1
|
Zhang Y, Zhang W, Ma M, Zhang X, Li C, Deng T, Gao J, Gao C, Wang N. Corydalis yanhusuo extract and its pharmacological substances alleviate food allergy by inhibiting mast cells activation via PLC/PKC/STAT3 pathway. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118809. [PMID: 39251152 DOI: 10.1016/j.jep.2024.118809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/03/2024] [Accepted: 09/07/2024] [Indexed: 09/11/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Food allergies have increasingly become a disease that affects global health and need for corresponding therapeutic drugs urgently. As a traditional Chinses medicine with a wide range of pharmacological effects, however, there was no clear research confirming therapeutic effect and pharmacological substances of Corydalis yanhusuo (YHS) on food allergies. Mast cells (MCs) are the main effector cells which mediate allergic and pseudo-allergic reactions. MATERIALS AND METHODS In this study, we investigated the effect of YHS extract on treating food allergy and its underlying mechanism. The inhibitory effect of YHS on MCs activation in vitro was evaluated by Ca2+ influx, degranulation, and cytokine release detection. The in vivo effect was investigated using the passive cutaneous anaphylaxis (PCA), active systemic allergy as well as OVA-induced food allergy mice. Western blot was performed to reveal the signaling pathway. RESULTS YHS extract showed an inhibitory effect on MCs activation and food allergy both in vitro and in vivo. PLC/PKC/STAT3 signaling pathway was suppressed by YHS extract in the disease. HPLC analysis revealed YHS extract contains corydaline and tetrahydropalmatine, and both compounds inhibited MCs activation induced by C48/80 in vitro. CONCLUSION YHS extract inhibited the MCs activation and food allergy via PLC/PKC/STAT3 pathway.
Collapse
Affiliation(s)
- Yongjing Zhang
- Department of Medical Oncology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China; School of Pharmacy, Xi'an Jiaotong University, Xi'an, China
| | - Wen Zhang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, China
| | - Mengyang Ma
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, China
| | - Xinping Zhang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, China
| | - Chenjia Li
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, China
| | - Tingting Deng
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, China
| | - Jie Gao
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, China
| | - Chang Gao
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, China
| | - Nan Wang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
2
|
Jia T, Xia Y, Yi M, Zhang X, Zheng Y, Che D. Casticin reduces rosacea-related inflammation by inhibiting mast cell activation via Mas-related G protein-coupled receptor X2. Inflammopharmacology 2025:10.1007/s10787-025-01639-8. [PMID: 39821787 DOI: 10.1007/s10787-025-01639-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 12/26/2024] [Indexed: 01/19/2025]
Abstract
BACKGROUND Rosacea is a chronic inflammatory disease characterized by persistent erythema, papules, and pustules, mainly on the skin of the face. Rosacea is difficult to treat; therefore, identifying new treatments is crucial. Mas-related G protein-coupled receptor X2 (MRGPRX2)-mediated mast cell (MC) activation is essential in the pathogenesis of rosacea. Casticin has been shown to exert anti-inflammatory effects; however, it remains unclear whether it can inhibit MRGPRX2 in treating rosacea. This study determined the therapeutic efficacy of casticin against rosacea by inhibiting MRGPRX2-mediated MC activation. METHODS A mouse model of LL37-induced rosacea-like dermatitis was employed. The pathological changes were evaluated using hematoxylin and eosin (H&E) staining, and MCs and CD4+ T cells were observed. Inflammatory mediators were analyzed using ELISA. Mouse skin lesions were collected for transcriptomic sequencing. We used an MRGPRX2-mediated MC degranulation model to evaluate the inhibitory effects of casticin in vitro. Molecular docking analysis, molecular dynamics simulations, and surface plasmon resonance evaluated the binding between casticin and MRGPRX2. RESULTS Casticin attenuated the LL37-induced inflammatory phenotype and reactions in rosacea-like dermatitis. RNA-seq data showed that casticin inhibited MC activation in a mouse model of rosacea. Furthermore, casticin significantly reduced CD4 + T-cell infiltration. Moreover, casticin inhibited MC activation as an MRGPRX2 antagonist in vitro and in vivo by influencing the NF-κB signaling pathway. CONCLUSION Our study demonstrated that casticin exhibits therapeutic efficacy against rosacea by inhibiting MC activation via MRGPRX2.
Collapse
Affiliation(s)
- Tao Jia
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xiwu Road 157, Xi'an, Shaanxi, China
| | - Yifan Xia
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xiwu Road 157, Xi'an, Shaanxi, China
| | - Mengyao Yi
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xiwu Road 157, Xi'an, Shaanxi, China
| | - Xinyue Zhang
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xiwu Road 157, Xi'an, Shaanxi, China
| | - Yi Zheng
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xiwu Road 157, Xi'an, Shaanxi, China
| | - Delu Che
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xiwu Road 157, Xi'an, Shaanxi, China.
- Center for Dermatology Disease, Precision Medical Institute, Xi'an, China.
| |
Collapse
|
3
|
Zhao B, Nepovimova E, Wu Q. The role of circadian rhythm regulator PERs in oxidative stress, immunity, and cancer development. Cell Commun Signal 2025; 23:30. [PMID: 39825442 PMCID: PMC11740368 DOI: 10.1186/s12964-025-02040-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 01/11/2025] [Indexed: 01/20/2025] Open
Abstract
The complex interaction between circadian rhythms and physiological functions is essential for maintaining human health. At the heart of this interaction lies the PERIOD proteins (PERs), pivotal to the circadian clock, influencing the timing of physiological and behavioral processes and impacting oxidative stress, immune functionality, and tumorigenesis. PER1 orchestrates the cooperation of the enzyme GPX1, modulating mitochondrial dynamics in sync with daily rhythms and oxidative stress, thus regulating the mechanisms managing energy substrates. PERs in innate immune cells modulate the temporal patterns of NF-κB and TNF-α activities, as well as the response to LPS-induced toxic shock, initiating inflammatory responses that escalate into chronic inflammatory conditions. Crucially, PERs modulate cancer cell behaviors including proliferation, apoptosis, and migration by influencing the levels of cell cycle proteins and stimulating the expression of oncogenes c-Myc and MDM2. PER2/3, as antagonists in cancer stem cell biology, play important roles in differentiating cancer stem cells and in maintaining their stemness. Importantly, the expression of Pers serve as a significant factor for early cancer diagnosis and prognosis. This review delves into the link between circadian rhythm regulator PERs, disruptions in circadian rhythm, and oncogenesis. We examine the evidence that highlights how dysfunctions in PERs activities initiate cancer development, aid tumor growth, and modify cancer cell metabolism through pathways involved in oxidative stress and immune system. Comprehending these connections opens new pathways for the development of circadian rhythm-based therapeutic strategies, with the aims of boosting immune responses and enhancing cancer treatments.
Collapse
Affiliation(s)
- Baimei Zhao
- College of Life Science, Yangtze University, Jingzhou, 434025, China
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradec Králové , 500 03, Czech Republic
| | - Qinghua Wu
- College of Life Science, Yangtze University, Jingzhou, 434025, China.
| |
Collapse
|
4
|
Céspedes N, Tsolis RM, Piliponsky AM, Luckhart S. The type 2 immune response in gut homeostasis and parasite transmission in malaria. Trends Parasitol 2025; 41:38-51. [PMID: 39658487 DOI: 10.1016/j.pt.2024.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/18/2024] [Accepted: 11/18/2024] [Indexed: 12/12/2024]
Abstract
Malaria predisposes to concomitant bacteremia, resulting in increased mortality risk. Previous studies indicated that malaria causes structural changes in the intestine, induces tolerogenic immune responses, inhibits neutrophil recruitment, suppresses innate synthesis of IFN-γ, dysregulates mast cells (MCs) and basophils, and induces Th2-type immune responses. These can reduce parasite control while increasing enteropathogenic dissemination. Moreover, there is growing evidence that Th2 immunity, while protecting the host from overwhelming inflammation, may also contribute to increased parasite transmission. This review explores the roles of the regulatory immune response in bacterial coinfections and parasite transmission in malaria.
Collapse
Affiliation(s)
- Nora Céspedes
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID, USA.
| | - Renée M Tsolis
- Department of Medical Microbiology and Immunology, University of California-Davis, Davis, CA, USA
| | - Adrian M Piliponsky
- Department of Pediatrics and Department of Pathology, Seattle Children's Research Institute, Seattle, WA, USA
| | - Shirley Luckhart
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID, USA; Department of Biological Sciences, University of Idaho, Moscow, ID, USA
| |
Collapse
|
5
|
Werner R, Carnazza M, Li XM, Yang N. Effect of Small-Molecule Natural Compounds on Pathologic Mast Cell/Basophil Activation in Allergic Diseases. Cells 2024; 13:1994. [PMID: 39682741 DOI: 10.3390/cells13231994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/04/2024] [Accepted: 10/08/2024] [Indexed: 12/18/2024] Open
Abstract
Pathologic mast cells and basophils, key effector cells in allergic reactions, play pivotal roles in initiating and perpetuating IgE-mediated allergic responses. Conventional therapies for allergies have limitations, prompting exploration into alternative approaches such as small-molecule natural compounds derived from botanical sources. This review synthesizes the existing literature on the effects of these compounds on pathologic mast cells and basophils, highlighting their potential in allergy management, and utilizes the PubMed database for literature acquisition, employing keyword-based searches to identify relevant peer-reviewed sources. Additionally, mechanistic insights were evaluated to contextualize how small-molecule natural compounds can inhibit mast cell/basophil activation, degranulation, and signaling pathways crucial for IgE-mediated allergic reactions. Small-molecule natural compounds exhibit promising anti-allergic effects, yet despite these findings, challenges persist in the development and translation of natural compound-based therapies, including bioavailability and standardization issues. Future research directions include optimizing dosing regimens, exploring synergistic effects with existing therapies, and employing systems pharmacology approaches for a holistic understanding of their mechanisms of action. By harnessing the therapeutic potential of small-molecule natural compounds, effective treatments for allergic diseases may be realized, offering hope for individuals with allergies.
Collapse
Affiliation(s)
- Robert Werner
- Division of R&D, General Nutraceutical Technology LLC, Elmsford, NY 10523, USA
| | - Michelle Carnazza
- Division of R&D, General Nutraceutical Technology LLC, Elmsford, NY 10523, USA
| | - Xiu-Min Li
- Department of Pathology, Microbiology & Immunology, New York Medical College, Valhalla, NY 10595, USA
- Department of Otolaryngology, School of Medicine, New York Medical College, Valhalla, NY 10595, USA
- Department of Dermatology, New York Medical College, Valhalla, NY 10595, USA
| | - Nan Yang
- Division of R&D, General Nutraceutical Technology LLC, Elmsford, NY 10523, USA
| |
Collapse
|
6
|
Fang X, Song T, Zheng L, Weng Y, Gao F, Mo C, Zheng X. Targeting mast cell activation alleviates anti-MHC I antibody and LPS-induced TRALI in mice by pharmacologically blocking the TLR3 and MAPK pathway. Biomed Pharmacother 2024; 180:117456. [PMID: 39326104 DOI: 10.1016/j.biopha.2024.117456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/10/2024] [Accepted: 09/19/2024] [Indexed: 09/28/2024] Open
Abstract
Transfusion-related lung injury (TRALI) poses a significant risk following blood transfusion and remains the primary cause of transfusion-related morbidity and mortality, primarily driven by the activation of immune cells through anti-major histocompatibility complex class I (anti-MHC I) antibody. However, it remains to be defined how immune microenvironmental cue contributes to TRALI. Here, we uncover that activated mast cells within the immune microenvironment promote lung inflammation and injury in antibody-mediated TRALI, both in vitro and in vivo. This was demonstrated by co-culturing lipopolysaccharide (LPS)-pretreated mast cell line with anti-MHC I antibody and establishing a "two-hit" TRALI mouse model through intratracheal injection of LPS followed by tail-vein injection of anti-MHC I antibody. Importantly, mast cell-deficient KitW-sh/W-sh mice exhibited markedly reduced lung inflammation and injury responses in antibody-mediated TRALI compared with wild-type mice. Mechanistically, activation of toll-like receptor 3 (TLR3)/mitogen-activated protein kinase (MAPK) signaling pathway in mast cells contributes to the enhanced production of proinflammatory factors. These excessive proinflammatory factors produced by activated mast cells contribute to lung inflammation and injury in antibody-mediated TRALI. Pharmacologically targeting the TLR3/MAPK pathway to inhibit mast cell activation normalizes the proinflammatory microenvironment and alleviates lung inflammation and injury in the preclinical TRALI mouse model. Overall, we find that activation of mast cells via the TLR3/MAPK pathway contributes to lung inflammation and injury in antibody-mediated TRALI, providing novel insights into its underlying mechanisms. Furthermore, targeting activated mast cells and the associated pathway offers potential therapeutic strategies for antibody-mediated TRALI.
Collapse
Affiliation(s)
- Xiaobin Fang
- Department of Anesthesiology/Critical Care Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Key Laboratory of Critical Care Medicine, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, Fujian 350001, China.
| | - Tianjiao Song
- Department of Emergency, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Key Laboratory of Emergency Medicine, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, Fujian 350001, China
| | - Ling Zheng
- Department of Anesthesiology/Critical Care Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Key Laboratory of Critical Care Medicine, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, Fujian 350001, China
| | - Yueyi Weng
- Department of Anesthesiology/Critical Care Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Key Laboratory of Critical Care Medicine, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, Fujian 350001, China
| | - Fei Gao
- Department of Anesthesiology/Critical Care Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Key Laboratory of Critical Care Medicine, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, Fujian 350001, China
| | - Chunheng Mo
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu 610041, China.
| | - Xiaochun Zheng
- Department of Anesthesiology/Critical Care Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Key Laboratory of Critical Care Medicine, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, Fujian 350001, China; Department of Anesthesiology, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University & Fujian Emergency Medical Center, Fujian Provincial Key Laboratory of Emergency Medicine, Fujian Provincial Key Laboratory of Critical Medicine, Fujian Provincial Co-constructed Laboratory of "Belt and Road", Fuzhou, Fujian, China.
| |
Collapse
|
7
|
Li X, Lu F, Cao M, Yao Y, Guo J, Zeng G, Qian J. The pro-tumor activity of INTS7 on lung adenocarcinoma via inhibiting immune infiltration and activating p38MAPK pathway. Sci Rep 2024; 14:25636. [PMID: 39465338 PMCID: PMC11514252 DOI: 10.1038/s41598-024-77093-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 10/18/2024] [Indexed: 10/29/2024] Open
Abstract
Lung adenocarcinoma (LUAD) is the most common lung cancer, accounting for 19.4% of all cancer deaths. Our previous study discovered that INTS7 expression was upregulated in LUAD, while the precise mechanism by which INTS7 exerts pro-cancer effects remains unknown. In our study, shRNA was used to knockdown the expression of INTS7 in A549 cells. Cancer behaviors in vitro were determined by CCK8 and transwell assays. Xenograft mice models were constructed to detect the tumorigenesis in vivo. Immunofluorescence and toluidine blue staining were used to test the immune infiltration. Bioinformatics analysis was adopted to predict the potential signaling pathways and construct INTS7-derived genomic prognostic model. Western blot was utilized to confirm the molecular pathways. In total, downregulation of INTS7 suppressed proliferation, invasion and migration of A549 cells, as well as tumor growth. Bioinformatics and western blot analysis indicated that p38MAPK pathway participated in the regulatory mechanism of INTS7. Moreover, INTS7 expression was negatively correlated with infiltration of memory B cells and mast cells, while positively correlated with infiltration of macrophages M2. A nomogram, including INTS7-derived risk score, was used to estimate individual's survival probability. Generally, our findings provided comprehensive understanding of the molecular mechanisms about INTS7, and targeting INTS7 may represent a potential therapy for LUAD.
Collapse
Affiliation(s)
- Xiang Li
- Department of Respiratory and Critical Care Medicine, Suzhou Municipal Hospital, Gusu School, The Affiliated Suzhou Hospital of Nanjing Medical University, Nanjing Medical University, 242 Guangji Road, Soochow, 215000, Jiangsu, P.R. China
| | - Feifei Lu
- Department of Respiratory and Critical Care Medicine, Suzhou Municipal Hospital, Gusu School, The Affiliated Suzhou Hospital of Nanjing Medical University, Nanjing Medical University, 242 Guangji Road, Soochow, 215000, Jiangsu, P.R. China
| | - Man Cao
- Department of Gastroenterology, Suzhou Municipal Hospital, Gusu School, The Affiliated Suzhou Hospital of Nanjing Medical University, Nanjing Medical University, 242 Guangji Road, Soochow, 215000, Jiangsu, P.R. China
| | - Yiyong Yao
- Department of Respiratory and Critical Care Medicine, Suzhou Municipal Hospital, Gusu School, The Affiliated Suzhou Hospital of Nanjing Medical University, Nanjing Medical University, 242 Guangji Road, Soochow, 215000, Jiangsu, P.R. China
| | - Jingjing Guo
- Department of Respiratory and Critical Care Medicine, Suzhou Municipal Hospital, Gusu School, The Affiliated Suzhou Hospital of Nanjing Medical University, Nanjing Medical University, 242 Guangji Road, Soochow, 215000, Jiangsu, P.R. China
| | - Gang Zeng
- Department of Respiratory and Critical Care Medicine, Suzhou Municipal Hospital, Gusu School, The Affiliated Suzhou Hospital of Nanjing Medical University, Nanjing Medical University, 242 Guangji Road, Soochow, 215000, Jiangsu, P.R. China.
| | - Jinxian Qian
- Department of Respiratory and Critical Care Medicine, Suzhou Municipal Hospital, Gusu School, The Affiliated Suzhou Hospital of Nanjing Medical University, Nanjing Medical University, 242 Guangji Road, Soochow, 215000, Jiangsu, P.R. China.
| |
Collapse
|
8
|
Pérez-Pons A, Henriques A, Contreras Sanfeliciano T, Jara-Acevedo M, Navarro-Navarro P, García-Montero AC, Álvarez-Twose I, Lecrevisse Q, Fluxa R, Sánchez-Muñoz L, Caldas C, Pozo J, González-López Ó, Pérez-Andrés M, Mayado A, Orfao A. Altered B-cell, plasma cell, and antibody immune profiles in blood of patients with systemic mastocytosis. J Allergy Clin Immunol 2024:S0091-6749(24)01062-5. [PMID: 39423877 DOI: 10.1016/j.jaci.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 09/18/2024] [Accepted: 10/07/2024] [Indexed: 10/21/2024]
Abstract
BACKGROUND Systemic mastocytosis (SM) is a heterogeneous disease characterized by an expansion of KIT-mutated constitutively activated mast cells (MCs) that release MC mediators, which might act on the tumor microenvironment including other immune cells. OBJECTIVE To investigate the blood distribution of B-cell, plasma cell (PC), and antibody isotype compartments in patients with SM. METHODS We used spectral flow cytometry and the EuroFlow Immunomonitoring panel and Lymphocyte Screening Tube to quantify B cells, PCs, and their subsets in blood of 108 patients with SM (35 bone marrow mastocytosis [BMM] cases, 64 indolent SM [ISM] cases, 9 aggressive SM [ASM] cases) versus 117 age-matched healthy donors and paired bone marrow samples of 31 patients with SM versus 17 controls, respectively. In parallel, IgM, IgD, IgG, IgA, and IgE plasma levels were measured. RESULTS Compared with healthy donors, patients with SM showed increased immature B-cell production in bone marrow (P = .003) associated with greater release of pre-germinal center immature (P < .001) and naive CD5+ B lymphocytes (P < .001) to blood, but a pronounced decrease in PC counts of all different IgH isotypes and subclasses (P ≤ .001) together with overall increased IgM (P = .001) and IgD (P < .001) plasma levels. Different immune profiles were found per diagnostic subtype of disease with progressively greater counts in blood of immature B lymphocytes together with decreased IgMD+, IgG2+, IgA1+, and IgA2+ memory B cells (P ≤ .032) and elevated IgM (P = .017) plasma levels in cases of ASM, increased IgM (P = .001) and IgD (P = .001) plasma levels in ISM cases, and exacerbated IgE (P < .001) with decreased IgG (P = .008) plasma levels in BMM cases. CONCLUSIONS Our results reveal a significant dysregulation of the B-cell and PC compartments in blood of patients with SM, consistent with distinctly altered antibody isotype profiles in plasma of patients with BMM versus ISM versus ASM.
Collapse
Affiliation(s)
- Alba Pérez-Pons
- Cancer Research Center, Department of Medicine and Cytometry Service, University of Salamanca, Salamanca, Spain; Biomedical Research Institute of Salamanca, Salamanca, Spain; Biomedical Research Networking Center Consortium, Madrid, Spain; Spanish Network on Mastocytosis, Toledo and Salamanca, Spain
| | - Ana Henriques
- Spanish Network on Mastocytosis, Toledo and Salamanca, Spain; Instituto de Estudios de Mastocitosis de Castilla La Mancha, Virgen del Valle Hospital, Toledo and Madrid, Spain
| | | | - María Jara-Acevedo
- Cancer Research Center, Department of Medicine and Cytometry Service, University of Salamanca, Salamanca, Spain; Biomedical Research Institute of Salamanca, Salamanca, Spain; Biomedical Research Networking Center Consortium, Madrid, Spain; Spanish Network on Mastocytosis, Toledo and Salamanca, Spain; Sequencing Service, University of Salamanca, Salamanca, Spain
| | - Paula Navarro-Navarro
- Cancer Research Center, Department of Medicine and Cytometry Service, University of Salamanca, Salamanca, Spain; Biomedical Research Institute of Salamanca, Salamanca, Spain; Biomedical Research Networking Center Consortium, Madrid, Spain; Spanish Network on Mastocytosis, Toledo and Salamanca, Spain; Sequencing Service, University of Salamanca, Salamanca, Spain
| | - Andrés C García-Montero
- Cancer Research Center, Department of Medicine and Cytometry Service, University of Salamanca, Salamanca, Spain; Biomedical Research Institute of Salamanca, Salamanca, Spain; Biomedical Research Networking Center Consortium, Madrid, Spain; Spanish Network on Mastocytosis, Toledo and Salamanca, Spain
| | - Iván Álvarez-Twose
- Biomedical Research Networking Center Consortium, Madrid, Spain; Spanish Network on Mastocytosis, Toledo and Salamanca, Spain; Instituto de Estudios de Mastocitosis de Castilla La Mancha, Virgen del Valle Hospital, Toledo and Madrid, Spain
| | - Quentin Lecrevisse
- Cancer Research Center, Department of Medicine and Cytometry Service, University of Salamanca, Salamanca, Spain; Biomedical Research Institute of Salamanca, Salamanca, Spain; Biomedical Research Networking Center Consortium, Madrid, Spain
| | | | - Laura Sánchez-Muñoz
- Spanish Network on Mastocytosis, Toledo and Salamanca, Spain; Instituto de Estudios de Mastocitosis de Castilla La Mancha, Virgen del Valle Hospital, Toledo and Madrid, Spain
| | - Carolina Caldas
- Cancer Research Center, Department of Medicine and Cytometry Service, University of Salamanca, Salamanca, Spain; Biomedical Research Institute of Salamanca, Salamanca, Spain; Spanish Network on Mastocytosis, Toledo and Salamanca, Spain
| | - Julio Pozo
- Cancer Research Center, Department of Medicine and Cytometry Service, University of Salamanca, Salamanca, Spain; Biomedical Research Institute of Salamanca, Salamanca, Spain
| | - Óscar González-López
- Cancer Research Center, Department of Medicine and Cytometry Service, University of Salamanca, Salamanca, Spain; Biomedical Research Institute of Salamanca, Salamanca, Spain; Spanish Network on Mastocytosis, Toledo and Salamanca, Spain
| | - Martín Pérez-Andrés
- Cancer Research Center, Department of Medicine and Cytometry Service, University of Salamanca, Salamanca, Spain; Biomedical Research Institute of Salamanca, Salamanca, Spain; Biomedical Research Networking Center Consortium, Madrid, Spain
| | - Andrea Mayado
- Cancer Research Center, Department of Medicine and Cytometry Service, University of Salamanca, Salamanca, Spain; Biomedical Research Institute of Salamanca, Salamanca, Spain; Biomedical Research Networking Center Consortium, Madrid, Spain; Spanish Network on Mastocytosis, Toledo and Salamanca, Spain
| | - Alberto Orfao
- Cancer Research Center, Department of Medicine and Cytometry Service, University of Salamanca, Salamanca, Spain; Biomedical Research Institute of Salamanca, Salamanca, Spain; Biomedical Research Networking Center Consortium, Madrid, Spain; Spanish Network on Mastocytosis, Toledo and Salamanca, Spain.
| |
Collapse
|
9
|
Wang R, Lan C, Benlagha K, Camara NOS, Miller H, Kubo M, Heegaard S, Lee P, Yang L, Forsman H, Li X, Zhai Z, Liu C. The interaction of innate immune and adaptive immune system. MedComm (Beijing) 2024; 5:e714. [PMID: 39286776 PMCID: PMC11401974 DOI: 10.1002/mco2.714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 08/11/2024] [Accepted: 08/11/2024] [Indexed: 09/19/2024] Open
Abstract
The innate immune system serves as the body's first line of defense, utilizing pattern recognition receptors like Toll-like receptors to detect pathogens and initiate rapid response mechanisms. Following this initial response, adaptive immunity provides highly specific and sustained killing of pathogens via B cells, T cells, and antibodies. Traditionally, it has been assumed that innate immunity activates adaptive immunity; however, recent studies have revealed more complex interactions. This review provides a detailed dissection of the composition and function of the innate and adaptive immune systems, emphasizing their synergistic roles in physiological and pathological contexts, providing new insights into the link between these two forms of immunity. Precise regulation of both immune systems at the same time is more beneficial in the fight against immune-related diseases, for example, the cGAS-STING pathway has been found to play an important role in infections and cancers. In addition, this paper summarizes the challenges and future directions in the field of immunity, including the latest single-cell sequencing technologies, CAR-T cell therapy, and immune checkpoint inhibitors. By summarizing these developments, this review aims to enhance our understanding of the complexity interactions between innate and adaptive immunity and provides new perspectives in understanding the immune system.
Collapse
Affiliation(s)
- Ruyuan Wang
- Department of Thyroid and Breast Surgery Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
| | - Caini Lan
- Cancer Center Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
| | - Kamel Benlagha
- Alloimmunity, Autoimmunity and Transplantation Université de Paris, Institut de Recherche Saint-Louis, EMiLy, INSERM U1160 Paris France
| | - Niels Olsen Saraiva Camara
- Department of Immunology Institute of Biomedical Sciences University of São Paulo (USP) São Paulo São Paulo Brazil
| | - Heather Miller
- Coxiella Pathogenesis Section, Laboratory of Bacteriology Rocky Mountain Laboratories National Institute of Allergy and Infectious Diseases, National Institutes of Health Hamilton Montana USA
| | - Masato Kubo
- Division of Molecular Pathology Research Institute for Biomedical Sciences (RIBS) Tokyo University of Science Noda Chiba Japan
| | - Steffen Heegaard
- Department of Ophthalmology Rigshospitalet Hospital Copenhagen University Copenhagen Denmark
| | - Pamela Lee
- Department of Paediatrics and Adolescent Medicine Li Ka Shing Faculty of Medicine The University of Hong Kong Hong Kong China
| | - Lu Yang
- Department of Pathogen Biology School of Basic Medicine Tongji Medical College and State Key Laboratory for Diagnosis and treatment of Severe Zoonotic Infectious Disease, Huazhong University of Science and Technology Wuhan Hubei China
| | - Huamei Forsman
- Department of Laboratory Medicine Institute of Biomedicine, University of Gothenburg Gothenburg Sweden
| | - Xingrui Li
- Department of Thyroid and Breast Surgery Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
| | - Zhimin Zhai
- Department of Hematology The Second Hospital of Anhui Medical University Hefei China
| | - Chaohong Liu
- Department of Pathogen Biology School of Basic Medicine Tongji Medical College and State Key Laboratory for Diagnosis and treatment of Severe Zoonotic Infectious Disease, Huazhong University of Science and Technology Wuhan Hubei China
| |
Collapse
|
10
|
Wang X, Zhang P, Tang Y, Chen Y, Zhou E, Gao K. Mast cells: a double-edged sword in inflammation and fibrosis. Front Cell Dev Biol 2024; 12:1466491. [PMID: 39355120 PMCID: PMC11442368 DOI: 10.3389/fcell.2024.1466491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 08/26/2024] [Indexed: 10/03/2024] Open
Abstract
As one of the key components of the immune system, mast cells are well known for their role in allergic reactions. However, they are also involved in inflammatory and fibrotic processes. Mast cells participate in all the stages of acute inflammatory responses, playing an immunomodulatory role in both innate and adaptive immunity. Mast cell-derived histamine, TNF-α, and IL-6 contribute to the inflammatory processes, while IL-10 mediates the suppression of inflammation. Crosstalk between mast cells and other immune cells is also involved in the development of inflammation. The cell-cell adhesion of mast cells and fibroblasts is crucial for fibrosis. Mast cell mediators, including cytokines and proteases, play contradictory roles in the fibrotic process. Here, we review the double-edged role of mast cells in inflammation and fibrosis.
Collapse
Affiliation(s)
- Xufang Wang
- Jiangsu Province Key Laboratory of Tonifying Kidney and Anti-senescence, Department of Nephrology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Peipei Zhang
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Yuxin Tang
- Jiangsu Province Key Laboratory of Tonifying Kidney and Anti-senescence, Department of Nephrology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Yanlin Chen
- Jiangsu Province Key Laboratory of Tonifying Kidney and Anti-senescence, Department of Nephrology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Enchao Zhou
- Jiangsu Province Key Laboratory of Tonifying Kidney and Anti-senescence, Department of Nephrology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Kun Gao
- Jiangsu Province Key Laboratory of Tonifying Kidney and Anti-senescence, Department of Nephrology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
11
|
Nair B, Kamath AJ, Tergaonkar V, Sethi G, Nath LR. Mast cells and the gut-liver Axis: Implications for liver disease progression and therapy. Life Sci 2024; 351:122818. [PMID: 38866220 DOI: 10.1016/j.lfs.2024.122818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/24/2024] [Accepted: 06/07/2024] [Indexed: 06/14/2024]
Abstract
The role of mast cells, traditionally recognized for their involvement in immediate hypersensitivity reactions, has garnered significant attention in liver diseases. Studies have indicated a notable increase in mast cell counts following hepatic injury, underscoring their potential contribution to liver disorder pathogenesis. Predominantly situated in connective tissue that envelops the hepatic veins, bile ducts, and arteries, mast cells are central to both initiating and perpetuating liver disorders. Additionally, they are crucial for maintaining gastrointestinal barrier function. The gut-liver axis emphasizes the complex, two-way communication between the gut microbiome and the liver. Past research has implicated gut microbiota and their metabolites in the progression of hepatic disorders. This review sheds light on how mast cells are activated in various liver conditions such as alcoholic liver disease (ALD), non-alcoholic fatty liver disease (NAFLD), viral hepatitis, hepatic fibrogenesis, and hepatocellular carcinoma. It also briefly explores the connection between the gut microbiome and mast cell activation in these hepatic conditions.
Collapse
Affiliation(s)
- Bhagyalakshmi Nair
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara, P.O., Kochi, Kerala 682041, India; Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara, P.O., Kochi, Kerala 682041, India
| | - Adithya Jayaprakash Kamath
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara, P.O., Kochi, Kerala 682041, India; Department of Pharmaceutics, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara, P.O., Kochi, Kerala 682041, India
| | - Vinay Tergaonkar
- Laboratory of NFκB Signalling, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, 138673, Singapore
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore.
| | - Lekshmi R Nath
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara, P.O., Kochi, Kerala 682041, India.
| |
Collapse
|
12
|
Lee YA, Shin MH. CysLT receptor-mediated NOX2 activation is required for IL-8 production in HMC-1 cells induced by Trichomonas vaginalis-derived secretory products. PARASITES, HOSTS AND DISEASES 2024; 62:270-280. [PMID: 39218626 PMCID: PMC11366543 DOI: 10.3347/phd.24046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 08/11/2024] [Indexed: 09/04/2024]
Abstract
Trichomoniasis is caused by a sexually transmitted flagellate protozoan parasite Trichomonas vaginalis. T. vaginalis-derived secretory products (TvSP) contain lipid mediators such as leukotriene B4 (LTB4) and various cysteinyl leukotrienes (CysLTs) which included LTC4, LTD4, and LTE4. However, the signaling mechanisms by which T. vaginalis-induced CysLTs stimulate interleukin (IL)-8 production in human mast cells remain unclear. In this study, we investigated these mechanisms in human mast cells (HMC-1). Stimulation with TvSP resulted in increased intracellular reactive oxygen species (ROS) generation and NADPH oxidase 2 (NOX2) activation compared to unstimulated cells. Pre-treatment with NOX2 inhibitors such as diphenyleneiodonium chloride (DPI) or apocynin significantly reduced ROS production in TvSP-stimulated HMC-1 cells. Additionally, TvSP stimulation increased NOX2 protein expression and the translocation of p47phox from the cytosol to the membrane. Pretreatment of HMC-1 cells with PI3K or PKC inhibitors reduced TvSP-induced p47phox translocation and ROS generation. Furthermore, NOX2 inhibitors or NOX2 siRNA prevented CREB phosphorylation and IL-8 gene expression or protein secretion induced by TvSP. Pretreatment with a CysLTR antagonist significantly inhibited TvSP-induced ROS production, CREB phosphorylation, and IL-8 production. These results indicate that CysLT-mediated activation of NOX2 plays a crucial role in ROS-dependent IL-8 production in human mast cells stimulated by T. vaginalis-secreted CysLTs. These findings enhance our understanding of the inflammatory response in trichomoniasis and may inform the development of targeted therapies to mitigate this response.
Collapse
Affiliation(s)
- Young Ah Lee
- Department of Tropical Medicine and Institute of Tropical Medicine, Yonsei University College of Medicine, Seoul 03722,
Korea
| | - Myeong Heon Shin
- Department of Tropical Medicine and Institute of Tropical Medicine, Yonsei University College of Medicine, Seoul 03722,
Korea
| |
Collapse
|
13
|
Lee YA, Shin MH. Dynamin 2-mediated endocytosis of BLT1 is required for IL-8 production in HMC-1 cells induced by Trichomonas vaginalis-derived secretory products. PARASITES, HOSTS AND DISEASES 2024; 62:281-293. [PMID: 39218627 PMCID: PMC11366542 DOI: 10.3347/phd.24049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024]
Abstract
We previously reported that leukotriene B4 (LTB4) contained in Trichomonas vaginalis-derived secretory products (TvSP) play an essential role in interleukin-8 (IL-8) production in human mast cell line (HMC-1 cells) via LTB4 receptor (BLT)-mediated Nuclear Factor-kappa B (NF-кB) activation. Dynamin, a GTPase, has been known to be involved in endocytosis of receptors for signaling of production of cytokine or chemokines. In the present study, we investigated the role of dynamin-mediated BLT1 endocytosis in TvSP-induced IL-8 production. When HMC-1 cells were transfected with BLT1 or BLT2 siRNA, TvSP-induced IL-8 production was significantly inhibited compared with that in cells transfected with control siRNA. In addition, pretreatment of HMC-1 cells with a dynamin inhibitor (Dynasore) reduced IL-8 production induced by TvSP or LTB4. TvSP- or LTB4- induced phosphorylation of NF-кB was also attenuated by pretreatment with Dynasore. After exposing HMC-1 cells to TvSP or LTB4, BLT1 was translocated from the intracellular compartments to the plasma membrane within 30 min. At 60 min after stimulation with TvSP or LTB4, BLT1 remigrated from the cell surface to intracellular areas. Pretreatment of HMC-1 cells with dynamin-2 siRNA blocked internalization of BLT1 induced by TvSP or LTB4. Co-immunoprecipitation experiments revealed that dynamin-2 strongly interacted with BLT1 60 min after stimulation with TvSP or LTB4. These results suggest that T. vaginalis-secreted LTB4 induces IL-8 production in HMC-1 cells via dynamin 2-mediated endocytosis of BLT1 and phosphorylation of NF-кB.
Collapse
Affiliation(s)
- Young Ah Lee
- Department of Tropical Medicine and Institute of Tropical Medicine, Yonsei University College of Medicine, Seoul 03722,
Korea
| | - Myeong Heon Shin
- Department of Tropical Medicine and Institute of Tropical Medicine, Yonsei University College of Medicine, Seoul 03722,
Korea
| |
Collapse
|
14
|
Hegde M, Girisa S, Devanarayanan TN, Alqahtani MS, Abbas M, Sethi G, Kunnumakkara AB. Network of Extracellular Traps in the Pathogenesis of Sterile Chronic Inflammatory Diseases: Role of Oxidative Stress and Potential Clinical Applications. Antioxid Redox Signal 2024; 41:396-427. [PMID: 37725535 DOI: 10.1089/ars.2023.0329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Affiliation(s)
- Mangala Hegde
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India
| | - Sosmitha Girisa
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India
| | - Thulasidharan Nair Devanarayanan
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India
| | - Mohammed S Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
- BioImaging Unit, Space Research Centre, Michael Atiyah Building, University of Leicester, Leicester, United Kingdom
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha, Saudi Arabia
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India
| |
Collapse
|
15
|
Pérez-Pons A, Teodosio C, Jara-Acevedo M, Henriques A, Navarro-Navarro P, García-Montero AC, Álvarez-Twose I, Lecrevisse Q, Fluxa R, Sánchez-Muñoz L, Caldas C, Pozo J, Martín S, Sanfeliciano TC, Pedreira CE, Botafogo V, González-López O, Mayado A, Orfao A. T-cell immune profile in blood of systemic mastocytosis: Association with disease features. Allergy 2024; 79:1921-1937. [PMID: 38299742 DOI: 10.1111/all.16043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 01/02/2024] [Accepted: 01/16/2024] [Indexed: 02/02/2024]
Abstract
BACKGROUND Systemic mastocytosis (SM) is a heterogeneous disease characterized by an expansion of KIT-mutated mast cells (MC). KIT-mutated MC display activated features and release MC mediators that might act on the tumour microenvironment and other immune cells. Here, we investigated the distribution of lymphocyte subsets in blood of patients with distinct subtypes of SM and determined its association with other disease features. METHODS We studied the distribution of TCD4+ and TCD4- cytotoxic cells and their subsets, as well as total NK- and B cells, in blood of 115 SM patients-38 bone marrow mastocytosis (BMM), 67 indolent SM (ISM), 10 aggressive SM (ASM)- and 83 age-matched healthy donors (HD), using spectral flow cytometry and the EuroFlow Immunomonitoring panel, and correlated it with multilineage KITD816V, the alpha-tryptasemia genotype (HαT) and the clinical manifestations of the disease. RESULTS SM patients showed decreased counts (vs. HD) of TCD4- cytotoxic cells, NK cells and several functional subsets of TCD4+ cells (total Th1, Th2-effector memory, Th22-terminal effector and Th1-like Tregs), together with increased T-follicular-helper and Th1/Th17-like Treg counts, associated with different immune profiles per diagnostic subtype of SM, in multilineal versus MC-restricted KITD816V and in cases with a HαT+ versus HαT- genotype. Unique immune profiles were found among BMM and ISM patients with MC-restricted KITD816V who displayed HαT, anaphylaxis, hymenoptera venom allergy, bone disease, pruritus, flushing and GI symptoms. CONCLUSION Our results reveal altered T- and NK-cell immune profiles in blood of SM, which vary per disease subtype, the pattern of involvement of haematopoiesis by KITD816V, the HαT genotype and specific clinical manifestations of the disease.
Collapse
Affiliation(s)
- Alba Pérez-Pons
- Department of Medicine and Cytometry Service (NUCLEUS), Cancer Research Center (IBMCC, USAL-CSIC), Universidad de Salamanca, Salamanca, Spain
- Biomedical Research Networking Center Consortium (CIBERONC; CB16/12/00400), Madrid, Spain
- Biomedical Research Institute of Salamanca (IBSAL), Salamanca, Spain
- Spanish Network on Mastocytosis (REMA), Toledo, Salamanca, Spain
| | - Cristina Teodosio
- Department of Medicine and Cytometry Service (NUCLEUS), Cancer Research Center (IBMCC, USAL-CSIC), Universidad de Salamanca, Salamanca, Spain
- Biomedical Research Networking Center Consortium (CIBERONC; CB16/12/00400), Madrid, Spain
- Biomedical Research Institute of Salamanca (IBSAL), Salamanca, Spain
| | - María Jara-Acevedo
- Department of Medicine and Cytometry Service (NUCLEUS), Cancer Research Center (IBMCC, USAL-CSIC), Universidad de Salamanca, Salamanca, Spain
- Biomedical Research Networking Center Consortium (CIBERONC; CB16/12/00400), Madrid, Spain
- Biomedical Research Institute of Salamanca (IBSAL), Salamanca, Spain
- Spanish Network on Mastocytosis (REMA), Toledo, Salamanca, Spain
- Sequencing Service (NUCLEUS), Universidad de Salamanca, Salamanca, Spain
| | - Ana Henriques
- Spanish Network on Mastocytosis (REMA), Toledo, Salamanca, Spain
- Instituto de Estudios de Mastocitosis de Castilla La Mancha (CLMast), Virgen del Valle Hospital, CIBERONC, Toledo, Madrid, Spain
- Cytognos SL, Salamanca, Spain
| | - Paula Navarro-Navarro
- Department of Medicine and Cytometry Service (NUCLEUS), Cancer Research Center (IBMCC, USAL-CSIC), Universidad de Salamanca, Salamanca, Spain
- Biomedical Research Networking Center Consortium (CIBERONC; CB16/12/00400), Madrid, Spain
- Biomedical Research Institute of Salamanca (IBSAL), Salamanca, Spain
- Spanish Network on Mastocytosis (REMA), Toledo, Salamanca, Spain
- Sequencing Service (NUCLEUS), Universidad de Salamanca, Salamanca, Spain
| | - Andrés C García-Montero
- Department of Medicine and Cytometry Service (NUCLEUS), Cancer Research Center (IBMCC, USAL-CSIC), Universidad de Salamanca, Salamanca, Spain
- Biomedical Research Networking Center Consortium (CIBERONC; CB16/12/00400), Madrid, Spain
- Biomedical Research Institute of Salamanca (IBSAL), Salamanca, Spain
- Spanish Network on Mastocytosis (REMA), Toledo, Salamanca, Spain
| | - Iván Álvarez-Twose
- Biomedical Research Networking Center Consortium (CIBERONC; CB16/12/00400), Madrid, Spain
- Spanish Network on Mastocytosis (REMA), Toledo, Salamanca, Spain
- Instituto de Estudios de Mastocitosis de Castilla La Mancha (CLMast), Virgen del Valle Hospital, CIBERONC, Toledo, Madrid, Spain
| | - Quentin Lecrevisse
- Department of Medicine and Cytometry Service (NUCLEUS), Cancer Research Center (IBMCC, USAL-CSIC), Universidad de Salamanca, Salamanca, Spain
- Biomedical Research Networking Center Consortium (CIBERONC; CB16/12/00400), Madrid, Spain
- Biomedical Research Institute of Salamanca (IBSAL), Salamanca, Spain
| | | | - Laura Sánchez-Muñoz
- Biomedical Research Networking Center Consortium (CIBERONC; CB16/12/00400), Madrid, Spain
- Spanish Network on Mastocytosis (REMA), Toledo, Salamanca, Spain
- Instituto de Estudios de Mastocitosis de Castilla La Mancha (CLMast), Virgen del Valle Hospital, CIBERONC, Toledo, Madrid, Spain
| | - Carolina Caldas
- Department of Medicine and Cytometry Service (NUCLEUS), Cancer Research Center (IBMCC, USAL-CSIC), Universidad de Salamanca, Salamanca, Spain
- Biomedical Research Networking Center Consortium (CIBERONC; CB16/12/00400), Madrid, Spain
- Biomedical Research Institute of Salamanca (IBSAL), Salamanca, Spain
- Spanish Network on Mastocytosis (REMA), Toledo, Salamanca, Spain
| | - Julio Pozo
- Department of Medicine and Cytometry Service (NUCLEUS), Cancer Research Center (IBMCC, USAL-CSIC), Universidad de Salamanca, Salamanca, Spain
- Biomedical Research Networking Center Consortium (CIBERONC; CB16/12/00400), Madrid, Spain
- Biomedical Research Institute of Salamanca (IBSAL), Salamanca, Spain
| | - Silvia Martín
- Department of Medicine and Cytometry Service (NUCLEUS), Cancer Research Center (IBMCC, USAL-CSIC), Universidad de Salamanca, Salamanca, Spain
- Biomedical Research Networking Center Consortium (CIBERONC; CB16/12/00400), Madrid, Spain
- Biomedical Research Institute of Salamanca (IBSAL), Salamanca, Spain
| | | | - Carlos E Pedreira
- Systems and Computing Department (PESC), COPPE, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Vitor Botafogo
- Department of Hematology and Hemotherapy, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - Oscar González-López
- Department of Medicine and Cytometry Service (NUCLEUS), Cancer Research Center (IBMCC, USAL-CSIC), Universidad de Salamanca, Salamanca, Spain
- Biomedical Research Networking Center Consortium (CIBERONC; CB16/12/00400), Madrid, Spain
| | - Andrea Mayado
- Department of Medicine and Cytometry Service (NUCLEUS), Cancer Research Center (IBMCC, USAL-CSIC), Universidad de Salamanca, Salamanca, Spain
- Biomedical Research Networking Center Consortium (CIBERONC; CB16/12/00400), Madrid, Spain
- Biomedical Research Institute of Salamanca (IBSAL), Salamanca, Spain
- Spanish Network on Mastocytosis (REMA), Toledo, Salamanca, Spain
| | - Alberto Orfao
- Department of Medicine and Cytometry Service (NUCLEUS), Cancer Research Center (IBMCC, USAL-CSIC), Universidad de Salamanca, Salamanca, Spain
- Biomedical Research Networking Center Consortium (CIBERONC; CB16/12/00400), Madrid, Spain
- Biomedical Research Institute of Salamanca (IBSAL), Salamanca, Spain
- Spanish Network on Mastocytosis (REMA), Toledo, Salamanca, Spain
| |
Collapse
|
16
|
Jiang S, Su H. Exploration of the shared gene signatures and biological mechanisms between ischemia-reperfusion injury and antibody-mediated rejection in renal transplantation. Transpl Immunol 2024; 83:102001. [PMID: 38266883 DOI: 10.1016/j.trim.2024.102001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 12/22/2023] [Accepted: 01/20/2024] [Indexed: 01/26/2024]
Abstract
BACKGROUND Antibody-mediated rejection (ABMR) plays a crucial role in graft loss during allogeneic renal transplantation. In renal transplantation, ischemia-reperfusion injury (IRI) is unavoidable, serves as a major contributor to acute rejection, and is linked to graft loss. However, the mechanisms underlying IRI and ABMR are unclear. Therefore, this study aimed to investigate the shared genetic characteristics and biological mechanisms between IRI and ABMR. METHODS Gene expressions for IRI (GSE43974) and ABMR (GSE129166 and GSE36059) were retrieved from the Gene Expression Omnibus database. The shared differentially expressed genes (DEGs) of IRI and ABMR were identified, and subsequent functional enrichment analysis was performed. Immune cell infiltration in ABMR and its relationship with the shared DEGs were investigated using the CIBERSORT method. Random forest analysis, a protein-protein interaction network, and Cytoscape were used to screen hub genes, which were subsequently subjected to gene set enrichment analysis, miRNA prediction, and transcription factors analysis. The survival analysis was performed through Kaplan-Meier curves. Finally, drug compound prediction was performed on the shared DEGs using the Drug Signature Database. RESULTS Overall, 27 shared DEGs were identified between the renal IRI and ABMR groups. Among these, 24 genes exhibited increased co-expression, whereas none showed decreased co-expression. The shared DEGs were primarily enriched in the inflammation signaling pathways. Notably, CD4 memory T cells were identified as potential critical mediators of IRI, leading to ABMR. Tumor necrosis factor alpha-induced protein 3 (TNFAIP3), interferon regulatory factor 1 (IRF1), and early growth response 2 (EGR2) were identified as key components in the potential mechanism that link IRI and ABMR. Patients undergoing renal transplantation with higher expression levels of TNFAIP3, IRF1, and EGR2 exhibited decreased survival rates compared to those with lower expression levels. CONCLUSION Inflammation is a key mechanism that links IRI and ABMR, with a potential role played by CD4 memory T cells. Furthermore, TNFAIP3, IRF1, and EGR2 are implicated in the underlying mechanism between IRI and ABMR.
Collapse
Affiliation(s)
- Shan Jiang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Hua Su
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
17
|
Liu X, Li X, Wei H, Liu Y, Li N. Mast cells in colorectal cancer tumour progression, angiogenesis, and lymphangiogenesis. Front Immunol 2023; 14:1209056. [PMID: 37497234 PMCID: PMC10366593 DOI: 10.3389/fimmu.2023.1209056] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/27/2023] [Indexed: 07/28/2023] Open
Abstract
The characteristics of the tumour cells, as well as how tumour cells interact with their surroundings, affect the prognosis of cancer patients. The resident cells in the tumour microenvironment are mast cells (MCs), which are known for their functions in allergic responses, but their functions in the cancer milieu have been hotly contested. Several studies have revealed a link between MCs and the development of tumours. Mast cell proliferation in colorectal cancer (CRC) is correlated with angiogenesis, the number of lymph nodes to which the malignancy has spread, and patient prognosis. By releasing angiogenic factors (VEGF-A, CXCL 8, MMP-9, etc.) and lymphangiogenic factors (VEGF-C, VEGF-D, etc.) stored in granules, mast cells play a significant role in the development of CRC. On the other hand, MCs can actively encourage tumour development via pathways including the c-kit/SCF-dependent signaling cascade and histamine production. The impact of MC-derived mediators on tumour growth, the prognostic importance of MCs in patients with various stages of colorectal cancer, and crosstalk between MCs and CRC cells in the tumour microenvironment are discussed in this article. We acknowledge the need for a deeper comprehension of the function of MCs in CRC and the possibility that targeting MCs might be a useful therapeutic approach in the future.
Collapse
Affiliation(s)
- Xiaoxin Liu
- Department of Nephrology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xinyu Li
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Haotian Wei
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yanyan Liu
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ningxu Li
- Department of Nephrology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
18
|
Arora A, Singh A. Exploring the role of neutrophils in infectious and noninfectious pulmonary disorders. Int Rev Immunol 2023; 43:41-61. [PMID: 37353973 DOI: 10.1080/08830185.2023.2222769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/31/2023] [Indexed: 06/25/2023]
Abstract
With the change in global environment, respiratory disorders are becoming more threatening to the health of people all over the world. These diseases are closely linked to performance of immune system. Within the innate arm of immune system, Neutrophils are an important moiety to serve as an immune defense barrier. They are one of the first cells recruited to the site of infection and plays a critical role in pathogenesis of various pulmonary diseases. It is established that the migration and activation of neutrophils can lead to inflammation either directly or indirectly and this inflammation caused is very crucial for the clearance of pathogens and resolution of infection. However, the immunopathological mechanisms involved to carry out the same is very complex and not well understood. Despite there being studies concentrating on the role of neutrophils in multiple respiratory diseases, there is still a long way to go in order to completely understand the complexity of the participation of neutrophils and mechanisms involved in the development of these respiratory diseases. In the present article, we have reviewed the literature to comprehensively provide an insight in the current development and advancements about the role of neutrophils in infectious respiratory disorders including viral respiratory disorders such as Coronavirus disease (COVID-19) and bacterial pulmonary disorders with a focused review on pulmonary tuberculosis as well as in noninfectious disorders like Chronic obstructive pulmonary disease (COPD) and asthma. Also, future directions into research and therapeutic targets have been discussed for further exploration.
Collapse
Affiliation(s)
- Alisha Arora
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Archana Singh
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
19
|
Zhao J, Lu Q, Yang Z, Sun B, Zhu J, Zhang H, Yang C, Yi S, Dong X. Decreased autophagic activity of detrusor cells is involved in the inflammatory response of interstitial cystitis/bladder pain syndrome. Int Urogynecol J 2023; 34:843-851. [PMID: 35689690 DOI: 10.1007/s00192-022-05224-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 04/22/2022] [Indexed: 11/26/2022]
Abstract
INTRODUCTION AND HYPOTHESIS Genome-wide association studies suggest that autophagy plays an important regulatory role in inflammatory and autoimmune diseases. Inflammation and immune regulation disorders are involved in the occurrence and development of interstitial cystitis/bladder pain syndrome (IC/BPS). However, the changes and roles of autophagy in IC/BPS have not been reported. Therefore, this study aimed to investigate bladder autophagy and inflammation changes in patients with IC/BPS. METHODS Bladder specimens (n = 5) from patients with cystectomy due to end-stage IC/BPS were collected. The bladder samples of the control group (n = 5) were derived from the normal area bladder tissue after radical cystectomy. H&E and toluidine blue staining were used for histological evaluation. The co-location of LC3, alpha-smooth muscle actin (α-SMA), and autophagosome was investigated with double-labeled immunofluorescence and transmission electron microscopy (TEM). The expression of IL-6, TNF-α, Bax, caspase-3, and BCL-2 in the detrusor layer was analyzed using immunohistochemistry (IHC) and Western blot (WB). RESULTS Compared with the control group, bladder tissue from IC/BPS patients revealed thinner and edematous epithelium with many mast cells (P < 0.05) infiltrating into the muscle layer. By using TEM (P < 0.05), double-labeled immunofluorescence (P < 0.05), and Western blot (P < 0.05) in IC/BPS patients, autophagy was also found and was significantly increased in detrusor myocytes. IHC and WB indicate the expression of BCL-2 (P < 0.05) was decreased, while IL-6, TNF-α, Bax, and caspase-3 expression was elevated (P < 0.05). CONCLUSIONS The number of autophagosomes in detrusor cells was increased in IC/BPS. However, autophagy of detrusor muscle cells may not have sufficient phagocytic activity to effectively remove damaged proteins and mitochondria, which may lead to the continued deterioration of IC/BPS inflammation and apoptosis.
Collapse
Affiliation(s)
- Jiang Zhao
- Department of Urology, Second Affiliated Hospital, Army Military Medical University, Chongqing, 400037, China
| | - Qudong Lu
- Department of Urology, Second Affiliated Hospital, Army Military Medical University, Chongqing, 400037, China
| | - Zhengxin Yang
- Department of Urology, Second Affiliated Hospital, Army Military Medical University, Chongqing, 400037, China
| | - Bishao Sun
- Department of Urology, Second Affiliated Hospital, Army Military Medical University, Chongqing, 400037, China
| | - Jingzheng Zhu
- Department of Urology, Second Affiliated Hospital, Army Military Medical University, Chongqing, 400037, China
| | - Hengshuai Zhang
- Department of Urology, Second Affiliated Hospital, Army Military Medical University, Chongqing, 400037, China
| | - Chengfei Yang
- Department of Urology, Second Affiliated Hospital, Army Military Medical University, Chongqing, 400037, China
| | - Shanghong Yi
- Department of Urology, Second Affiliated Hospital, Army Military Medical University, Chongqing, 400037, China
| | - Xinyou Dong
- Department of Urology, People's Hospital of Shapingba District, Chongqing, 400030, China.
| |
Collapse
|
20
|
KIT D816V Mast Cells Derived from Induced Pluripotent Stem Cells Recapitulate Systemic Mastocytosis Transcriptional Profile. Int J Mol Sci 2023; 24:ijms24065275. [PMID: 36982353 PMCID: PMC10049485 DOI: 10.3390/ijms24065275] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/27/2023] [Accepted: 03/05/2023] [Indexed: 03/12/2023] Open
Abstract
Mast cells (MCs) represent a population of hematopoietic cells with a key role in innate and adaptive immunity and are well known for their detrimental role in allergic responses. Yet, MCs occur in low abundance, which hampers their detailed molecular analysis. Here, we capitalized on the potential of induced pluripotent stem (iPS) cells to give rise to all cells in the body and established a novel and robust protocol for human iPS cell differentiation toward MCs. Relying on a panel of systemic mastocytosis (SM) patient-specific iPS cell lines carrying the KIT D816V mutation, we generated functional MCs that recapitulate SM disease features: increased number of MCs, abnormal maturation kinetics and activated phenotype, CD25 and CD30 surface expression and a transcriptional signature characterized by upregulated expression of innate and inflammatory response genes. Therefore, human iPS cell-derived MCs are a reliable, inexhaustible, and close-to-human tool for disease modeling and pharmacological screening to explore novel MC therapeutics.
Collapse
|
21
|
Luo Y, Zhang H, Yu J, Wei L, Li M, Xu W. Stem cell factor/mast cell/CCL2/monocyte/macrophage axis promotes Coxsackievirus B3 myocarditis and cardiac fibrosis by increasing Ly6C high monocyte influx and fibrogenic mediators production. Immunology 2022; 167:590-605. [PMID: 36054617 DOI: 10.1111/imm.13556] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 02/10/2022] [Indexed: 06/15/2023] Open
Abstract
Mast cells (MCs), central players in allergy and parasitic infections, play key roles in inflammation and fibrosis. Here, the impact of MCs on the progression of Coxsackievirus B3 (CVB3)-induced viral myocarditis (VMC) and fibrosis was investigated using MC-deficient KitW-sh mice. Viral titres, cellular infiltrates and heart pathologies were evaluated and compared with wild-type (WT) mice during acute CVB3 infection of C57BL/6 mice. CVB3 infection induced an increased accumulation and degranulation of MCs in the hearts of mice during acute infection. MC-deficient KitW-sh mice had slightly higher viral titres, decreased VMC and cardiac fibrosis and improved cardiac dysfunction compared to WT mice via decreasing cardiac influx of Ly6Chigh monocytes/macrophages (Mo/Mφ). While bone marrow-derived MC reconstitution decreased viral titre and worsened improved survival and VMC severity in Wsh mice. MC-fibroblasts co-culture revealed a cardiac MC-fibroblasts crosstalk during early infection: fibroblasts trigger MC degranulation and secretion of CCL2 and tumour necrosis factor alpha (TNF-α) via producing early stem cell factor (SCF); while MCs-fibrogenic mediators (TNF-α) stimulate fibroblasts to increase CCL2, α-smooth muscle actin (SMA), collagen and transforming growth factor beta(TGFβ) expression, thus aggravating cardiac fibrosis. MCs and fibroblast-derived CCL2s are both essential for cardiac Ly6Chigh Mo/Mφ influx. Administration of recombinant mouse SCF to CVB3-infected mice aggravates VMC via accelerating MCs accumulation and cardiac influx of Ly6Chi Mo/Mφ. Collectively, our data highlight an early MC-fibroblast crosstalk and SCF/MC/CCL2/Mo/Mφ axis as important mechanisms required for triggering VMC and myocardial fibrosis. This finding indicates critical roles of MCs in initiating and modulating cardiac innate response to CVB3 and has an implication in developing new and more effective treatments for VMC.
Collapse
Affiliation(s)
- Yuan Luo
- Jiangsu Provincial Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Hongkai Zhang
- Jiangsu Provincial Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Jie Yu
- Jiangsu Provincial Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Lin Wei
- Jiangsu Provincial Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Min Li
- Jiangsu Provincial Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Wei Xu
- Jiangsu Provincial Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| |
Collapse
|
22
|
Han J, Pan C, Tang X, Li Q, Zhu Y, Zhang Y, Liang A. Hypersensitivity reactions to small molecule drugs. Front Immunol 2022; 13:1016730. [PMID: 36439170 PMCID: PMC9684170 DOI: 10.3389/fimmu.2022.1016730] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 10/20/2022] [Indexed: 02/02/2024] Open
Abstract
Drug hypersensitivity reactions induced by small molecule drugs encompass a broad spectrum of adverse drug reactions with heterogeneous clinical presentations and mechanisms. These reactions are classified into allergic drug hypersensitivity reactions and non-allergic drug hypersensitivity reactions. At present, the hapten theory, pharmacological interaction with immune receptors (p-i) concept, altered peptide repertoire model, and altered T-cell receptor (TCR) repertoire model have been proposed to explain how small molecule drugs or their metabolites induce allergic drug hypersensitivity reactions. Meanwhile, direct activation of mast cells, provoking the complement system, stimulating or inhibiting inflammatory reaction-related enzymes, accumulating bradykinin, and/or triggering vascular hyperpermeability are considered as the main factors causing non-allergic drug hypersensitivity reactions. To date, many investigations have been performed to explore the underlying mechanisms involved in drug hypersensitivity reactions and to search for predictive and preventive methods in both clinical and non-clinical trials. However, validated methods for predicting and diagnosing hypersensitivity reactions to small molecule drugs and deeper insight into the relevant underlying mechanisms are still limited.
Collapse
Affiliation(s)
- Jiayin Han
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chen Pan
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xuan Tang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qi Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yan Zhu
- Institute of Information on Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yushi Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Aihua Liang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
23
|
Xia B, Lin G, Zheng S, Zhang H, Yu Y. Differential effects of PEGylated Cd-free CuInS 2/ZnS quantum dot (QDs) on substance P and LL-37 induced human mast cell activation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 245:114108. [PMID: 36174319 DOI: 10.1016/j.ecoenv.2022.114108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/08/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
CuInS2/ZnS-PEG quantum dots (QDs) are among the most widely used near infrared non-cadmium QDs and are favored because of their non-cadmium content and strong tissue penetration. However, with their increasing use, there is great concern about whether exposure to QDs is potentially risky to the environment and humans. Furthermore, toxicological data related to CuInS2/ZnS-PEG QDs are scarce. In the study, we found that CuInS2/ZnS-PEG QDs (0-100 μg/mL) could internalize into human LAD2 mast cells without affecting their survival rate, nor did it cause degranulation or release of IL-8 and TNF-α. However, CuInS2/ZnS-PEG QDs significantly inhibited Substance P (SP) and LL-37-induced degranulation and chemotaxis of LAD2 cells by inhibiting calcium mobilization. Lower concentrations of CuInS2/ZnS-PEG QDs promoted the release of TNF-α and IL-8 stimulated by SP, but higher concentrations of CuInS2/ZnS-PEG QDs significantly inhibited the release of TNF-α and IL-8. On the other hand, CuInS2/ZnS-PEG QDs promoted LL-37-mediated TNF-α release from LAD2 cells in a dose-dependent manner from 6.25 to 100 μg/mL, while release of IL-8 triggered by LL-37 was dose-dependently inhibited within a dose concentration of 12.5-100 μg/mL. Collectively, our data demonstrated that CuInS2/ZnS-PEG QDs differentially mediated human mast cell activation induced by SP and LL-37.
Collapse
Affiliation(s)
- Beibei Xia
- Shenzhen University Health Science Center, Shenzhen University, Shenzhen 518060, PR China
| | - Guimiao Lin
- Shenzhen University Health Science Center, Shenzhen University, Shenzhen 518060, PR China
| | - Siman Zheng
- Shenzhen University Health Science Center, Shenzhen University, Shenzhen 518060, PR China
| | - Heng Zhang
- Shenzhen University Health Science Center, Shenzhen University, Shenzhen 518060, PR China
| | - Yangyang Yu
- Shenzhen University Health Science Center, Shenzhen University, Shenzhen 518060, PR China.
| |
Collapse
|
24
|
Arora P, Nainwal LM, Gupta G, Singh SK, Chellappan DK, Oliver BG, Dua K. Orally administered solasodine, a steroidal glycoalkaloid, suppresses ovalbumin-induced exaggerated Th2-immune response in rat model of bronchial asthma. Chem Biol Interact 2022; 366:110138. [PMID: 36084726 DOI: 10.1016/j.cbi.2022.110138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/22/2022] [Accepted: 08/26/2022] [Indexed: 11/03/2022]
Abstract
Bronchial asthma is a chronic lung disorder, that affects an estimated 262 million people worldwide, thereby, causing a large socio-economic burden. Drug molecules from natural sources have exhibited a good promise in providing an alternative therapy in many chronic ailments. Solasodine, a glycoalkaloid has received an immense interest due to its large pharmacological and industrial value, however, its usefulness in asthma control has not been investigated till date. In this work, solasodine was tested for its ability to reverse several characteristics of bronchial asthma induced by intraperitoneal injection of ovalbumin (OVA) and aluminium hydroxide in experimental rats. Treating asthmatic animals with solasodine (1 mg/kg b.w. or 10 mg/kg b.w.) or dexamethasone (2.5 mg/kg b.w.) reversed OVA-induced airway hyperresponsiveness, infiltration of inflammatory cells and histamine levels in the airways. Furthermore, as compared to OVA-control rats, allergen-induced elevated levels of IgE, nitrites, nitric oxide, and pro-inflammatory mediators, including TNF-α, IL-1β, LTD-4, and Th2-cytokines, particularly, IL-4, IL-5 were remarkably reduced in both bronchoalveolar lavage fluid and blood. These findings are supported by significant protection offered by various treatments against OVA-induced airway inflammation and mast cell degranulation in mesenteric tissues. Further, In-silico molecular docking studies performed to determine inhibitory potential of solasodine at IL-4 and IL-5, demonstrated strong affinity of phytocompound for these receptors than observed with antagonists previously reported. Results of current study imply that solasodine has therapeutic promise in allergic asthma, presumably due to its ability to prevent mast cell degranulation and consequent generation of histamine and Th2-associated cytokines in airways.
Collapse
Affiliation(s)
- Poonam Arora
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India; Department of Pharmacognosy and Phytochemistry, SGT College of Pharmacy, SGT University, Gurugram, Haryana, India.
| | - Lalit Mohan Nainwal
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India; School of Medical & Allied Sciences, G. D. Goenka University, Sohna Road, Gurugram, Haryana, India.
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jaipur, Rajasthan, India; Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, 248007, India
| | - Sachin Kumar Singh
- School of Pharmacy and Pharmaceutical Science, Lovely Professional University, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
| | - Dinesh Kumar Chellappan
- School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur, 57000, Malaysia
| | - Brian G Oliver
- School of Life Sciences, University of Technology Sydney, Sydney, NSW, 2007, Australia; Woolcock Institute of Medical Research, University of Sydney, Sydney, New South Wales, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia; Woolcock Institute of Medical Research, University of Sydney, Sydney, New South Wales, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo 2007, NSW, Australia.
| |
Collapse
|
25
|
Ohmori S, Takai J, Uemura S, Otsuki A, Mori T, Ohneda K, Moriguchi T. The Il6 -39 kb enhancer containing clustered GATA2- and PU.1-binding sites is essential for Il6 expression in murine mast cells. iScience 2022; 25:104942. [PMID: 36072552 PMCID: PMC9442365 DOI: 10.1016/j.isci.2022.104942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 06/17/2022] [Accepted: 08/11/2022] [Indexed: 11/13/2022] Open
Abstract
Mast cells serve as a first-line defense of innate immunity. Interleukin-6 (IL-6) induced by bacterial lipopolysaccharide (LPS) in mast cells plays a crucial role in antibacterial protection. The zinc finger transcription factor GATA2 cooperatively functions with the ETS family transcription factor PU.1 in multiple mast cell activities. However, the regulatory landscape directed by GATA2 and PU.1 under inflammation remains elusive. We herein showed that a large proportion of GATA2-binding peaks were closely located with PU.1-binding peaks in distal cis-regulatory regions of inflammatory cytokine genes in mast cells. Notably, GATA2 and PU.1 played crucial roles in promoting LPS-mediated inflammatory cytokine production. Genetic ablation of GATA2-PU.1-clustered binding sites at the Il6 -39 kb region revealed its central role in LPS-induced Il6 expression in mast cells. We demonstrate a novel collaborative activity of GATA2 and PU.1 in cytokine induction upon inflammatory stimuli via the GATA2-PU.1 overlapping sites in the distal cis-regulatory regions. GATA2- and PU.1-binding peaks are closely located in distal enhancers of cytokine genes GATA2 and PU.1 play crucial roles in promoting LPS-mediated cytokine induction The Il6 -39 kb enhancer containing GATA2 and PU.1 motifs are crucial for Il6 induction GATA2 inhibitor exerts anti-inflammatory effects via reducing cytokine induction
Collapse
|
26
|
Li Y, Sun X, Juan Z, Guan X, Wang M, Meng Y, Ma R. Propofol pretreatment alleviates mast cell degranulation by inhibiting SOC to protect the myocardium from ischemia-reperfusion injury. Biomed Pharmacother 2022; 150:113014. [PMID: 35658248 DOI: 10.1016/j.biopha.2022.113014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 04/12/2022] [Accepted: 04/19/2022] [Indexed: 11/26/2022] Open
Abstract
Propofol (PPF) has a protective effect on myocardial ischemia-reperfusion (I/R) injury (MIRI). The purpose of this study was to investigate whether the myocardial protective effect of propofol is related to the inhibition of mast cell degranulation and explore the possible mechanisms involved. Our in vivo results showed that compared with the sham group, cardiac function, infarct size, histopathological damage, apoptosis, and markers of myocardial necrosis were significantly increased in the ischemia-reperfusion group, and propofol pretreatment alleviated these effects. In the coculture system, propofol-treated mast cells reduced their tryptase activity, resulting in cardiomyocyte protective effects, such as decreased apoptosis of cardiomyocytes and decreased expression of myocardial necrosis markers. Finally, experimental results in vitro revealed that thapsigargin (TG) can increase mast cell degranulation, tryptase release, calcium ion concentration, and the expression of STIM1 and Orai1 induced by H/R, but propofol pretreatment can partially reverse the above effects. These results suggested that the cardioprotective effect of propofol is achieved in part by inhibiting calcium influx through store-operated Ca2+ channels (SOCs) and thus alleviating mast cell degranulation.
Collapse
Affiliation(s)
- Yaozu Li
- School of Anesthesiology, Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, Weifang Medical University, Weifang 261053, China
| | - Xiaotong Sun
- School of Anesthesiology, Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, Weifang Medical University, Weifang 261053, China
| | - Zhaodong Juan
- School of Anesthesiology, Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, Weifang Medical University, Weifang 261053, China.
| | - Xuehao Guan
- School of Anesthesiology, Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, Weifang Medical University, Weifang 261053, China
| | - Mingling Wang
- School of Anesthesiology, Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, Weifang Medical University, Weifang 261053, China
| | - Yanmei Meng
- School of Anesthesiology, Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, Weifang Medical University, Weifang 261053, China
| | - Ruijin Ma
- School of Anesthesiology, Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, Weifang Medical University, Weifang 261053, China
| |
Collapse
|
27
|
Zhou B, Li J, Liu R, Zhu L, Peng C. The Role of Crosstalk of Immune Cells in Pathogenesis of Chronic Spontaneous Urticaria. Front Immunol 2022; 13:879754. [PMID: 35711438 PMCID: PMC9193815 DOI: 10.3389/fimmu.2022.879754] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 05/02/2022] [Indexed: 12/15/2022] Open
Abstract
Chronic spontaneous urticaria (CSU) is defined as recurrent episodes of spontaneous wheal development and/or angioedema for more than six weeks and at least twice a week. The core link in the pathogenesis of CSU is the activation of mast cells, T cells, eosinophils, and other immune cells infiltrating around the small venules of the lesion. Increased vascular permeability, vasodilatation, and recruitment of inflammatory cells directly depend on mast cell mediators’ release. Complex regulatory systems tightly influence the critical roles of mast cells in the local microenvironment. The bias toward Th2 inflammation and autoantibodies derived from B cells, histamine expressed by basophils, and initiation of the extrinsic coagulation pathway by eosinophils or monocytes exerts powerful modulatory influences on mast cells. Cell-to-cell interactions between mast cells and eosinophils/T cells also are regulators of their function and may involve CSU’s pathomechanism. This review summarizes up-to-date knowledge regarding the crosstalk between mast cells and other immune cells, providing the impetus to develop new research concepts and treatment strategies for CSU.
Collapse
Affiliation(s)
- Bingjing Zhou
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jie Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Runqiu Liu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Lei Zhu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Cong Peng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Cong Peng,
| |
Collapse
|
28
|
Guimarães Sousa S, Kleiton de Sousa A, Maria Carvalho Pereira C, Sofia Miranda Loiola Araújo A, de Aguiar Magalhães D, Vieira de Brito T, Barbosa ALDR. SARS-CoV-2 infection causes intestinal cell damage: Role of interferon’s imbalance. Cytokine 2022; 152:155826. [PMID: 35158258 PMCID: PMC8828414 DOI: 10.1016/j.cyto.2022.155826] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 02/02/2022] [Accepted: 02/04/2022] [Indexed: 12/12/2022]
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is the causative agent of the newly emerging lung disease pandemic COVID-19. This viral infection causes a series of respiratory disorders, and although this virus mainly infects respiratory cells, the small intestine can also be an important site of entry or interaction, as enterocytes highly express in angiotensin-2 converting enzyme (ACE) receptors. There are countless reports pointing to the importance of interferons (IFNs) with regard to the mediation of the immune system in viral infection by SARS-CoV-2. Thus, this review will focus on the main cells that make up the large intestine, their specific immunology, as well as the function of IFNs in the intestinal mucosa after the invasion of coronavirus-2.
Collapse
|
29
|
Sobiepanek A, Kuryk Ł, Garofalo M, Kumar S, Baran J, Musolf P, Siebenhaar F, Fluhr JW, Kobiela T, Plasenzotti R, Kuchler K, Staniszewska M. The Multifaceted Roles of Mast Cells in Immune Homeostasis, Infections and Cancers. Int J Mol Sci 2022; 23:2249. [PMID: 35216365 PMCID: PMC8875910 DOI: 10.3390/ijms23042249] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/05/2022] [Accepted: 02/07/2022] [Indexed: 02/07/2023] Open
Abstract
Mast cells (MCs) play important roles in normal immune responses and pathological states. The location of MCs on the boundaries between tissues and the external environment, including gut mucosal surfaces, lungs, skin, and around blood vessels, suggests a multitude of immunological functions. Thus, MCs are pivotal for host defense against different antigens, including allergens and microbial pathogens. MCs can produce and respond to physiological mediators and chemokines to modulate inflammation. As long-lived, tissue-resident cells, MCs indeed mediate acute inflammatory responses such as those evident in allergic reactions. Furthermore, MCs participate in innate and adaptive immune responses to bacteria, viruses, fungi, and parasites. The control of MC activation or stabilization is a powerful tool in regulating tissue homeostasis and pathogen clearance. Moreover, MCs contribute to maintaining the homeostatic equilibrium between host and resident microbiota, and they engage in crosstalk between the resident and recruited hematopoietic cells. In this review, we provide a comprehensive overview of the functions of MCs in health and disease. Further, we discuss how mouse models of MC deficiency have become useful tools for establishing MCs as a potential cellular target for treating inflammatory disorders.
Collapse
Affiliation(s)
- Anna Sobiepanek
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland; (A.S.); (J.B.); (P.M.); (T.K.)
| | - Łukasz Kuryk
- National Institute of Public Health NIH—National Institute of Research, 00-791 Warsaw, Poland;
- Clinical Science, Targovax Oy, Lars Sonckin kaari 14, 02600 Espoo, Finland;
| | - Mariangela Garofalo
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo 5, 35131 Padova, Italy;
| | - Sandeep Kumar
- Clinical Science, Targovax Oy, Lars Sonckin kaari 14, 02600 Espoo, Finland;
| | - Joanna Baran
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland; (A.S.); (J.B.); (P.M.); (T.K.)
| | - Paulina Musolf
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland; (A.S.); (J.B.); (P.M.); (T.K.)
| | - Frank Siebenhaar
- Institute of Allergology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (F.S.); (J.W.F.)
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, 12203 Berlin, Germany
| | - Joachim Wilhelm Fluhr
- Institute of Allergology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (F.S.); (J.W.F.)
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, 12203 Berlin, Germany
| | - Tomasz Kobiela
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland; (A.S.); (J.B.); (P.M.); (T.K.)
| | - Roberto Plasenzotti
- Department of Biomedical Research, Medical University of Vienna, Währingergürtel 18-20, 1090 Vienna, Austria;
| | - Karl Kuchler
- Max Perutz Labs Vienna, Center for Medical Biochemistry, Medical University of Vienna, Campus Vienna Biocenter, Dr. Bohr-Gasse 9/2, 1030 Vienna, Austria;
| | - Monika Staniszewska
- Centre for Advanced Materials and Technologies, Warsaw University of Technology, Poleczki 19, 02-822 Warsaw, Poland
| |
Collapse
|
30
|
Kondo FV, Cabrera WHK, Ribeiro OG, De Franco M, Jensen JR, Picolo G, Sant’Anna MB, Spadafora-Ferreira M, Borrego A, Ibañez OM, Starobinas N. Pain and Cellular Migration Induced by Bothrops jararaca Venom in Mice Selected for an Acute Inflammatory Response: Involvement of Mast Cells. Front Immunol 2022; 12:779473. [PMID: 35185861 PMCID: PMC8854176 DOI: 10.3389/fimmu.2021.779473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 12/13/2021] [Indexed: 11/13/2022] Open
Abstract
Bothrops jararaca venom (BjV) can induce mast cell degranulation. In order to investigate the role of mast cells and the interference of the host genetic background in the inflammation induced by BjV, we have used mouse strains selected for maximal (AIRmax) or minimal (AIRmin) acute inflammatory response (AIR). Mice were pretreated with an inhibitor of mast cell degranulation, cromolyn (CROM), and injected in footpads or intraperitoneally (i.p.) with BjV. Pain was measured with von Frey hairs, cell migration in the peritoneum by flow cytometry, and reactive oxygen species (ROS) production by chemiluminescence assays. The nociceptive response to BjV was higher in AIRmax than AIRmin mice; however, this difference was abolished by pretreatment with CROM. BjV induced peritoneal neutrophil (CD11b+ GR-1+) infiltration and ROS secretion in AIRmax mice only, which were partially inhibited by CROM. Our findings evidence a role for mast cells in pain, neutrophil migration, and ROS production triggered by BjV in AIRmax mice that are more susceptible to the action of BjV.
Collapse
Affiliation(s)
| | | | | | | | | | - Gisele Picolo
- Laboratory of Pain and Signaling, Butantan Institute, São Paulo, Brazil
| | | | | | - Andrea Borrego
- Laboratory Immunogenetics, Butantan Institute, São Paulo, Brazil
| | - Olga M. Ibañez
- Laboratory Immunogenetics, Butantan Institute, São Paulo, Brazil
| | - Nancy Starobinas
- Laboratory Immunogenetics, Butantan Institute, São Paulo, Brazil
- *Correspondence: Nancy Starobinas,
| |
Collapse
|
31
|
Ogawa Y, Kinoshita M, Kawamura T, Shimada S. Intracellular TLRs of Mast Cells in Innate and Acquired Immunity. Handb Exp Pharmacol 2022; 276:133-159. [PMID: 34505203 DOI: 10.1007/164_2021_540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Mast cells (MCs) distribute to interface tissues with environment, such as skin, airway, and gut mucosa, thereby functioning as the sentinel against invading allergens and pathogens. To respond to and exclude these external substances promptly, MCs possess granules containing inflammatory mediators, including heparin, proteases, tumor necrosis factor, and histamine, and produce these mediators as a consequence of degranulation within minutes of activation. As a delayed response to external substances, MCs de novo synthesize inflammatory mediators, such as cytokines and chemokines, by sensing pathogen- and damage-associated molecular patterns through their pattern recognition receptors, including Toll-like receptors (TLRs). A substantial number of studies have reported immune responses by MCs through surface TLR signaling, particularly TLR2 and TLR4. However, less attention has been paid to immune responses through nucleic acid-recognizing intracellular TLRs. Among intracellular TLRs, human and rodent MCs express TLR3, TLR7, and TLR9, but not TLR8. Some virus infections modulate intracellular TLR expression in MCs. MC-derived mediators, such as histamine, cysteinyl leukotrienes, LL-37, and the granulocyte-macrophage colony-stimulating factor, have also been reported to modulate intracellular TLR expression in an autocrine and/or paracrine fashion. Synthetic ligands for intracellular TLRs and some viruses are sensed by intracellular TLRs of MCs, leading to the production of inflammatory cytokines and chemokines including type I interferons. These MC responses initiate and facilitate innate responses and the subsequent recruitment of additional innate effector cells. MCs also associate with the regulation of adaptive immunity. In this overview, the expression of intracellular TLRs in MCs and the recognition of pathogens, including viruses, by intracellular TLRs in MCs were critically evaluated.
Collapse
Affiliation(s)
- Youichi Ogawa
- Department of Dermatology, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan.
| | - Manao Kinoshita
- Department of Dermatology, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Tatsuyoshi Kawamura
- Department of Dermatology, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Shinji Shimada
- Department of Dermatology, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| |
Collapse
|
32
|
Suess PM. Effects of Polyphosphate on Leukocyte Function. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2022; 61:131-143. [PMID: 35697939 DOI: 10.1007/978-3-031-01237-2_6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Leukocytes are immune cells derived from hematopoietic stem cells of the bone marrow which play essential roles in inflammatory and immune responses. In contrast to anucleate platelets and erythrocytes, leukocytes are differentiated from other blood cells by the presence of a nucleus, and consist of monocytes, neutrophils, lymphocytes, basophils, and eosinophils. Factors released from platelets mediate immune responses in part by recruitment and regulation of leukocyte activity. Platelet dense granules contain the highly anionic polymer polyphosphate (polyP) with monomer chain lengths of approximately 60-100 phosphates long, which are released into the microenvironment upon platelet activation. Recent studies suggest that polyP released from platelets plays roles in leukocyte migration, recruitment, accumulation, differentiation, and activation. Furthermore, bacterial-derived polyphosphate, generally consisting of phosphate monomer lengths in the hundreds to thousands, appear to play a role in pathogenic evasion of the host immune response. This review will discuss the effects of host and pathogenic-derived polyphosphate on leukocyte function.
Collapse
Affiliation(s)
- Patrick M Suess
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
33
|
|
34
|
Chuchkova NN, Smetanina MV, Shklyaev AE, Pazinenko KA, Kormilina NV, Kanunnikova OM. Morphofunctional characterization of rat thymus mast cells after administration of magnesium orotate mechanically activated forms. RUDN JOURNAL OF MEDICINE 2021. [DOI: 10.22363/2313-0245-2021-25-3-248-255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Relevance. The topicality of the work is determined by the wide spread of hypomagnesemia among the people, which makes it necessary to correct it. The aim of the work is to elucidate the cell-mediated response of the thymus mastocytic link to magnesium deficiency and its correction by the mechanoactivated form of magnesium orotate. Materials and Methods . Animals with drug-induced magnesium deficiency (administration of furosemide 30 mg/kg for 14 days) were administered either the initial preparation Magnerot (Magnerot, Vervag Pharma, Germany), or its mechanoactivated form. The level of magnesium in the blood was determined by test systems ARKREY (Japan). The concentration of magnesium in the thymus tissue was determined by the method of emission spectroscopy with inductively coupled (argon) plasma on an atomic emission spectrometer. Density of mastocytes and the indices of degranulation and granulolosis were calculated on paraffin sections of the thymus after coloration with toluidine blue. Results and Discussion . It was shown that furosemide administration the amount of magnesium decreased in the blood (from 1,750,08 to 0,9020,18 mmol/l, p0,05), but increased in the thymus (from 1,60,6 in the control to 3,71,2 mg/l); in the gland tissue, the number of mastocytes of morphotype A decreased and the number of mastocytes of morphotype D, after active degranulation, increased (by 7,1 times, p0,05). The type of mastocyte secretion in hypomagnesemia is represented by the merocrine variant. The administration of the initial magnesium orotate led to an increase in the concentration of magnesium in the blood to 1,150,25 mmol/l, which is 65,7% of the initial level, the amount of magnesium in the thymus remained elevated (3,41,1 mg/l), the number of actively degranulating cells (morphotype D) was increased. Mechanoactivated magnesium orotate restored the concentration of Mg2+ in the blood to 89,1% (1,560,18 mmol/l, p0,05) and decreased in the thymus (to 2,30,7 mg/l), restored the subpopulation of mastocytes saturated with heparin (type A), reduced the number of mastocytes of morphotype D. Conclusion . The mechanoactivated form of magnesium orotate has a normalizing effect on the population of thymic mastocytes, shows pronounced immunomodulatory activity, which allows us to consider it as a potential therapeutic agent for clinical testing in the complex therapy of hypomagnesemia and associated immunodeficiency.
Collapse
|
35
|
Seidel H, Hertfelder HJ, Oldenburg J, Kruppenbacher JP, Afrin LB, Molderings GJ. Effects of Primary Mast Cell Disease on Hemostasis and Erythropoiesis. Int J Mol Sci 2021; 22:ijms22168960. [PMID: 34445665 PMCID: PMC8396658 DOI: 10.3390/ijms22168960] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/10/2021] [Accepted: 08/17/2021] [Indexed: 01/21/2023] Open
Abstract
Mast cell disease is an epigenetically and genetically determined disease entity with very diverse clinical manifestations in potentially every system and tissue due to inap pro priate release of variable subsets of mast cell mediators together with accumulation of either morphologically normal or altered mast cells. Easy bruising, excessive bleeding, and aberrancies of erythropoiesis can frequently be observed in patients with mast cell disease. A thorough history, including a family history, will guide the appropriate work-up, and laboratory evaluations may provide clues to diagnosis. In recent years, our understanding of the involvement of coagulation and anticoagulant pathways, the fibrinolytic system, and erythropoiesis in the pathophysiology of mast cell disease has increased considerably. This review summarizes current knowledge of the impact of the disturbed hemostatic and erythropoietic balance in patients with mast cell disease and describes options of treatment.
Collapse
Affiliation(s)
- Holger Seidel
- Center for Bleeding Disorders and Transfusion Medicine (CBT), Am Propsthof 3, D-53121 Bonn, Germany; (H.S.); (H.-J.H.); (J.P.K.)
| | - Hans-Jörg Hertfelder
- Center for Bleeding Disorders and Transfusion Medicine (CBT), Am Propsthof 3, D-53121 Bonn, Germany; (H.S.); (H.-J.H.); (J.P.K.)
- Institute of Experimental Haematology and Transfusion Medicine, University Hospital Bonn, Venusberg-Campus 1, D-53127 Bonn, Germany;
| | - Johannes Oldenburg
- Institute of Experimental Haematology and Transfusion Medicine, University Hospital Bonn, Venusberg-Campus 1, D-53127 Bonn, Germany;
| | - Johannes P. Kruppenbacher
- Center for Bleeding Disorders and Transfusion Medicine (CBT), Am Propsthof 3, D-53121 Bonn, Germany; (H.S.); (H.-J.H.); (J.P.K.)
| | - Lawrence B. Afrin
- Department of Mast Cell Studies, AIM Center for Personalized Medicine, 3010 Westchester Ave Suite 404, Purchase, NY 10577, USA;
| | - Gerhard J. Molderings
- Institute of Human Genetics, University Hospital of Bonn, Venusberg-Campus 1, D-53127 Bonn, Germany
- Correspondence: ; Tel.: +49-228-287-51000
| |
Collapse
|
36
|
Xu X, Wang H, Zhao W, Wang Y, Wang J, Qin B. Recompensation factors for patients with decompensated cirrhosis: a multicentre retrospective case-control study. BMJ Open 2021; 11:e043083. [PMID: 34162632 PMCID: PMC8230976 DOI: 10.1136/bmjopen-2020-043083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVES We aimed to evaluate recompensation factors among patients with decompensated cirrhosis. DESIGN A multicentre retrospective case-control study was conducted. Data were collected from and compared between groups of patients with recompensated and acute decompensated cirrhosis. Univariable and multivariable logistic regressions were used to select indicators associated with recompensation among patients with decompensated cirrhosis with different complications. A decision tree with 10-fold cross-validation was used to develop the model to identify patients with recompensation. We followed the transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD) guideline for development and reporting of the new model. SETTING The study was conducted in six tertiary public hospitals in Chongqing, China. PARTICIPANTS This study included 3953 patients with decompensated cirrhosis. RESULTS In the total sample of included patients, there were 553 patients with recompensation and 3400 patients with acute decompensation, including 1158 patients with gastrointestinal bleeding, 1715 patients with a bacterial infection, 104 patients with hepatic encephalopathy and 423 patients with ascites. The most relevant indicator of recompensation selected by the decision tree model was albumin, with a threshold of 40 g/L. Total protein, haemoglobin, basophil percentage, alanine aminotransferase, neutrophil-to-lymphocyte ratio and diabetes were also selected to subsequently distinguish patients. The terminal nodes with a probability of recompensation was 0.89. The overall accuracy rate of the model was 0.92 (0.91-0.93), and it exhibited high specificity (86.9%) and sensitivity (92.6%). CONCLUSIONS The occurrence of recompensated cirrhosis could be identified by albumin, total protein, haemoglobin, basophil percentage, alanine aminotransferase, neutrophil-to-lymphocyte ratio and diabetes. These simple variables may help clinicians develop a treatment plan to encourage patients with decompensated cirrhosis to recompensate.
Collapse
Affiliation(s)
- Xiaomei Xu
- Department of Infectious Diseases, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Haolin Wang
- College of Medical Informatics, Chongqing Medical University, Chongqing, China
| | - Wenlong Zhao
- College of Medical Informatics, Medical Data Science Academy, Chongqing Medical University, Chongqing, China
| | - Yong Wang
- Department of Infectious Diseases, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jiayue Wang
- Department of Infectious Diseases, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Bo Qin
- Department of Infectious Diseases, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
37
|
Lafleur MA, Werner J, Fort M, Lobenhofer EK, Balazs M, Goyos A. MRGPRX2 activation as a rapid, high-throughput mechanistic-based approach for detecting peptide-mediated human mast cell degranulation liabilities. J Immunotoxicol 2021; 17:110-121. [PMID: 32525431 DOI: 10.1080/1547691x.2020.1757793] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Mast cells play key roles in allergy, anaphylaxis/anaphylactoid reactions, and defense against pathogens/toxins. These cells contain cytoplasmic granules with a wide spectrum of pleotropic mediators that are released upon activation. While mast cell degranulation (MCD) occurs upon clustering of the IgE receptor bound to IgE and antigen, MCD is also triggered through non-IgE-mediated mechanisms, one of which is via Mas-related G protein-coupled receptor X2 (MRGPRX2). MRGPRX2 can be activated by many basic biogenic amines and peptides. Consequently, MRGPRX2-mediated MCD is an important potential safety liability for peptide therapeutics. To facilitate peptide screening for this liability in early preclinical drug development, a rapid, high-throughput engineered CHO-K1 cell-based MRGPRX2 activation assay was evaluated and compared to histamine release in CD34+ stem cell-derived mature human mast cells as a reference assay, using 30 positive control and 29 negative control peptides for MCD. Both G protein-dependent (Ca2+ endpoint) and -independent (β-arrestin endpoint) pathways were assessed in the MRGPRX2 activation assay. The MRGPRX2 activation assay had a sensitivity of 100% for both Ca2+ and β-arrestin endpoints and a specificity of 93% (β-arrestin endpoint) and 83% (Ca2+ endpoint) compared to histamine release in CD34+ stem cell-derived mature human mast cells. These findings suggest that assessing MRGPRX2 activation in an engineered cell model can provide value as a rapid, high-throughput, economical mechanism-based screening tool for early MCD hazard identification during preclinical safety evaluation of peptide-based therapeutics.
Collapse
Affiliation(s)
- Marc A Lafleur
- Translational Safety & Bioanalytical Sciences, Amgen Research, Amgen Inc., Thousand Oaks, CA, USA
| | - Jonathan Werner
- Translational Safety & Bioanalytical Sciences, Amgen Research, Amgen Inc., Thousand Oaks, CA, USA
| | - Madeline Fort
- Translational Safety & Bioanalytical Sciences, Amgen Research, Amgen Inc., Thousand Oaks, CA, USA
| | - Edward K Lobenhofer
- Translational Safety & Bioanalytical Sciences, Amgen Research, Amgen Inc., Thousand Oaks, CA, USA
| | - Mercedesz Balazs
- Translational Safety & Bioanalytical Sciences, Amgen Research, Amgen, Inc., South San Francisco, CA, USA
| | - Ana Goyos
- Translational Safety & Bioanalytical Sciences, Amgen Research, Amgen, Inc., South San Francisco, CA, USA
| |
Collapse
|
38
|
Żelechowska P, Brzezińska-Błaszczyk E, Różalska S, Agier J, Kozłowska E. Mannan activates tissue native and IgE-sensitized mast cells to proinflammatory response and chemotaxis in TLR4-dependent manner. J Leukoc Biol 2021; 109:931-942. [PMID: 33047839 DOI: 10.1002/jlb.4a0720-452r] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/08/2020] [Accepted: 09/22/2020] [Indexed: 12/18/2022] Open
Abstract
Mast cells take part in host defense against microorganisms as they are numerous at the portal of infection, exert several essential mechanisms of pathogen destruction, and they express pattern recognition receptors. Accumulating evidence indicates that these cells are involved in the control and clearance of bacterial, viral, or parasitic infections, but much less is known about their contribution in defense against fungi. The study was aimed to establish whether mannan, which comprises an outermost layer and major structural constituent of the fungal cell wall, may directly stimulate tissue mast cells to the antifungal response. Our findings indicate that mannan activates mast cells isolated from the rat peritoneal cavity to initiate the proinflammatory response. We found that mannan stimulates mast cells to release histamine and to generate cysteinyl leukotrienes, cytokines (IFN-γ, GM-CSF, TNF), and chemokines (CCL2, CCL3). It also increased the mRNA expression of various cytokines/chemokines. We also documented that mannan strongly activates mast cells to generate reactive oxygen species and serves as a potent chemoattractant for these cells. Furthermore, we established that mannan-induced activity of mast cells is mediated via TLR4 with the involvement of the spleen tyrosine kinase molecule. Taking together, our results clearly support the idea that mast cells act as sentinel cells and crucially determine the course of the immune response during fungal infection. Additionally, presented data on IgE-coated mast cells suggest that exposure to fungal mannan could influence the severity of IgE-dependent diseases, including allergic ones.
Collapse
Affiliation(s)
- Paulina Żelechowska
- Department of Experimental Immunology, Faculty of Health Sciences, Medical University of Lodz, Lodz, Poland
| | - Ewa Brzezińska-Błaszczyk
- Department of Experimental Immunology, Faculty of Health Sciences, Medical University of Lodz, Lodz, Poland
| | - Sylwia Różalska
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Justyna Agier
- Department of Experimental Immunology, Faculty of Health Sciences, Medical University of Lodz, Lodz, Poland
| | - Elżbieta Kozłowska
- Department of Experimental Immunology, Faculty of Health Sciences, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
39
|
Bhuiyan P, Chen Y, Karim M, Dong H, Qian Y. Bidirectional communication between mast cells and the gut-brain axis in neurodegenerative diseases: Avenues for therapeutic intervention. Brain Res Bull 2021; 172:61-78. [PMID: 33892083 DOI: 10.1016/j.brainresbull.2021.04.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 03/02/2021] [Accepted: 04/17/2021] [Indexed: 12/12/2022]
Abstract
Although the global incidence of neurodegenerative diseases has been steadily increasing, especially in adults, there are no effective therapeutic interventions. Neurodegeneration is a heterogeneous group of disorders that is characterized by the activation of immune cells in the central nervous system (CNS) (e.g., mast cells and microglia) and subsequent neuroinflammation. Mast cells are found in the brain and the gastrointestinal tract and play a role in "tuning" neuroimmune responses. The complex bidirectional communication between mast cells and gut microbiota coordinates various dynamic neuro-cellular responses, which propagates neuronal impulses from the gastrointestinal tract into the CNS. Numerous inflammatory mediators from degranulated mast cells alter intestinal gut permeability and disrupt blood-brain barrier, which results in the promotion of neuroinflammatory processes leading to neurological disorders, thereby offsetting the balance in immune-surveillance. Emerging evidence supports the hypothesis that gut-microbiota exert a pivotal role in inflammatory signaling through the activation of immune and inflammatory cells. Communication between inflammatory cytokines and neurocircuits via the gut-brain axis (GBA) affects behavioral responses, activates mast cells and microglia that causes neuroinflammation, which is associated with neurological diseases. In this comprehensive review, we focus on what is currently known about mast cells and the gut-brain axis relationship, and how this relationship is connected to neurodegenerative diseases. We hope that further elucidating the bidirectional communication between mast cells and the GBA will not only stimulate future research on neurodegenerative diseases but will also identify new opportunities for therapeutic interventions.
Collapse
Affiliation(s)
- Piplu Bhuiyan
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, PR China
| | - Yinan Chen
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, PR China
| | - Mazharul Karim
- College of Pharmacy, Western University of Health Science, 309 East 2nd Street, Pomona, CA, 91766, USA
| | - Hongquan Dong
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, PR China.
| | - Yanning Qian
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, PR China.
| |
Collapse
|
40
|
Lowy DB, Makker PGS, Moalem-Taylor G. Cutaneous Neuroimmune Interactions in Peripheral Neuropathic Pain States. Front Immunol 2021; 12:660203. [PMID: 33912189 PMCID: PMC8071857 DOI: 10.3389/fimmu.2021.660203] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/17/2021] [Indexed: 12/14/2022] Open
Abstract
Bidirectional interplay between the peripheral immune and nervous systems plays a crucial role in maintaining homeostasis and responding to noxious stimuli. This crosstalk is facilitated by a variety of cytokines, inflammatory mediators and neuropeptides. Dysregulation of this delicate physiological balance is implicated in the pathological mechanisms of various skin disorders and peripheral neuropathies. The skin is a highly complex biological structure within which peripheral sensory nerve terminals and immune cells colocalise. Herein, we provide an overview of the sensory innervation of the skin and immune cells resident to the skin. We discuss modulation of cutaneous immune response by sensory neurons and their mediators (e.g., nociceptor-derived neuropeptides), and sensory neuron regulation by cutaneous immune cells (e.g., nociceptor sensitization by immune-derived mediators). In particular, we discuss recent findings concerning neuroimmune communication in skin infections, psoriasis, allergic contact dermatitis and atopic dermatitis. We then summarize evidence of neuroimmune mechanisms in the skin in the context of peripheral neuropathic pain states, including chemotherapy-induced peripheral neuropathy, diabetic polyneuropathy, post-herpetic neuralgia, HIV-induced neuropathy, as well as entrapment and traumatic neuropathies. Finally, we highlight the future promise of emerging therapies associated with skin neuroimmune crosstalk in neuropathic pain.
Collapse
Affiliation(s)
- Daniel B Lowy
- School of Medical Sciences, The University of New South Wales, UNSW Sydney, Sydney, NSW, Australia
| | - Preet G S Makker
- School of Medical Sciences, The University of New South Wales, UNSW Sydney, Sydney, NSW, Australia
| | - Gila Moalem-Taylor
- School of Medical Sciences, The University of New South Wales, UNSW Sydney, Sydney, NSW, Australia
| |
Collapse
|
41
|
Żelechowska P, Brzezińska-Błaszczyk E, Różalska S, Agier J, Kozłowska E. Native and IgE-primed rat peritoneal mast cells exert pro-inflammatory activity and migrate in response to yeast zymosan upon Dectin-1 engagement. Immunol Res 2021; 69:176-188. [PMID: 33704666 PMCID: PMC8106611 DOI: 10.1007/s12026-021-09183-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 03/01/2021] [Indexed: 01/12/2023]
Abstract
Mast cells (MCs) play an essential role in host defense, primarily because of their location, their ability to pathogen destruction via several mechanisms, and the pattern recognition receptors they express. Even though most data is available regarding MC activation by various bacteria- or virus-derived molecules, those cells' activity in response to constituents associated with fungi is not recognized enough. Our research aimed to address whether Saccharomyces cerevisiae-derived zymosan, i.e., β-(1,3)-glucan containing mannan particles, impacts MC activity aspects. Overall, the obtained results indicate that zymosan has the potential to elicit a pro-inflammatory response of rat peritoneal MCs. For the first time ever, we provided evidence that zymosan induces fully mature MC migration, even in the absence of extracellular matrix (ECM) proteins. Moreover, the zymosan-induced migratory response of MCs is almost entirely a result of directional migration, i.e., chemotaxis. We found that zymosan stimulates MCs to degranulate and generate lipid mediators (cysLTs), cytokines (IFN-α, IFN-β, IFN-γ, GM-CSF, TNF), and chemokine (CCL2). Zymosan also upregulated mRNA transcripts for several cytokines/chemokines with pro-inflammatory/immunoregulatory activity. Moreover, we documented that zymosan activates MCs to produce reactive oxygen species (ROS). Lastly, we established that the zymosan-induced MC response is mediated through activation of the Dectin-1 receptor. In general, our results strongly support the notion that MCs contribute to innate antifungal immunity and bring us closer to elucidate their role in host-pathogenic fungi interactions. Besides, provided findings on IgE-sensitized MCs appear to indicate that exposure to fungal zymosan could affect the severity of IgE-dependent disorders, including allergic ones.
Collapse
Affiliation(s)
- Paulina Żelechowska
- Department of Experimental Immunology, Faculty of Health Sciences, Medical University of Lodz, Pomorska 251, 92-213, Lodz, Poland.
| | - Ewa Brzezińska-Błaszczyk
- Department of Experimental Immunology, Faculty of Health Sciences, Medical University of Lodz, Pomorska 251, 92-213, Lodz, Poland
| | - Sylwia Różalska
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237, Lodz, Poland
| | - Justyna Agier
- Department of Experimental Immunology, Faculty of Health Sciences, Medical University of Lodz, Pomorska 251, 92-213, Lodz, Poland
| | - Elżbieta Kozłowska
- Department of Experimental Immunology, Faculty of Health Sciences, Medical University of Lodz, Pomorska 251, 92-213, Lodz, Poland
| |
Collapse
|
42
|
Korkmaz E, Balmert SC, Sumpter TL, Carey CD, Erdos G, Falo LD. Microarray patches enable the development of skin-targeted vaccines against COVID-19. Adv Drug Deliv Rev 2021; 171:164-186. [PMID: 33539853 PMCID: PMC8060128 DOI: 10.1016/j.addr.2021.01.022] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/10/2021] [Accepted: 01/27/2021] [Indexed: 12/13/2022]
Abstract
The COVID-19 pandemic is a serious threat to global health and the global economy. The ongoing race to develop a safe and efficacious vaccine to prevent infection by SARS-CoV-2, the causative agent for COVID-19, highlights the importance of vaccination to combat infectious pathogens. The highly accessible cutaneous microenvironment is an ideal target for vaccination since the skin harbors a high density of antigen-presenting cells and immune accessory cells with broad innate immune functions. Microarray patches (MAPs) are an attractive intracutaneous biocargo delivery system that enables safe, reproducible, and controlled administration of vaccine components (antigens, with or without adjuvants) to defined skin microenvironments. This review describes the structure of the SARS-CoV-2 virus and relevant antigenic targets for vaccination, summarizes key concepts of skin immunobiology in the context of prophylactic immunization, and presents an overview of MAP-mediated cutaneous vaccine delivery. Concluding remarks on MAP-based skin immunization are provided to contribute to the rational development of safe and effective MAP-delivered vaccines against emerging infectious diseases, including COVID-19.
Collapse
Affiliation(s)
- Emrullah Korkmaz
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| | - Stephen C Balmert
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Tina L Sumpter
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Cara Donahue Carey
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Geza Erdos
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Louis D Falo
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA; UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA; Clinical and Translational Science Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA; The McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA.
| |
Collapse
|
43
|
Sprinzl B, Greiner G, Uyanik G, Arock M, Haferlach T, Sperr WR, Valent P, Hoermann G. Genetic Regulation of Tryptase Production and Clinical Impact: Hereditary Alpha Tryptasemia, Mastocytosis and Beyond. Int J Mol Sci 2021; 22:2458. [PMID: 33671092 PMCID: PMC7957558 DOI: 10.3390/ijms22052458] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/20/2021] [Accepted: 02/25/2021] [Indexed: 12/12/2022] Open
Abstract
Tryptase is a serine protease that is predominantly produced by tissue mast cells (MCs) and stored in secretory granules together with other pre-formed mediators. MC activation, degranulation and mediator release contribute to various immunological processes, but also to several specific diseases, such as IgE-dependent allergies and clonal MC disorders. Biologically active tryptase tetramers primarily derive from the two genes TPSB2 (encoding β-tryptase) and TPSAB1 (encoding either α- or β-tryptase). Based on the most common gene copy numbers, three genotypes, 0α:4β, 1α:3β and 2α:2β, were defined as "canonical". About 4-6% of the general population carry germline TPSAB1-α copy number gains (2α:3β, 3α:2β or more α-extra-copies), resulting in elevated basal serum tryptase levels. This condition has recently been termed hereditary alpha tryptasemia (HαT). Although many carriers of HαT appear to be asymptomatic, a number of more or less specific symptoms have been associated with HαT. Recent studies have revealed a significantly higher HαT prevalence in patients with systemic mastocytosis (SM) and an association with concomitant severe Hymenoptera venom-induced anaphylaxis. Moreover, HαT seems to be more common in idiopathic anaphylaxis and MC activation syndromes (MCAS). Therefore, TPSAB1 genotyping should be included in the diagnostic algorithm in patients with symptomatic SM, severe anaphylaxis or MCAS.
Collapse
Affiliation(s)
- Bettina Sprinzl
- Ludwig Boltzmann Institute for Hematology and Oncology at the Hanusch Hospital, Center for Medical Genetics, Hanusch Hospital, 1140 Vienna, Austria; (B.S.); (G.U.)
- Center for Medical Genetics, Hanusch Hospital, 1140 Vienna, Austria
| | - Georg Greiner
- Department of Laboratory Medicine, Medical University of Vienna, 1090 Vienna, Austria;
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, 1090 Vienna, Austria; (W.R.S.); (P.V.)
- Ihr Labor, Medical Diagnostic Laboratories, 1220 Vienna, Austria
| | - Goekhan Uyanik
- Ludwig Boltzmann Institute for Hematology and Oncology at the Hanusch Hospital, Center for Medical Genetics, Hanusch Hospital, 1140 Vienna, Austria; (B.S.); (G.U.)
- Center for Medical Genetics, Hanusch Hospital, 1140 Vienna, Austria
- Medical School, Sigmund Freud Private University, 1020 Vienna, Austria
| | - Michel Arock
- Department of Hematology, APHP, Pitié-Salpêtrière-Charles Foix University Hospital and Sorbonne University, 75013 Paris, France;
- Centre de Recherche des Cordeliers, INSERM, Sorbonne University, Cell Death and Drug Resistance in Hematological Disorders Team, 75006 Paris, France
| | | | - Wolfgang R. Sperr
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, 1090 Vienna, Austria; (W.R.S.); (P.V.)
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, 1090 Vienna, Austria
| | - Peter Valent
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, 1090 Vienna, Austria; (W.R.S.); (P.V.)
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, 1090 Vienna, Austria
| | - Gregor Hoermann
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, 1090 Vienna, Austria; (W.R.S.); (P.V.)
- MLL Munich Leukemia Laboratory, 81377 Munich, Germany;
| |
Collapse
|
44
|
Ding C, Guo Y, Liang T, Liu J, Yang L, Wang T, Liu X, Kang Q. Protein 4.1R negatively regulates P815 cells proliferation by inhibiting C-Kit-mediated signal transduction. Exp Cell Res 2021; 398:112403. [PMID: 33271128 DOI: 10.1016/j.yexcr.2020.112403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 11/15/2020] [Accepted: 11/23/2020] [Indexed: 11/18/2022]
Abstract
The proliferation of mast cells (MCs) plays a crucial role in either physiological or pathological progression of human physical. C-Kit-mediated signaling pathway has been confirmed to play a key role in MCs proliferation, and the regulatory mechanisms of C-Kit-mediated MCs proliferation need to be further explored. Our previous study found that protein 4.1R could negatively regulate T cell receptor (TCR) mediated signal pathways in CD4+ T cells. Little is known about the function of 4.1R in C-Kit-mediated proliferation of MCs. In this study, P815-4.1R-/- cells were constructed by using CRISPR/Cas9 technique. Lack of 4.1R significantly enhanced P815 cells proliferation by accelerating the progression of cell cycle. 4.1R could also significantly alleviate the clinical symptoms of systemic mastocytosis (SM) and improve the overall survival of SM mice. Further study showed that 4.1R could interact directly with C-Kit to inhibit the activation of C-Kit-mediated Ras-Raf-MAPKs and PI3K-AKT signal pathways. Taken together, our findings demonstrate that protein 4.1R, a novel negative regulator, negatively regulates MCs proliferation by inhibiting C-Kit-mediated signal transduction, which maybe provide a potential target to the prevention and treatment of abnormal MCs proliferation-related diseases.
Collapse
Affiliation(s)
- Cong Ding
- School of Life Sciences, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, PR China
| | - Yuying Guo
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Taotao Liang
- School of Life Sciences, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, PR China
| | - Jiaojiao Liu
- School of Life Sciences, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, PR China
| | - Lu Yang
- School of Life Sciences, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, PR China
| | - Ting Wang
- School of Life Sciences, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, PR China
| | - Xin Liu
- School of Life Sciences, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, PR China.
| | - Qiaozhen Kang
- School of Life Sciences, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, PR China.
| |
Collapse
|
45
|
Nurkhametova D, Siniavin A, Streltsova M, Kudryavtsev D, Kudryavtsev I, Giniatullina R, Tsetlin V, Malm T, Giniatullin R. Does Cholinergic Stimulation Affect the P2X7 Receptor-Mediated Dye Uptake in Mast Cells and Macrophages? Front Cell Neurosci 2020; 14:548376. [PMID: 33328886 PMCID: PMC7673375 DOI: 10.3389/fncel.2020.548376] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 09/18/2020] [Indexed: 12/18/2022] Open
Abstract
Background: Extracellular ATP is a powerful trigger of neuroinflammation by activating immune cells via P2X7 receptors. Acetylcholine and nicotinic agonists inhibit ATP-triggered proinflammatory cytokines via the so-called “cholinergic anti-inflammatory pathway” (CAP). However, it remains unclear as to what stage of ATP-induced signaling cholinergic agents provide this anti-inflammatory effect. Using the specific property of P2X7 receptor to open a pathway permeable to large molecules, associated with activation of inflammasome, we studied the action of cholinergic agents on this key event in CAP activation. Methods: Freshly isolated mouse peritoneal mast cells and primary human macrophages were used. To assess P2X7 channel opening, the permeability to the fluorescent dye YO-PRO1 or ethidium bromide (EtBr) was measured by flow cytometry. Expression of nicotinic receptors was probed in macrophages with the fluorescently labeled α-bungarotoxin or with patch-clamp recordings. Results: ATP opened P2X7 ion channels in mast cells and macrophages permeable to YO-PRO1 or EtBr, respectively. This stimulatory effect in mast cells was inhibited by the specific P2X7 antagonist A839977 confirming that YO-PRO1 uptake was mediated via ATP-gated P2X7 ion channels. Cholinergic agents also slightly induced dye uptake to mast cells but not in macrophages, which expressed functional α7 nicotinic receptors. However, both in mast cells and in macrophages, acetylcholine and nicotine failed to inhibit the stimulatory effect of ATP on dye uptake. Conclusion: These data suggest that in immune cells, cholinergic agents do not act on P2X7 receptor-coupled large pore formation but can mediate the anti-inflammatory effect underlying CAP downstream of ATP-driven signaling.
Collapse
Affiliation(s)
- Dilyara Nurkhametova
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.,Laboratory of Neurobiology, Kazan Federal University, Kazan, Russia
| | - Andrei Siniavin
- Department of Molecular Neuroimmune Signalling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Maria Streltsova
- Department of Immunology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Denis Kudryavtsev
- Department of Molecular Neuroimmune Signalling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Igor Kudryavtsev
- Department of Immunology, Institute of Experimental Medicine, St. Petersburg, Russia.,Department of Fundamental Medicine, Far Eastern Federal University, Vladivostok, Russia
| | - Raisa Giniatullina
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Victor Tsetlin
- Department of Molecular Neuroimmune Signalling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Tarja Malm
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Rashid Giniatullin
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.,Laboratory of Neurobiology, Kazan Federal University, Kazan, Russia
| |
Collapse
|
46
|
Nonlethal Plasmodium yoelii Infection Drives Complex Patterns of Th2-Type Host Immunity and Mast Cell-Dependent Bacteremia. Infect Immun 2020; 88:IAI.00427-20. [PMID: 32958528 PMCID: PMC7671899 DOI: 10.1128/iai.00427-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 09/16/2020] [Indexed: 12/11/2022] Open
Abstract
Malaria strongly predisposes to bacteremia, which is associated with sequestration of parasitized red blood cells and increased gastrointestinal permeability. The mechanisms underlying this disruption are poorly understood. Here, we evaluated the expression of factors associated with mast cell activation and malaria-associated bacteremia in a rodent model. C57BL/6J mice were infected with Plasmodium yoeliiyoelli 17XNL, and blood and tissues were collected over time to assay for circulating levels of bacterial 16S DNA, IgE, mast cell protease 1 (Mcpt-1) and Mcpt-4, Th1 and Th2 cytokines, and patterns of ileal mastocytosis and intestinal permeability. Malaria strongly predisposes to bacteremia, which is associated with sequestration of parasitized red blood cells and increased gastrointestinal permeability. The mechanisms underlying this disruption are poorly understood. Here, we evaluated the expression of factors associated with mast cell activation and malaria-associated bacteremia in a rodent model. C57BL/6J mice were infected with Plasmodium yoeliiyoelli 17XNL, and blood and tissues were collected over time to assay for circulating levels of bacterial 16S DNA, IgE, mast cell protease 1 (Mcpt-1) and Mcpt-4, Th1 and Th2 cytokines, and patterns of ileal mastocytosis and intestinal permeability. The anti-inflammatory cytokines (interleukin-4 [IL-4], IL-6, and IL-10) and MCP-1/CCL2 were detected early after P. yoeliiyoelii 17XNL infection. This was followed by the appearance of IL-9 and IL-13, cytokines known for their roles in mast cell activation and growth-enhancing activity as well as IgE production. Later increases in circulating IgE, which can induce mast cell degranulation, as well as Mcpt-1 and Mcpt-4, were observed concurrently with bacteremia and increased intestinal permeability. These results suggest that P. yoeliiyoelii 17XNL infection induces the production of early cytokines that activate mast cells and drive IgE production, followed by elevated IgE, IL-9, and IL-13 that maintain and enhance mast cell activation while disrupting the protease/antiprotease balance in the intestine, contributing to epithelial damage and increased permeability.
Collapse
|
47
|
Lee YA, Nam YH, Min A, Shin MH. Trichomonas vaginalis-secreted cysteinyl leukotrienes promote migration, degranulation and MCP-1 production in mast cells. Parasite Immunol 2020; 42:e12789. [PMID: 32881004 DOI: 10.1111/pim.12789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/22/2020] [Accepted: 08/24/2020] [Indexed: 11/30/2022]
Abstract
Trichomonas vaginalis, a flagellated extracellular protozoan parasite that infects the human genitourinary tract, is usually transmitted by sexual contact. Our previous study showed that the leukotriene B4 (LTB4 ), a T vaginalis-secreted lipid mediator, induces interleukin (IL)-8 production and promotes mast cell degranulation and migration via BLT1 in human. In this study, we investigated whether T vaginalis produces another leukotrienes and whether it causes increased MCP-1 production, mast cell migration and degranulation by activating mast cells. We found that cysteinyl leukotrienes (CysLTs) were contained in T vaginalis-derived secretory product (TvSP) by ELISA. The TvSP-stimulated human mast cell line (HMC-1) exhibited significantly increased monocyte chemoattractant protein-1 (MCP-1) secretion compared to the unstimulated cells. Inhibition of NOX2 activation of cells by treatment of NOX inhibitor or NOX2 siRNA reduced TvSP-stimulated MCP-1 production in HMC-1 cells. It was also confirmed that the receptor for CysLTs is expressed in mast cells. The CysLT receptor (CysLTR) antagonist inhibited TvSP-stimulated MCP-1 production of mast cells, as well as ROS production, migration and degranulation of mast cells, and reduced phospho-NF-kB expression. These results suggest that T vaginalis-secreted CysLTs promote migration, degranulation and MCP-1 production in human mast cells through CysLT receptor-mediated NOX2 activation.
Collapse
Affiliation(s)
- Young Ah Lee
- Department of Environmental Medical Biology and Institute of Tropical Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Young Hee Nam
- Department of Environmental Medical Biology and Institute of Tropical Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Arim Min
- Department of Environmental Medical Biology and Institute of Tropical Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Myeong Heon Shin
- Department of Environmental Medical Biology and Institute of Tropical Medicine, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
48
|
Micera A, Jirsova K, Esposito G, Balzamino BO, Di Zazzo A, Bonini S. Mast Cells Populate the Corneoscleral Limbus: New Insights for Our Understanding of Limbal Microenvironment. Invest Ophthalmol Vis Sci 2020; 61:43. [PMID: 32207813 PMCID: PMC7401584 DOI: 10.1167/iovs.61.3.43] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Purpose Although stem cell activity represents a crucial feature in corneal and ocular surface homeostasis, other cells populating this region and the neighboring zones might participate and influence local microenvironment. Mast cells, the long-lived and tissue-sited immune cells, have been previously reported in corneoscleral specimens. Herein, mast cells were investigated in corneoscleral tissues and related to microenvironment protein expression. Methods Twenty-six (14 male/12 female; older than 60 years) human corneoscleral specimens were sectioned for light and fluorescent immunostaining (CD45, p63, Ck-3/7/12/19, tryptase/AA1, and chymase/CC1). Corneal, limbal, and conjunctival squares were produced for molecular and biochemical analysis. Statistical comparisons were carried out by ANOVA. Results Toluidine blue staining identified metachromatic intact or degranulated mast cells in the area below the palisades' Vogt (Ck-3/12-positive epithelium and underneath p63 immunoreactivity). Tryptase immunoreactivity was observed close to palisades' Vogt, whereas no specific signal was detected for chymase. Tryptase/AA1 transcripts were quantified in limbal and conjunctival RNA extracts, whereas no specific amplification was detected in corneal ones. Few mediators were overexpressed in limbal extracts with respect to corneal (Neural cell adhesion molecule (NCAM), Intercellular adhesion molecule 3 (ICAM3), Brain-derived Neurotrophic factor (BDNF), and neurotrophin 3 (NT3); P < 0.00083) and conjunctival (NCAM, ICAM3, and NT3; P < 0.05) protein extracts. A trend to an increase was observed for Nerve Growth Factor (NGF) in limbal extracts (P > 0.05). Conclusions The specific observation of tryptase phenotype and the interesting protein signature of microenvironment (adhesion molecules, growth factors, and neurotrophins), known to partake mast cell behavior, at least in other areas, would provide additional information to better understand this crucial zone in the framework of ocular surface healthiness.
Collapse
|
49
|
Eissmann MF, Buchert M, Ernst M. IL33 and Mast Cells-The Key Regulators of Immune Responses in Gastrointestinal Cancers? Front Immunol 2020; 11:1389. [PMID: 32719677 PMCID: PMC7350537 DOI: 10.3389/fimmu.2020.01389] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 05/29/2020] [Indexed: 12/13/2022] Open
Abstract
The Interleukin (IL-)1 family IL33 is best known for eliciting type 2 immune responses by stimulating mast cells (MCs), regulatory T-cells (Tregs), innate lymphoid cells (ILCs) and other immune cells. MCs and IL33 provide critical control of immunological and epithelial homeostasis in the gastrointestinal (GI) tract. Meanwhile, the role of MCs in solid malignancies appears tissue-specific with both pro and anti-tumorigenic activities. Likewise, IL33 signaling significantly shapes immune responses in the tumor microenvironment, but these effects remain often dichotomous when assessed in experimental models of cancer. Thus, the balance between tumor suppressing and tumor promoting activities of IL33 are highly context dependent, and most likely dictated by the mixture of cell types responding to IL33. Adding to this complexity is the promiscuous nature by which MCs respond to cytokines other than IL33 and release chemotactic factors that recruit immune cells into the tumor microenvironment. In this review, we integrate the outcomes of recent studies on the role of MCs and IL33 in cancer with our own observations in the GI tract. We propose a working model where the most abundant IL33 responsive immune cell type is likely to dictate an overall tumor-supporting or tumor suppressing outcome in vivo. We discuss how these opposing responses affect the therapeutic potential of targeting MC and IL33, and highlight the caveats and challenges facing our ability to effectively harness MCs and IL33 biology for anti-cancer immunotherapy.
Collapse
Affiliation(s)
- Moritz F Eissmann
- Olivia Newton-John Cancer Research Institute, and La Trobe University School of Cancer Medicine, Heidelberg, VIC, Australia
| | - Michael Buchert
- Olivia Newton-John Cancer Research Institute, and La Trobe University School of Cancer Medicine, Heidelberg, VIC, Australia
| | - Matthias Ernst
- Olivia Newton-John Cancer Research Institute, and La Trobe University School of Cancer Medicine, Heidelberg, VIC, Australia
| |
Collapse
|
50
|
Kucharik AH, Chang C. The Relationship Between Hypermobile Ehlers-Danlos Syndrome (hEDS), Postural Orthostatic Tachycardia Syndrome (POTS), and Mast Cell Activation Syndrome (MCAS). Clin Rev Allergy Immunol 2020; 58:273-297. [PMID: 31267471 DOI: 10.1007/s12016-019-08755-8] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In recent years, an association between hypermobile Ehlers-Danlos syndrome (hEDS), mast cell activation syndrome (MCAS), and postural orthostatic tachycardia syndrome (POTS) has garnered attention and patients are increasingly presenting with this triad. However, a real relationship between these entities is unclear due to a lack of scientific validity. We conducted an extensive review of the literature using two different search strategies. A narrower strategy included 88 searches of various combinations of terms for each of the three conditions, yielding 19 unique papers. A broader search included 136 searches of various combinations of terms but included all forms of EDS and yielded 40 unique papers. Of these, only four and nine papers from the narrower and broader search strategies were original research articles. None of these papers resulted from a combination of the search terms for the three conditions. All three clinical entities are controversial in either existence or pathogenesis. MCAS is a poorly defined clinical entity, and many studies do not adhere to the proposed criteria when establishing the diagnosis. Patients previously diagnosed with EDS hypermobility type may not meet the new, stricter criteria for hEDS but may for a less severe hypermobility spectrum disorder (HSD). The pathophysiology of POTS is still unclear. An evidence-based, common pathophysiologic mechanism between any of the two, much less all three conditions, has yet to be described. Our review of the literature shows that current evidence is lacking on the existence of MCAS or hEDS as separate or significant clinical entities. Studies proposing a relationship between the three clinical entities are either biased or based on outdated criteria. The reason behind the purported association of these entities stems from an overlapping pool of vague, subjective symptoms, which is inadequate evidence to conclude that any such relationship exists.
Collapse
Affiliation(s)
| | - Christopher Chang
- Florida Atlantic University, Boca Raton, FL, USA.
- Joe DiMaggio Children's Hospital, 1131 North 35th Avenue, Suite 220, Hollywood, FL, 33021, USA.
- University of California, Davis, CA, USA.
- Florida International University, Miami, FL, USA.
| |
Collapse
|