1
|
Hackstein CP. Liver damage and immune responses. ZEITSCHRIFT FUR GASTROENTEROLOGIE 2025; 63:56-64. [PMID: 39793602 DOI: 10.1055/a-2365-3796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2025]
Abstract
Chronic liver disease (CLD) has massive systemic repercussions including major impacts on the body's immune system. Abnormalities in phenotype, function and numbers of various immune cell subsets have been established by a large number of clinical and pre-clinical studies. The loss of essential immune functions renders CLD-patients exceptionally susceptible to bacterial and viral infections and also impairs the efficacy of vaccination. Consequently, infections represent a major clinical issue causing significant morbidity and mortality in these patients. Mechanistically, the immune dysfunction associated with CLD results from the increased translocation of bacteria and bacterial cues from the intestine. These trigger a signaling axis around the cytokines IFN I and IL-10 in hepatic myeloid cells, which aside from impairing the function of the myeloid cells themselves, also has notable negative impacts on the functionality of other immune cells. T cells in CLD-patients and -models are especially affected by this signaling axis and display a variety of quantitative and qualitative defects. Due to the high clinical relevance, understanding the mechanisms underlaying CED-associated immune dysfunction is of critical importance to discover and develop new therapeutic targets.
Collapse
Affiliation(s)
- Carl-Philipp Hackstein
- Institut für Molekulare Immunologie, Technische Universität München, München, Germany
- Zentrum für Infektionsprävention (ZIP), Technische Universität München, Freising, Germany
| |
Collapse
|
2
|
Gorbacheva V, Fan R, Gaudette B, Baldwin WM, Fairchild RL, Valujskikh A. Marginal zone B cells are required for optimal humoral responses to allograft. Am J Transplant 2025; 25:48-59. [PMID: 39278625 PMCID: PMC11734443 DOI: 10.1016/j.ajt.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 08/09/2024] [Accepted: 09/05/2024] [Indexed: 09/18/2024]
Abstract
Antibody-mediated rejection (AMR) is among the leading causes of graft failure in solid organ transplantation. However, AMR treatment options are limited by an incomplete understanding of the mechanisms underlying de novo donor-specific antibody (DSA) generation. The development of pathogenic isotype-switched DSA in response to transplanted allografts is typically attributed to follicular B cells undergoing germinal center reaction whereas the contribution of other B cell subsets has not been previously addressed. The current study investigated the role of recipient marginal zone B cells (MZ B cells) in DSA responses using mouse models of heart and renal allotransplantation. MZ B cells rapidly differentiate into antibody-secreting cells in response to allotransplantation. Despite the selective depletion of follicular B cells in heart allograft recipients, MZ B cells are sufficient for T-dependent IgM and early IgG DSA production. Furthermore, the presence of intact MZ B cell subset is required to support the generation of pathogenic isotype-switched DSA in renal allograft recipients containing donor-reactive memory helper T cells. These findings are the first demonstration of the role of MZ B cells in humoral alloimmune responses following solid organ transplantation and identify MZ B cells as a potential therapeutic target for minimizing de novo DSA production and AMR in transplant recipients.
Collapse
Affiliation(s)
- Victoria Gorbacheva
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Ran Fan
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Brian Gaudette
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - William M Baldwin
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Robert L Fairchild
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Anna Valujskikh
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA.
| |
Collapse
|
3
|
Baert L, Mahmudul HM, Stegall M, Joo H, Oh S. B Cell-mediated Immune Regulation and the Quest for Transplantation Tolerance. Transplantation 2024; 108:2021-2033. [PMID: 38389135 DOI: 10.1097/tp.0000000000004948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Pathophysiologic function of B cells in graft rejection has been well recognized in transplantation. B cells promote alloantigen-specific T-cell response and secrete antibodies that can cause antibody-mediated graft failures and rejections. Therefore, strategies targeting B cells, for example, B-cell depletion, have been used for the prevention of both acute and chronic rejections. Interestingly, however, recent mounting evidence indicates that subsets of B cells yet to be further identified can display potent immune regulatory functions, and they contribute to transplantation tolerance and operational tolerance in both experimental and clinical settings, respectively. In this review, we integrate currently available information on B-cell subsets, including T-cell Ig domain and mucin domain 1-positive transitional and T-cell immunoreceptor with Ig and immunoreceptor tyrosine-based inhibitory motif domain-positive memory B cells, displaying immune regulatory functions, with a focus on transplantation tolerance, by analyzing their mechanisms of action. In addition, we will discuss potential T-cell Ig domain and mucin domain 1-positive and T-cell immunoreceptor with Ig and immunoreceptor tyrosine-based inhibitory motif domain-positive B cell-based strategies for the enhancement of operational tolerance in transplantation patients.
Collapse
Affiliation(s)
- Laurie Baert
- Department of Immunology, Mayo Clinic, Scottsdale, AZ
| | | | - Mark Stegall
- Department of Surgery, William J. von Liebig Transplant Center, Mayo Clinic, Rochester, MN
| | - HyeMee Joo
- Department of Immunology, Mayo Clinic, Scottsdale, AZ
| | - SangKon Oh
- Department of Immunology, Mayo Clinic, Scottsdale, AZ
| |
Collapse
|
4
|
Zhang L, Zhong H, Fan J, Mao J, Li Y. Clinical significance of T helper cell subsets in the peripheral blood and bone marrow of patients with multiple myeloma. Front Immunol 2024; 15:1445530. [PMID: 39324138 PMCID: PMC11422089 DOI: 10.3389/fimmu.2024.1445530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 08/22/2024] [Indexed: 09/27/2024] Open
Abstract
Background T helper (Th) cell subsets primarily assist B cells in differentiating into plasma cells in the germinal center. The mechanism of malignant transformation of plasma cells is an important target for the clinical treatment of MM; however, the mechanism remains unclear. Methods We collected the peripheral blood (PB) and bone marrow (BM) samples of 33 patients with MM. In addition, the PB was also collected from 25 normal healthy controls (HCs). We analyzed the percentages of Th cell subsets in the PB and BM samples of patients with MM. Results Tfh/CD4+ were positively correlated with the proportion of myeloma cells in the BM and PB samples (r = 0.592, P = 0.002 and r = 0.510, P = 0.010 respectively), and showed a strong correlation between the BM and PB samples (r = 0.6559, P = 0.0095). In the PB samples, the percentages of Th2/CD4+ and Tfh2/Tfh cells were significantly lower in patients with MM than in HCs (P = 0.00013 and P = 0.0004, respectively), whereas the percentage of Th17/CD4+ and Tfh17/Tfh was significantly higher in newly diagnosed patients with MM than in HCs (P = 0.0037 and P = 0.03, respectively), and all these cells showed a good predictive value for MM (area under the curve [AUC] 0.781, = 0.792, = 0.837, and 0.723 respectively). In the PB samples, all subsets of PD-1+ICOS- Tfh showed a noticeable downward trend in MM from newly diagnosed to non-remission and remission groups. In contrast, all subsets of PD-1-ICOS+ Tfh increased gradually. Conclusion Th cell subsets play an important role in the occurrence and development of MM and may provide a fundamental basis for identifying new immunotherapy targets and prognosis.
Collapse
Affiliation(s)
- Liangjun Zhang
- Department of Laboratory Medicine, Zigong First People’s Hospital, Zigong, China
| | - Huixiu Zhong
- Department of Laboratory Medicine, Zigong First People’s Hospital, Zigong, China
| | - Jiwen Fan
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Jiansen Mao
- Department of Laboratory Medicine, Nanjing International School, Nanjing, China
| | - Yi Li
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
5
|
Iglesias M, Bibicheff D, Komin A, Chicco M, Guinn S, Foley B, Raimondi G. T cell responsiveness to IL-10 defines the immunomodulatory effect of costimulation blockade via anti-CD154 and impacts transplant survival. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.12.598652. [PMID: 38915537 PMCID: PMC11195256 DOI: 10.1101/2024.06.12.598652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Costimulation blockade (CoB)-based immunotherapy is a promising alternative to immunosuppression for transplant recipients; however, the current limited understanding of the factors that impact its efficacy restrains its clinical applicability. In this context, pro- and anti-inflammatory cytokines are being recognized as having an impact on T cell activation beyond effector differentiation. This study aims at elucidating the impact of direct IL-10 signaling in T cells on CoB outcomes. We used a full-mismatch skin transplantation model where recipients had a T cell-restricted expression of a dominant negative IL-10 receptor (10R-DN), alongside anti-CD154 as CoB therapy. Unlike wild-type recipients, 10R-DN mice failed to benefit from CoB. This accelerated graft rejection correlated with increased accumulation of T cells producing TNF-α, IFN-γ, and IL-17. In vitro experiments indicated that while lack of IL-10 signaling did not change the ability of anti-CD154 to modulate alloreactive T cell proliferation, the absence of this pathway heightened TH1 effector cell differentiation. Furthermore, deficiency of IL-10 signaling in T cells impaired Treg induction, a hallmark of anti-CD154 therapy. Overall, these findings unveil an important and novel role of IL-10 signaling in T cells that defines the success of CoB therapies and identifies a target pathway for obtaining robust immunoregulation.
Collapse
Affiliation(s)
- Marcos Iglesias
- Department of Plastic and Reconstructive Surgery, Vascularized Composite Allotransplantation (VCA) Laboratory, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Darrel Bibicheff
- Department of Plastic and Reconstructive Surgery, Vascularized Composite Allotransplantation (VCA) Laboratory, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alexander Komin
- Department of Plastic and Reconstructive Surgery, Vascularized Composite Allotransplantation (VCA) Laboratory, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Maria Chicco
- Department of Plastic and Reconstructive Surgery, Vascularized Composite Allotransplantation (VCA) Laboratory, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Samantha Guinn
- Department of Plastic and Reconstructive Surgery, Vascularized Composite Allotransplantation (VCA) Laboratory, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Brendan Foley
- Department of Plastic and Reconstructive Surgery, Vascularized Composite Allotransplantation (VCA) Laboratory, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Giorgio Raimondi
- Department of Plastic and Reconstructive Surgery, Vascularized Composite Allotransplantation (VCA) Laboratory, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
6
|
Chen W, Ning X, Liu Y, Shen T, Liu M, Yin H, Ding Y, Zhou J, Yin R, Cai L, Wu Y, Qian L. Myeloid-derived suppressor cells from tumour-bearing mice induce the population expansion of CD19 hiFcγRIIb hi regulatory B cells via PD-L1. Immunology 2024; 172:127-143. [PMID: 38332630 DOI: 10.1111/imm.13763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 01/25/2024] [Indexed: 02/10/2024] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) increase in number and gain immunosuppressive functions in tumours and many other pathological conditions. MDSCs are characterized by their strong T-cell immunosuppressive capacity. The effects that MDSCs may have on B cells, especially within the tumour microenvironment, are less well understood. Here, we report that either monocytic MDSCs or polymorphonuclear MDSCs can promote increases in interleukin (IL)-10-expressing CD19hiFcγRIIbhi regulatory B cells in vitro and in vivo. Splenic transitional-1, -2, and -3 cells and marginal zone B cells, but not follicular B cells, differentiate into IL-10-expressing CD19hiFcγRIIbhi regulatory B cells. The adoptive transfer of CD19hiFcγRIIbhi regulatory B cells via tail vein injection can promote subcutaneous 3LL tumour growth in mice. The expression of programmed death-ligand 1 on MDSCs was found to be strongly associated with CD19hiFcγRIIbhi regulatory B cell population expansion. Furthermore, the frequency of circulating CD19+FcγRIIhi regulatory B cells was significantly increased in advanced-stage lung cancer patients. Our results unveil a critical role of MDSCs in regulatory B-cell differentiation and population expansion in lung cancer patients.
Collapse
Affiliation(s)
- Wenyan Chen
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Xiaomin Ning
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Yang Liu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Tingting Shen
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Mengru Liu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Hui Yin
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Yue Ding
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Jingwen Zhou
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Rui Yin
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Liangliang Cai
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Yuhan Wu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Li Qian
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou, China
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou, China
| |
Collapse
|
7
|
Satitsuksanoa P, Iwasaki S, Boersma J, Bel Imam M, Schneider SR, Chang I, van de Veen W, Akdis M. B cells: The many facets of B cells in allergic diseases. J Allergy Clin Immunol 2023; 152:567-581. [PMID: 37247640 DOI: 10.1016/j.jaci.2023.05.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 03/30/2023] [Accepted: 05/16/2023] [Indexed: 05/31/2023]
Abstract
B cells play a key role in our immune system through their ability to produce antibodies, suppress a proinflammatory state, and contribute to central immune tolerance. We aim to provide an in-depth knowledge of the molecular biology of B cells, including their origin, developmental process, types and subsets, and functions. In allergic diseases, B cells are well known to induce and maintain immune tolerance through the production of suppressor cytokines such as IL-10. Similarly, B cells protect against viral infections such as severe acute respiratory syndrome coronavirus 2 that caused the recent coronavirus disease 2019 pandemic. Considering the unique and multifaceted functions of B cells, we hereby provide a comprehensive overview of the current knowledge of B-cell biology and its clinical applications in allergic diseases, organ transplantation, and cancer.
Collapse
Affiliation(s)
- Pattraporn Satitsuksanoa
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland.
| | - Sayuri Iwasaki
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland; Wageningen University & Research, Wageningen, The Netherlands
| | - Jolien Boersma
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland; Wageningen University & Research, Wageningen, The Netherlands
| | - Manal Bel Imam
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland
| | - Stephan R Schneider
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland
| | - Iris Chang
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland; Sean N. Parker Centre for Allergy and Asthma Research, Department of Medicine, Stanford University, Palo Alto, Calif
| | - Willem van de Veen
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland
| | - Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland.
| |
Collapse
|
8
|
Subburayalu J. Immune surveillance and humoral immune responses in kidney transplantation - A look back at T follicular helper cells. Front Immunol 2023; 14:1114842. [PMID: 37503334 PMCID: PMC10368994 DOI: 10.3389/fimmu.2023.1114842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 06/22/2023] [Indexed: 07/29/2023] Open
Abstract
T follicular helper cells comprise a specialized, heterogeneous subset of immune-competent T helper cells capable of influencing B cell responses in lymphoid tissues. In physiology, for example in response to microbial challenges or vaccination, this interaction chiefly results in the production of protecting antibodies and humoral memory. In the context of kidney transplantation, however, immune surveillance provided by T follicular helper cells can take a life of its own despite matching of human leukocyte antigens and employing the latest immunosuppressive regiments. This puts kidney transplant recipients at risk of subclinical and clinical rejection episodes with a potential risk for allograft loss. In this review, the current understanding of immune surveillance provided by T follicular helper cells is briefly described in physiological responses to contrast those pathological responses observed after kidney transplantation. Sensitization of T follicular helper cells with the subsequent emergence of detectable donor-specific human leukocyte antigen antibodies, non-human leukocyte antigen antibodies their implication for kidney transplantation and lessons learnt from other transplantation "settings" with special attention to antibody-mediated rejection will be addressed.
Collapse
Affiliation(s)
- Julien Subburayalu
- Department of Internal Medicine I, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Center for Regenerative Therapies (CRTD), Technische Universität Dresden, Dresden, Germany
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
9
|
IL-10-producing memory B regulatory cells as a novel target for HLA-G to prolong human kidney allograft survival. Hum Immunol 2023:S0198-8859(23)00044-7. [PMID: 36934068 DOI: 10.1016/j.humimm.2023.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/09/2023] [Accepted: 03/09/2023] [Indexed: 03/18/2023]
Abstract
Despite the growing interest in the role of regulatory B cells (Bregs) in autoimmunity, their distinct role and function in kidney transplant outcomes remain elusive. Here, we retrospectively analyzed the proportion of Bregs, transitional Bregs (tBregs) and memory Bregs (mBregs) and their capacity to produce IL-10 in non-rejected (NR) versus rejected (RJ) kidney transplant recipients. In the NR group, we observed a significant increase in the proportion of mBregs (CD19+CD24hiCD27+) but no difference in tBregs (CD19+CD24hiCD38+), as compared to the RJ group. We also observed a significant increase in IL-10-producing mBregs (CD19+CD24hiCD27+IL-10+) in the NR group. As our group and others have previously reported a potential role of the human leukocyte antigen G (HLA-G) in human renal allograft survival, notably through IL-10, we then investigated possible crosstalk between HLA-G and IL-10+ mBregs. Our ex vivo data suggest a role of HLA-G in enhancing IL-10+ mBreg expansion upon stimulation, which further decreased CD3+ T cell proliferation capability. Using RNA-sequencing (RNA-seq), we identified potential key signaling pathways involved in HLA-G-driven IL-10+ mBreg expansion, such as the MAPK, TNF and chemokine signaling pathways. Together, our study highlights a novel HLA-G-mediated IL-10-producing mBreg pathway that may serve as a therapeutic target to improve kidney allograft survival.
Collapse
|
10
|
Bystrom J, Taher TE, Henson SM, Gould DJ, Mageed RA. Metabolic requirements of Th17 cells and of B cells: Regulation and defects in health and in inflammatory diseases. Front Immunol 2022; 13:990794. [PMCID: PMC9614365 DOI: 10.3389/fimmu.2022.990794] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 09/06/2022] [Indexed: 11/13/2022] Open
Abstract
The immune system protects from infections and cancer through complex cellular networks. For this purpose, immune cells require well-developed mechanisms of energy generation. However, the immune system itself can also cause diseases when defective regulation results in the emergence of autoreactive lymphocytes. Recent studies provide insights into how differential patterns of immune cell responses are associated with selective metabolic pathways. This review will examine the changing metabolic requirements of Th17 cells and of B cells at different stages of their development and activation. Both cells provide protection but can also mediate diseases through the production of autoantibodies and the production of proinflammatory mediators. In health, B cells produce antibodies and cytokines and present antigens to T cells to mount specific immunity. Th17 cells, on the other hand, provide protection against extra cellular pathogens at mucosal surfaces but can also drive chronic inflammation. The latter cells can also promote the differentiation of B cells to plasma cells to produce more autoantibodies. Metabolism-regulated checkpoints at different stages of their development ensure the that self-reactive B cells clones and needless production of interleukin (IL-)17 are limited. The metabolic regulation of the two cell types has some similarities, e.g. the utility of hypoxia induced factor (HIF)1α during low oxygen tension, to prevent autoimmunity and regulate inflammation. There are also clear differences, as Th17 cells only are vulnerable to the lack of certain amino acids. B cells, unlike Th17 cells, are also dependent of mechanistic target of rapamycin 2 (mTORC2) to function. Significant knowledge has recently been gained, particularly on Th17 cells, on how metabolism regulates these cells through influencing their epigenome. Metabolic dysregulation of Th17 cells and B cells can lead to chronic inflammation. Disease associated alterations in the genome can, in addition, cause dysregulation to metabolism and, thereby, result in epigenetic alterations in these cells. Recent studies highlight how pathology can result from the cooperation between the two cell types but only few have so far addressed the key metabolic alterations in such settings. Knowledge of the impact of metabolic dysfunction on chronic inflammation and pathology can reveal novel therapeutic targets to treat such diseases.
Collapse
Affiliation(s)
- Jonas Bystrom
- Centre for Translational Medicine and Therapeutics, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
- *Correspondence: Jonas Bystrom, ; Taher E. Taher,
| | - Taher E. Taher
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- *Correspondence: Jonas Bystrom, ; Taher E. Taher,
| | - Sian M. Henson
- Centre for Translational Medicine and Therapeutics, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - David J. Gould
- Centre for Biochemical Pharmacology, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Rizgar A. Mageed
- Centre for Translational Medicine and Therapeutics, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
11
|
Tan R, Nie M, Long W. The role of B cells in cancer development. Front Oncol 2022; 12:958756. [PMID: 36033455 PMCID: PMC9403891 DOI: 10.3389/fonc.2022.958756] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/18/2022] [Indexed: 11/25/2022] Open
Abstract
B cells play a critical role in adaptive immune responses mainly due to antigen presentation and antibody production. Studies about the tumor-infiltrating immune cells so far demonstrated that the function of B cells in tumor immunity is quite different among various tumor types. The antigen presentation of B cells is mainly anti-tumoral, while the role of antibody production is controversial. Moreover, the immunosuppressive regulatory B cells are detrimental to anti-tumor immunity via the secretion of various anti-inflammatory cytokines. This review briefly summarizes the different roles of B cells classified by the primary function of B cells, antigen presentation, antibody production, and immunity regulation. Further, it discusses the potential therapeutic target of B cells in tumor immunity.
Collapse
Affiliation(s)
- Rongying Tan
- Clinical Nursing Teaching and Research Section, The Second Xiangya Hospital, Central South University, Changsha, China
- Department of Kidney Transplantation, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Manhua Nie
- Clinical Nursing Teaching and Research Section, The Second Xiangya Hospital, Central South University, Changsha, China
- Department of Kidney Transplantation, The Second Xiangya Hospital of Central South University, Changsha, China
- *Correspondence: Wang Long, ; Manhua Nie,
| | - Wang Long
- Department of Pathology, Nihon University, Tokyo, Japan
- *Correspondence: Wang Long, ; Manhua Nie,
| |
Collapse
|
12
|
Agbogan VA, Gastineau P, Tejerina E, Karray S, Zavala F. CpG-Activated Regulatory B-Cell Progenitors Alleviate Murine Graft-Versus-Host-Disease. Front Immunol 2022; 13:790564. [PMID: 35479094 PMCID: PMC9035844 DOI: 10.3389/fimmu.2022.790564] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 03/21/2022] [Indexed: 11/13/2022] Open
Abstract
Development of Graft Versus Host Disease (GVHD) represents a major impediment in allogeneic hematopoietic stem cell transplantation (HSCT). The observation that the presence of bone marrow and circulating hematogones correlated with reduced GVHD risks prompted us to evaluate whether B-cell progenitors, which provide protection in various autoimmune disease models following activation with the TLR-9 agonist CpG (CpG-proBs), could likewise reduce this allogeneic disorder. In a murine model of GVHD that recapitulates an initial phase of acute GVHD followed by a phase of chronic sclerodermatous GVHD, we found that CpG-proBs, adoptively transferred during the initial phase of disease, reduced the diarrhea score and mostly prevented cutaneous fibrosis. Progenitors migrated to the draining lymph nodes and to the skin where they mainly differentiated into follicular B cells. CpG activation and IFN-γ expression were required for the protective effect, which resulted in reduced CD4+ T-cell-derived production of critical cytokines such as TGF-β, IL-13 and IL-21. Adoptive transfer of CpG-proBs increased the T follicular regulatory to T follicular helper (Tfr/Tfh) ratio. Moreover, CpG-proBs privileged the accumulation of IL-10-positive CD8+ T cells, B cells and dendritic cells in the skin. However, CpG-proBs did not improve survival. Altogether, our findings support the notion that adoptively transferred CpG-proBs exert immunomodulating effect that alleviates symptoms of GVHD but require additional anti-inflammatory strategy to improve survival.
Collapse
Affiliation(s)
- Viviane A. Agbogan
- Université Paris Cité, INSERM U1151, CNRS UMR8152, Institut Necker Enfants Malades (INEM), Paris, France
| | - Pauline Gastineau
- Université Paris Cité, INSERM U1151, CNRS UMR8152, Institut Necker Enfants Malades (INEM), Paris, France
| | - Emmanuel Tejerina
- Université Paris Cité, INSERM U1151, CNRS UMR8152, Institut Necker Enfants Malades (INEM), Paris, France
| | - Saoussen Karray
- Université Paris Cité, INSERM U976, Institut de Recherche Saint-Louis (IRSL), Hôpital Saint-Louis, Paris, France
| | - Flora Zavala
- Université Paris Cité, INSERM U1151, CNRS UMR8152, Institut Necker Enfants Malades (INEM), Paris, France
- *Correspondence: Flora Zavala, ; orcid.org/0000-0002-2338-6802
| |
Collapse
|
13
|
Giri S, Meitei HT, Mishra A, Lal G. +Vγ2+ γδ T cells in the presence of anti-CD40L control surgical inflammation and promote skin allograft survival. J Invest Dermatol 2022; 142:2706-2714.e3. [DOI: 10.1016/j.jid.2022.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 03/11/2022] [Accepted: 03/22/2022] [Indexed: 11/25/2022]
|
14
|
Papillion A, Jenkins MM, Ballesteros-Tato A. Assessment of the Impact of Cytokines on T FH, T REG, and T FR Cell Populations After Influenza Infection. Methods Mol Biol 2022; 2380:189-199. [PMID: 34802132 DOI: 10.1007/978-1-0716-1736-6_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Within the last several years, great strides have been made in understanding the molecular and cellular mechanisms that control the generation of T follicular helper (TFH), T regulatory (TREG), and T follicular regulatory (TFR) cells. As a result, it is now clear that cytokines play a critical role in regulating the development and function of these CD4+ T cell subsets. One of the critical limitations when studying the effect of individual cytokines in these populations is differentiating between the intrinsic and extrinsic effects of these cytokines in vivo. Here we describe how to utilize mixed bone marrow chimeras in combination with MHC class II tetramers to characterize the direct role played by cytokines on controlling the development, function, and maintenance of TFH, TREG, and TFR cells in vivo.
Collapse
Affiliation(s)
- Amber Papillion
- Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Meagan M Jenkins
- Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - André Ballesteros-Tato
- Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
15
|
Long Y, Li W, Feng J, Ma Y, Sun Y, Xu L, Song Y, Liu C. Follicular helper and follicular regulatory T cell subset imbalance is associated with higher activated B cells and abnormal autoantibody production in primary anti-phospholipid syndrome patients. Clin Exp Immunol 2021; 206:141-152. [PMID: 34309827 PMCID: PMC8506124 DOI: 10.1111/cei.13647] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 07/07/2021] [Accepted: 07/16/2021] [Indexed: 12/11/2022] Open
Abstract
Primary anti-phospholipid antibody syndrome (pAPS) is a multi-organ autoimmune disease, and autoantibodies are involved in its pathogenesis. Follicular helper T cells (Tfh) and follicular regulatory T cells (Tfr) are critical for B cell maturation and antibody production, but their roles in pAPS remain unknown. We enrolled 32 pAPS patients and 23 healthy controls (HCs) and comprehensively analyzed circulating Tfh and Tfr, as well as their subsets, using flow cytometry. Clinical data including autoantibody levels were collected and their correlations with Tfh and Tfr subsets were analyzed. In addition, correlation analyses between B cell functional subsets and Tfh and Tfr were performed. Changes and potential effects of serum cytokines on Tfr and Tfh were further explored. We found the circulating Tfr was significantly decreased while Tfh and Tfh/Tfr ratios were increased in pAPS patients. Tfh2, inducible T cell co-stimulator (ICOS)+ programmed cell death 1 (PD-1)+ Tfh and Ki-67+ Tfh percentages were elevated, while CD45RA- forkhead box protein 3 (FoxP3)hi , Helios+ , T cell immunoglobulin and ITIM (TIGIT)+ and Ki-67+ Tfr percentages were decreased in pAPS patients. New memory B cells and plasmablasts were increased and altered B cell subsets and serum autoantibodies were positively correlated with Tfh, Tfh2, ICOS+ PD-1+ Tfh cells and negatively associated with Tfr, CD45RA- FoxP3hi Tfr and Helios+ Tfr cells. In addition, pAPS with LA/aCL/β2GPI autoantibodies showed lower functional Tfr subsets and higher activated Tfh subsets. Serum interleukin (IL)-4, IL-21, IL-12 and transforming growth factor (TGF)-β1 were up-regulated and associated with Tfh and Tfr subset changes. Our study demonstrates that imbalance of circulating Tfr and Tfh, as well as their functional subsets, is associated with abnormal autoantibody levels in pAPS, which may contribute to the pathogenesis of pAPS.
Collapse
Affiliation(s)
- Yan Long
- Department of Clinical LaboratoryPeking University People’s HospitalBeijingChina
| | - Wenyi Li
- Department of Clinical LaboratoryPeking University People’s HospitalBeijingChina
| | - Jinghong Feng
- Department of Clinical LaboratoryPeking University People’s HospitalBeijingChina
| | - Yinting Ma
- Department of Clinical LaboratoryPeking University People’s HospitalBeijingChina
| | - Yuanyuan Sun
- Department of Clinical LaboratoryPeking University People’s HospitalBeijingChina
| | - Lijuan Xu
- Department of ImmunologySchool of Basic Medical SciencesPeking University Health Science CentreBeijingChina
| | - Ying Song
- Department of Clinical LaboratoryPeking University People’s HospitalBeijingChina
| | - Chen Liu
- Department of Clinical LaboratoryPeking University People’s HospitalBeijingChina
| |
Collapse
|
16
|
Jansen K, Cevhertas L, Ma S, Satitsuksanoa P, Akdis M, van de Veen W. Regulatory B cells, A to Z. Allergy 2021; 76:2699-2715. [PMID: 33544905 DOI: 10.1111/all.14763] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/29/2021] [Accepted: 02/02/2021] [Indexed: 12/13/2022]
Abstract
B cells play a central role in the immune system through the production of antibodies. During the past two decades, it has become increasingly clear that B cells also have the capacity to regulate immune responses through mechanisms that extend beyond antibody production. Several types of human and murine regulatory B cells have been reported that suppress inflammatory responses in autoimmune disease, allergy, infection, transplantation, and cancer. Key suppressive molecules associated with regulatory B-cell function include the cytokines IL-10, IL-35, and TGF-β as well as cell membrane-bound molecules such as programmed death-ligand 1, CD39, CD73, and aryl hydrocarbon receptor. Regulatory B cells can be induced by a range of different stimuli, including microbial products such as TLR4 or TLR9 ligands, inflammatory cytokines such as IL-6, IL-1β, and IFN-α, as well as CD40 ligation. This review provides an overview of our current knowledge on regulatory B cells. We discuss different types of regulatory B cells, the mechanisms through which they exert their regulatory functions, factors that lead to induction of regulatory B cells and their role in the alteration of inflammatory responses in different diseases.
Collapse
Affiliation(s)
- Kirstin Jansen
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
| | - Lacin Cevhertas
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
- Department of Medical Immunology Institute of Health SciencesBursa Uludag University Bursa Turkey
- Christine Kühne‐Center for Allergy Research and Education (CK‐CARE) Davos Switzerland
| | - Siyuan Ma
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
- Department of Otolaryngology Head and Neck Surgery+ Beijing TongRen HospitalCapital Medical University Beijing China
| | | | - Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
| | - Willem van de Veen
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
| |
Collapse
|
17
|
Long W, Zhang H, Yuan W, Lan G, Lin Z, Peng L, Dai H. The Role of Regulatory B cells in Kidney Diseases. Front Immunol 2021; 12:683926. [PMID: 34108975 PMCID: PMC8183681 DOI: 10.3389/fimmu.2021.683926] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/04/2021] [Indexed: 01/13/2023] Open
Abstract
B cells, commonly regarded as proinflammatory antibody-producing cells, are detrimental to individuals with autoimmune diseases. However, in recent years, several studies have shown that regulatory B (Breg) cells, an immunosuppressive subset of B cells, may exert protective effects against autoimmune diseases by secretion of inhibitory cytokines such as IL-10. In practice, Breg cells are identified by their production of immune-regulatory cytokines, such as IL-10, TGF-β, and IL-35, however, no specific marker or Breg cell-specific transcription factor has been identified. Multiple phenotypes of Breg cells have been found, whose functions vary according to their phenotype. This review summarizes the discovery, phenotypes, development, and function of Breg cells and highlights their potential therapeutic value in kidney diseases.
Collapse
Affiliation(s)
- Wang Long
- Department of Kidney Transplantation, The Second Xiangya Hospital of Central South University, Changsha, China.,Graduate School of Medical and Dental Science, Department of Pathological Cell Biology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hedong Zhang
- Department of Kidney Transplantation, The Second Xiangya Hospital of Central South University, Changsha, China.,Clinical Research Center for Organ Transplantation in Hunan Province, Changsha, China
| | - Wenjia Yuan
- Department of Kidney Transplantation, The Second Xiangya Hospital of Central South University, Changsha, China.,Clinical Research Center for Organ Transplantation in Hunan Province, Changsha, China
| | - Gongbin Lan
- Department of Kidney Transplantation, The Second Xiangya Hospital of Central South University, Changsha, China.,Clinical Research Center for Organ Transplantation in Hunan Province, Changsha, China
| | - Zhi Lin
- Department of Kidney Transplantation, The Second Xiangya Hospital of Central South University, Changsha, China.,Clinical Research Center for Organ Transplantation in Hunan Province, Changsha, China
| | - Longkai Peng
- Department of Kidney Transplantation, The Second Xiangya Hospital of Central South University, Changsha, China.,Clinical Research Center for Organ Transplantation in Hunan Province, Changsha, China.,Clinical Immunology Center, Central South University, Changsha, China
| | - Helong Dai
- Department of Kidney Transplantation, The Second Xiangya Hospital of Central South University, Changsha, China.,Clinical Research Center for Organ Transplantation in Hunan Province, Changsha, China.,Clinical Immunology Center, Central South University, Changsha, China
| |
Collapse
|
18
|
Hao H, Nakayamada S, Tanaka Y. Differentiation, functions, and roles of T follicular regulatory cells in autoimmune diseases. Inflamm Regen 2021; 41:14. [PMID: 33934711 PMCID: PMC8088831 DOI: 10.1186/s41232-021-00164-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 04/13/2021] [Indexed: 12/14/2022] Open
Abstract
T follicular helper cells participate in stimulating germinal center (GC) formation and supporting B cell differentiation and autoantibody production. However, T follicular regulatory (Tfr) cells suppress B cell activation. Since changes in the number and functions of Tfr cells lead to dysregulated GC reaction and autoantibody response, targeting Tfr cells may benefit the treatment of autoimmune diseases. Differentiation of Tfr cells is a multistage and multifactorial process with various positive and negative regulators. Therefore, understanding the signals regulating Tfr cell generation is crucial for the development of targeted therapies. In this review, we discuss recent studies that have elucidated the roles of Tfr cells in autoimmune diseases and investigated the modulators of Tfr cell differentiation. Additionally, potential immunotherapies targeting Tfr cells are highlighted.
Collapse
Affiliation(s)
- He Hao
- First Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahata-nishi, Kitakyushu, 807-8555, Japan.,Department of Immuno-oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Shingo Nakayamada
- First Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahata-nishi, Kitakyushu, 807-8555, Japan
| | - Yoshiya Tanaka
- First Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahata-nishi, Kitakyushu, 807-8555, Japan.
| |
Collapse
|
19
|
Catalán D, Mansilla MA, Ferrier A, Soto L, Oleinika K, Aguillón JC, Aravena O. Immunosuppressive Mechanisms of Regulatory B Cells. Front Immunol 2021; 12:611795. [PMID: 33995344 PMCID: PMC8118522 DOI: 10.3389/fimmu.2021.611795] [Citation(s) in RCA: 178] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 02/19/2021] [Indexed: 12/12/2022] Open
Abstract
Regulatory B cells (Bregs) is a term that encompasses all B cells that act to suppress immune responses. Bregs contribute to the maintenance of tolerance, limiting ongoing immune responses and reestablishing immune homeostasis. The important role of Bregs in restraining the pathology associated with exacerbated inflammatory responses in autoimmunity and graft rejection has been consistently demonstrated, while more recent studies have suggested a role for this population in other immune-related conditions, such as infections, allergy, cancer, and chronic metabolic diseases. Initial studies identified IL-10 as the hallmark of Breg function; nevertheless, the past decade has seen the discovery of other molecules utilized by human and murine B cells to regulate immune responses. This new arsenal includes other anti-inflammatory cytokines such IL-35 and TGF-β, as well as cell surface proteins like CD1d and PD-L1. In this review, we examine the main suppressive mechanisms employed by these novel Breg populations. We also discuss recent evidence that helps to unravel previously unknown aspects of the phenotype, development, activation, and function of IL-10-producing Bregs, incorporating an overview on those questions that remain obscure.
Collapse
Affiliation(s)
- Diego Catalán
- Programa Disciplinario de Inmunología, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile.,Instituto Milenio en Inmunología e Inmunoterapia, Santiago, Chile
| | - Miguel Andrés Mansilla
- Programa Disciplinario de Inmunología, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile
| | - Ashley Ferrier
- Programa Disciplinario de Inmunología, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile.,Instituto Milenio en Inmunología e Inmunoterapia, Santiago, Chile
| | - Lilian Soto
- Programa Disciplinario de Inmunología, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile.,Unidad de Dolor, Hospital Clínico, Universidad de Chile (HCUCH), Santiago, Chile
| | | | - Juan Carlos Aguillón
- Programa Disciplinario de Inmunología, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile
| | - Octavio Aravena
- Programa Disciplinario de Inmunología, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile
| |
Collapse
|
20
|
Ding T, Su R, Wu R, Xue H, Wang Y, Su R, Gao C, Li X, Wang C. Frontiers of Autoantibodies in Autoimmune Disorders: Crosstalk Between Tfh/Tfr and Regulatory B Cells. Front Immunol 2021; 12:641013. [PMID: 33841422 PMCID: PMC8033031 DOI: 10.3389/fimmu.2021.641013] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 03/11/2021] [Indexed: 12/14/2022] Open
Abstract
Balance of Tfh/Tfr cell is critically important for the maintenance of immune tolerance, as evidenced by the fact that T follicular helper (Tfh) cells are central to the autoantibodies generation through providing necessary help for germinal center (GC) B cells, whereas T follicular regulatory (Tfr) cells significantly inhibit autoimmune inflammation process through restraining Tfh cell responses. However, signals underlying the regulation of Tfh and Tfr cells are largely undefined. Regulatory B cells (Bregs) is a heterogeneous subpopulation of B cells with immunosuppressive function. Considerable advances have been made in their functions to produce anti‐inflammatory cytokines and to regulate Th17, Th1, and Treg cells in autoimmune diseases. The recent identification of their correlations with dysregulated Tfr/Tfh cells and autoantibody production makes Bregs an important checkpoint in GC response. Bregs exert profound impacts on the differentiation, function, and distribution of Tfh and Tfr cells in the immune microenvironment. Thus, unraveling mechanistic information on Tfh-Breg and Tfr-Breg interactions will inspire novel implications for the establishment of homeostasis and prevention of autoantibodies in diverse diseases. This review summarizes the dysregulation of Tfh/Tfr cells in autoimmune diseases with a focus on the emerging role of Bregs in regulating the balance between Tfh and Tfr cells. The previously unsuspected crosstalk between Bregs and Tfh/Tfr cells will be beneficial to understand the cellular mechanisms of autoantibody production and evoke a revolution in immunotherapy for autoimmune diseases.
Collapse
Affiliation(s)
- Tingting Ding
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Rui Su
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Ruihe Wu
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Hongwei Xue
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Yanyan Wang
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Ronghui Su
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Chong Gao
- Pathology, Joint Program in Transfusion Medicine, Brigham and Women's Hospital/Children's Hospital and Harvard Medical School, Boston, MA, United States
| | - Xiaofeng Li
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Caihong Wang
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
21
|
Ma S, Satitsuksanoa P, Jansen K, Cevhertas L, van de Veen W, Akdis M. B regulatory cells in allergy. Immunol Rev 2020; 299:10-30. [PMID: 33345311 DOI: 10.1111/imr.12937] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/25/2020] [Accepted: 12/04/2020] [Indexed: 12/11/2022]
Abstract
B cells have classically been recognized for their unique and indispensable role in the production of antibodies. Their potential as immunoregulatory cells with anti-inflammatory functions has received increasing attention during the last two decades. Herein, we highlight pioneering studies in the field of regulatory B cell (Breg) research. We will review the literature on Bregs with a particular focus on their role in the regulation of allergic inflammation.
Collapse
Affiliation(s)
- Siyuan Ma
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland.,Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China
| | | | - Kirstin Jansen
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Lacin Cevhertas
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland.,Department of Medical Immunology, Institute of Health Sciences, Bursa Uludag University, Bursa, Turkey
| | - Willem van de Veen
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| |
Collapse
|
22
|
Bibby JA, Purvis HA, Hayday T, Chandra A, Okkenhaug K, Rosenzweig S, Aksentijevich I, Wood M, Lachmann HJ, Kemper C, Cope AP, Perucha E. Cholesterol metabolism drives regulatory B cell IL-10 through provision of geranylgeranyl pyrophosphate. Nat Commun 2020; 11:3412. [PMID: 32641742 PMCID: PMC7343868 DOI: 10.1038/s41467-020-17179-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 06/04/2020] [Indexed: 02/07/2023] Open
Abstract
Regulatory B cells restrict immune and inflammatory responses across a number of contexts. This capacity is mediated primarily through the production of IL-10. Here we demonstrate that the induction of a regulatory program in human B cells is dependent on a metabolic priming event driven by cholesterol metabolism. Synthesis of the metabolic intermediate geranylgeranyl pyrophosphate (GGPP) is required to specifically drive IL-10 production, and to attenuate Th1 responses. Furthermore, GGPP-dependent protein modifications control signaling through PI3Kδ-AKT-GSK3, which in turn promote BLIMP1-dependent IL-10 production. Inherited gene mutations in cholesterol metabolism result in a severe autoinflammatory syndrome termed mevalonate kinase deficiency (MKD). Consistent with our findings, B cells from MKD patients induce poor IL-10 responses and are functionally impaired. Moreover, metabolic supplementation with GGPP is able to reverse this defect. Collectively, our data define cholesterol metabolism as an integral metabolic pathway for the optimal functioning of human IL-10 producing regulatory B cells.
Collapse
Affiliation(s)
- Jack A Bibby
- Centre for Inflammation Biology and Cancer Immunology, School of Immunology and Microbial Sciences, King's College London, London, SE1 1UL, UK. .,Complement and Inflammation Research Section (CIRS), National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Harriet A Purvis
- Centre for Inflammation Biology and Cancer Immunology, School of Immunology and Microbial Sciences, King's College London, London, SE1 1UL, UK
| | - Thomas Hayday
- Centre for Inflammation Biology and Cancer Immunology, School of Immunology and Microbial Sciences, King's College London, London, SE1 1UL, UK
| | - Anita Chandra
- Division of Immunology, Department of Pathology, University of Cambridge, Cambridge, CB2 1QP, UK
| | - Klaus Okkenhaug
- Division of Immunology, Department of Pathology, University of Cambridge, Cambridge, CB2 1QP, UK
| | - Sofia Rosenzweig
- Inflammatory Disease Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Ivona Aksentijevich
- Inflammatory Disease Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Michael Wood
- National Amyloidosis Centre, Division of Medicine, University College London and Royal Free Hospital London NHS Foundation Trust, London, NW3 2PF, UK
| | - Helen J Lachmann
- National Amyloidosis Centre, Division of Medicine, University College London and Royal Free Hospital London NHS Foundation Trust, London, NW3 2PF, UK
| | - Claudia Kemper
- Centre for Inflammation Biology and Cancer Immunology, School of Immunology and Microbial Sciences, King's College London, London, SE1 1UL, UK.,Complement and Inflammation Research Section (CIRS), National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA.,Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Andrew P Cope
- Centre for Inflammation Biology and Cancer Immunology, School of Immunology and Microbial Sciences, King's College London, London, SE1 1UL, UK. .,Centre for Rheumatic Diseases, King's College London, London, SE1 1UL, UK.
| | - Esperanza Perucha
- Centre for Inflammation Biology and Cancer Immunology, School of Immunology and Microbial Sciences, King's College London, London, SE1 1UL, UK. .,Centre for Rheumatic Diseases, King's College London, London, SE1 1UL, UK.
| |
Collapse
|
23
|
Regulatory B cells in infection, inflammation, and autoimmunity. Cell Immunol 2020; 352:104076. [PMID: 32143836 DOI: 10.1016/j.cellimm.2020.104076] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 02/18/2020] [Accepted: 02/20/2020] [Indexed: 12/14/2022]
Abstract
Regulatory B (Breg) cells are characterized by differential expression of CD5 and CD1d in mouse and CD24 and CD38 in human immune systems. The Breg family also includes LAG-3+CD138hi plasma cells, CD1d CD5 CD21 CD23 cells, Tim1, PD-L1, PD-L2, CD200- expressing B cells, and CD39hiKi67+ cells originating from the transitional, marginal zone or germinal centre of the spleen. Breg cells produce IL10 and IL35 and to cause immunosuppression. These cells respond to TLR2, TLR4, and TLR9 agonists, CD40 ligands, IL12p35 and heat shock proteins. Emerging evidence suggests that TLR signalling component Myd88 impacts the modulation of Breg cell responses and the host's susceptibility to infection. Breg cells are found to reduce relapsing-remitting experimental autoimmune encephalomyelitis. However, the Breg-mediated mechanism used to control T cell-mediated immune responses is still unclear. Here, we review the existing literature to find gaps in the current knowledge and to build a pathway to further research.
Collapse
|
24
|
Gong F, Zheng T, Zhou P. T Follicular Helper Cell Subsets and the Associated Cytokine IL-21 in the Pathogenesis and Therapy of Asthma. Front Immunol 2019; 10:2918. [PMID: 31921177 PMCID: PMC6923700 DOI: 10.3389/fimmu.2019.02918] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 11/27/2019] [Indexed: 12/13/2022] Open
Abstract
For many decades, T helper 2 (TH2) cells have been considered to predominantly regulate the pathogenic manifestations of allergic asthma, such as IgE-mediated sensitization, airway hyperresponsiveness, and eosinophil infiltration. However, recent discoveries have significantly shifted our understanding of asthma from a simple TH2 cell-dependent disease to a heterogeneous disease regulated by multiple T cell subsets, including T follicular helper (TFH) cells. TFH cells, which are a specialized cell population that provides help to B cells, have attracted intensive attention in the past decade because of their crucial role in regulating antibody response in a broad range of diseases. In particular, TFH cells are essential for IgE antibody class-switching. In this review, we summarize the recent progress regarding the role of TFH cells and their signature cytokine interleukin (IL)-21 in asthma from mouse studies and clinical reports. We further discuss future therapeutic strategies to treat asthma by targeting TFH cells and IL-21.
Collapse
Affiliation(s)
- Fang Gong
- Department of Laboratory Medicine, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Ting Zheng
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia.,Laboratory of Immunology for Environment and Health, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Pengcheng Zhou
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| |
Collapse
|
25
|
Ding T, Niu H, Zhao X, Gao C, Li X, Wang C. T-Follicular Regulatory Cells: Potential Therapeutic Targets in Rheumatoid Arthritis. Front Immunol 2019; 10:2709. [PMID: 31849938 PMCID: PMC6901970 DOI: 10.3389/fimmu.2019.02709] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 11/04/2019] [Indexed: 12/18/2022] Open
Abstract
Rheumatoid arthritis (RA) is an incurable aggressive chronic inflammatory joint disease with a worldwide prevalence. High levels of autoantibodies and chronic inflammation may be involved in the pathology. Notably, T follicular regulatory (Tfr) cells are critical mediators of T follicular helper (Tfh) cell generation and antibody production in the germinal center (GC) reaction. Changes in the number and function of Tfr cells may lead to dysregulation of the GC reaction and the production of aberrant autoantibodies. Regulation of the function and number of Tfr cells could be an effective strategy for precisely controlling antibody production, reestablishing immune homeostasis, and thereby improving the outcome of RA. This review summarizes advances in our understanding of the biology and functions of Tfr cells. The involvement of Tfr cells and other immune cell subsets in RA is also discussed. Furthermore, we highlight the potential therapeutic targets related to Tfr cells and restoring the Tfr/Tfh balance via cytokines, microRNAs, the mammalian target of rapamycin (mTOR) signaling pathway, and the gut microbiota, which will facilitate further research on RA and other immune-mediated diseases.
Collapse
Affiliation(s)
- Tingting Ding
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Hongqing Niu
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Xiangcong Zhao
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Chong Gao
- Pathology, Joint Program in Transfusion Medicine, Brigham and Women's Hospital and Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Xiaofeng Li
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Caihong Wang
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
26
|
Zhang P, Hill GR. Interleukin-10 mediated immune regulation after stem cell transplantation: Mechanisms and implications for therapeutic intervention. Semin Immunol 2019; 44:101322. [PMID: 31640914 DOI: 10.1016/j.smim.2019.101322] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 10/08/2019] [Indexed: 12/23/2022]
Abstract
Interleukin-10 (IL-10) is a multi-faceted anti-inflammatory cytokine which plays an essential role in immune tolerance. Indeed, deficiency of IL-10 or its receptor results in aberrant immune responses that lead to immunopathology. Graft-versus-host disease (GVHD) is the limiting complication of allogeneic stem cell transplantation (SCT) and results from an imbalance in pathological versus regulatory immune networks. A number of immune cells exert their immunomodulatory role through secretion of IL-10 or induction of IL-10-secreting cells after SCT. Type-1 regulatory T cells (Tr1 cells) and FoxP3+ regulatory T cells (Tregs) are predominant sources of IL-10 after SCT and the critical role of this cytokine in preventing GVHD is now established. Recently, intriguing interactions among IL-10, immune cells, commensal microbes and host tissues in the gastrointestinal (GI) tract and other barrier surfaces have been uncovered. We now understand that IL-10 secretion is dynamically modulated by the availability of antigen, co-stimulatory signals, cytokines, commensal microbes and their metabolites in the microenvironment. In this review, we provide an overview of the control of IL-10 secretion and signaling after SCT and the therapeutic interventions, with a focus on Tr1 cells.
Collapse
Affiliation(s)
- Ping Zhang
- Bone Marrow Transplantation Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD, 4006, Australia.
| | - Geoffrey R Hill
- Bone Marrow Transplantation Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD, 4006, Australia; Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Division of Medical Oncology, The University of Washington, Seattle, WA 98109, USA.
| |
Collapse
|
27
|
Hong M, Liao Y, Liang J, Chen X, Li S, Liu W, Gao C, Zhong Z, Kong D, Deng J, Zhang J, Pan G. Immunomodulation of human CD19+CD25high regulatory B cells via Th17/Foxp3 regulatory T cells and Th1/Th2 cytokines. Hum Immunol 2019; 80:863-870. [DOI: 10.1016/j.humimm.2019.05.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 05/21/2019] [Accepted: 05/28/2019] [Indexed: 01/17/2023]
|
28
|
Induction of Accommodation by Anti–complement Component 5 Antibody-based Immunosuppression in ABO-incompatible Heart Transplantation. Transplantation 2019; 103:e248-e255. [DOI: 10.1097/tp.0000000000002808] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
29
|
Hanakawa S, Kitoh A, Shibuya R, Dainichi T, Nomura T, Honda T, Egawa G, Otsuka A, Nakajima S, Fujita M, Kabashima K. Percutaneous sensitization is limited by in situ inhibition of cutaneous dendritic cell migration through skin-resident regulatory T cells. J Allergy Clin Immunol 2019; 144:1343-1353.e8. [PMID: 31194988 DOI: 10.1016/j.jaci.2019.05.033] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 05/08/2019] [Accepted: 05/22/2019] [Indexed: 12/31/2022]
Abstract
BACKGROUND Percutaneous sensitization is associated with various allergic diseases, including asthma and food allergies. However, the immunologic mechanisms underlying how the skin regulates percutaneous sensitization are still unclear. OBJECTIVE We aimed to investigate whether and how CD4+Foxp3+ regulatory T (Treg) cells residing in the skin regulate percutaneous sensitization in the skin. METHODS Selective reduction of numbers of cutaneous Treg cells was achieved by means of intradermal injection of diphtheria toxin into the ear skin of Foxp3DTR mice, in which Treg cells specifically express the diphtheria toxin receptor fused with green fluorescent protein. RESULTS Thirty percent to 40% of cutaneous Treg cells were capable of IL-10 production in both mice and human subjects. Selective reduction of cutaneous Treg cells at the sensitization site promoted migration of antigen-bearing dendritic cells (DCs) to the draining lymph nodes (dLNs). Accordingly, sensitization through the skin with reduced numbers of Treg cells led to enhanced antigen-specific immune responses in the dLNs, including both effector T-cell differentiation and T cell-dependent B-cell responses, such as the development of germinal center B cells expressing IgG1 and IgE. Furthermore, antigen-bearing cutaneous DC migration was enhanced in mice with IL-10 deficiency restricted to the cutaneous Treg cell compartment, suggesting an important role of cutaneous IL-10+ Treg cells in limiting percutaneous sensitization. Treg cells with a skin-homing phenotype in skin dLNs expressed high levels of IL-10, suggesting that they contribute to renewal and maintenance of the cutaneous IL-10+ Treg cell population. CONCLUSION Skin-resident Treg cells limit percutaneous sensitization by suppressing antigen-bearing DC migration through in situ IL-10 production.
Collapse
Affiliation(s)
- Sho Hanakawa
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Akihiko Kitoh
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan.
| | - Rintaro Shibuya
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Teruki Dainichi
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takashi Nomura
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tetsuya Honda
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Gyohei Egawa
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Atsushi Otsuka
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Saeko Nakajima
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Mitsugu Fujita
- Department of Microbiology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Kenji Kabashima
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan; Singapore Immunology Network (SIgN) and Skin Research Institute of Singapore (SRIS), Agency for Science, Technology and Research (A*STAR), Singapore.
| |
Collapse
|
30
|
Gutiérrez C, Lopez-Abente J, Pérez-Fernández V, Prieto-Sánchez A, Correa-Rocha R, Moreno-Guillen S, Muñoz-Fernández MÁ, Pion M. Analysis of the dysregulation between regulatory B and T cells (Breg and Treg) in human immunodeficiency virus (HIV)-infected patients. PLoS One 2019; 14:e0213744. [PMID: 30917149 PMCID: PMC6436717 DOI: 10.1371/journal.pone.0213744] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 02/27/2019] [Indexed: 12/21/2022] Open
Abstract
This study examines the relationship between regulatory B (Breg) and T (Treg) compartments, which play crucial roles in the maintenance of immune homeostasis in the context of HIV. Using flow cytometry, the phenotypes of different Breg and Treg subsets from HIV-infected and healthy individuals were analyzed, along with the suppressive capacity of Breg. Peripheral blood samples of thirteen HIV+ treatment-naïve individuals, fourteen treated-HIV+ individuals with undetectable viral load and twelve healthy individuals were analyzed. The absolute counts of Breg and Treg subsets were decreased in HIV+ treatment-naïve individuals in comparison to treated-HIV+ and healthy individuals. Interestingly, correlations between Breg subsets (CD24hiCD27+ and PD-L1+ B cells) and IL-10-producing Breg observed in healthy individuals were lost in HIV+ treatment-naïve individuals. However, a correlation between frequencies of CD24hiCD38hi or TIM-1+-Breg subsets and Treg was observed in HIV+ treatment-naïve individuals and not in healthy individuals. Therefore, we hypothesized that various Breg subsets might have different functions during B and T-cell homeostasis during HIV-1 infection. In parallel, stimulated Breg from HIV-infected treatment-naïve individuals presented a decreased ability to suppress CD4+ T-cell proliferation in comparison to the stimulated Breg from treated-HIV+ or healthy individuals. We demonstrate a dysregulation between Breg and Treg subsets in HIV-infected individuals, which might participate in the hyper-activation and exhaustion of the immune system that occurs in such patients.
Collapse
Affiliation(s)
- Carolina Gutiérrez
- Molecular Immunovirology Laboratory, Department of Infectious Diseases, Ramón y Cajal Health Research Institute (IRYCIS), Ramón y Cajal University Hospital, Madrid, Spain
| | - Jacobo Lopez-Abente
- Immuno-Regulation Laboratory, University General Hospital Gregorio Marañón, Health Research Institute Gregorio Marañón (IiSGM), Medicine and Experimental Surgery Building, Madrid, Spain
| | - Verónica Pérez-Fernández
- Immuno-Regulation Laboratory, University General Hospital Gregorio Marañón, Health Research Institute Gregorio Marañón (IiSGM), Medicine and Experimental Surgery Building, Madrid, Spain
| | - Adrián Prieto-Sánchez
- Immuno-Regulation Laboratory, University General Hospital Gregorio Marañón, Health Research Institute Gregorio Marañón (IiSGM), Medicine and Experimental Surgery Building, Madrid, Spain
| | - Rafael Correa-Rocha
- Immuno-Regulation Laboratory, University General Hospital Gregorio Marañón, Health Research Institute Gregorio Marañón (IiSGM), Medicine and Experimental Surgery Building, Madrid, Spain
| | - Santiago Moreno-Guillen
- Molecular Immunovirology Laboratory, Department of Infectious Diseases, Ramón y Cajal Health Research Institute (IRYCIS), Ramón y Cajal University Hospital, Madrid, Spain
| | - María-Ángeles Muñoz-Fernández
- Molecular ImmunoBiology Laboratory, University General Hospital Gregorio Marañón, Health Research Institute Gregorio Marañón (IiSGM), Spanish HIV HGM BioBank, Madrid, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Marjorie Pion
- Immuno-Regulation Laboratory, University General Hospital Gregorio Marañón, Health Research Institute Gregorio Marañón (IiSGM), Medicine and Experimental Surgery Building, Madrid, Spain
| |
Collapse
|
31
|
Cai X, Zhang L, Wei W. Regulatory B cells in inflammatory diseases and tumor. Int Immunopharmacol 2019; 67:281-286. [DOI: 10.1016/j.intimp.2018.12.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 11/12/2018] [Accepted: 12/03/2018] [Indexed: 01/10/2023]
|
32
|
Singh N, Chin I, Gabriel P, Blaum E, Masli S. Dysregulated Marginal Zone B Cell Compartment in a Mouse Model of Sjögren's Syndrome with Ocular Inflammation. Int J Mol Sci 2018; 19:ijms19103117. [PMID: 30314337 PMCID: PMC6213455 DOI: 10.3390/ijms19103117] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 09/24/2018] [Accepted: 10/05/2018] [Indexed: 12/23/2022] Open
Abstract
The risk of developing lymphoma in patients with Sjögren’s syndrome (SS) is 44 times higher than in the normal population with the most common lymphomas derived from marginal zone B (MZB) cells. Current understanding of the role of MZB cells in SS is primarily based on salivary gland pathology, while their contextual association with lacrimal glands and ocular manifestations largely remains unknown. We examined this possibility using a SS mouse model (thrombospondin-1 deficient (TSP1−/−)) with well-characterized ocular disease. We determined the frequency, localization, and cytokine profiles of MZB cells and their association with an antibody response in TSP1−/− mice treated with a TSP-derived peptide. A significantly increased frequency of MZB cells was detected in the spleens and lacrimal glands of TSP1−/− mice in comparison to wild-type tissues as detected by immunostaining. An altered cytokine profile of TSP1−/− MZB cells was supportive of T helper 17 (Th17)-related pathogenesis. A significantly reduced antibody response and the splenic MZB compartment against an eye-derived antigen were noted in TSP-derived peptide-treated mice. These changes correspond with the previously reported ability of the peptide to ameliorate SS-related ocular manifestations. Collectively, our results demonstrate dysregulation of MZB cells in TSP1−/− mice and highlight their role in the context of SS-related chronic ocular surface disease.
Collapse
Affiliation(s)
- Niharika Singh
- Department of Ophthalmology, Boston University School of Medicine, Boston, MA 02118, USA.
| | - Ian Chin
- Department of Ophthalmology, Boston University School of Medicine, Boston, MA 02118, USA.
| | - Paul Gabriel
- Department of Ophthalmology, Boston University School of Medicine, Boston, MA 02118, USA.
| | - Emily Blaum
- Department of Ophthalmology, Boston University School of Medicine, Boston, MA 02118, USA.
| | - Sharmila Masli
- Department of Ophthalmology, Boston University School of Medicine, Boston, MA 02118, USA.
| |
Collapse
|
33
|
Chen M, Lin X, Olsen N, He X, Zheng SG. Advances in T follicular helper and T follicular regulatory cells in transplantation immunity. Transplant Rev (Orlando) 2018; 32:187-193. [PMID: 30139705 DOI: 10.1016/j.trre.2018.07.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 07/08/2018] [Accepted: 07/20/2018] [Indexed: 12/14/2022]
Abstract
B cells play a crucial role in alloreactivity of organ transplant rejection and graft versus host diseases (GVHD). Over the past decade, it has been well recognized that B-cell infiltration in allografts and de novo donor-specific antibodies (DSA) were strongly associated with severe graft rejection and loss, as well as glucocorticoid resistance. Emerging evidence has demonstrated that Follicular T helper (Tfh) cells are key effectors to promote the proliferation and differentiation of B cells into antibody-producing plasmablasts and memory B cells. T-follicular regulatory (Tfr) cells are a recently recognized cell population that has a negative regulatory role on Tfh cells in the follicle, preventing incessant antibody production. It is still less clear how those humoral immunoreactive cells affect transplant rejection and allograft loss. This review focuses on the production and function of Tfr/Tfh cells in the transplant environment. Better understanding of the functions and mechanisms of Tfr/Tfh cells will help to design new strategies to prevent allograft rejection and prolong graft survival.
Collapse
Affiliation(s)
- Maogen Chen
- Organ transplant center, First affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, PR China; Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou 510080, PR China; Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou 510080, PR China
| | - Xiaohong Lin
- Division of general surgery, The Eastern Hospital of the First affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, PR China
| | - Nancy Olsen
- Division of Rheumatology, Penn State Milton S. Hershey Medical Center, Hershey, PA 17033, USA
| | - Xiaoshun He
- Organ transplant center, First affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, PR China; Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou 510080, PR China; Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou 510080, PR China
| | - Song Guo Zheng
- Division of Rheumatology, Penn State Milton S. Hershey Medical Center, Hershey, PA 17033, USA.
| |
Collapse
|
34
|
Moysi E, Pallikkuth S, De Armas LR, Gonzalez LE, Ambrozak D, George V, Huddleston D, Pahwa R, Koup RA, Petrovas C, Pahwa S. Altered immune cell follicular dynamics in HIV infection following influenza vaccination. J Clin Invest 2018; 128:3171-3185. [PMID: 29911996 PMCID: PMC6025971 DOI: 10.1172/jci99884] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 04/25/2018] [Indexed: 12/29/2022] Open
Abstract
HIV infection changes the lymph node (LN) tissue architecture, potentially impairing the immunologic response to antigenic challenge. The tissue-resident immune cell dynamics in virologically suppressed HIV+ patients on combination antiretroviral therapy (cART) are not clear. We obtained LN biopsies before and 10 to 14 days after trivalent seasonal influenza immunization from healthy controls (HCs) and HIV+ volunteers on cART to investigate CD4+ T follicular helper (Tfh) and B cell dynamics by flow cytometry and quantitative imaging analysis. Prior to vaccination, compared with those in HCs, HIV+ LNs exhibited an altered follicular architecture, but harbored higher numbers of Tfh cells and increased IgG+ follicular memory B cells. Moreover, Tfh cell numbers were dependent upon preservation of the follicular dendritic cell (FDC) network and were predictive of the magnitude of the vaccine-induced IgG responses. Interestingly, postvaccination LN samples in HIV+ participants had significantly (P = 0.0179) reduced Tfh cell numbers compared with prevaccination samples, without evidence for peripheral Tfh (pTfh) cell reduction. We conclude that influenza vaccination alters the cellularity of draining LNs of HIV+ persons in conjunction with development of antigen-specific humoral responses. The underlying mechanism of Tfh cell decline warrants further investigation, as it could bear implications for the rational design of HIV vaccines.
Collapse
Affiliation(s)
- Eirini Moysi
- Tissue Analysis Core, Immunology Laboratory, Vaccine Research Center (VRC), National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland, USA
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Suresh Pallikkuth
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Lesley R. De Armas
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Louis E. Gonzalez
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - David Ambrozak
- Immunology Laboratory, VRC, NIAID, NIH, Bethesda, Maryland, USA
| | - Varghese George
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - David Huddleston
- Department of Trauma Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Rajendra Pahwa
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Richard A. Koup
- Immunology Laboratory, VRC, NIAID, NIH, Bethesda, Maryland, USA
| | - Constantinos Petrovas
- Tissue Analysis Core, Immunology Laboratory, Vaccine Research Center (VRC), National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland, USA
| | - Savita Pahwa
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
35
|
Abstract
PURPOSE OF REVIEW Allergen immunotherapy (AIT) is currently the only curative treatment available for allergic diseases, and has been used in clinical practice for over a century. Induction and maintenance of immune tolerance to nonhazardous environmental and self-antigens is essential to maintain homeostasis and prevent chronic inflammation. Regulatory B (BREG) cells are immunoregulatory cells that protect against chronic inflammatory responses primarily through production of anti-inflammatory cytokines such as IL-10, transforming growth factor-β, and IL-35. The importance of BREG cells has been extensively demonstrated in the context of autoimmune diseases. Data showing their role in the regulation of allergic responses are slowly accumulating. This review summarizes recent findings relevant to the topic of BREG cells and their potential role in AIT. RECENT FINDINGS BREG cells support AIT in models of allergic airway inflammation and intestinal inflammation through induction of regulatory T (TREG) cells. In humans BREG frequency increases during venom immunotherapy while the phenotype of allergen-specific B cells changes. Mechanisms of BREG-mediated tolerance to allergens include IL-10-mediated suppression of effector T cell, including TH2 responses, induction of TREG cells, IL-10-mediated inhibition of Dendritic cell maturation, modulation of T follicular helper responses, and production of anti-inflammatory IgG4 antibodies. SUMMARY Current evidence supports a potential role for BREG cells in induction and maintenance of allergen tolerance during AIT. A better understanding of the role of B cells and BREG cells in AIT could open potential new windows for developing targeted therapies specifically focused on promoting BREG responses during AIT.
Collapse
|
36
|
Potential Role for Regulatory B Cells as a Major Source of Interleukin-10 in Spleen from Plasmodium chabaudi-Infected Mice. Infect Immun 2018. [PMID: 29531131 DOI: 10.1128/iai.00016-18] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Interleukin-10 (IL-10)-producing regulatory B (Breg) cells were found to be induced in a variety of infectious diseases. However, its importance in the regulation of immune response to malaria is still unclear. Here, we investigated the dynamics, phenotype, and function of Breg cells using Plasmodium chabaudi chabaudi AS-infected C57BL/6 and BALB/c mice. BALB/c mice were more susceptible to infection and had a stronger IL-10 response in spleen than C57BL/6 mice. Analysis of the surface markers of IL-10-producing cells with flow cytometry showed that CD19+ B cells were one of the primary IL-10-producing populations in P. c. chabaudi AS-infected C57BL/6 and BALB/c mice, especially in the latter one. The Breg cells had a heterogeneous phenotype which shifted during infection. The well-established Breg subset, CD19+ CD5+ CD1dhi cells, accounted for less than 20% of IL-10-producing B cells in both strains during the course of infection. Most Breg cells were IgG+ and CD138- from day 0 to day 8 postinfection. Adoptive transfer of Breg cells to C57BL/6 mice infected with P. c. chabaudi AS led to a transient increase of parasitemia without an impact on survival rate. Our finding reveals that B cells play an active and important regulatory role in addition to mediating humoral immunity in immune response against malaria, which should be paid more attention in developing therapeutic or vaccine strategies against malaria involving stimulation of B cells.
Collapse
|
37
|
Yi JZ, Chen ZH, Xu FH, Wang ZY, Zhang HQ, Jiang GS, Luan XY. Interferon-γ suppresses the proliferation and migration of human placenta-derived mesenchmal stromal cells and enhances their ability to induce the generation of CD4 + CXCR5 + Foxp3 + Treg subset. Cell Immunol 2018; 326:42-51. [DOI: 10.1016/j.cellimm.2017.07.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Revised: 07/12/2017] [Accepted: 07/14/2017] [Indexed: 12/31/2022]
|
38
|
Estes JD, LeGrand R, Petrovas C. Visualizing the Immune System: Providing Key Insights into HIV/SIV Infections. Front Immunol 2018; 9:423. [PMID: 29552017 PMCID: PMC5840205 DOI: 10.3389/fimmu.2018.00423] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 02/16/2018] [Indexed: 12/23/2022] Open
Abstract
Immunological inductive tissues, such as secondary lymphoid organs, are composed of distinct anatomical microenvironments for the generation of immune responses to pathogens and immunogens. These microenvironments are characterized by the compartmentalization of highly specialized immune and stromal cell populations, as well as the presence of a complex network of soluble factors and chemokines that direct the intra-tissue trafficking of naïve and effector cell populations. Imaging platforms have provided critical contextual information regarding the molecular and cellular interactions that orchestrate the spatial microanatomy of relevant cells and the development of immune responses against pathogens. Particularly in HIV/SIV disease, imaging technologies are of great importance in the investigation of the local interplay between the virus and host cells, with respect to understanding viral dynamics and persistence, immune responses (i.e., adaptive and innate inflammatory responses), tissue structure and pathologies, and changes to the surrounding milieu and function of immune cells. Merging imaging platforms with other cutting-edge technologies could lead to novel findings regarding the phenotype, function, and molecular signatures of particular immune cell targets, further promoting the development of new antiviral treatments and vaccination strategies.
Collapse
Affiliation(s)
- Jacob D Estes
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR, United States.,Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, United States
| | - Roger LeGrand
- CEA, Université Paris Sud 11, INSERM U1184, Center for Immunology of Viral Infections and Autoimmune Diseases, IDMIT Department, IBFJ, Fontenay-aux-Roses, France
| | - Constantinos Petrovas
- Tissue Analysis Core, Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID) National Institutes of Health (NIH), Bethesda, MD, United States
| |
Collapse
|
39
|
Chenouard A, Chesneau M, Bui Nguyen L, Le Bot S, Cadoux M, Dugast E, Paul C, Malard-Castagnet S, Ville S, Guérif P, Soulillou JP, Degauque N, Danger R, Giral M, Brouard S. Renal Operational Tolerance Is Associated With a Defect of Blood Tfh Cells That Exhibit Impaired B Cell Help. Am J Transplant 2017; 17:1490-1501. [PMID: 27888555 DOI: 10.1111/ajt.14142] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 11/20/2016] [Accepted: 11/22/2016] [Indexed: 01/25/2023]
Abstract
Renal operationally tolerant patients (TOL) display a defect in B cell differentiation, with a deficiency in plasma cells. Recently described, T follicular helper (Tfh) cells play a critical role in B cell differentiation. We analyzed blood Tfh subsets in TOL and transplanted patients with stable graft function under immunosuppression (STA). We observed a reduced proportion of blood activated and highly functional Tfh subsets in TOL, without affecting Tfh absolute numbers. Functionally, Tfh cells from TOL displayed a modified gene expression profile, failed to produce interleukin-21, and were unable to induce IgG production by naive B cells. This Tfh defect is linked to a low incidence of postgraft de novo donor-specific antibody (dnDSA) immunization, suggesting that the lack of Tfh cells in TOL may induce a protolerogenic environment with reduced risk of developing dnDSA. Finally, we showed that elevated Tfh in STA precedes the occurrence of dnDSA during an alloresponse. These data provide new insights into the mechanisms of antibody response in operational tolerance. Disrupted homeostasis and impaired Tfh function in TOL could lead to a reduced risk of developing dnDSA and suggest a predictive role of blood Tfh cells on the occurrence of dnDSA in transplant recipients.
Collapse
Affiliation(s)
- A Chenouard
- INSERM, Nantes, France.,Faculté de Médecine, Université de Nantes, Nantes, France.,CHU de Nantes, ITUN, Nantes, France
| | - M Chesneau
- INSERM, Nantes, France.,Faculté de Médecine, Université de Nantes, Nantes, France
| | - L Bui Nguyen
- INSERM, Nantes, France.,Faculté de Médecine, Université de Nantes, Nantes, France
| | - S Le Bot
- INSERM, Nantes, France.,Faculté de Médecine, Université de Nantes, Nantes, France
| | - M Cadoux
- INSERM, Nantes, France.,CHU de Nantes, ITUN, Nantes, France
| | - E Dugast
- INSERM, Nantes, France.,Faculté de Médecine, Université de Nantes, Nantes, France
| | - C Paul
- INSERM, Nantes, France.,CHU de Nantes, ITUN, Nantes, France
| | - S Malard-Castagnet
- CHU de Nantes, ITUN, Nantes, France.,Laboratoire HLA, Etablissement Français du Sang Pays de la Loire, Nantes, France
| | - S Ville
- INSERM, Nantes, France.,Faculté de Médecine, Université de Nantes, Nantes, France.,CHU de Nantes, ITUN, Nantes, France
| | - P Guérif
- INSERM, Nantes, France.,CHU de Nantes, ITUN, Nantes, France.,CIC Biothérapie, Nantes, France
| | - J-P Soulillou
- LabEx Transplantex, Nantes, France.,EU Consortium BIO-DrIM
| | - N Degauque
- INSERM, Nantes, France.,CHU de Nantes, ITUN, Nantes, France.,EU Consortium VISICORT
| | - R Danger
- INSERM, Nantes, France.,Faculté de Médecine, Université de Nantes, Nantes, France
| | - M Giral
- INSERM, Nantes, France.,Faculté de Médecine, Université de Nantes, Nantes, France.,CHU de Nantes, ITUN, Nantes, France.,CIC Biothérapie, Nantes, France.,LabEx Transplantex, Nantes, France.,EU Consortium BIO-DrIM
| | - S Brouard
- INSERM, Nantes, France.,CHU de Nantes, ITUN, Nantes, France.,CIC Biothérapie, Nantes, France.,LabEx Transplantex, Nantes, France.,EU Consortium BIO-DrIM.,EU Consortium VISICORT.,Immunotherapy Graft Oncology, LabEx IGO, Nantes, France
| |
Collapse
|
40
|
Chong AS, Khiew SH. Transplantation tolerance: don't forget about the B cells. Clin Exp Immunol 2017; 189:171-180. [PMID: 28100001 DOI: 10.1111/cei.12927] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2017] [Indexed: 12/13/2022] Open
Abstract
Establishing a state of transplantation tolerance that leads to indefinite graft survival without the need for lifelong immunosuppression has been achieved successfully in limited numbers of transplant recipients in the clinic. These successes led to studies aimed at identifying potential biomarkers that diagnose allograft tolerance and identify the patients most amenable to drug minimization, and implicated an enriched B cell signature of tolerance. The emergence of a specialized subset of regulatory B cell (Bregs ), that possess immune-modulatory function in inflammation and autoimmune disease, raised the possibility that Bregs play critical roles in the promotion of transplantation tolerance and that Bregs are the underlying explanation for the B cell signature of tolerance. However, B cells are best known to play a key role in humoral immunity, and excessive production of donor specific antibodies has clear deleterious effects in transplantation. Thus, for tolerance to be persistent, alloantibody responses must also be curtailed, either through the suppression of T cell help or the induction of B cell-intrinsic dysfunction. Recent findings indicate a unique subset of follicular regulatory T cells (Tfr) that can suppress B cell function and induce epigenetic modifications that result in sustained defects in B cell differentiation and function. In this review, we summarize studies in animals and humans that suggest roles for Bregs and dysfunctional B cells in transplantation tolerance, and discuss how these insights may provide a roadmap for new approaches to diagnose, and new therapies to induce allograft tolerance.
Collapse
Affiliation(s)
- A S Chong
- Section of Transplantation, Department of Surgery, The University of Chicago, Chicago, IL, USA
| | - S H Khiew
- Section of Transplantation, Department of Surgery, The University of Chicago, Chicago, IL, USA
| |
Collapse
|
41
|
Tolerance in Kidney Transplantation: What Is on the B Side? Mediators Inflamm 2016; 2016:8491956. [PMID: 27956762 PMCID: PMC5121468 DOI: 10.1155/2016/8491956] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 10/12/2016] [Indexed: 11/17/2022] Open
Abstract
Regulatory B cells (Breg) are in the spotlight for their role in immune homeostasis maintenance and tolerance achievement as in the last years the correlation with functional and increased Breg numbers in autoimmune diseases and transplantation has been extensively proven. Their study is, however, in its infancy with still little knowledge and consensus on their origin, phenotype, and mechanism of action. All this hampers the pursuit of an effective Breg induction method for therapeutic purposes. In this review we aim to summarize the studies on human Breg and their implication in kidney transplantation and to further discuss the issues surrounding therapeutic applications of this cell subset.
Collapse
|
42
|
van de Veen W, Stanic B, Wirz OF, Jansen K, Globinska A, Akdis M. Role of regulatory B cells in immune tolerance to allergens and beyond. J Allergy Clin Immunol 2016; 138:654-665. [DOI: 10.1016/j.jaci.2016.07.006] [Citation(s) in RCA: 166] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 07/08/2016] [Accepted: 07/13/2016] [Indexed: 12/21/2022]
|
43
|
Wu Y, van Besouw NM, Shi Y, Hoogduijn MJ, Wang L, Baan CC. The Biological Effects of IL-21 Signaling on B-Cell-Mediated Responses in Organ Transplantation. Front Immunol 2016; 7:319. [PMID: 27602031 PMCID: PMC4994014 DOI: 10.3389/fimmu.2016.00319] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 08/08/2016] [Indexed: 02/05/2023] Open
Abstract
Antibody-mediated rejection has emerged as one of the major issues limiting the success of organ transplantation. It exerts a highly negative impact on graft function and outcome, and effective treatment is lacking. The triggers for antibody development, and the mechanisms leading to graft dysfunction and failure, are incompletely understood. The production of antibodies is dependent on instructions from various immunocytes including CD4 T-helper cells that secrete interleukin (IL)-21 and interact with antigen-specific B-cells via costimulatory molecules. In this article, we discuss the role of IL-21 in the activation and differentiation of B-cells and consider the mechanisms of IL-21 and B-cell interaction. An improved understanding of the biological mechanisms involved in antibody-mediated complications after organ transplantation could lead to the development of novel therapeutic strategies, which control humoral alloreactivity, potentially preventing and treating graft-threatening antibody-mediated rejection.
Collapse
Affiliation(s)
- Yongkang Wu
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China; Sector Nephrology & Transplantation, Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Nicole M van Besouw
- Sector Nephrology & Transplantation, Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam , Rotterdam , Netherlands
| | - Yunying Shi
- Department of Nephrology, West China Hospital, Sichuan University , Chengdu , China
| | - Martin J Hoogduijn
- Sector Nephrology & Transplantation, Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam , Rotterdam , Netherlands
| | - Lanlan Wang
- Department of Laboratory Medicine, West China Hospital, Sichuan University , Chengdu , China
| | - Carla C Baan
- Sector Nephrology & Transplantation, Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam , Rotterdam , Netherlands
| |
Collapse
|
44
|
Shi J, Xu X, Luo F, Shi Q, He X, Xia Y. Differences in Tfh Cell Response Between the Graft and Spleen With Chronic Allograft Nephropathy. Cell Transplant 2016; 26:95-102. [PMID: 27524795 DOI: 10.3727/096368916x692816] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The aim of this study was to investigate follicular helper T (Tfh) cell response and its difference between renal graft and spleen in a rat renal transplantation model undergoing chronic allograft nephropathy (CAN). Orthotopical kidney transplantations were performed on Fischer (F344) rats and transplanted to Lewis rats, using syngeneic Lewis-Lewis grafts as controls. Tissue samples were collected at 8 weeks posttransplantation. The status of Tfh cell response was assessed by measuring the levels of transcription factor B-cell lymphoma 6 (Bcl-6), interleukin-21 (IL-21), chemokine receptor type 5 (CXCR5), and B-cell-activating factor belonging to the TNF family (BAFF). Tfh cell response was upregulated in both renal graft and spleen of the CAN group compared to the control group. However, Tfh cell response of the spleen was weaker than that of the graft, which was possibly related to the upregulation of splenic Treg activation. Also, the difference between two tissues was partially associated with the different expressions of tristetraprolin (TTP)/IL-10. Our data help improve our understanding of the role of Tfh cell response in the body with CAN and may provide a valuable clue for better treatment of CAN.
Collapse
|
45
|
Xie J, Li X, Meng D, Liang Q, Wang X, Wang L, Wang R, Xiang M, Chen S. Transduction of interleukin-10 through renal artery attenuates vascular neointimal proliferation and infiltration of immune cells in rat renal allograft. Immunol Lett 2016; 176:105-13. [PMID: 27317647 DOI: 10.1016/j.imlet.2016.06.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 05/24/2016] [Accepted: 06/13/2016] [Indexed: 12/14/2022]
Abstract
Renal transplantation is the treatment of choice for end-stage renal failure. Although acute rejection is not a major issue anymore, chronic rejection, especially vascular rejection, is still a major factor that might lead to allograft dysfunction on the long term. The role of the local immune-regulating cytokine interleukin-10 (IL-10) in chronic renal allograft is unclear. Many clinical observations showed that local IL-10 level was negatively related to kidney allograft function. It is unknown this negative relationship was the result of immunostimulatory property or insufficient immunosuppression property of local IL-10. We performed ex vivo transduction before transplantation through artery of the renal allograft using adeno-associated viral vectors carrying IL-10 gene. Twelve weeks after transplantation, we found intrarenal IL-10 gene transduction significantly inhibited arterial neointimal proliferation, the number of occluded intrarenal artery, interstitial fibrosis, peritubular capillary congestion and glomerular inflammation in renal allografts compared to control allografts receiving PBS or vectors carrying YFP. IL-10 transduction increased serum IL-10 level at 4 weeks but not at 8 and 12 weeks. Renal IL-10 level increased while serum creatinine decreased significantly in IL-10 group at 12 weeks compared to PBS or YFP controls. Immunohistochemical staining showed unchanged total T cells (CD3) and B cells (CD45R/B220), decreased cytotoxic T cells (CD8), macrophages (CD68) and increased CD4+ and FoxP3+ cells in IL-10 group. In summary, intrarenal IL-10 inhibited the allograft rejection while modulated immune response.
Collapse
Affiliation(s)
- Jingxin Xie
- Department of Physiology and Pathophysiology, Fudan University Shanghai Medical College, Shanghai, China
| | - Xueyi Li
- Department of Physiology and Pathophysiology, Fudan University Shanghai Medical College, Shanghai, China
| | - Dan Meng
- Department of Physiology and Pathophysiology, Fudan University Shanghai Medical College, Shanghai, China
| | - Qiujuan Liang
- Department of Physiology and Pathophysiology, Fudan University Shanghai Medical College, Shanghai, China
| | - Xinhong Wang
- Department of Physiology and Pathophysiology, Fudan University Shanghai Medical College, Shanghai, China
| | - Li Wang
- Department of Physiology and Pathophysiology, Fudan University Shanghai Medical College, Shanghai, China
| | - Rui Wang
- Department of Physiology and Pathophysiology, Fudan University Shanghai Medical College, Shanghai, China
| | - Meng Xiang
- Department of Physiology and Pathophysiology, Fudan University Shanghai Medical College, Shanghai, China
| | - Sifeng Chen
- Department of Physiology and Pathophysiology, Fudan University Shanghai Medical College, Shanghai, China.
| |
Collapse
|