse
Affiliation(s)
- Maria-Luisa del Rio
- Transplantation Immunobiology and Immunotherapy Section, Institute of Molecular Biology, University of Leon, Leon, Spain
| | - Carla Yago-Diez de Juan
- Transplantation Immunobiology and Immunotherapy Section, Institute of Molecular Biology, University of Leon, Leon, Spain
| | - Giovanna Roncador
- Monoclonal Antibodies Unit, National Center for Cancer Research (CNIO), Madrid, Spain
| | - Eduardo Caleiras
- Histopathology Core Unit, National Center for Cancer Research (CNIO), Madrid, Spain
| | - Ramón Álvarez-Esteban
- Section of Statistics and Operational Research, Department of Economy and Statistics, University of Leon, Leon, Spain
| | - José Antonio Pérez-Simón
- Department of Hematology, University Hospital Virgen del Rocio / Institute of Biomedicine (IBIS / CSIC), Sevilla, Spain
| | - Jose-Ignacio Rodriguez-Barbosa
- Transplantation Immunobiology and Immunotherapy Section, Institute of Molecular Biology, University of Leon, Leon, Spain
| |
Collapse
|
6
|
Depierreux DM, Smith GL, Ferguson BJ. Transcriptional reprogramming of natural killer cells by vaccinia virus shows both distinct and conserved features with mCMV. Front Immunol 2023; 14:1093381. [PMID: 36911702 PMCID: PMC9995584 DOI: 10.3389/fimmu.2023.1093381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/09/2023] [Indexed: 02/25/2023] Open
Abstract
Natural killer (NK) cells have an established role in controlling poxvirus infection and there is a growing interest to exploit their capabilities in the context of poxvirus-based oncolytic therapy and vaccination. How NK cells respond to poxvirus-infected cells to become activated is not well established. To address this knowledge gap, we studied the NK cell response to vaccinia virus (VACV) in vivo, using a systemic infection murine model. We found broad alterations in NK cells transcriptional activity in VACV-infected mice, consistent with both direct target cell recognition and cytokine exposure. There were also alterations in the expression levels of specific NK surface receptors (NKRs), including the Ly49 family and SLAM receptors, as well as upregulation of memory-associated NK markers. Despite the latter observation, adoptive transfer of VACV-expercienced NK populations did not confer protection from infection. Comparison with the NK cell response to murine cytomegalovirus (MCMV) infection highlighted common features, but also distinct NK transcriptional programmes initiated by VACV. Finally, there was a clear overlap between the NK transcriptional response in humans vaccinated with an attenuated VACV, modified vaccinia Ankara (MVA), demonstrating conservation between the NK response in these different host species. Overall, this study provides new data about NK cell activation, function, and homeostasis during VACV infection, and may have implication for the design of VACV-based therapeutics.
Collapse
|
7
|
Oumeslakht L, Aziz AI, Bensussan A, Ben Mkaddem S. CD160 receptor in CLL: Current state and future avenues. Front Immunol 2022; 13:1028013. [PMID: 36420268 PMCID: PMC9676924 DOI: 10.3389/fimmu.2022.1028013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/19/2022] [Indexed: 08/01/2023] Open
Abstract
CD160 is a glycosylphosphatidylinositol (GPI)-anchored cell surface glycoprotein expressed on cytotoxic natural killer (NK) cells and T-cell subsets. It plays a crucial role in the activation of NK-cell cytotoxicity and cytokine production. It also modulates the immune system and is involved in some pathologies, such as cancer. CD160 is abnormally expressed in B-cell chronic lymphocytic leukemia (CLL) but not expressed in normal B lymphocytes. Its expression in CLL enhances tumor cell proliferation and resistance to apoptosis. CD160 is also a potential prognostic marker for the detection of minimal residual disease (MRD) in CLL, which is important for the clinical management of CLL, the prevention of disease relapse, and the achievement of complete remission. In this review, we present an overview of CD160 and its involvement in the pathophysiology of CLL. We also discuss its use as a prognostic marker for the assessment of MRD in CLL.
Collapse
Affiliation(s)
- Loubna Oumeslakht
- Institute of Biological Sciences, Mohammed VI Polytechnic University, Ben-Guerir, Morocco
| | - Abdel-ilah Aziz
- Institute of Biological Sciences, Mohammed VI Polytechnic University, Ben-Guerir, Morocco
| | - Armand Bensussan
- INSERM U976, Université de Paris, Hôpital Saint Louis, Paris, France
- Institut Jean Godinot, Centre de Lutte Contre le Cancer, Reims, France
| | - Sanae Ben Mkaddem
- Institute of Biological Sciences, Mohammed VI Polytechnic University, Ben-Guerir, Morocco
| |
Collapse
|
8
|
Mi L, Liang N, Sun H. A Comprehensive Analysis of KRT19 Combined with Immune Infiltration to Predict Breast Cancer Prognosis. Genes (Basel) 2022; 13:1838. [PMID: 36292723 PMCID: PMC9602083 DOI: 10.3390/genes13101838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/29/2022] [Accepted: 10/09/2022] [Indexed: 11/16/2022] Open
Abstract
To date, no study has been conducted to explore the mechanism of KRT19 and the correlation between the expression of KRT19 and immune infiltration in breast cancer (BRCA). TCGA, TIMER2.0, UALCAN, and other databases were used to analyze the expression, prognostic roles, epigenetic variants, and possible oncogenic mechanisms of KRT19 in BRCA. As a result, KRT19 showed higher expression compared with the normal tissues in BRCA. In addition, the epigenetic variation in KRT19, including gene alteration, mutation type and sites, DNA methylation, RNA modification, and phosphorylation, showed diversity in BRCA. Further mechanistic exploration suggested that the IL-17 signaling pathway and estrogen response might play essential roles in the regulation of KRT19. Moreover, KRT19 has different regulatory biological functions in BRCA. More importantly, the expression of KRT19 was closely related to immune infiltration and combining the two could effectively predict overall survival. Finally, a nomogram based on genes associated with cancer-immunity cycle signatures, which could predict progress free interval, was constructed and evaluated successfully. In conclusion, KRT19 may play a role in the occurrence and development of BRCA through the IL-17 signaling pathway. Meanwhile, KRT19 combined with immune infiltration can evaluate the prognosis of BRCA patients.
Collapse
Affiliation(s)
| | | | - Hui Sun
- Division of Thyroid Surgery, The China-Japan Union Hospital of Jilin University, Jilin Provincial Key Laboratory of Surgical Translational Medicine, Jilin Provincial Precision Medicine Laboratory of Molecular Biology and Translational Medicine on Differentiated Thyroid Carcinoma, 126 Xiantai Street, Changchun 130033, China
| |
Collapse
|
9
|
Sun Z, Li Y, Zhang Z, Fu Y, Han X, Hu Q, Ding H, Shang H, Jiang Y. CD160 Promotes NK Cell Functions by Upregulating Glucose Metabolism and Negatively Correlates With HIV Disease Progression. Front Immunol 2022; 13:854432. [PMID: 36110864 PMCID: PMC9469471 DOI: 10.3389/fimmu.2022.854432] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
Natural killer (NK) cells are crucial for immune responses to viral infections. CD160 is an important NK cell activating receptor, with unknown function in HIV infection. Here, we found that CD160 expression was reduced on NK cells from HIV-infected individuals and its expression was negatively correlated with HIV disease progression. Further, GLUT1 expression and glucose uptake were higher in CD160+ NK cells, and the results of RNA-seq and flow cytometry demonstrated that CD160 positively regulated glucose metabolism through the PI3K/AKT/mTOR/s6k signaling pathway, thereby enhancing NK cell function. Moreover, we determined that reduced CD160 expression on NK cells could be attributed to the higher plasma levels of TGF-β1 in HIV-infected individuals. Overall, these results highlight the vital role of CD160 in HIV disease progression and regulation of glucose metabolism, indicating a potential target for HIV immunotherapy.
Collapse
Affiliation(s)
- Zheng Sun
- National Health Commission (NHC) Key Laboratory of Acquired Immunodeficiency Syndrome (AIDS) Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
- Key Laboratory of Acquired Immunodeficiency Syndrome (AIDS) Immunology, Chinese Academy of Medical Sciences, Shenyang, China
- Key Laboratory of Acquired Immunodeficiency Syndrome (AIDS) Immunology of Liaoning Province, Shenyang, China
| | - Yidi Li
- National Health Commission (NHC) Key Laboratory of Acquired Immunodeficiency Syndrome (AIDS) Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
- Key Laboratory of Acquired Immunodeficiency Syndrome (AIDS) Immunology, Chinese Academy of Medical Sciences, Shenyang, China
- Key Laboratory of Acquired Immunodeficiency Syndrome (AIDS) Immunology of Liaoning Province, Shenyang, China
| | - Zining Zhang
- National Health Commission (NHC) Key Laboratory of Acquired Immunodeficiency Syndrome (AIDS) Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
- Key Laboratory of Acquired Immunodeficiency Syndrome (AIDS) Immunology, Chinese Academy of Medical Sciences, Shenyang, China
- Key Laboratory of Acquired Immunodeficiency Syndrome (AIDS) Immunology of Liaoning Province, Shenyang, China
| | - Yajing Fu
- National Health Commission (NHC) Key Laboratory of Acquired Immunodeficiency Syndrome (AIDS) Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
- Key Laboratory of Acquired Immunodeficiency Syndrome (AIDS) Immunology, Chinese Academy of Medical Sciences, Shenyang, China
- Key Laboratory of Acquired Immunodeficiency Syndrome (AIDS) Immunology of Liaoning Province, Shenyang, China
| | - Xiaoxu Han
- National Health Commission (NHC) Key Laboratory of Acquired Immunodeficiency Syndrome (AIDS) Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
- Key Laboratory of Acquired Immunodeficiency Syndrome (AIDS) Immunology, Chinese Academy of Medical Sciences, Shenyang, China
- Key Laboratory of Acquired Immunodeficiency Syndrome (AIDS) Immunology of Liaoning Province, Shenyang, China
| | - Qinghai Hu
- National Health Commission (NHC) Key Laboratory of Acquired Immunodeficiency Syndrome (AIDS) Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
- Key Laboratory of Acquired Immunodeficiency Syndrome (AIDS) Immunology, Chinese Academy of Medical Sciences, Shenyang, China
- Key Laboratory of Acquired Immunodeficiency Syndrome (AIDS) Immunology of Liaoning Province, Shenyang, China
| | - Haibo Ding
- National Health Commission (NHC) Key Laboratory of Acquired Immunodeficiency Syndrome (AIDS) Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
- Key Laboratory of Acquired Immunodeficiency Syndrome (AIDS) Immunology, Chinese Academy of Medical Sciences, Shenyang, China
- Key Laboratory of Acquired Immunodeficiency Syndrome (AIDS) Immunology of Liaoning Province, Shenyang, China
| | - Hong Shang
- National Health Commission (NHC) Key Laboratory of Acquired Immunodeficiency Syndrome (AIDS) Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
- Key Laboratory of Acquired Immunodeficiency Syndrome (AIDS) Immunology, Chinese Academy of Medical Sciences, Shenyang, China
- Key Laboratory of Acquired Immunodeficiency Syndrome (AIDS) Immunology of Liaoning Province, Shenyang, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Yongjun Jiang
- National Health Commission (NHC) Key Laboratory of Acquired Immunodeficiency Syndrome (AIDS) Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
- Key Laboratory of Acquired Immunodeficiency Syndrome (AIDS) Immunology, Chinese Academy of Medical Sciences, Shenyang, China
- Key Laboratory of Acquired Immunodeficiency Syndrome (AIDS) Immunology of Liaoning Province, Shenyang, China
| |
Collapse
|
10
|
Kong P, Cui ZY, Huang XF, Zhang DD, Guo RJ, Han M. Inflammation and atherosclerosis: signaling pathways and therapeutic intervention. Signal Transduct Target Ther 2022; 7:131. [PMID: 35459215 PMCID: PMC9033871 DOI: 10.1038/s41392-022-00955-7] [Citation(s) in RCA: 400] [Impact Index Per Article: 133.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 02/08/2023] Open
Abstract
Atherosclerosis is a chronic inflammatory vascular disease driven by traditional and nontraditional risk factors. Genome-wide association combined with clonal lineage tracing and clinical trials have demonstrated that innate and adaptive immune responses can promote or quell atherosclerosis. Several signaling pathways, that are associated with the inflammatory response, have been implicated within atherosclerosis such as NLRP3 inflammasome, toll-like receptors, proprotein convertase subtilisin/kexin type 9, Notch and Wnt signaling pathways, which are of importance for atherosclerosis development and regression. Targeting inflammatory pathways, especially the NLRP3 inflammasome pathway and its regulated inflammatory cytokine interleukin-1β, could represent an attractive new route for the treatment of atherosclerotic diseases. Herein, we summarize the knowledge on cellular participants and key inflammatory signaling pathways in atherosclerosis, and discuss the preclinical studies targeting these key pathways for atherosclerosis, the clinical trials that are going to target some of these processes, and the effects of quelling inflammation and atherosclerosis in the clinic.
Collapse
Affiliation(s)
- Peng Kong
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Key Laboratory of Medical Biotechnology of Hebei Province, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Zi-Yang Cui
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Key Laboratory of Medical Biotechnology of Hebei Province, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Xiao-Fu Huang
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Key Laboratory of Medical Biotechnology of Hebei Province, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Dan-Dan Zhang
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Key Laboratory of Medical Biotechnology of Hebei Province, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Rui-Juan Guo
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Key Laboratory of Medical Biotechnology of Hebei Province, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Mei Han
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Key Laboratory of Medical Biotechnology of Hebei Province, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, PR China.
| |
Collapse
|
11
|
Li C, Dong X, Wang H, Shao Z. The Role of T Lymphocytes in the Pathogenesis of Paroxysmal Nocturnal Hemoglobinuria. Front Immunol 2022; 12:777649. [PMID: 35003092 PMCID: PMC8739213 DOI: 10.3389/fimmu.2021.777649] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 12/03/2021] [Indexed: 11/13/2022] Open
Abstract
Paroxysmal nocturnal hemoglobinuria (PNH) is an acquired hematopoietic stem cell genetic mutation disease that causes defective erythrocyte membrane hemolysis. Its pathologic basis is the mutation of the PIG-A gene, whose product is necessary for the synthesis of glycosylphosphatidylinositol (GPI) anchors; the mutation of PIG-A gene results in the reduction or deletion of the GPI anchor, which leads to the deficiency of GPI-anchored proteins (GPI-APs), such as CD55 and CD59, which are complement inhibitors. The deficiency of complement inhibitors causes chronic complement-mediated intravascular hemolysis of GPI-anchor-deficient erythrocyte. PIG-A gene mutation could also be found in bone marrow hematopoietic stem cells (HSCs) of healthy people, but they have no growth advantage; only the HSCs with PIG-A gene mutation in PNH patients have this advantage and expand. Besides, HSCs from PIG-A-knockout mice do not show clonal expansion in bone marrow, so PIG-A mutation cannot explain the clonal advantage of the PNH clone and some additional factors are needed; thus, in recent years, many scholars have put forward the theories of the second hit, and immune escape theory is one of them. In this paper, we focus on how T lymphocytes are involved in immune escape hypothesis in the pathogenesis of PNH.
Collapse
Affiliation(s)
- Chenyuan Li
- Department of Hematology and Oncology, Tianjin Medical University General Hospital, Tianjin, China
| | - Xifeng Dong
- Department of Hematology and Oncology, Tianjin Medical University General Hospital, Tianjin, China
| | - Huaquan Wang
- Department of Hematology and Oncology, Tianjin Medical University General Hospital, Tianjin, China
| | - Zonghong Shao
- Department of Hematology and Oncology, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
12
|
Del Rio ML, Nguyen TH, Tesson L, Heslan JM, Gutierrez-Adan A, Fernandez-Gonzalez R, Gutierrez-Arroyo J, Buhler L, Pérez-Simón JA, Anegon I, Rodriguez-Barbosa JI. The impact of CD160 deficiency on alloreactive CD8 T cell responses and allograft rejection. Transl Res 2022; 239:103-123. [PMID: 34461306 DOI: 10.1016/j.trsl.2021.08.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/28/2021] [Accepted: 08/21/2021] [Indexed: 12/12/2022]
Abstract
CD160 is a member of the immunoglobulin superfamily with a pattern of expression mainly restricted to cytotoxic cells. To assess the functional relevance of the HVEM/CD160 signaling pathway in allogeneic cytotoxic responses, exon 2 of the CD160 gene was targeted by CRISPR/Cas9 to generate CD160 deficient mice. Next, we evaluated the impact of CD160 deficiency in the course of an alloreactive response. To that aim, parental donor WT (wild-type) or CD160 KO (knock-out) T cells were adoptively transferred into non-irradiated semiallogeneic F1 recipients, in which donor alloreactive CD160 KO CD4 T cells and CD8 T cells clonally expanded less vigorously than in WT T cell counterparts. This differential proliferative response rate at the early phase of T cell expansion influenced the course of CD8 T cell differentiation and the composition of the effector T cell pool that led to a significant decreased of the memory precursor effector cells (MPECs) / short-lived effector cells (SLECs) ratio in CD160 KO CD8 T cells compared to WT CD8 T cells. Despite these differences in T cell proliferation and differentiation, allogeneic MHC class I mismatched (bm1) skin allograft survival in CD160 KO recipients was comparable to that of WT recipients. However, the administration of CTLA-4.Ig showed an enhanced survival trend of bm1 skin allografts in CD160 KO with respect to WT recipients. Finally, CD160 deficient NK cells were as proficient as CD160 WT NK cells in rejecting allogeneic cellular allografts or MHC class I deficient tumor cells. CD160 may represent a CD28 alternative costimulatory molecule for the modulation of allogeneic CD8 T cell responses either in combination with costimulation blockade or by direct targeting of alloreactive CD8 T cells that upregulate CD160 expression in response to alloantigen stimulation.
Collapse
MESH Headings
- 4-1BB Ligand/metabolism
- Allografts
- Animals
- Antigens, CD/genetics
- Antigens, CD/immunology
- Antigens, CD/metabolism
- Antigens, Differentiation, T-Lymphocyte/metabolism
- CD8-Positive T-Lymphocytes/immunology
- CRISPR-Cas Systems
- Cell Differentiation
- Female
- GPI-Linked Proteins/genetics
- GPI-Linked Proteins/immunology
- GPI-Linked Proteins/metabolism
- Gene Expression Regulation
- Genes, MHC Class I
- Graft Rejection/etiology
- Graft Rejection/immunology
- Killer Cells, Natural/immunology
- Lectins, C-Type/metabolism
- Mice, Inbred Strains
- Mice, Knockout
- Receptors, Immunologic/genetics
- Receptors, Immunologic/immunology
- Receptors, Immunologic/metabolism
- Receptors, Tumor Necrosis Factor, Member 14/metabolism
- Skin Transplantation
- Thymocytes/immunology
- Mice
Collapse
Affiliation(s)
- Maria-Luisa Del Rio
- Transplantation Immunobiology and Immunotherapy Section. Institute of Molecular Biology, Genomics and Proteomics, University of Leon, Leon, Spain; CIBERONC Consortium, Accion Estrategica en Salud, Grant # CB16/12/00480.
| | - Tuan H Nguyen
- INSERM UMR 1064, Center for Research in Transplantation and Immunology, Nantes, France; SFR Bonamy, GenoCellEdit Platform, CNRS UMS3556, Nantes, France
| | - Laurent Tesson
- INSERM UMR 1064, Center for Research in Transplantation and Immunology, Nantes, France; SFR Bonamy, GenoCellEdit Platform, CNRS UMS3556, Nantes, France
| | - Jean-Marie Heslan
- INSERM UMR 1064, Center for Research in Transplantation and Immunology, Nantes, France; SFR Bonamy, GenoCellEdit Platform, CNRS UMS3556, Nantes, France
| | - Alfonso Gutierrez-Adan
- Department of Animal Reproduction, National Institute of Agricultural Research (INIA), Madrid, Spain
| | - Raul Fernandez-Gonzalez
- Department of Animal Reproduction, National Institute of Agricultural Research (INIA), Madrid, Spain
| | - Julia Gutierrez-Arroyo
- Department of Animal Reproduction, National Institute of Agricultural Research (INIA), Madrid, Spain
| | - Leo Buhler
- Section of Medicine, University of Fribourg, Fribourg, Switzerland
| | - José-Antonio Pérez-Simón
- Department of Hematology, University Hospital Virgen del Rocio / Institute of Biomedicine (IBIS / CSIC / CIBERONC), Sevilla, Spain; CIBERONC Consortium, Accion Estrategica en Salud, Grant # CB16/12/00480
| | - Ignacio Anegon
- INSERM UMR 1064, Center for Research in Transplantation and Immunology, Nantes, France; SFR Bonamy, GenoCellEdit Platform, CNRS UMS3556, Nantes, France
| | - Jose-Ignacio Rodriguez-Barbosa
- Transplantation Immunobiology and Immunotherapy Section. Institute of Molecular Biology, Genomics and Proteomics, University of Leon, Leon, Spain; CIBERONC Consortium, Accion Estrategica en Salud, Grant # CB16/12/00480.
| |
Collapse
|
13
|
Øvestad IT, Engesæter B, Halle MK, Akbari S, Bicskei B, Lapin M, Austdal M, Janssen EAM, Krakstad C, Lillesand M, Nordhus M, Munk AC, Gudlaugsson EG. High-Grade Cervical Intraepithelial Neoplasia (CIN) Associates with Increased Proliferation and Attenuated Immune Signaling. Int J Mol Sci 2021; 23:ijms23010373. [PMID: 35008799 PMCID: PMC8745058 DOI: 10.3390/ijms23010373] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 12/27/2021] [Indexed: 01/10/2023] Open
Abstract
Implementation of high-risk human papilloma virus (HPV) screening and the increasing proportion of HPV vaccinated women in the screening program will reduce the percentage of HPV positive women with oncogenic potential. In search of more specific markers to identify women with high risk of cancer development, we used RNA sequencing to compare the transcriptomic immune-profile of 13 lesions with cervical intraepithelial neoplasia grade 3 (CIN3) or adenocarcinoma in situ (AIS) and 14 normal biopsies from women with detected HPV infections. In CIN3/AIS lesions as compared to normal tissue, 27 differential expressed genes were identified. Transcriptomic analysis revealed significantly higher expression of a number of genes related to proliferation, (CDKN2A, MELK, CDK1, MKI67, CCNB2, BUB1, FOXM1, CDKN3), but significantly lower expression of genes related to a favorable immune response (NCAM1, ARG1, CD160, IL18, CX3CL1). Compared to the RNA sequencing results, good correlation was achieved with relative quantitative PCR analysis for NCAM1 and CDKN2A. Quantification of NCAM1 positive cells with immunohistochemistry showed epithelial reduction of NCAM1 in CIN3/AIS lesions. In conclusion, NCAM1 and CDKN2A are two promising candidates to distinguish whether women are at high risk of developing cervical cancer and in need of frequent follow-up.
Collapse
Affiliation(s)
- Irene Tveiterås Øvestad
- Department of Pathology, Stavanger University Hospital, 4011 Stavanger, Norway; (S.A.); (B.B.); (E.A.M.J.); (M.L.); (M.N.); (E.G.G.)
- Correspondence: ; Tel.: +47-9093-2314
| | - Birgit Engesæter
- Section for Cervical Cancer Screening, Cancer Registry of Norway, 0304 Oslo, Norway;
| | - Mari Kyllesø Halle
- Department of Obstetrics and Gynaecology, Haukeland University Hospital, 5053 Bergen, Norway; (M.K.H.); (C.K.)
- Centre for Cancer Biomarkers, Department of Clinical Science, University of Bergen, 5053 Bergen, Norway
| | - Saleha Akbari
- Department of Pathology, Stavanger University Hospital, 4011 Stavanger, Norway; (S.A.); (B.B.); (E.A.M.J.); (M.L.); (M.N.); (E.G.G.)
| | - Beatrix Bicskei
- Department of Pathology, Stavanger University Hospital, 4011 Stavanger, Norway; (S.A.); (B.B.); (E.A.M.J.); (M.L.); (M.N.); (E.G.G.)
| | - Morten Lapin
- Department of Haematology and Oncology, Stavanger University Hospital, 4011 Stavanger, Norway;
| | - Marie Austdal
- Section of Biostatistics, Department of Research, Stavanger University Hospital, 4011 Stavanger, Norway;
| | - Emiel A. M. Janssen
- Department of Pathology, Stavanger University Hospital, 4011 Stavanger, Norway; (S.A.); (B.B.); (E.A.M.J.); (M.L.); (M.N.); (E.G.G.)
- Department of Chemistry, Bioscience and Environmental Technology, University of Stavanger, 4036 Stavanger, Norway
| | - Camilla Krakstad
- Department of Obstetrics and Gynaecology, Haukeland University Hospital, 5053 Bergen, Norway; (M.K.H.); (C.K.)
- Centre for Cancer Biomarkers, Department of Clinical Science, University of Bergen, 5053 Bergen, Norway
| | - Melinda Lillesand
- Department of Pathology, Stavanger University Hospital, 4011 Stavanger, Norway; (S.A.); (B.B.); (E.A.M.J.); (M.L.); (M.N.); (E.G.G.)
| | - Marit Nordhus
- Department of Pathology, Stavanger University Hospital, 4011 Stavanger, Norway; (S.A.); (B.B.); (E.A.M.J.); (M.L.); (M.N.); (E.G.G.)
| | - Ane Cecilie Munk
- Department of Gynaecology, Sørlandet Hospital, 4604 Kristiansand, Norway;
| | - Einar G. Gudlaugsson
- Department of Pathology, Stavanger University Hospital, 4011 Stavanger, Norway; (S.A.); (B.B.); (E.A.M.J.); (M.L.); (M.N.); (E.G.G.)
| |
Collapse
|
14
|
Shrestha R, Garrett-Thomson S, Liu W, Almo SC, Fiser A. Allosteric regulation of binding specificity of HVEM for CD160 and BTLA ligands upon G89F mutation. Curr Res Struct Biol 2021; 3:337-345. [PMID: 34917954 PMCID: PMC8666650 DOI: 10.1016/j.crstbi.2021.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/08/2021] [Accepted: 11/01/2021] [Indexed: 11/25/2022] Open
Abstract
Molecular interactions mediated by engagement of the Herpes virus entry mediator (HVEM) with members of TNF and Ig superfamily generate distinct signals in T cell activation pathways that modulate inflammatory and inhibitory responses. HVEM interacts with CD160 and B and T lymphocyte attenuator (BTLA), both members of the immunoglobulin (Ig) superfamily, which share a common binding site that is unique from that of LIGHT, a TNF ligand. BTLA or CD160 engagement with HVEM deliver inhibitory or stimulatory signals to the host immune response in a context dependent fashion, whereas HVEM engagement with LIGHT results in pro-inflammatory responses. We identified a mutation in human HVEM, G89F, which directly interferes with the human LIGHT interaction, but interestingly, also differentially modulates the binding of human BTLA and CD160 via an apparent allosteric mechanism involving recognition surfaces remote from the site of the mutation. Specifically, the G89F mutation enhances binding of CD160, while decreasing that of BTLA to HVEM in cell-based assays. Molecular dynamics simulations for wild-type and G89F mutant HVEM, bound to different sets of ligands, were performed to define the molecular basis of this unexpected allosteric effect. These results were leveraged to design additional human HVEM mutants with altered binding specificities.
Collapse
Affiliation(s)
- Rojan Shrestha
- Department of Systems and Computational Biology, USA
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Sarah Garrett-Thomson
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Weifeng Liu
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Steven C. Almo
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Andras Fiser
- Department of Systems and Computational Biology, USA
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| |
Collapse
|
15
|
Roma S, Carpen L, Raveane A, Bertolini F. The Dual Role of Innate Lymphoid and Natural Killer Cells in Cancer. from Phenotype to Single-Cell Transcriptomics, Functions and Clinical Uses. Cancers (Basel) 2021; 13:cancers13205042. [PMID: 34680190 PMCID: PMC8533946 DOI: 10.3390/cancers13205042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Innate lymphoid cells (ILCs), a family of innate immune cells including natural killers (NKs), play a multitude of roles in first-line cancer control, in escape from immunity and in cancer progression. In this review, we summarize preclinical and clinical data on ILCs and NK cells concerning their phenotype, function and clinical applications in cellular therapy trials. We also describe how single-cell transcriptome sequencing has been used and forecast how it will be used to better understand ILC and NK involvement in cancer control and progression as well as their therapeutic potential. Abstract The role of innate lymphoid cells (ILCs), including natural killer (NK) cells, is pivotal in inflammatory modulation and cancer. Natural killer cell activity and count have been demonstrated to be regulated by the expression of activating and inhibitory receptors together with and as a consequence of different stimuli. The great majority of NK cell populations have an anti-tumor activity due to their cytotoxicity, and for this reason have been used for cellular therapies in cancer patients. On the other hand, the recently classified helper ILCs are fundamentally involved in inflammation and they can be either helpful or harmful in cancer development and progression. Tissue niche seems to play an important role in modulating ILC function and conversion, as observed at the transcriptional level. In the past, these cell populations have been classified by the presence of specific cellular receptor markers; more recently, due to the advent of single-cell RNA sequencing (scRNA-seq), it has been possible to also explore them at the transcriptomic level. In this article we review studies on ILC (and NK cell) classification, function and their involvement in cancer. We also summarize the potential application of NK cells in cancer therapy and give an overview of the most recent studies involving ILCs and NKs at scRNA-seq, focusing on cancer. Finally, we provide a resource for those who wish to start single-cell transcriptomic analysis on the context of these innate lymphoid cell populations.
Collapse
|
16
|
Lin A, Yan WH. HLA-G/ILTs Targeted Solid Cancer Immunotherapy: Opportunities and Challenges. Front Immunol 2021; 12:698677. [PMID: 34276691 PMCID: PMC8278316 DOI: 10.3389/fimmu.2021.698677] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/14/2021] [Indexed: 12/04/2022] Open
Abstract
Immune checkpoint inhibitors (ICIs) have become a promising immunotherapy for cancers. Human leukocyte antigen-G (HLA-G), a neoantigen, its biological functions and clinical relevance have been extensively investigated in malignancies, and early clinical trials with “anti-HLA-G strategy” are being launched for advance solid cancer immunotherapy. The mechanism of HLA-G as a new ICI is that HLA-G can bind immune cell bearing inhibitory receptors, the immunoglobulin-like transcript (ILT)-2 and ILT-4. HLA-G/ILT-2/-4 (HLA-G/ILTs) signaling can drive comprehensive immune suppression, promote tumor growth and disease progression. Though clinical benefits could be expected with application of HLA-G antibodies to blockade the HLA-G/ILTs signaling in solid cancer immunotherapy, major challenges with the diversity of HLA-G isoforms, HLA-G/ILTs binding specificity, intra- and inter-tumor heterogeneity of HLA-G, lack of isoform-specific antibodies and validated assay protocols, which could dramatically affect the clinical efficacy. Clinical benefits of HLA-G-targeted solid cancer immunotherapy may be fluctuated or even premature unless major challenges are addressed.
Collapse
Affiliation(s)
- Aifen Lin
- Biological Resource Center, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Linhai, China.,Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital of Zhejiang Province, Linhai, China
| | - Wei-Hua Yan
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital of Zhejiang Province, Linhai, China.,Medical Research Center, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Linhai, China
| |
Collapse
|
17
|
Li YJ, Zhou T, Zhang J, Zhang L, Ke H, Zhang C, Li P. Clinical trait-connected network analysis reveals transcriptional markers of active psoriasis treatment with Liangxue-Jiedu decoction. JOURNAL OF ETHNOPHARMACOLOGY 2021; 268:113551. [PMID: 33152434 DOI: 10.1016/j.jep.2020.113551] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/14/2020] [Accepted: 10/29/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Psoriasis is a complex recurrent inflammatory skin disease with different pathological changes in different stages. Psoriasis in its active stage, which is comparable to the blood-heat type in traditional Chinese medicine (TCM), has been treated by Liangxue Jiedu Decoction (LJD) in TCM for decades, with proven efficacy. According to TCM theories, LJD has the function of removing heat and pathogenic factors from the blood. AIM OF THE STUDY We aimed to investigate the molecular features associated with the active stage psoriasis and identify genes responding to LJD treatment accompanied by lesion remission. MATERIALS AND METHODS Healthy volunteers and psoriasis patients who met specific diagnostic criteria were recruited. Twenty-six transcriptomes were profiled from the peripheral blood mononuclear cells (PBMCs) of 10 psoriasis patients (pre- and post-treatment) and 6 healthy volunteers. RNA sequencing data were analyzed using an integrated approach combining differential gene expression analysis (DGEA) and weighted gene co-expression network analysis (WGCNA), by which gene expression was linked to multiple clinical traits, including psoriasis area and severity index (PASI), as well as the improvement rate of skin lesions (ΔPASI). The actions of LJD were then verified using an in vitro cell assay coupled to flow cytometric analysis and RT-PCR. RESULTS We identified four network modules with statistical significance (P < 0.05), two of which connected to the PASI score, while the other two connected to 8-week treatment and ΔPASI, respectively. In psoriasis patients, activated inflammatory pathways and inhibited G-protein signaling genes (GTPase IMAP family member and G protein-coupled receptor) co-occurred, with high expression of CD83 and CD69, and low expression of CD160 and CD180, compared with the health. Accompanying LJD treatment and lesion remission, the expression of CD69 and cell cycle-related genes, including CCNA2, CCNB2, CDK1, and TOP2A, was down-regulated. The inhibitory role of LJD on CD69 expression was confirmed by the decline of activating naïve CD4+ T lymphocytes. CONCLUSION Our study suggests that active psoriasis is characterized by unbalanced immune status with dendrite cell and lymphocyte-associated inflammatory activation as well as NK cell- and B cell-associated defense response aberrance. LJD played an inhibitory role in T cell activation, a process located downstream pathological cascade of psoriasis.
Collapse
Affiliation(s)
- Ya-Jun Li
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China; Beijing Institute of Traditional Chinese Medicine, Beijing, 100010, China; Beijing Key Laboratory of Clinic and Basic Traditional Chinese Medicine on Psoriasis, Beijing, 100010, China.
| | - Tao Zhou
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China; Beijing Key Laboratory of Clinic and Basic Traditional Chinese Medicine on Psoriasis, Beijing, 100010, China
| | - Jing Zhang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| | - Lei Zhang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China; Beijing Institute of Traditional Chinese Medicine, Beijing, 100010, China
| | - Hai Ke
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| | - Cang Zhang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China; Beijing Key Laboratory of Clinic and Basic Traditional Chinese Medicine on Psoriasis, Beijing, 100010, China.
| | - Ping Li
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China; Beijing Institute of Traditional Chinese Medicine, Beijing, 100010, China; Beijing Key Laboratory of Clinic and Basic Traditional Chinese Medicine on Psoriasis, Beijing, 100010, China
| |
Collapse
|
18
|
Li Y, Wang F, Imani S, Tao L, Deng Y, Cai Y. Natural Killer Cells: Friend or Foe in Metabolic Diseases? Front Immunol 2021; 12:614429. [PMID: 33717101 PMCID: PMC7943437 DOI: 10.3389/fimmu.2021.614429] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 01/12/2021] [Indexed: 12/12/2022] Open
Abstract
The worldwide epidemic of metabolic diseases, especially obesity and other diseases caused by it, has shown a dramatic increase in incidence. A great deal of attention has been focused on the underlying mechanisms of these pathological processes and potential strategies to solve these problems. Chronic inflammation initiated by abdominal adipose tissues and immune cell activation in obesity is the major cause of the consequent development of complications. In addition to adipocytes, macrophages and monocytes, natural killer (NK) cells have been verified to be vital components involved in shaping the inflammatory microenvironment, thereby leading to various obesity-related metabolic diseases. Here, we provide an overview of the roles of NK cells and the interactions of these cells with other immune and nonimmune cells in the pathological processes of metabolic diseases. Finally, we also discuss potential therapeutic strategies targeting NK cells to treat metabolic diseases.
Collapse
Affiliation(s)
- Yi Li
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China.,Student Brigade, Preclinical School of Medicine, The Fourth Military Medical University, Xi'an, China.,Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Fangjie Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Wound Infection and Drug, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Saber Imani
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Ling Tao
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Youcai Deng
- Institute of Materia Medica, College of Pharmacy, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yue Cai
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
19
|
Farren TW, Sadanand KS, Agrawal SG. Highly Sensitive and Accurate Assessment of Minimal Residual Disease in Chronic Lymphocytic Leukemia Using the Novel CD160-ROR1 Assay. Front Oncol 2020; 10:597730. [PMID: 33344247 PMCID: PMC7744938 DOI: 10.3389/fonc.2020.597730] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 10/26/2020] [Indexed: 12/21/2022] Open
Abstract
Undetectable minimal residual disease (MRD) in Chronic Lymphocytic Leukemia (CLL) has a favorable prognostic outcome compared with MRD that can be detected. This study investigated a flow cytometric assay (CD160-ROR1FCA) targeting the tumor-specific antigens CD160 and receptor tyrosine kinase-like orphan receptor 1 (ROR1), along with CD2, CD5, CD19, CD45. CD160-ROR1FCA was compared with the originally published 8-colour European Research Initiative for CLL (ERIC) gold-standard assay for CLL MRD detection. CD160-ROR1FCA had a limit of detection of 0.001% and showed strong correlation with ERIC (R = 0.98, p < 0.01) with negligible differences in MRD detection (bias -0.3152 95%CI 5.586 to -6.216). Using CD160-ROR1FCA, increased expression of both CD160 and ROR1 was found in Monoclonal B cell Lymphocytosis (MBL) compared to low-level polyclonal B-cell expansions (p < 0.01). Patients in CR and with undetectable MRD had a longer EFS (not reached) than those in CR but with detectable MRD (756 days, p < 0.01) versus 113 days in patients with partial remission (p < 0.01). Patients with MRD levels of >0.01 to 0.1% had a longer EFS (2,333 days), versus levels between 0.1 to 1% (1,049 days). CD160-ROR1FCA is a novel assay for routine CLL MRD measurement and for MBL detection. MRD status assessed by CD160-ROR1FCA after CLL treatment correlated with EFS.
Collapse
Affiliation(s)
- Timothy W Farren
- Department of Haemato-Oncology and Immunophenotyping (SIHMDS), Barts Health NHS Trust, London, United Kingdom.,Immunobiology, Blizard Institute, Queen Mary University of London, London, United Kingdom
| | - Kaushik S Sadanand
- Immunobiology, Blizard Institute, Queen Mary University of London, London, United Kingdom
| | - Samir G Agrawal
- Department of Haemato-Oncology and Immunophenotyping (SIHMDS), Barts Health NHS Trust, London, United Kingdom.,Immunobiology, Blizard Institute, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
20
|
Functionally Relevant Differences in Plasma Fatty Acid Composition and Expression of Cytotoxic and Inhibitory NK Cell Receptors between Healthy Young and Healthy Elder Adults. Nutrients 2020; 12:nu12123641. [PMID: 33256224 PMCID: PMC7759996 DOI: 10.3390/nu12123641] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 11/17/2020] [Accepted: 11/25/2020] [Indexed: 01/16/2023] Open
Abstract
(1) Background: In the healthy ageing, NK cell number is not modified; however, their spontaneous cytotoxicity decreases. We postulated that the age-dependent decline in metabolic activities might be responsible for this effect. (2) Methods: The fatty acid profile of 30 healthy young males (23 ± 4 years old, BMI 22.1 ± 1.3) and 30 older males (63 ± 5 years old, BMI 22.9 ± 2.5) donors were evaluated along with the expression of killing (KR) and inhibitory NK receptors (KIR) at basal level and after cultivation with fatty acids for 24 h. (3) Results: Significantly higher levels of oleic (p < 0.01), arachidonic (p < 0.001), lignoceric (p < 0.001), and nervonic acids (p < 0.0001) and significantly lower levels of docosapentaenoic and docosahexaenoic acids (p < 0.01) were found in elders as compared to young adults. At basal levels, significant (p < 0.005) differences in KR and KIR expression were encountered; 12/16 antigens. Treatment of cells with saturated fatty acids or arachidonic acid (AA) significantly enhanced KR expressions (p < 0.001). AA treatment decreased inhibitory KIR expression while docosahexaenoic, and eicosapentaenoic acid increased them. (4) Conclusions: Changes in fatty acids blood levels, and KR and KIR expression in NK cell, are age-dependent. Supplementation of NK cells with eicosapentaenoic or docosahexaenoic acid enhanced inhibitory KIR receptors’ expression which may improve their cell function.
Collapse
|
21
|
Single-cell profiling reveals the trajectories of natural killer cell differentiation in bone marrow and a stress signature induced by acute myeloid leukemia. Cell Mol Immunol 2020; 18:1290-1304. [PMID: 33239726 PMCID: PMC8093261 DOI: 10.1038/s41423-020-00574-8] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 10/12/2020] [Accepted: 10/13/2020] [Indexed: 12/12/2022] Open
Abstract
Natural killer (NK) cells are innate cytotoxic lymphoid cells (ILCs) involved in the killing of infected and tumor cells. Among human and mouse NK cells from the spleen and blood, we previously identified by single-cell RNA sequencing (scRNAseq) two similar major subsets, NK1 and NK2. Using the same technology, we report here the identification, by single-cell RNA sequencing (scRNAseq), of three NK cell subpopulations in human bone marrow. Pseudotime analysis identified a subset of resident CD56bright NK cells, NK0 cells, as the precursor of both circulating CD56dim NK1-like NK cells and CD56bright NK2-like NK cells in human bone marrow and spleen under physiological conditions. Transcriptomic profiles of bone marrow NK cells from patients with acute myeloid leukemia (AML) exhibited stress-induced repression of NK cell effector functions, highlighting the profound impact of this disease on NK cell heterogeneity. Bone marrow NK cells from AML patients exhibited reduced levels of CD160, but the CD160high group had a significantly higher survival rate.
Collapse
|
22
|
Shrestha R, Garrett-Thomson SC, Liu W, Almo SC, Fiser A. Redesigning HVEM Interface for Selective Binding to LIGHT, BTLA, and CD160. Structure 2020; 28:1197-1205.e2. [PMID: 32795404 DOI: 10.1016/j.str.2020.07.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 06/01/2020] [Accepted: 07/23/2020] [Indexed: 10/23/2022]
Abstract
Herpes virus entry mediator (HVEM) regulates positive and negative signals for T cell activation through co-signaling pathways. Dysfunction of the HVEM co-signaling network is associated with multiple pathologies related to autoimmunity, infectious disease, and cancer, making the associated molecules biologically and therapeutically attractive targets. HVEM interacts with three ligands from two different superfamilies using two different binding interfaces. The engagement with ligands CD160 and B- and T-lymphocyte attenuator (BTLA), members of immunoglobulin superfamily, is associated with inhibitory signals, whereas inflammatory responses are regulated through the interaction with LIGHT from the TNF superfamily. We computationally redesigned the HVEM recognition interfaces using a residue-specific pharmacophore approach, ProtLID, to achieve switchable-binding specificity. In subsequent cell-based binding assays the new interfaces, designed with only single or double mutations, exhibited selective binding to only one or two out of the three cognate ligands.
Collapse
Affiliation(s)
- Rojan Shrestha
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA; Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Sarah C Garrett-Thomson
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Weifeng Liu
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Steven C Almo
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA.
| | - Andras Fiser
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA; Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA.
| |
Collapse
|
23
|
Mola S, Foisy S, Boucher G, Major F, Beauchamp C, Karaky M, Goyette P, Lesage S, Rioux JD. A transcriptome-based approach to identify functional modules within and across primary human immune cells. PLoS One 2020; 15:e0233543. [PMID: 32469933 PMCID: PMC7259617 DOI: 10.1371/journal.pone.0233543] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 05/07/2020] [Indexed: 11/20/2022] Open
Abstract
Genome-wide transcriptomic analyses have provided valuable insight into fundamental biology and disease pathophysiology. Many studies have taken advantage of the correlation in the expression patterns of the transcriptome to infer a potential biologic function of uncharacterized genes, and multiple groups have examined the relationship between co-expression, co-regulation, and gene function on a broader scale. Given the unique characteristics of immune cells circulating in the blood, we were interested in determining whether it was possible to identify functional co-expression modules in human immune cells. Specifically, we sequenced the transcriptome of nine immune cell types from peripheral blood cells of healthy donors and, using a combination of global and targeted analyses of genes within co-expression modules, we were able to determine functions for these modules that were cell lineage-specific or shared among multiple cell lineages. In addition, our analyses identified transcription factors likely important for immune cell lineage commitment and/or maintenance.
Collapse
Affiliation(s)
- Saraï Mola
- Centre de recherche, Institut de cardiologie de Montréal, Montréal, Québec, Canada
| | - Sylvain Foisy
- Centre de recherche, Institut de cardiologie de Montréal, Montréal, Québec, Canada
| | - Gabrielle Boucher
- Centre de recherche, Institut de cardiologie de Montréal, Montréal, Québec, Canada
| | - François Major
- Unité de recherche en ingénierie des ARN, Institut de recherche en immunologie et en cancérologie, Montréal, Québec, Canada
- Département d’informatique et de recherche opérationnelle, Université de Montréal, Montréal, Québec, Canada
- Département de biochimie et médecine moléculaire, Université de Montréal, Montréal, Québec, Canada
| | - Claudine Beauchamp
- Centre de recherche, Institut de cardiologie de Montréal, Montréal, Québec, Canada
| | - Mohamad Karaky
- Centre de recherche, Institut de cardiologie de Montréal, Montréal, Québec, Canada
| | - Philippe Goyette
- Centre de recherche, Institut de cardiologie de Montréal, Montréal, Québec, Canada
| | - Sylvie Lesage
- Centre de recherche, Hôpital Maisonneuve-Rosemont, Montréal, Québec, Canada
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, Québec, Canada
| | - John D. Rioux
- Centre de recherche, Institut de cardiologie de Montréal, Montréal, Québec, Canada
- Département de biochimie et médecine moléculaire, Université de Montréal, Montréal, Québec, Canada
- * E-mail:
| |
Collapse
|
24
|
Valencia-Ortega J, Saucedo R, Peña-Cano MI, Hernández-Valencia M, Cruz-Durán JG. Immune tolerance at the maternal-placental interface in healthy pregnancy and pre-eclampsia. J Obstet Gynaecol Res 2020; 46:1067-1076. [PMID: 32428989 DOI: 10.1111/jog.14309] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/17/2020] [Accepted: 04/30/2020] [Indexed: 12/15/2022]
Abstract
AIM The objective of this review is to describe the immunological mechanisms which facilitate maternal tolerance at the maternal-placental interface, and to discuss how these mechanisms are disrupted in pre-eclampsia. METHODS A literature review was performed based on the analysis of papers available on PubMed. The most important and relevant studies regarding the immunological mechanisms which facilitate maternal tolerance in healthy pregnancy and pre-eclampsia are presented in this article. RESULTS The maternal-placental interface is the site where the immune tolerance begins and develops. Within the innate immunity, natural killer cells, macrophages and dendritic cells play a pivotal role in tolerance through regulation of inflammation. On the other hand, within the adaptive immunity, the correct increase of regulatory T cells is crucial for ensuring immune tolerance toward placental cells. Disturbances in maternal tolerance can lead to the appearance of pregnancy complications such as pre-eclampsia, which has a considerable impact on perinatal morbidity and mortality. CONCLUSION Our partial knowledge of immunological mechanisms involved in tolerance at the maternal-placental interface indicates that pre-eclampsia is characterized by alterations of this maternal immune tolerance, which could represent the origin of the disease.
Collapse
Affiliation(s)
- Jorge Valencia-Ortega
- Endocrine Research Unit, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Renata Saucedo
- Endocrine Research Unit, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - María I Peña-Cano
- Faculty of Chemistry, Universidad Autónoma del Estado de México, Toluca, Mexico
| | - Marcelino Hernández-Valencia
- Endocrine Research Unit, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - José G Cruz-Durán
- UMAE Hospital de Gineco-Obstetricia No. 3, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| |
Collapse
|
25
|
Stassen SV, Siu DMD, Lee KCM, Ho JWK, So HKH, Tsia KK. PARC: ultrafast and accurate clustering of phenotypic data of millions of single cells. Bioinformatics 2020; 36:2778-2786. [PMID: 31971583 PMCID: PMC7203756 DOI: 10.1093/bioinformatics/btaa042] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 11/24/2019] [Accepted: 01/16/2020] [Indexed: 12/13/2022] Open
Abstract
MOTIVATION New single-cell technologies continue to fuel the explosive growth in the scale of heterogeneous single-cell data. However, existing computational methods are inadequately scalable to large datasets and therefore cannot uncover the complex cellular heterogeneity. RESULTS We introduce a highly scalable graph-based clustering algorithm PARC-Phenotyping by Accelerated Refined Community-partitioning-for large-scale, high-dimensional single-cell data (>1 million cells). Using large single-cell flow and mass cytometry, RNA-seq and imaging-based biophysical data, we demonstrate that PARC consistently outperforms state-of-the-art clustering algorithms without subsampling of cells, including Phenograph, FlowSOM and Flock, in terms of both speed and ability to robustly detect rare cell populations. For example, PARC can cluster a single-cell dataset of 1.1 million cells within 13 min, compared with >2 h for the next fastest graph-clustering algorithm. Our work presents a scalable algorithm to cope with increasingly large-scale single-cell analysis. AVAILABILITY AND IMPLEMENTATION https://github.com/ShobiStassen/PARC. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
| | | | | | - Joshua W K Ho
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | | | - Kevin K Tsia
- Department of Electrical and Electronic Engineering
| |
Collapse
|
26
|
Yang C, Siebert JR, Burns R, Gerbec ZJ, Bonacci B, Rymaszewski A, Rau M, Riese MJ, Rao S, Carlson KS, Routes JM, Verbsky JW, Thakar MS, Malarkannan S. Heterogeneity of human bone marrow and blood natural killer cells defined by single-cell transcriptome. Nat Commun 2019; 10:3931. [PMID: 31477722 PMCID: PMC6718415 DOI: 10.1038/s41467-019-11947-7] [Citation(s) in RCA: 179] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Accepted: 08/09/2019] [Indexed: 12/21/2022] Open
Abstract
Natural killer (NK) cells are critical to both innate and adaptive immunity. However, the development and heterogeneity of human NK cells are yet to be fully defined. Using single-cell RNA-sequencing technology, here we identify distinct NK populations in human bone marrow and blood, including one population expressing higher levels of immediate early genes indicative of a homeostatic activation. Functionally matured NK cells with high expression of CX3CR1, HAVCR2 (TIM-3), and ZEB2 represents terminally differentiated status with the unique transcriptional profile. Transcriptomic and pseudotime analyses identify a transitional population between CD56bright and CD56dim NK cells. Finally, a donor with GATA2T354M mutation exhibits reduced percentage of CD56bright NK cells with altered transcriptome and elevated cell death. These data expand our understanding of the heterogeneity and development of human NK cells. Natural killer (NK) cells are important innate immune cells with diverse functions. Here the authors use single-cell RNA-sequencing of purified human bone marrow and peripheral blood NK cells to define five populations of NK cells with distinct transcriptomic profile to further our understanding of NK development and heterogeneity.
Collapse
Affiliation(s)
- Chao Yang
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Versiti, Milwaukee, WI, USA.,Departments of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Jason R Siebert
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Versiti, Milwaukee, WI, USA.,Departments of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Robert Burns
- Bioinfomatics Core, Blood Research Institute, Versiti, Milwaukee, WI, USA
| | - Zachary J Gerbec
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Versiti, Milwaukee, WI, USA.,Departments of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Benedetta Bonacci
- Flow Cytometry Core, Blood Research Institute, Versiti, Milwaukee, WI, USA
| | - Amy Rymaszewski
- Departments of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Mary Rau
- Departments of Surgery, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Matthew J Riese
- Departments of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA.,Laboratory of Lymphocyte Biology, Blood Research Institute, Versiti, Milwaukee, WI, USA.,Departments of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Sridhar Rao
- Departments of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA.,Laboratory of Stem Cell Transcriptional Regulation, Blood Research Institute, Versiti, Milwaukee, WI, USA.,Departments of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Karen-Sue Carlson
- Departments of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA.,Laboratory of Coagulation Biology, Blood Research Institute, Versiti, Milwaukee, WI, USA
| | - John M Routes
- Departments of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - James W Verbsky
- Departments of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Monica S Thakar
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Versiti, Milwaukee, WI, USA.,Departments of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Subramaniam Malarkannan
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Versiti, Milwaukee, WI, USA. .,Departments of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA. .,Departments of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA. .,Departments of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
27
|
Sinha D, Kumar A, Kumar H, Bandyopadhyay S, Sengupta D. dropClust: efficient clustering of ultra-large scRNA-seq data. Nucleic Acids Res 2019; 46:e36. [PMID: 29361178 PMCID: PMC5888655 DOI: 10.1093/nar/gky007] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Accepted: 01/07/2018] [Indexed: 11/18/2022] Open
Abstract
Droplet based single cell transcriptomics has recently enabled parallel screening of tens of thousands of single cells. Clustering methods that scale for such high dimensional data without compromising accuracy are scarce. We exploit Locality Sensitive Hashing, an approximate nearest neighbour search technique to develop a de novo clustering algorithm for large-scale single cell data. On a number of real datasets, dropClust outperformed the existing best practice methods in terms of execution time, clustering accuracy and detectability of minor cell sub-types.
Collapse
Affiliation(s)
- Debajyoti Sinha
- Machine Intelligence Unit, Indian Statistical Institute, Kolkata 700108, West Bengal, India.,Department of Computer Science and Engineering, University of Calcutta, Kolkata 700098, West Bengal, India
| | - Akhilesh Kumar
- Laboratory of Immunology and Infectious Disease Biology, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal 462066, Madhya Pradesh, India
| | - Himanshu Kumar
- Laboratory of Immunology and Infectious Disease Biology, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal 462066, Madhya Pradesh, India
| | | | - Debarka Sengupta
- Center for Computational Biology and Department of Computer Science and Engineering, Indraprastha Institute of Information Technology, Delhi 110020, India
| |
Collapse
|
28
|
Würfel FM, Winterhalter C, Trenkwalder P, Wirtz RM, Würfel W. European Patent in Immunoncology: From Immunological Principles of Implantation to Cancer Treatment. Int J Mol Sci 2019; 20:ijms20081830. [PMID: 31013867 PMCID: PMC6514949 DOI: 10.3390/ijms20081830] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/09/2019] [Accepted: 04/09/2019] [Indexed: 12/19/2022] Open
Abstract
The granted European patent EP 2 561 890 describes a procedure for an immunological treatment of cancer. It is based on the principles of the HLA-supported communication of implantation and pregnancy. These principles ensure that the embryo is not rejected by the mother. In pregnancy, the placenta, more specifically the trophoblast, creates an “interface” between the embryo/fetus and the maternal immune system. Trophoblasts do not express the “original” HLA identification of the embryo/fetus (HLA-A to -DQ), but instead show the non-classical HLA groups E, F, and G. During interaction with specific receptors of NK cells (e.g., killer-immunoglobulin-like receptors (KIR)) and lymphocytes (lymphocyte-immunoglobulin-like receptors (LIL-R)), the non-classical HLA groups inhibit these immunocompetent cells outside pregnancy. However, tumors are known to be able to express these non-classical HLA groups and thus make use of an immuno-communication as in pregnancies. If this occurs, the prognosis usually worsens. This patent describes, in a first step, the profiling of the non-classical HLA groups in primary tumor tissue as well as metastases and recurrent tumors. The second step comprises tailored antibody therapies, which is the subject of this patent. In this review, we analyze the underlying mechanisms and describe the currently known differences between HLA-supported communication of implantation and that of tumors.
Collapse
Affiliation(s)
- Franziska M Würfel
- STRATIFYER Molecular Pathology GmbH, D-50935 Cologne, Werthmannstrasse 1c, 50935 Cologne, Germany.
| | | | | | - Ralph M Wirtz
- STRATIFYER Molecular Pathology GmbH, D-50935 Cologne, Werthmannstrasse 1c, 50935 Cologne, Germany.
| | | |
Collapse
|
29
|
Meng Q, Zaidi AK, Sedy J, Bensussan A, Popkin DL. Soluble Fc-Disabled Herpes Virus Entry Mediator Augments Activation and Cytotoxicity of NK Cells by Promoting Cross-Talk between NK Cells and Monocytes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2019; 202:2057-2068. [PMID: 30770415 PMCID: PMC6424646 DOI: 10.4049/jimmunol.1801449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 01/20/2019] [Indexed: 11/19/2022]
Abstract
CD160 is highly expressed by NK cells and is associated with cytolytic effector activity. Herpes virus entry mediator (HVEM) activates NK cells for cytokine production and cytolytic function via CD160. Fc-fusions are a well-established class of therapeutics, where the Fc domain provides additional biological and pharmacological properties to the fusion protein including enhanced serum t 1/2 and interaction with Fc receptor-expressing immune cells. We evaluated the specific function of HVEM in regulating CD160-mediated NK cell effector function by generating a fusion of the HVEM extracellular domain with human IgG1 Fc bearing CD16-binding mutations (Fc*) resulting in HVEM-(Fc*). HVEM-(Fc*) displayed reduced binding to the Fc receptor CD16 (i.e., Fc-disabled HVEM), which limited Fc receptor-induced responses. HVEM-(Fc*) functional activity was compared with HVEM-Fc containing the wild type human IgG1 Fc. HVEM-(Fc*) treatment of NK cells and PBMCs caused greater IFN-γ production, enhanced cytotoxicity, reduced NK fratricide, and no change in CD16 expression on human NK cells compared with HVEM-Fc. HVEM-(Fc*) treatment of monocytes or PBMCs enhanced the expression level of CD80, CD83, and CD40 expression on monocytes. HVEM-(Fc*)-enhanced NK cell activation and cytotoxicity were promoted via cross-talk between NK cells and monocytes that was driven by cell-cell contact. In this study, we have shown that soluble Fc-disabled HVEM-(Fc*) augments NK cell activation, IFN-γ production, and cytotoxicity of NK cells without inducing NK cell fratricide by promoting cross-talk between NK cells and monocytes without Fc receptor-induced effects. Soluble Fc-disabled HVEM-(Fc*) may be considered as a research and potentially therapeutic reagent for modulating immune responses via sole activation of HVEM receptors.
Collapse
Affiliation(s)
- Qinglai Meng
- Institute of Biomedical Sciences, Shanxi University, Xiaodian District, Taiyuan City, Shanxi Province 030006, China
- Department of Dermatology, Case Western Reserve University School of Medicine, Cleveland, OH 44106
| | - Asifa K Zaidi
- Department of Dermatology, Case Western Reserve University School of Medicine, Cleveland, OH 44106
| | - John Sedy
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037
| | - Armand Bensussan
- INSERM UMR 976, Hôpital Saint-Louis, 75475 Paris Cedex 10, France
| | - Daniel L Popkin
- Department of Dermatology, Case Western Reserve University School of Medicine, Cleveland, OH 44106;
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106; and
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, OH 44106
| |
Collapse
|
30
|
Belkina AC, Starchenko A, Drake KA, Proctor EA, Pihl RMF, Olson A, Lauffenburger DA, Lin N, Snyder-Cappione JE. Multivariate Computational Analysis of Gamma Delta T Cell Inhibitory Receptor Signatures Reveals the Divergence of Healthy and ART-Suppressed HIV+ Aging. Front Immunol 2018; 9:2783. [PMID: 30568654 PMCID: PMC6290897 DOI: 10.3389/fimmu.2018.02783] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 11/12/2018] [Indexed: 12/15/2022] Open
Abstract
Even with effective viral control, HIV-infected individuals are at a higher risk for morbidities associated with older age than the general population, and these serious non-AIDS events (SNAEs) track with plasma inflammatory and coagulation markers. The cell subsets driving inflammation in aviremic HIV infection are not yet elucidated. Also, whether ART-suppressed HIV infection causes premature induction of the inflammatory events found in uninfected elderly or if a novel inflammatory network ensues when HIV and older age co-exist is unclear. In this study we measured combinational expression of five inhibitory receptors (IRs) on seven immune cell subsets and 16 plasma markers from peripheral blood mononuclear cells (PBMC) and plasma samples, respectively, from a HIV and Aging cohort comprised of ART-suppressed HIV-infected and uninfected controls stratified by age (≤35 or ≥50 years old). For data analysis, multiple multivariate computational algorithms [cluster identification, characterization, and regression (CITRUS), partial least squares regression (PLSR), and partial least squares-discriminant analysis (PLS-DA)] were used to determine if immune parameter disparities can distinguish the subject groups and to investigate if there is a cross-impact of aviremic HIV and age on immune signatures. IR expression on gamma delta (γδ) T cells exclusively separated HIV+ subjects from controls in CITRUS analyses and secretion of inflammatory cytokines and cytotoxic mediators from γδ T cells tracked with TIGIT expression among HIV+ subjects. Also, plasma markers predicted the percentages of TIGIT+ γδ T cells in subjects with and without HIV in PSLR models, and a PLS-DA model of γδ T cell IR signatures and plasma markers significantly stratified all four of the subject groups (uninfected younger, uninfected older, HIV+ younger, and HIV+ older). These data implicate γδ T cells as an inflammatory driver in ART-suppressed HIV infection and provide evidence of distinct “inflamm-aging” processes with and without ART-suppressed HIV infection.
Collapse
Affiliation(s)
- Anna C Belkina
- Flow Cytometry Core Facility, Boston University School of Medicine, Boston, MA, United States.,Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, United States
| | - Alina Starchenko
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | | | - Elizabeth A Proctor
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Riley M F Pihl
- Flow Cytometry Core Facility, Boston University School of Medicine, Boston, MA, United States
| | - Alex Olson
- Department of Medicine, Boston University School of Medicine, Boston, MA, United States
| | - Douglas A Lauffenburger
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Nina Lin
- Department of Medicine, Boston University School of Medicine, Boston, MA, United States
| | - Jennifer E Snyder-Cappione
- Flow Cytometry Core Facility, Boston University School of Medicine, Boston, MA, United States.,Department of Microbiology, Boston University School of Medicine, Boston, MA, United States
| |
Collapse
|
31
|
Kumar P, Bhattacharya P, Prabhakar BS. A comprehensive review on the role of co-signaling receptors and Treg homeostasis in autoimmunity and tumor immunity. J Autoimmun 2018; 95:77-99. [PMID: 30174217 PMCID: PMC6289740 DOI: 10.1016/j.jaut.2018.08.007] [Citation(s) in RCA: 142] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 08/22/2018] [Accepted: 08/26/2018] [Indexed: 12/22/2022]
Abstract
The immune system ensures optimum T-effector (Teff) immune responses against invading microbes and tumor antigens while preventing inappropriate autoimmune responses against self-antigens with the help of T-regulatory (Treg) cells. Thus, Treg and Teff cells help maintain immune homeostasis through mutual regulation. While Tregs can contribute to tumor immune evasion by suppressing anti-tumor Teff response, loss of Treg function can result in Teff responses against self-antigens leading to autoimmune disease. Thus, loss of homeostatic balance between Teff/Treg cells is often associated with both cancer and autoimmunity. Co-stimulatory and co-inhibitory receptors, collectively known as co-signaling receptors, play an indispensable role in the regulation of Teff and Treg cell expansion and function and thus play critical roles in modulating autoimmune and anti-tumor immune responses. Over the past three decades, considerable efforts have been made to understand the biology of co-signaling receptors and their role in immune homeostasis. Mutations in co-inhibitory receptors such as CTLA4 and PD1 are associated with Treg dysfunction, and autoimmune diseases in mice and humans. On the other hand, growing tumors evade immune surveillance by exploiting co-inhibitory signaling through expression of CTLA4, PD1 and PDL-1. Immune checkpoint blockade (ICB) using anti-CTLA4 and anti-PD1 has drawn considerable attention towards co-signaling receptors in tumor immunology and created renewed interest in studying other co-signaling receptors, which until recently have not been as well studied. In addition to co-inhibitory receptors, co-stimulatory receptors like OX40, GITR and 4-1BB have also been widely implicated in immune homeostasis and T-cell stimulation, and use of agonistic antibodies against OX40, GITR and 4-1BB has been effective in causing tumor regression. Although ICB has seen unprecedented success in cancer treatment, autoimmune adverse events arising from ICB due to loss of Treg homeostasis poses a major obstacle. Herein, we comprehensively review the role of various co-stimulatory and co-inhibitory receptors in Treg biology and immune homeostasis, autoimmunity, and anti-tumor immunity. Furthermore, we discuss the autoimmune adverse events arising upon targeting these co-signaling receptors to augment anti-tumor immune responses.
Collapse
Affiliation(s)
- Prabhakaran Kumar
- Department of Microbiology and Immunology, University of Illinois-College of Medicine, Chicago, IL, USA
| | - Palash Bhattacharya
- Department of Microbiology and Immunology, University of Illinois-College of Medicine, Chicago, IL, USA
| | - Bellur S Prabhakar
- Department of Microbiology and Immunology, University of Illinois-College of Medicine, Chicago, IL, USA; Department of Ophthalmology, Associate Dean for Technological Innovation and Training, University of Illinois College of Medicine, Room E-705, (M/C 790), 835 S. Wolcott Ave, Chicago, IL, 60612, USA.
| |
Collapse
|
32
|
Parkes MD, Halloran PF, Hidalgo LG. Mechanistic Sharing Between NK Cells in ABMR and Effector T Cells in TCMR. Am J Transplant 2018; 18:63-73. [PMID: 28654216 DOI: 10.1111/ajt.14410] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 06/02/2017] [Accepted: 06/20/2017] [Indexed: 01/25/2023]
Abstract
Human organ allograft rejection depends on effector lymphocytes: NK cells in antibody-mediated rejection (ABMR) and effector T cells in T cell-mediated rejection (TCMR). We hypothesized that NK cell CD16a stimulation and CD8 T cell TCR/CD3 stimulation represent highly similar effector systems, and should lead to shared molecular changes between ABMR and TCMR. We studied similarity between soluble proteins and the transcripts induced in CD16a stimulated NK cells and TCR/CD3-stimulated T cells in vitro. Of 30 soluble mediators tested, CD16a-activated NK cells and CD3/TCR activated T cells produced the same limited set of five mediators-CCL3, CCL4, CSF2, IFNG, and TNF-and failed to produce 25 others. Many transcripts increased in stimulated NK cells were also increased in CD3-stimulated CD8 T cells (FDR < 0.05), including IFNG, CSF2, CCL3, CCL4, and XCL1. We hypothesized that shared transcripts not produced by other cell types should be expressed both in ABMR and TCMR kidney transplant biopsies. CD160, XCL1, TNFRSF9, and IFNG were selective for TCR/CD3-activated T cells and CD16a-NK cells and all were strongly increased in ABMR and TCMR. The molecules such as CD160 and XCL1 shared between NK cells in ABMR and effector T cells in TCMR may hold insights into important rejection mechanisms.
Collapse
Affiliation(s)
- M D Parkes
- Alberta Transplant Applied Genomics Centre, Edmonton, AB, Canada
| | - P F Halloran
- Alberta Transplant Applied Genomics Centre, Edmonton, AB, Canada.,Division of Nephrology and Transplant Immunology, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - L G Hidalgo
- Alberta Transplant Applied Genomics Centre, Edmonton, AB, Canada.,Department of Laboratory Medicine & Pathology, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
33
|
Ward-Kavanagh LK, Lin WW, Šedý JR, Ware CF. The TNF Receptor Superfamily in Co-stimulating and Co-inhibitory Responses. Immunity 2017; 44:1005-19. [PMID: 27192566 DOI: 10.1016/j.immuni.2016.04.019] [Citation(s) in RCA: 306] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Indexed: 02/08/2023]
Abstract
Cytokines related to tumor necrosis factor (TNF) provide a communication network essential for coordinating multiple cell types into an effective host defense system against pathogens and malignant cells. The pathways controlled by the TNF superfamily differentiate both innate and adaptive immune cells and modulate stromal cells into microenvironments conducive to host defenses. Members of the TNF receptor superfamily activate diverse cellular functions from the production of type 1 interferons to the modulation of survival of antigen-activated T cells. Here, we focus attention on the subset of TNF superfamily receptors encoded in the immune response locus in chromosomal region 1p36. Recent studies have revealed that these receptors use diverse mechanisms to either co-stimulate or restrict immune responses. Translation of the fundamental mechanisms of TNF superfamily is leading to the design of therapeutics that can alter pathogenic processes in several autoimmune diseases or promote immunity to tumors.
Collapse
Affiliation(s)
- Lindsay K Ward-Kavanagh
- Infectious and Inflammatory Diseases Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Wai Wai Lin
- Infectious and Inflammatory Diseases Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - John R Šedý
- Infectious and Inflammatory Diseases Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Carl F Ware
- Infectious and Inflammatory Diseases Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
34
|
Abstract
One part of the human placenta in early pregnancy is particularly important for local immunity: the decidua basalis, which is transformed endometrium located at the site of embryo implantation . This placental bed tissue contains both maternal uterine immune cells, including decidual natural killer (NK) cells, the dominant leukocyte population exhibiting a unique phenotype, and fetal extravillous trophoblast which comes into direct contact with maternal decidual cells . To establish a successful placental development and healthy pregnancy outcome, the maternal immune system must tolerate paternal antigens expressed by trophoblast cells yet remain efficient for clearing any local pathogen infection. This review deals mainly with decidual NK cells. A key element, among others, to achieve such dual functions is the direct interaction between activating and inhibitory receptors expressed by decidual NK cells and their specific ligands presented by trophoblast or other decidual cells. Depending whether maternal decidual cells and trophoblast are infected by viruses, the balance between activating and inhibitory receptor signals mediated by decidual NK cell-trophoblast cross-talk results in tolerance (healthy pregnancy) or specific killing (pathogen-infected cells).
Collapse
Affiliation(s)
- Philippe Le Bouteiller
- INSERM U976, Université Paris Diderot, Sorbonne Paris Cité, Hôpital Saint-Louis, Equerre Bazin, 1, Avenue Claude Vellefaux, 75475 Paris Cedex 10, France
| | - Armand Bensussan
- INSERM U976, Université Paris Diderot, Sorbonne Paris Cité, Hôpital Saint-Louis, Equerre Bazin, 1, Avenue Claude Vellefaux, 75475 Paris Cedex 10, France
| |
Collapse
|
35
|
Kyaw T, Peter K, Li Y, Tipping P, Toh BH, Bobik A. Cytotoxic lymphocytes and atherosclerosis: significance, mechanisms and therapeutic challenges. Br J Pharmacol 2017; 174:3956-3972. [PMID: 28471481 DOI: 10.1111/bph.13845] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Revised: 04/02/2017] [Accepted: 04/24/2017] [Indexed: 02/06/2023] Open
Abstract
Cytotoxic lymphocytes encompass natural killer lymphocytes (cells) and cytotoxic T cells that include CD8+ T cells, natural killer (NK) T cells, γ, δ (γδ)-T cells and human CD4 + CD28- T cells. These cells play critical roles in inflammatory diseases and in controlling cancers and infections. Cytotoxic lymphocytes can be activated via a number of mechanisms that may involve dendritic cells, macrophages, cytokines or surface proteins on stressed cells. Upon activation, they secrete pro-inflammatory cytokines as well as anti-inflammatory cytokines, chemokines and cytotoxins to promote inflammation and the development of atherosclerotic lesions including vulnerable lesions, which are strongly implicated in myocardial infarctions and strokes. Here, we review the mechanisms that activate and regulate cytotoxic lymphocyte activity, including activating and inhibitory receptors, cytokines, chemokine receptors-chemokine systems utilized to home to inflamed lesions and cytotoxins and cytokines through which they affect other cells within lesions. We also examine their roles in human and mouse models of atherosclerosis and the mechanisms by which they exert their pathogenic effects. Finally, we discuss strategies for therapeutically targeting these cells to prevent the development of atherosclerotic lesions and vulnerable plaques and the challenge of developing highly targeted therapies that only minimally affect the body's immune system, avoiding the complications, such as increased susceptibility to infections, which are currently associated with many immunotherapies for autoimmune diseases. LINKED ARTICLES This article is part of a themed section on Targeting Inflammation to Reduce Cardiovascular Disease Risk. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.22/issuetoc and http://onlinelibrary.wiley.com/doi/10.1111/bcp.v82.4/issuetoc.
Collapse
Affiliation(s)
- Tin Kyaw
- Baker Heart and Diabetes Institute, Melbourne, Vic, Australia.,Department of Medicine, Monash University, Melbourne, Vic, Australia
| | - Karlheinz Peter
- Baker Heart and Diabetes Institute, Melbourne, Vic, Australia.,Department of Immunology, Monash University, Melbourne, Vic, Australia
| | - Yi Li
- Baker Heart and Diabetes Institute, Melbourne, Vic, Australia.,Department of Medicine, Monash University, Melbourne, Vic, Australia
| | - Peter Tipping
- Department of Medicine, Monash University, Melbourne, Vic, Australia
| | - Ban-Hock Toh
- Baker Heart and Diabetes Institute, Melbourne, Vic, Australia.,Department of Medicine, Monash University, Melbourne, Vic, Australia
| | - Alex Bobik
- Baker Heart and Diabetes Institute, Melbourne, Vic, Australia.,Department of Immunology, Monash University, Melbourne, Vic, Australia.,Department of Medicine, Monash University, Melbourne, Vic, Australia
| |
Collapse
|
36
|
Evidence for CD16a-Mediated NK Cell Stimulation in Antibody-Mediated Kidney Transplant Rejection. Transplantation 2017; 101:e102-e111. [PMID: 27906829 DOI: 10.1097/tp.0000000000001586] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND Natural killer (NK) cells localize in the microcirculation in antibody-mediated rejection (AMR) and have been postulated to be activated by donor-specific anti-HLA antibodies triggering their CD16a Fc receptors. However, direct evidence for NK cell CD16a triggering in AMR is lacking. We hypothesized that CD16a-inducible NK cell-selective transcripts would be expressed in human AMR biopsies and would offer evidence for CD16a triggering. METHODS We stimulated human NK cells through CD16a in vitro, characterized CD16a-inducible transcripts, and studied their expression in human kidney transplant biopsies with AMR and in an extended human cell panel to determine their selectivity. RESULTS In NK cells, CD16a stimulation induced increased expression of 276 transcripts (FC > 2x, false discovery rate < 0.05), including IFNG, TNF, CSF2, chemokines, such as CCL3, CCL4, and XCL1, and modulators of NK cell effector functions (TNFRSF9, CRTAM, CD160). Examination in an extended human cell panel revealed that CD160 and XCL1 were likely to be selective for NK cells in AMR. In biopsies, 8 of the top 30 CD16a-inducible transcripts were highly associated with AMR (P < 5 × 10): CCL4, CD160, CCL3, XCL1, CRTAM, FCRL3, STARD4, TNFRSF9. Other NK cell transcripts (eg, GNLY) were increased in AMR but not CD16a-inducible, their presence in AMR probably reflecting NK cell localization. CONCLUSIONS The association of CD16a-inducible NK cell-selective transcripts CD160 and XCL1 with biopsies with AMR provides evidence for NK cell CD16a activation in AMR. This raises the possibility of other CD16a-triggered effects that are not necessarily transcriptional, including NK localization and cytotoxicity.
Collapse
|
37
|
Expression and differential regulation of HLA-G isoforms in the retinal pigment epithelial cell line, ARPE-19. Hum Immunol 2017; 78:414-420. [DOI: 10.1016/j.humimm.2017.04.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 04/20/2017] [Accepted: 04/20/2017] [Indexed: 01/05/2023]
|
38
|
Del Rio ML, Bravo Moral AM, Fernandez-Renedo C, Buhler L, Perez-Simon JA, Chaloin O, Alvarez Nogal R, Fernandez-Caso M, Rodriguez-Barbosa JI. Modulation of cytotoxic responses by targeting CD160 prolongs skin graft survival across major histocompatibility class I barrier. Transl Res 2017; 181:83-95.e3. [PMID: 27702550 DOI: 10.1016/j.trsl.2016.09.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Revised: 08/23/2016] [Accepted: 09/08/2016] [Indexed: 11/26/2022]
Abstract
CD160 is a glycosylphosphatidylinositol-anchored protein of the immunoglobulin superfamily. It exhibits a pattern of expression coincident in humans and mice that is mainly restricted to cytotoxic cells and to all intestinal intraepithelial T lymphocytes. B- and T-lymphocyte attenuator (BTLA) and CD160 interact with cysteine-rich domain 1 of the extracellular region of Herpesvirus entry mediator (HVEM). CD160 engagement by HVEM can deliver inhibitory signals to a small subset of human CD4 T cells and attenuate its proliferation and cytokine secretion, but can also costimulate natural killer cells or intraepithelial lymphocytes. In turn, CD160 and BTLA can also function as agonist ligands being capable of costimulating T cells through membrane HVEM. Based on the restricted pattern of CD160 expression in cytotoxic cells, we postulated that CD160 may represent a suitable target for immune intervention in the setting of transplantation to modulate allogeneic cytotoxic responses. We demonstrated that in vivo administration of anti-CD160 antibody in combination with anti-CD40 L antibody to limit CD4 T-cell help modulated cytotoxic responses in a major histocompatibility complex class I mismatched model of allogeneic skin graft transplantation (bm1 donor to C57BL/6 recipient) and significantly prolonged graft survival. The implementation of this strategy in transplantation may reinforce current immunosuppression protocols and contribute to a better control of CD8 T-cell responses.
Collapse
Affiliation(s)
- Maria-Luisa Del Rio
- Transplantation Immunobiology Section, University of Leon and Castilla and Leon Regional Transplantation Coordination, Leon University Hospital, Leon, Spain.
| | - Ana Maria Bravo Moral
- Department of Veterinary Clinical Sciences, University of Santiago de Compostela, Veterinary Faculty, Lugo, Spain
| | - Carlos Fernandez-Renedo
- Transplantation Immunobiology Section, University of Leon and Castilla and Leon Regional Transplantation Coordination, Leon University Hospital, Leon, Spain
| | - Leo Buhler
- Visceral and Transplantation Surgery, Department of Surgery, University Hospitals of Geneva and Faculty of Medicine, Geneva, Switzerland
| | - Jose-Antonio Perez-Simon
- Department of Hematology, University Hospital Virgen del Rocio/Institute of Biomedicine (IBIS/CSIC), Sevilla, Spain
| | - Olivier Chaloin
- CNRS UPR 3572, IBMC, Immunopathologie et Chimie Thérapeutique, Strasbourg, France
| | - Rafael Alvarez Nogal
- Department of Molecular and Cell Biology, School of Biological Sciences, University of Leon, Leon, Spain
| | - Maximino Fernandez-Caso
- Department of Medicine, Surgery and Veterinary Anatomy, School of Veterinary Medicine, University of Leon, Leon, Spain
| | - Jose-Ignacio Rodriguez-Barbosa
- Transplantation Immunobiology Section, University of Leon and Castilla and Leon Regional Transplantation Coordination, Leon University Hospital, Leon, Spain.
| |
Collapse
|
39
|
Kovalenko EI, Streltsova MA. Adaptive features of natural killer cells, lymphocytes of innate immunity. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2017. [DOI: 10.1134/s1068162016060066] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
40
|
Zhang R, Ni F, Fu B, Wu Y, Sun R, Tian Z, Wei H. A long noncoding RNA positively regulates CD56 in human natural killer cells. Oncotarget 2016; 7:72546-72558. [PMID: 27713137 PMCID: PMC5341928 DOI: 10.18632/oncotarget.12466] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 09/28/2016] [Indexed: 02/06/2023] Open
Abstract
Natural killer (NK) cells are innate immune lymphocytes that play critical roles in host defense against viral infection and surveillance against malignant transformation. Long noncoding RNAs (lncRNAs) are important immune system regulators. Here, we analyzed human primary lymphocyte lncRNA expression profiles to identify NK-lncRNA signatures. We detected numerous novel NK-specific lncRNAs with potential roles in regulating human NK cell differentiation and function. Expression of lnc-CD56, an NK-specific lncRNA, was positively correlated with that of CD56, a classical human NK cell surface marker. We showed that lnc-CD56 may function as a positive regulator of CD56 in primary human NK cells and differentiated NK cells from human CD34+ hematopoietic progenitor cells. Our data provide an annotated human NK cell lncRNA expression catalog and demonstrate a key role for lncRNAs in NK cell biology.
Collapse
Affiliation(s)
- Ruya Zhang
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Science and Medical Center, University of Science and Technology of China, Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, China
| | - Fang Ni
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Science and Medical Center, University of Science and Technology of China, Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, China
- Department of Pathophysiology, Anhui Medical University, Hefei, Anhui, China
| | - Binqing Fu
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Science and Medical Center, University of Science and Technology of China, Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, China
| | - Yang Wu
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Science and Medical Center, University of Science and Technology of China, Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, China
| | - Rui Sun
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Science and Medical Center, University of Science and Technology of China, Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, China
| | - Zhigang Tian
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Science and Medical Center, University of Science and Technology of China, Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, China
| | - Haiming Wei
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Science and Medical Center, University of Science and Technology of China, Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, China
| |
Collapse
|
41
|
Belkina AC, Snyder-Cappione JE. OMIP-037: 16-color panel to measure inhibitory receptor signatures from multiple human immune cell subsets. Cytometry A 2016; 91:175-179. [PMID: 27706900 DOI: 10.1002/cyto.a.22983] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 08/24/2016] [Accepted: 08/31/2016] [Indexed: 12/13/2022]
Affiliation(s)
- Anna C Belkina
- Flow Cytometry Core Facility and the Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts
| | - Jennifer E Snyder-Cappione
- Flow Cytometry Core Facility and the Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts
| |
Collapse
|
42
|
Cellulose alters the expression of nuclear factor kappa B-related genes and Toll-like receptor-related genes in human peripheral blood mononuclear cells. J Funct Foods 2015. [DOI: 10.1016/j.jff.2015.08.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
43
|
Almestrand S, Wang X, Jeppsson-Ahlberg Å, Nordgren M, Flygare J, Christensson B, Rössner S, Sander B. Influence of rimonabant treatment on peripheral blood mononuclear cells; flow cytometry analysis and gene expression profiling. PeerJ 2015; 3:e1056. [PMID: 26157624 PMCID: PMC4493638 DOI: 10.7717/peerj.1056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 06/05/2015] [Indexed: 01/28/2023] Open
Abstract
The cannabinoid receptor type 1 (CB1) antagonist rimonabant has been used as treatment for obesity. In addition, anti-proliferative effects on mitogen-activated leukocytes have been demonstrated in vitro. We have previously shown that rimonabant (SR141716A) induces cell death in ex vivo isolated malignant lymphomas with high expression of CB1 receptors. Since CB1 targeting may be part of a future lymphoma therapy, it was of interest to investigate possible effects on peripheral blood mononuclear cells (PBMC) in patients treated with rimonabant. We therefore evaluated leukocyte subsets by 6 color flow cytometry in eight patients before and at treatment with rimonabant for 4 weeks. Whole-transcript gene expression profiling in PBMC before and at 4 weeks of rimonabant treatment was done using Affymetrix Human Gene 1.0 ST Arrays. Our data show no significant changes of monocytes, B cells, total T cells or T cell subsets in PBMC during treatment with rimonabant. There was a small but significant increase in CD3-, CD16+ and/or CD56+ cells after rimonabant therapy. Gene expression analysis detected significant changes in expression of genes associated with innate immunity, cell death and metabolism. The present study shows that normal monocytes and leukocyte subsets in blood remain rather constant during rimonabant treatment. This is in contrast to the induction of cell death previously observed in CB1 expressing lymphoma cells in response to treatment with rimonabant in vitro. These differential effects observed on normal and malignant lymphoid cells warrant investigation of CB1 targeting as a potential lymphoma treatment.
Collapse
Affiliation(s)
- Stefan Almestrand
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet and Karolinska University Hospital Huddinge , Stockholm , Sweden
| | - Xiao Wang
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet and Karolinska University Hospital Huddinge , Stockholm , Sweden
| | - Åsa Jeppsson-Ahlberg
- Pathology/Cytology, Karolinska University Hospital Huddinge , Stockholm , Sweden
| | - Marcus Nordgren
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet and Karolinska University Hospital Huddinge , Stockholm , Sweden
| | - Jenny Flygare
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet and Karolinska University Hospital Huddinge , Stockholm , Sweden
| | - Birger Christensson
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet and Karolinska University Hospital Huddinge , Stockholm , Sweden
| | - Stephan Rössner
- Department of Medicine, Karolinska University Hospital Huddinge , Stockholm , Sweden
| | - Birgitta Sander
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet and Karolinska University Hospital Huddinge , Stockholm , Sweden
| |
Collapse
|
44
|
Zuo J, Shan Z, Zhou L, Yu J, Liu X, Gao Y. Increased CD160 expression on circulating natural killer cells in atherogenesis. J Transl Med 2015; 13:188. [PMID: 26071079 PMCID: PMC4467674 DOI: 10.1186/s12967-015-0564-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 06/03/2015] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Atherosclerosis (AS) presents characteristic of a chronic inflammatory disease in which both adaptive and innate immune cells play roles. Accumulating evidence has showed the impairment of natural killer (NK) cells in atherosclerosis, however, the mechanisms of this impairment remain unclear. In this study, we investigated the expression of CD160 on NK cells and assessed its pathological roles in NK loss during atherogenesis. METHODS CD160 expression on NK cells was measured in 49 AS patients and 41 healthy controls (HC) by flow cytometry, their inflammatory cytokine levels in sera were determined by ELSIA, and the effect of CD160 engagement on NK cells was evaluated by in vitro culture experiments. RESULTS Compared to HC, AS patients had a significantly increased CD160 expression on peripheral NK cells and concomitantly decreased peripheral NK cell number, and increased CD160 expression was positively related to the levels of serum lipids and IFN-γ, TNF-α and IL-6 inflammation cytokines, which all are risk factors for atherogenesis, and inversely correlated with peripheral NK cell number. Furthermore, engagement of CD160 receptor on NK cells from AS patients triggers a significantly increased production of inflammation cytokines and subsequent NK cell apoptosis, and blockade of TNF-α prevented the increased apoptosis of NK cells from AS patients after CD160 engagement, indicating a critical role of TNF-α in mediating NK cell loss by CD160 engagement. RESULTS Our results provide evidence that elevated CD160 expression on NK cells plays an important role in NK cell loss in atherosclerosis. The increased CD160 expression on NK cells might be used as an indicator for disease progression.
Collapse
Affiliation(s)
- Jin Zuo
- Department of Cardiology, Navy General Hospital of Chinese PLA, Beijing, 100863, China.
| | - Zhaoliang Shan
- Department of Cardiology, General Hospital of Chinese PLA, Beijing, 100853, China.
| | - Lin Zhou
- Department of Interventional Radiology, 302 Hospital of Chinese PLA, Beijing, 100039, China.
| | - Jian Yu
- Center of Health Examination, Navy General Hospital of Chinese PLA, Beijing, 100048, China.
| | - Xiaopeng Liu
- Center of Health Examination, Navy General Hospital of Chinese PLA, Beijing, 100048, China.
| | - Yuan Gao
- Department of Cardiology, Navy General Hospital of Chinese PLA, Beijing, 100863, China.
| |
Collapse
|
45
|
Venner JM, Hidalgo LG, Famulski KS, Chang J, Halloran PF. The molecular landscape of antibody-mediated kidney transplant rejection: evidence for NK involvement through CD16a Fc receptors. Am J Transplant 2015; 15:1336-48. [PMID: 25787894 DOI: 10.1111/ajt.13115] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 10/31/2014] [Accepted: 11/20/2014] [Indexed: 01/25/2023]
Abstract
The recent recognition that antibody-mediated rejection (ABMR) is the major cause of kidney transplant loss creates strong interest in its pathogenesis. We used microarray analysis of kidney transplant biopsies to identify the changes in pure ABMR. We found that the ABMR transcript changes in the initial Discovery Set were strongly conserved in a subsequent Validation Set. In the Combined Set of 703 biopsies, 2603 transcripts were significantly changed (FDR < 0.05) in ABMR versus all other biopsies. In cultured cells, the transcripts strongly associated with ABMR were expressed in endothelial cells, e.g. cadherins CDH5 and CDH13; IFNG-treated endothelial cells, e.g. phospholipase PLA1A and chemokine CXCL11; or NK cells, e.g. cytotoxicity molecules granulysin (GNLY) and FGFBP2. Other ABMR transcripts were expressed in normal kidney but not cell lines, either increased e.g. Duffy chemokine receptor (DARC) or decreased e.g. sclerostin (SOST). Pathway analysis of ABMR transcripts identified angiogenesis, with roles for angiopoietin and vascular endothelial growth factors; leukocyte-endothelial interactions; and NK signaling, including evidence for CD16a Fc receptor signaling elements shared with T cells. These data support a model of ABMR involving injury-repair in the microcirculation induced by cognate recognition involving antibody and CD16a, triggering IFNG release and antibody-dependent NK cell-mediated cytotoxicity.
Collapse
Affiliation(s)
- J M Venner
- Alberta Transplant Applied Genomics Centre, Edmonton, Alberta, Canada; Department of Medicine, Division of Nephrology and Transplant Immunology, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | |
Collapse
|
46
|
Gras Navarro A, Björklund AT, Chekenya M. Therapeutic potential and challenges of natural killer cells in treatment of solid tumors. Front Immunol 2015; 6:202. [PMID: 25972872 PMCID: PMC4413815 DOI: 10.3389/fimmu.2015.00202] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 04/14/2015] [Indexed: 12/22/2022] Open
Abstract
Natural killer (NK) cells are innate lymphoid cells that hold tremendous potential for effective immunotherapy for a broad range of cancers. Due to the mode of NK cell killing, requiring one-to-one target engagement and site-directed release of cytolytic granules, the therapeutic potential of NK cells has been most extensively explored in hematological malignancies. However, their ability to precisely kill antibody coated cells, cancer stem cells, and genotoxically altered cells, while maintaining tolerance to healthy cells makes them appealing therapeutic effectors for all cancer forms, including metastases. Due to their release of pro-inflammatory cytokines, NK cells may potently reverse the anti-inflammatory tumor microenvironment (TME) and augment adaptive immune responses by promoting differentiation, activation, and/or recruitment of accessory immune cells to sites of malignancy. Nevertheless, integrated and coordinated mechanisms of subversion of NK cell activity against the tumor and its microenvironment exist. Although our understanding of the receptor ligand interactions that regulate NK cell functionality has evolved remarkably, the diversity of ligands and receptors is complex, as is their mechanistic foundations in regulating NK cell function. In this article, we review the literature and highlight how the TME manipulates the NK cell phenotypes, genotypes, and tropism to evade tumor recognition and elimination. We discuss counter strategies that may be adopted to augment the efficacy of NK cell anti-tumor surveillance, the clinical trials that have been undertaken so far in solid malignancies, critically weighing the challenges and opportunities with this approach.
Collapse
Affiliation(s)
| | - Andreas T Björklund
- Karolinska University Hospital, Hematology Center and Karolinska Institute , Stockholm , Sweden
| | - Martha Chekenya
- Department of Biomedicine, University of Bergen , Bergen , Norway
| |
Collapse
|
47
|
Šedý J, Bekiaris V, Ware CF. Tumor necrosis factor superfamily in innate immunity and inflammation. Cold Spring Harb Perspect Biol 2014; 7:a016279. [PMID: 25524549 DOI: 10.1101/cshperspect.a016279] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The tumor necrosis factor superfamily (TNFSF) and its corresponding receptor superfamily (TNFRSF) form communication pathways required for developmental, homeostatic, and stimulus-responsive processes in vivo. Although this receptor-ligand system operates between many different cell types and organ systems, many of these proteins play specific roles in immune system function. The TNFSF and TNFRSF proteins lymphotoxins, LIGHT (homologous to lymphotoxins, exhibits inducible expression, and competes with HSV glycoprotein D for herpes virus entry mediator [HVEM], a receptor expressed by T lymphocytes), lymphotoxin-β receptor (LT-βR), and HVEM are used by embryonic and adult innate lymphocytes to promote the development and homeostasis of lymphoid organs. Lymphotoxin-expressing innate-acting B cells construct microenvironments in lymphoid organs that restrict pathogen spread and initiate interferon defenses. Recent results illustrate how the communication networks formed among these cytokines and the coreceptors B and T lymphocyte attenuator (BTLA) and CD160 both inhibit and activate innate lymphoid cells (ILCs), innate γδ T cells, and natural killer (NK) cells. Understanding the role of TNFSF/TNFRSF and interacting proteins in innate cells will likely reveal avenues for future therapeutics for human disease.
Collapse
Affiliation(s)
- John Šedý
- Laboratory of Molecular Immunology, Infectious and Inflammatory Disease Center, Sanford Burnham Medical Research Institute, La Jolla, California 92037
| | - Vasileios Bekiaris
- Laboratory of Molecular Immunology, Infectious and Inflammatory Disease Center, Sanford Burnham Medical Research Institute, La Jolla, California 92037
| | - Carl F Ware
- Laboratory of Molecular Immunology, Infectious and Inflammatory Disease Center, Sanford Burnham Medical Research Institute, La Jolla, California 92037
| |
Collapse
|
48
|
Suviolahti E, Ge S, Nast CC, Mirocha J, Karasyov A, White M, Jordan SC, Toyoda M. Genes associated with antibody-dependent cell activation are overexpressed in renal biopsies from patients with antibody-mediated rejection. Transpl Immunol 2014; 32:9-17. [PMID: 25449536 DOI: 10.1016/j.trim.2014.11.215] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 10/13/2014] [Accepted: 11/05/2014] [Indexed: 10/24/2022]
Abstract
INTRODUCTION Antibody-mediated rejection (ABMR) is dependent on complement activating donor-specific anti-HLA antibodies (DSA). This is commonly detected by C4d deposition in allografts. However, recent data define a C4d negative ABMR phenotype suggesting a role for complement-independent DSA injury, antibody-dependent cellular cytotoxicity (ADCC). METHODS Here, we established an in vitro ADCC model that identified human ADCC-activated genes using microarray analysis. We subsequently interrogated renal allograft biopsies from patients with ABMR and controls for mRNA expression of the ADCC-activated gene set. RESULTS We identified 13 ADCC-activated genes. Six gene expression assays including 8 of the 13 genes (CCL3, CCL4/CCL4L1/CCL4L2, CD160, IFNG, NR4A3 and XCL1/XCL2) were analyzed in 127 kidney biopsies obtained from HLA-sensitized (HS), non-HS patients and control individuals. Most ADCC-activated genes showed significantly higher expression in the transplant samples compared to the controls (p<0.0005). The gene expression levels were significantly higher in HS and non-HS transplant patients who developed ABMR compared to those who did not (p=0.04-0.002). There was no difference in the gene expression levels between C4d positive and negative ABMR (p=0.26-0.99). Samples from high PRA (>80%) or positive DSA patients showed higher gene expression levels for the ADCC-activated genes compared to low PRA (<80%) and negative DSA patients (p=0.04-0.001). CONCLUSION ADCC pathways are active in transplant patients with ABMR, and likely mediate allograft injury, providing a potential mechanism for C4d negative ABMR.
Collapse
Affiliation(s)
- Elina Suviolahti
- Transplant Immunology Laboratory, Comprehensive Transplant Center, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, USA.
| | - Shili Ge
- Transplant Immunology Laboratory, Comprehensive Transplant Center, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, USA
| | - Cynthia C Nast
- Department of Pathology, Cedars-Sinai Medical Center/UCLA School of Medicine, 8700 Beverly Blvd., Los Angeles, CA 90048, USA
| | - James Mirocha
- Biostatistics Core, Research Institute & General Clinical Research Center & Cardiothoracic Surgery, Cedars-Sinai Medical Center, 8797 Beverly Blvd., Suite 215, Los Angeles, CA 90048, USA
| | - Artur Karasyov
- Transplant Immunology Laboratory, Comprehensive Transplant Center, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, USA
| | - Molly White
- Transplant Immunology Laboratory, Comprehensive Transplant Center, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, USA
| | - Stanley C Jordan
- Comprehensive Transplant Center, Cedars-Sinai Medical Center/UCLA School of Medicine, 8700 Beverly Blvd., Los Angeles, CA 90048, USA
| | - Mieko Toyoda
- Transplant Immunology Laboratory, Comprehensive Transplant Center, Cedars-Sinai Medical Center/UCLA School of Medicine, 8700 Beverly Blvd., Los Angeles, CA 90048, USA
| |
Collapse
|
49
|
Wallace AE, Whitley GS, Thilaganathan B, Cartwright JE. Decidual natural killer cell receptor expression is altered in pregnancies with impaired vascular remodeling and a higher risk of pre-eclampsia. J Leukoc Biol 2014; 97:79-86. [PMID: 25381387 PMCID: PMC4377829 DOI: 10.1189/jlb.2a0614-282r] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
HLA-interacting cell surface receptors are altered on decidual natural killer cells
in pregnancy, potentially altering interactions with fetal cells via chemokine
expression. During pregnancy, a specialized type of NK cell accumulates in the lining of the
uterus (decidua) and interacts with semiallogeneic fetal trophoblast cells. dNK cells
are functionally and phenotypically distinct from PB NK and are implicated in
regulation of trophoblast transformation of the uterine spiral arteries, which if
inadequately performed, can result in pregnancy disorders. Here, we have used uterine
artery Doppler RI in the first trimester of pregnancy as a proxy measure of the
extent of transformation of the spiral arteries to identify pregnancies with a high
RI, indicative of impaired spiral artery remodeling. We have used flow cytometry to
examine dNK cells isolated from these pregnancies compared with those from
pregnancies with a normal RI. We report a reduction in the proportion of dNK cells
from high RI pregnancies expressing KIR2DL/S1,3,5 and LILRB1, receptors for HLA-C and
HLA-G on trophoblast. Decreased LILRB1 expression in the decidua was examined by
receptor blocking in trophoblast coculture and altered dNK expression of the
cytokines CXCL10 and TNF-α, which regulate trophoblast
behavior. These results indicate that dNK cells from high RI pregnancies may display
altered interactions with trophoblast via decreased expression of HLA-binding
cell-surface receptors, impacting on successful transformation of the uterus for
pregnancy.
Collapse
Affiliation(s)
- Alison E Wallace
- Institute of Cardiovascular and Cell Sciences, St George's University of London, United Kingdom; and
| | - Guy S Whitley
- Institute of Cardiovascular and Cell Sciences, St George's University of London, United Kingdom; and
| | | | - Judith E Cartwright
- Institute of Cardiovascular and Cell Sciences, St George's University of London, United Kingdom; and
| |
Collapse
|
50
|
CD160 expression defines a uniquely exhausted subset of T lymphocytes in HTLV-1 infection. Biochem Biophys Res Commun 2014; 453:379-84. [PMID: 25277889 DOI: 10.1016/j.bbrc.2014.09.084] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 09/21/2014] [Indexed: 01/04/2023]
Abstract
HTLV-1 infection is a life-long retroviral infection. Chronic viral antigenic stimulation induces persistent infection which results in a clinically asymptomatic carrier state. Only a minor proportion of infected individuals develop adult T cell leukemia/lymphoma (ATLL) or HTLV-1-associated myelopathy/tropical spastic myelopathy (HAM/TSP). This is dependent on a balance of host and genetic factors. CD8+ cytotoxic T lymphocyte function is important in the immune response against viral infection; however, the contribution of CD160 receptor associated with CD8+ T lymphocytes is unclear. Thus, we sought to decipher its role on CTL function in HTLV-1 infection. Here, we report high frequencies of CD160 on CD8+ T cells, with significantly higher levels on HTLV-1 specific CD8+ T cells. Intercepting the CD160 pathway via blockade of the receptor or its ligand, herpes virus entry mediator (HVEM) resulted in improved perforin production and CD107a degranulation of HTLV-1 specific CD8+ T cells. Analysis of the CD160-expressing CD8+ cells demonstrated a unique subset associated with a highly differentiated effector memory based on CD45RA and CCR7 co-expression, increased expression of inhibitory molecules, 2B4 and PD1. Altogether, these results suggest a role for CD160/HVEM pathway in regulating immune response against HTLV-1 infection which may prove promising in the development of immune therapies for the treatment of HTLV-1 infection and other associated disorders.
Collapse
|