1
|
Suarez-Pajes E, Marcelino-Rodriguez I, Hernández Brito E, Gonzalez-Barbuzano S, Ramirez-Falcon M, Tosco-Herrera E, Rubio-Rodríguez LA, Briones ML, Rajas O, Borderías L, Ferreres J, Payeras A, Lorente L, Aspa J, Lorenzo Salazar JM, Valencia-Gallardo JM, Carbonell N, Freixinet JL, Rodríguez de Castro F, Solé Violán J, Flores C, Rodríguez-Gallego C. A genome-wide association study of adults with community-acquired pneumonia. Respir Res 2024; 25:374. [PMID: 39415140 PMCID: PMC11484206 DOI: 10.1186/s12931-024-03009-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 10/08/2024] [Indexed: 10/18/2024] Open
Abstract
BACKGROUND Community-acquired pneumonia (CAP) is associated with high morbidity and hospitalization rate. In infectious diseases, host genetics plays a critical role in susceptibility and immune response, and the immune pathways involved are highly dependent on the microorganism and its route of infection. Here we aimed to identify genetic risk loci for CAP using a case-control genome-wide association study (GWAS). METHODS We performed a GWAS on 3,765 Spanish individuals, including 257 adult patients hospitalized with CAP and 3,508 population controls. Pneumococcal CAP was documented in 30% of patients; the remaining 70% were selected among patients with unidentified microbiological etiology. We tested 7,6 million imputed genotypes using logistic regressions. UK Biobank GWAS of bacterial pneumonia were used for results validation. Subsequently, we prioritized genes and likely causal variants based on Bayesian fine mapping and functional evidence. Imputation and association of classical HLA alleles and amino acids were also conducted. RESULTS Six independent sentinel variants reached the genome-wide significance (p < 5 × 10-8), three on chromosome 6p21.32, and one for each of the chromosomes 4q28.2, 11p12, and 20q11.22. Only one variant at 6p21.32 was validated in independent GWAS of bacterial and pneumococcal pneumonia. Our analyses prioritized C4orf33 on 4q28.2, TAPBP on 6p21.32, and ZNF341 on 20q11.22. Interestingly, genetic defects of TAPBP and ZNF341 are previously known inborn errors of immunity predisposing to bacterial pneumonia, including pneumococcus and Haemophilus influenzae. Associations were all non-significant for the classical HLA alleles. CONCLUSIONS We completed a GWAS of CAP and identified four novel risk loci involved in CAP susceptibility.
Collapse
Affiliation(s)
- Eva Suarez-Pajes
- Research Unit, Hospital Universitario Nuestra Señora de Candelaria, Instituto de Investigación Sanitaria de Canarias (IISC), Santa Cruz de Tenerife, Spain
| | - Itahisa Marcelino-Rodriguez
- Research Unit, Hospital Universitario Nuestra Señora de Candelaria, Instituto de Investigación Sanitaria de Canarias (IISC), Santa Cruz de Tenerife, Spain
- Area of Preventive Medicine and Public Health, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
| | - Elisa Hernández Brito
- Department of Immunology, Hospital Universitario de Gran Canaria Dr. Negrín, Las Palmas de Gran Canaria, Spain
| | - Silvia Gonzalez-Barbuzano
- Research Unit, Hospital Universitario Nuestra Señora de Candelaria, Instituto de Investigación Sanitaria de Canarias (IISC), Santa Cruz de Tenerife, Spain
| | - Melody Ramirez-Falcon
- Research Unit, Hospital Universitario Nuestra Señora de Candelaria, Instituto de Investigación Sanitaria de Canarias (IISC), Santa Cruz de Tenerife, Spain
| | - Eva Tosco-Herrera
- Research Unit, Hospital Universitario Nuestra Señora de Candelaria, Instituto de Investigación Sanitaria de Canarias (IISC), Santa Cruz de Tenerife, Spain
| | - Luis A Rubio-Rodríguez
- Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), Santa Cruz de Tenerife, Spain
| | - María Luisa Briones
- Department of Respiratory Diseases, Hospital Clínico y Universitario de Valencia, Valencia, Spain
| | - Olga Rajas
- Department of Respiratory Diseases, Hospital Universitario de la Princesa, Madrid, Spain
| | - Luis Borderías
- Department of Respiratory Diseases, Hospital Universitario San Jorge, Huesca, Spain
| | - Jose Ferreres
- Intensive Care Unit, Hospital Clínico de Valencia, Valencia, Spain
- INCLIVA Biomedical Research Institute, Valencia, Spain
| | - Antoni Payeras
- Department of Internal Medicine, Hospital Son Llatzer, Palma de Mallorca, Spain
| | - Leonardo Lorente
- Intensive Care Unit, Hospital Universitario de Canarias, San Cristóbal de La Laguna, Spain
| | - Javier Aspa
- Department of Respiratory Diseases, Hospital Universitario de la Princesa, Madrid, Spain
| | - Jose M Lorenzo Salazar
- Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), Santa Cruz de Tenerife, Spain
| | - José Manuel Valencia-Gallardo
- Department of Respiratory Diseases, Hospital Universitario de Gran Canaria Dr. Negrín, Las Palmas de Gran Canaria, Spain
| | - Nieves Carbonell
- Intensive Care Unit, Hospital Clínico de Valencia, Valencia, Spain
- INCLIVA Biomedical Research Institute, Valencia, Spain
| | - Jorge L Freixinet
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Felipe Rodríguez de Castro
- Department of Respiratory Diseases, Hospital Universitario de Gran Canaria Dr. Negrín, Las Palmas de Gran Canaria, Spain
- Department of Medical and Surgical Sciences, School of Medicine, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Jordi Solé Violán
- Department of Clinical Sciences, University Fernando Pessoa Canarias, Las Palmas de Gran Canaria, Spain
- Critical Care Unit, Hospital Universitario de Gran Canaria Dr. Negrín, Las Palmas de Gran Canaria, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Carlos Flores
- Research Unit, Hospital Universitario Nuestra Señora de Candelaria, Instituto de Investigación Sanitaria de Canarias (IISC), Santa Cruz de Tenerife, Spain.
- Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), Santa Cruz de Tenerife, Spain.
- Department of Clinical Sciences, University Fernando Pessoa Canarias, Las Palmas de Gran Canaria, Spain.
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain.
| | - Carlos Rodríguez-Gallego
- Department of Immunology, Hospital Universitario de Gran Canaria Dr. Negrín, Las Palmas de Gran Canaria, Spain.
- Department of Medical and Surgical Sciences, School of Medicine, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain.
- Department of Clinical Sciences, University Fernando Pessoa Canarias, Las Palmas de Gran Canaria, Spain.
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
2
|
Lu X, Hu Z, Qin Z, Huang H, Yang T, Yi M, Jia K. IFNh and IRF9 influence the transcription of MHCII mediated by IFNγ to maintain immune balance in sea perch lateolabrax japonicus. FISH & SHELLFISH IMMUNOLOGY 2024; 153:109857. [PMID: 39182707 DOI: 10.1016/j.fsi.2024.109857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/16/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
The major histocompatibility complex class II (MHCII) molecules are crucial elements of the adaptive immune system, essential for orchestrating immune responses against foreign pathogens. However, excessive expression of MHCII can disrupt normal physiological functions. Therefore, the host employs various mechanisms to regulate MHCII expression and maintain immune homeostasis. Despite this importance, limited studies have explored the negative regulation of MHCII transcription in bony fish. In this study, we found that interferon h (IFNh), a subtype of type I IFN in sea perch Lateolabrax japonicus, could inhibit the activation of IFNγ induced-MHCII expression by modulating the transcription of the class II major histocompatibility complex transactivator (CIITA). Transcriptome analysis revealed 57 up-regulated and 69 down-regulated genes in cells treated with both IFNγ and IFNh compared to those treated with IFNγ alone. To maintain cellular homeostasis, interferon regulatory factor 9 (IRF9) was up-regulated following IFNγ stimulation, thereby preventing MHCII overexpression. Mechanistically, IRF9 bound to the CIITA promoter and suppressed its expression activated by IRF1. Furthermore, IRF9 inhibited the promoter activity of both MHCII-α and MHCII-β induced by CIITA. Our findings highlight the roles of IFNh and IRF9 as suppressors regulating MHCII expression at different hierarchical levels. This study provides insights into the intricate regulation of antigen presentation and the foundation for further exploration of the interaction mechanisms between aquatic virus and fish.
Collapse
Affiliation(s)
- Xiaobing Lu
- State Key Laboratory of Biocontrol, School of Marine Sciences, Sun Yat-sen University, Guangzhou, Guangdong, 519082, China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangzhou, Guangdong, 519082, China
| | - Zhe Hu
- State Key Laboratory of Biocontrol, School of Marine Sciences, Sun Yat-sen University, Guangzhou, Guangdong, 519082, China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangzhou, Guangdong, 519082, China
| | - Ziling Qin
- State Key Laboratory of Biocontrol, School of Marine Sciences, Sun Yat-sen University, Guangzhou, Guangdong, 519082, China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangzhou, Guangdong, 519082, China
| | - Hao Huang
- State Key Laboratory of Biocontrol, School of Marine Sciences, Sun Yat-sen University, Guangzhou, Guangdong, 519082, China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangzhou, Guangdong, 519082, China
| | - Taoran Yang
- State Key Laboratory of Biocontrol, School of Marine Sciences, Sun Yat-sen University, Guangzhou, Guangdong, 519082, China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangzhou, Guangdong, 519082, China
| | - Meisheng Yi
- State Key Laboratory of Biocontrol, School of Marine Sciences, Sun Yat-sen University, Guangzhou, Guangdong, 519082, China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangzhou, Guangdong, 519082, China.
| | - Kuntong Jia
- State Key Laboratory of Biocontrol, School of Marine Sciences, Sun Yat-sen University, Guangzhou, Guangdong, 519082, China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangzhou, Guangdong, 519082, China.
| |
Collapse
|
3
|
Samarkandy S, Khafaji R, Alshareef A. Type I bare lymphocyte syndrome with novel TAP1 and TAP2 pathogenic variants. JAAD Case Rep 2024; 51:22-25. [PMID: 39345282 PMCID: PMC11437240 DOI: 10.1016/j.jdcr.2024.05.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024] Open
Affiliation(s)
- Sahal Samarkandy
- Division of Dermatology, Department of Medicine, King Abdulaziz Medical City, Jeddah, Saudi Arabia
- Medical Genomics Research Department, King Abdullah International Medical Research Center, Ministry of National Guard - Health Affairs, Jeddah, Saudi Arabia
| | - Randa Khafaji
- Medicine Department, King Abdullah Medical Complex, Jeddah, Saudi Arabia
| | - Alhusain Alshareef
- Division of Dermatology, Department of Medicine, King Abdulaziz Medical City, Jeddah, Saudi Arabia
- Medical Genomics Research Department, King Abdullah International Medical Research Center, Ministry of National Guard - Health Affairs, Jeddah, Saudi Arabia
| |
Collapse
|
4
|
Smith CT, Wang Z, Lewis JS. Engineering antigen-presenting cells for immunotherapy of autoimmunity. Adv Drug Deliv Rev 2024; 210:115329. [PMID: 38729265 DOI: 10.1016/j.addr.2024.115329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 03/05/2024] [Accepted: 05/03/2024] [Indexed: 05/12/2024]
Abstract
Autoimmune diseases are burdensome conditions that affect a significant fraction of the global population. The hallmark of autoimmune disease is a host's immune system being licensed to attack its tissues based on specific antigens. There are no cures for autoimmune diseases. The current clinical standard for treating autoimmune diseases is the administration of immunosuppressants, which weaken the immune system and reduce auto-inflammatory responses. However, people living with autoimmune diseases are subject to toxicity, fail to mount a sufficient immune response to protect against pathogens, and are more likely to develop infections. Therefore, there is a concerted effort to develop more effective means of targeting immunomodulatory therapies to antigen-presenting cells, which are involved in modulating the immune responses to specific antigens. In this review, we highlight approaches that are currently in development to target antigen-presenting cells and improve therapeutic outcomes in autoimmune diseases.
Collapse
Affiliation(s)
- Clinton T Smith
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Zhenyu Wang
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Jamal S Lewis
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA; Department of Biomedical Engineering, University of California, Davis, CA 95616, USA.
| |
Collapse
|
5
|
Justiz-Vaillant AA, Gopaul D, Akpaka PE, Soodeen S, Arozarena Fundora R. Severe Combined Immunodeficiency-Classification, Microbiology Association and Treatment. Microorganisms 2023; 11:1589. [PMID: 37375091 DOI: 10.3390/microorganisms11061589] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/01/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Severe combined immunodeficiency (SCID) is a primary inherited immunodeficiency disease that presents before the age of three months and can be fatal. It is usually due to opportunistic infections caused by bacteria, viruses, fungi, and protozoa resulting in a decrease in number and impairment in the function of T and B cells. Autosomal, X-linked, and sporadic forms exist. Evidence of recurrent opportunistic infections and lymphopenia very early in life should prompt immunological investigation and suspicion of this rare disorder. Adequate stem cell transplantation is the treatment of choice. This review aimed to provide a comprehensive approach to the microorganisms associated with severe combined immunodeficiency (SCID) and its management. We describe SCID as a syndrome and summarize the different microorganisms that affect children and how they can be investigated and treated.
Collapse
Affiliation(s)
- Angel A Justiz-Vaillant
- Department of Paraclinical Sciences, Faculty of Medical Sciences, The University of the West Indies, St. Augustine, Trinidad and Tobago
| | - Darren Gopaul
- Department of Internal Medicine, Port of Spain General Hospital, The University of the West Indies, St. Augustine, Trinidad and Tobago
| | - Patrick Eberechi Akpaka
- Department of Paraclinical Sciences, Faculty of Medical Sciences, The University of the West Indies, St. Augustine, Trinidad and Tobago
- Eric Williams Medical Sciences Complex, North Central Regional Health Authority, Champs Fleurs, Trinidad and Tobago
| | - Sachin Soodeen
- Department of Paraclinical Sciences, Faculty of Medical Sciences, The University of the West Indies, St. Augustine, Trinidad and Tobago
| | - Rodolfo Arozarena Fundora
- Eric Williams Medical Sciences Complex, North Central Regional Health Authority, Champs Fleurs, Trinidad and Tobago
- Department of Clinical and Surgical Sciences, Faculty of Medical Sciences, The University of the West Indies, St. Augustine, Trinidad and Tobago
| |
Collapse
|
6
|
Infections in Inborn Errors of Immunity with Combined Immune Deficiency: A Review. Pathogens 2023; 12:pathogens12020272. [PMID: 36839544 PMCID: PMC9958715 DOI: 10.3390/pathogens12020272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/13/2023] [Accepted: 02/04/2023] [Indexed: 02/10/2023] Open
Abstract
Enhanced susceptibility to microbes, often resulting in severe, intractable and frequent infections due to usually innocuous organisms at uncommon sites, is the most striking feature in individuals with an inborn error of immunity. In this narrative review, based on the International Union of Immunological Societies' 2022 (IUIS 2022) Update on phenotypic classification of human inborn errors of immunity, the focus is on commonly encountered Combined Immunodeficiency Disorders (CIDs) with susceptibility to infections. Combined immune deficiency disorders are usually commensurate with survival beyond infancy unlike Severe Combined Immune Deficiency (SCID) and are often associated with clinical features of a syndromic nature. Defective humoral and cellular immune responses result in susceptibility to a broad range of microbial infections. Although disease onset is usually in early childhood, mild defects may present in late childhood or even in adulthood. A precise diagnosis is imperative not only for determining management strategies, but also for providing accurate genetic counseling, including prenatal diagnosis, and also in deciding empiric treatment of infections upfront before investigation reports are available.
Collapse
|
7
|
Delayed Diagnosis of Chronic Necrotizing Granulomatous Skin Lesions due to TAP2 Deficiency. J Clin Immunol 2023; 43:217-228. [PMID: 36227411 DOI: 10.1007/s10875-022-01374-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 09/23/2022] [Indexed: 01/18/2023]
Abstract
Major histocompatibility complex class I (MHC-I) deficiency, also known as bare lymphocyte syndrome type 1 (BLS-1), is a rare autosomal recessively inherited immunodeficiency disorder with remarkable clinical and biological heterogeneity. Transporter associated with antigen processing (TAP) is a member of the ATP-binding cassette superfamily of transporters and consists of two subunits, TAP1 or TAP2. Any defect resulting from a mutation or deletion of these two subunits may adversely affect the peptide translocation in the endoplasmic reticulum, which is an important process for properly assembling MHC-I molecules. To date, only 12 TAP2-deficient patients were reported in the literature. Herein, we described two Iranian cases with 2 and 3 decades of delayed diagnosis of chronic necrotizing granulomatous skin lesions due to TAP2 deficiency without pulmonary involvement. Segregation analysis in family members identified 3 additional homozygous asymptomatic carriers. In both asymptomatic and symptomatic carriers, HLA-I expression was only 4-15% of the one observed in healthy controls. We performed the first deep immunophenotyping in TAP2-deficient patients. While total CD8 T cell counts were normal as previously reported, the patients showed strongly impaired naïve CD8 T cell counts. Mucosal-associated invariant T (MAIT) cells and invariant natural killer T (iNKT) cell counts were increased.
Collapse
|
8
|
Sadeghalvad M, Rezaei N. Immunodeficiencies. Clin Immunol 2023. [DOI: 10.1016/b978-0-12-818006-8.00004-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
9
|
Kamiya J, Kang W, Yoshida K, Takagi R, Kanai S, Hanai M, Nakamura A, Yamada M, Miyamoto Y, Miyado M, Kuroki Y, Hayashi Y, Umezawa A, Kawano N, Miyado K. Suppression of Non-Random Fertilization by MHC Class I Antigens. Int J Mol Sci 2020; 21:E8731. [PMID: 33227981 PMCID: PMC7699254 DOI: 10.3390/ijms21228731] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 11/22/2022] Open
Abstract
Hermaphroditic invertebrates and plants have a self-recognition system on the cell surface of sperm and eggs, which prevents their self-fusion and enhances non-self-fusion, thereby contributing to genetic variation. However, the system of sperm-egg recognition in mammals is under debate. To address this issue, we explored the role of major histocompatibility complex class I (MHC class I, also known as histocompatibility 2-Kb or H2-Kb and H2-Db in mice) antigens by analyzing H2-Kb-/-H2-Db-/-β2-microglobulin (β2M)-/- triple-knockout (T-KO) male mice with full fertility. T-KO sperm exhibited an increased sperm number in the perivitelline space of wild-type (WT) eggs in vitro. Moreover, T-KO sperm showed multiple fusion with zona pellucida (ZP)-free WT eggs, implying that the ability of polyspermy block for sperm from T-KO males was weakened in WT eggs. When T-KO male mice were intercrossed with WT female mice, the percentage of females in progeny increased. We speculate that WT eggs prefer fusion with T-KO sperm, more specifically X-chromosome-bearing sperm (X sperm), suggesting the presence of preferential (non-random) fertilization in mammals, including humans.
Collapse
Affiliation(s)
- Junki Kamiya
- Laboratory of Regulatory Biology, Department of Life Sciences, School of Agriculture, Meiji University, Kanagawa 214-8571, Japan; (J.K.); (R.T.); (S.K.); (M.H.)
| | - Woojin Kang
- Department of Reproductive Biology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan; (W.K.); (Y.M.); (A.U.)
| | - Keiichi Yoshida
- Next-Generation Precision Medicine Research Center, Osaka International Cancer Institute, Osaka Prefectural Hospital Organization, Osaka 541-8567, Japan;
| | - Ryota Takagi
- Laboratory of Regulatory Biology, Department of Life Sciences, School of Agriculture, Meiji University, Kanagawa 214-8571, Japan; (J.K.); (R.T.); (S.K.); (M.H.)
| | - Seiya Kanai
- Laboratory of Regulatory Biology, Department of Life Sciences, School of Agriculture, Meiji University, Kanagawa 214-8571, Japan; (J.K.); (R.T.); (S.K.); (M.H.)
| | - Maito Hanai
- Laboratory of Regulatory Biology, Department of Life Sciences, School of Agriculture, Meiji University, Kanagawa 214-8571, Japan; (J.K.); (R.T.); (S.K.); (M.H.)
| | - Akihiro Nakamura
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo 160-8582, Japan; (A.N.); (M.Y.)
| | - Mitsutoshi Yamada
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo 160-8582, Japan; (A.N.); (M.Y.)
| | - Yoshitaka Miyamoto
- Department of Reproductive Biology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan; (W.K.); (Y.M.); (A.U.)
| | - Mami Miyado
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan;
| | - Yoko Kuroki
- Department of Genome Medicine, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan;
| | - Yoshiki Hayashi
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Ibaraki 305-8577, Japan;
| | - Akihiro Umezawa
- Department of Reproductive Biology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan; (W.K.); (Y.M.); (A.U.)
| | - Natsuko Kawano
- Laboratory of Regulatory Biology, Department of Life Sciences, School of Agriculture, Meiji University, Kanagawa 214-8571, Japan; (J.K.); (R.T.); (S.K.); (M.H.)
| | - Kenji Miyado
- Department of Reproductive Biology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan; (W.K.); (Y.M.); (A.U.)
| |
Collapse
|
10
|
Del Val M, Antón LC, Ramos M, Muñoz-Abad V, Campos-Sánchez E. Endogenous TAP-independent MHC-I antigen presentation: not just the ER lumen. Curr Opin Immunol 2020; 64:9-14. [PMID: 31935516 DOI: 10.1016/j.coi.2019.12.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 12/11/2019] [Indexed: 11/30/2022]
Abstract
Altered and infected cells are eliminated by CD8+ cytotoxic T lymphocytes. This requires production of antigenic peptides mostly in the cytosol, transport to the endoplasmic reticulum (ER) by the transporter associated with antigen processing (TAP), and cell surface presentation by major histocompatibility complex class I (MHC-I). Strikingly, antigen presentation occurs without TAP, although it is inefficient and associated to human pathology. TAP-independent peptides derive both from membrane and secreted proteins, as well as cytosolic ones. The efficiency of TAP-independent presentation may be impacted by the availability of receptive MHC-I, and in turn by the functional presence in the ER of the peptide-loading complex, itself anchored on TAP. Without TAP, surface expression of human leukocyte antigen (HLA)-B allotypes varies widely, with those presenting a broader peptide repertoire among the most TAP-independent. Much remains to be learned on the alternative cellular pathways for antigen presentation in the absence of TAP.
Collapse
Affiliation(s)
- Margarita Del Val
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Nicolás Cabrera 1, 28049 Madrid, Spain.
| | - Luis C Antón
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Nicolás Cabrera 1, 28049 Madrid, Spain
| | - Manuel Ramos
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Nicolás Cabrera 1, 28049 Madrid, Spain
| | - Víctor Muñoz-Abad
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Nicolás Cabrera 1, 28049 Madrid, Spain
| | - Elena Campos-Sánchez
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Nicolás Cabrera 1, 28049 Madrid, Spain
| |
Collapse
|
11
|
Dendrou CA, Petersen J, Rossjohn J, Fugger L. HLA variation and disease. Nat Rev Immunol 2018; 18:325-339. [PMID: 29292391 DOI: 10.1038/nri.2017.143] [Citation(s) in RCA: 438] [Impact Index Per Article: 73.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Fifty years since the first description of an association between HLA and human disease, HLA molecules have proven to be central to physiology, protective immunity and deleterious, disease-causing autoimmune reactivity. Technological advances have enabled pivotal progress in the determination of the molecular mechanisms that underpin the association between HLA genetics and functional outcome. Here, we review our current understanding of HLA molecules as the fundamental platform for immune surveillance and responsiveness in health and disease. We evaluate the scope for personalized antigen-specific disease prevention, whereby harnessing HLA-ligand interactions for clinical benefit is becoming a realistic prospect.
Collapse
Affiliation(s)
- Calliope A Dendrou
- Nuffield Department of Medicine, The Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Jan Petersen
- Australian Research Council Centre of Excellence for Advanced Molecular Imaging, Monash University, Wellington Road, Clayton, Victoria 3800, Australia.,Infection and Immunity Programme and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - Jamie Rossjohn
- Australian Research Council Centre of Excellence for Advanced Molecular Imaging, Monash University, Wellington Road, Clayton, Victoria 3800, Australia.,Infection and Immunity Programme and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Wellington Road, Clayton, Victoria 3800, Australia.,Division of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | - Lars Fugger
- Danish National Research Foundation Centre PERSIMUNE, Rigshospitalet, University of Copenhagen, Copenhagen DK-2100, Denmark.,Oxford Centre for Neuroinflammation, Nuffield Department of Clinical Neurosciences, Division of Clinical Neurology and Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Headley Way, Oxford OX3 9DS, UK
| |
Collapse
|
12
|
Luk ADW, Lee PP, Mao H, Chan KW, Chen XY, Chen TX, He JX, Kechout N, Suri D, Tao YB, Xu YB, Jiang LP, Liew WK, Jirapongsananuruk O, Daengsuwan T, Gupta A, Singh S, Rawat A, Abdul Latiff AH, Lee ACW, Shek LP, Nguyen TVA, Chin TJ, Chien YH, Latiff ZA, Le TMH, Le NNQ, Lee BW, Li Q, Raj D, Barbouche MR, Thong MK, Ang MCD, Wang XC, Xu CG, Yu HG, Yu HH, Lee TL, Yau FYS, Wong WHS, Tu W, Yang W, Chong PCY, Ho MHK, Lau YL. Family History of Early Infant Death Correlates with Earlier Age at Diagnosis But Not Shorter Time to Diagnosis for Severe Combined Immunodeficiency. Front Immunol 2017; 8:808. [PMID: 28747913 PMCID: PMC5506088 DOI: 10.3389/fimmu.2017.00808] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 06/26/2017] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Severe combined immunodeficiency (SCID) is fatal unless treated with hematopoietic stem cell transplant. Delay in diagnosis is common without newborn screening. Family history of infant death due to infection or known SCID (FH) has been associated with earlier diagnosis. OBJECTIVE The aim of this study was to identify the clinical features that affect age at diagnosis (AD) and time to the diagnosis of SCID. METHODS From 2005 to 2016, 147 SCID patients were referred to the Asian Primary Immunodeficiency Network. Patients with genetic diagnosis, age at presentation (AP), and AD were selected for study. RESULTS A total of 88 different SCID gene mutations were identified in 94 patients, including 49 IL2RG mutations, 12 RAG1 mutations, 8 RAG2 mutations, 7 JAK3 mutations, 4 DCLRE1C mutations, 4 IL7R mutations, 2 RFXANK mutations, and 2 ADA mutations. A total of 29 mutations were previously unreported. Eighty-three of the 94 patients fulfilled the selection criteria. Their median AD was 4 months, and the time to diagnosis was 2 months. The commonest SCID was X-linked (n = 57). A total of 29 patients had a positive FH. Candidiasis (n = 27) and bacillus Calmette-Guérin (BCG) vaccine infection (n = 19) were the commonest infections. The median age for candidiasis and BCG infection documented were 3 months and 4 months, respectively. The median absolute lymphocyte count (ALC) was 1.05 × 109/L with over 88% patients below 3 × 109/L. Positive FH was associated with earlier AP by 1 month (p = 0.002) and diagnosis by 2 months (p = 0.008), but not shorter time to diagnosis (p = 0.494). Candidiasis was associated with later AD by 2 months (p = 0.008) and longer time to diagnosis by 0.55 months (p = 0.003). BCG infections were not associated with age or time to diagnosis. CONCLUSION FH was useful to aid earlier diagnosis but was overlooked by clinicians and not by parents. Similarly, typical clinical features of SCID were not recognized by clinicians to shorten the time to diagnosis. We suggest that lymphocyte subset should be performed for any infant with one or more of the following four clinical features: FH, candidiasis, BCG infections, and ALC below 3 × 109/L.
Collapse
Affiliation(s)
- Anderson Dik Wai Luk
- LKS Faculty of Medicine, Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Pamela P. Lee
- LKS Faculty of Medicine, Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Huawei Mao
- LKS Faculty of Medicine, Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, Hong Kong
- Shenzhen Primary Immunodeficiency Diagnostic and Therapeutic Laboratory, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Koon-Wing Chan
- LKS Faculty of Medicine, Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | | | - Tong-Xin Chen
- Department of Allergy and Immunology, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian Xin He
- Beijing Children’s Hospital, Capital Medical University, Beijing, China
| | | | - Deepti Suri
- Allergy Immunology Unit, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Yin Bo Tao
- Guangzhou Children’s Hospital, Guangzhou, China
| | - Yong Bin Xu
- Guang Zhou Women and Children’s Medical Center, Guangzhou, China
| | - Li Ping Jiang
- Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Woei Kang Liew
- KK Women’s and Children’s Hospital, Singapore, Singapore
| | | | | | - Anju Gupta
- Allergy Immunology Unit, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Surjit Singh
- Allergy Immunology Unit, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Amit Rawat
- Allergy Immunology Unit, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | | | | | | | | | - Tek Jee Chin
- Sarawak General Hospital Malaysia, Kuching, Malaysia
| | - Yin Hsiu Chien
- National Taiwan University Children’s Hospital, Taipei, Taiwan
| | | | | | | | - Bee Wah Lee
- National University of Singapore, Singapore, Singapore
| | - Qiang Li
- Sichuan Second West China Hospital, Sichuan, China
| | - Dinesh Raj
- Department of Paediatrics, Holy Family Hospital, New Delhi, India
| | - Mohamed-Ridha Barbouche
- Department of Immunology, Institut Pasteur de Tunis and University Tunis-El Manar, Tunis, Tunisia
| | - Meow-Keong Thong
- Faculty of Medicine, Department of Paediatrics, University of Malaya, Kuala Lumpur, Malaysia
| | | | | | - Chen Guang Xu
- The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hai Guo Yu
- Nanjing Children’s Hospital, Nanjing, China
| | - Hsin-Hui Yu
- National Taiwan University Children’s Hospital, Taipei, Taiwan
| | - Tsz Leung Lee
- LKS Faculty of Medicine, Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | | | - Wilfred Hing-Sang Wong
- LKS Faculty of Medicine, Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Wenwei Tu
- LKS Faculty of Medicine, Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, Hong Kong
- Shenzhen Primary Immunodeficiency Diagnostic and Therapeutic Laboratory, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Wangling Yang
- LKS Faculty of Medicine, Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, Hong Kong
- Shenzhen Primary Immunodeficiency Diagnostic and Therapeutic Laboratory, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Patrick Chun Yin Chong
- LKS Faculty of Medicine, Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Marco Hok Kung Ho
- LKS Faculty of Medicine, Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Yu Lung Lau
- LKS Faculty of Medicine, Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, Hong Kong
- Shenzhen Primary Immunodeficiency Diagnostic and Therapeutic Laboratory, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
- *Correspondence: Yu Lung Lau,
| |
Collapse
|
13
|
Lapenna A, Omar I, Berger M. A novel spontaneous mutation in the TAP2 gene unravels its role in macrophage survival. Immunology 2016; 150:432-443. [PMID: 27861817 DOI: 10.1111/imm.12694] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 11/10/2016] [Accepted: 11/10/2016] [Indexed: 12/20/2022] Open
Abstract
We report a new mouse strain with a single point mutation in the type 2 transporter associated with antigen processing (TAP2). This strain randomly arose in one of our C57BL/6J mouse colonies and was initially discovered because of the lack of CD8+ T cells in the periphery. Following our observation, we subsequently revealed a lack of cell surface MHC-I expression, derived from TAP2 protein deficiency. Our strain, named eightless, has a C to T substitution in exon 5 resulting in a glutamine to stop codon substitution at position 285 in the TAP2 protein. Interestingly, in addition to the expected lack of CD8+ T cell phenotype, eightless mice have a diminished number of macrophages in their peritoneum. Moreover, following peritoneal inflammation, elicited eightless macrophages showed impaired survival both in vivo and ex vivo. Our study describes the first ever TAP2 complete knockout mouse strain and provides a possible explanation for why patients with TAP2 deficiency syndrome present clinical manifestations that would suggest a phagocyte defect rather than a lack of CD8+ T cells.
Collapse
Affiliation(s)
- Antonio Lapenna
- The Lautenberg Centre for Immunology and Cancer Research, The Biomedical Research Institute Israel-Canada of the Faculty of Medicine, The Hebrew University Hadassah Medical School, Jerusalem, Israel
| | - Ibrahim Omar
- The Lautenberg Centre for Immunology and Cancer Research, The Biomedical Research Institute Israel-Canada of the Faculty of Medicine, The Hebrew University Hadassah Medical School, Jerusalem, Israel
| | - Michael Berger
- The Lautenberg Centre for Immunology and Cancer Research, The Biomedical Research Institute Israel-Canada of the Faculty of Medicine, The Hebrew University Hadassah Medical School, Jerusalem, Israel
| |
Collapse
|
14
|
Brown PJ, Wong KK, Felce SL, Lyne L, Spearman H, Soilleux EJ, Pedersen LM, Møller MB, Green TM, Gascoyne DM, Banham AH. FOXP1 suppresses immune response signatures and MHC class II expression in activated B-cell-like diffuse large B-cell lymphomas. Leukemia 2015; 30:605-16. [PMID: 26500140 PMCID: PMC4777777 DOI: 10.1038/leu.2015.299] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 10/07/2015] [Accepted: 10/13/2015] [Indexed: 12/25/2022]
Abstract
The FOXP1 (forkhead box P1) transcription factor is a marker of poor prognosis in diffuse large B-cell lymphoma (DLBCL). Here microarray analysis of FOXP1-silenced DLBCL cell lines identified differential regulation of immune response signatures and major histocompatibility complex class II (MHC II) genes as some of the most significant differences between germinal center B-cell (GCB)-like DLBCL with full-length FOXP1 protein expression versus activated B-cell (ABC)-like DLBCL expressing predominantly short FOXP1 isoforms. In an independent primary DLBCL microarray data set, multiple MHC II genes, including human leukocyte antigen DR alpha chain (HLA-DRA), were inversely correlated with FOXP1 transcript expression (P<0.05). FOXP1 knockdown in ABC-DLBCL cells led to increased cell-surface expression of HLA-DRA and CD74. In R-CHOP (rituximab, cyclophosphamide, doxorubicin, vincristine and prednisone)-treated DLBCL patients (n=150), reduced HLA-DRA (<90% frequency) expression correlated with inferior overall survival (P=0.0003) and progression-free survival (P=0.0012) and with non-GCB subtype stratified by the Hans, Choi or Visco-Young algorithms (all P<0.01). In non-GCB DLBCL cases with <90% HLA-DRA, there was an inverse correlation with the frequency (P=0.0456) and intensity (P=0.0349) of FOXP1 expression. We propose that FOXP1 represents a novel regulator of genes targeted by the class II MHC transactivator CIITA (MHC II and CD74) and therapeutically targeting the FOXP1 pathway may improve antigen presentation and immune surveillance in high-risk DLBCL patients.
Collapse
Affiliation(s)
- P J Brown
- NDCLS, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - K K Wong
- Department of Immunology, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kelantan, Malaysia
| | - S L Felce
- NDCLS, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - L Lyne
- NDCLS, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - H Spearman
- NDCLS, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - E J Soilleux
- NDCLS, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - L M Pedersen
- Department of Haematology, Roskilde Hospital, Roskilde, Denmark
| | - M B Møller
- Department of Pathology, Odense University Hospital, Odense, Denmark
| | - T M Green
- Department of Pathology, Odense University Hospital, Odense, Denmark
| | - D M Gascoyne
- NDCLS, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - A H Banham
- NDCLS, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| |
Collapse
|
15
|
Leone P, Shin EC, Perosa F, Vacca A, Dammacco F, Racanelli V. MHC class I antigen processing and presenting machinery: organization, function, and defects in tumor cells. J Natl Cancer Inst 2013; 105:1172-87. [PMID: 23852952 DOI: 10.1093/jnci/djt184] [Citation(s) in RCA: 369] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The surface presentation of peptides by major histocompatibility complex (MHC) class I molecules is critical to all CD8(+) T-cell adaptive immune responses, including those against tumors. The generation of peptides and their loading on MHC class I molecules is a multistep process involving multiple molecular species that constitute the so-called antigen processing and presenting machinery (APM). The majority of class I peptides begin as proteasome degradation products of cytosolic proteins. Once transported into the endoplasmic reticulum by TAP (transporter associated with antigen processing), peptides are not bound randomly by class I molecules but are chosen by length and sequence, with peptidases editing the raw peptide pool. Aberrations in APM genes and proteins have frequently been observed in human tumors and found to correlate with relevant clinical variables, including tumor grade, tumor stage, disease recurrence, and survival. These findings support the idea that APM defects are immune escape mechanisms that disrupt the tumor cells' ability to be recognized and killed by tumor antigen-specific cytotoxic CD8(+) T cells. Detailed knowledge of APM is crucial for the optimization of T cell-based immunotherapy protocols.
Collapse
Affiliation(s)
- Patrizia Leone
- Department of Internal Medicine and Clinical Oncology, University of Bari Medical School, Bari, Italy
| | | | | | | | | | | |
Collapse
|
16
|
Zimmer J, Andrès E. Comments on Type I bare lymphocyte syndrome. Immunol Lett 2012; 143:218-9. [DOI: 10.1016/j.imlet.2012.01.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 01/16/2012] [Indexed: 10/14/2022]
|