1
|
Cortes-Selva D, Perova T, Skerget S, Vishwamitra D, Stein S, Boominathan R, Lau O, Calara-Nielsen K, Davis C, Patel J, Banerjee A, Stephenson T, Uhlar C, Kobos R, Goldberg J, Pei L, Trancucci D, Girgis S, Wang Lin SX, Wu LS, Moreau P, Usmani SZ, Bahlis NJ, van de Donk NWCJ, Verona RI. Correlation of immune fitness with response to teclistamab in relapsed/refractory multiple myeloma in the MajesTEC-1 study. Blood 2024; 144:615-628. [PMID: 38657201 PMCID: PMC11347796 DOI: 10.1182/blood.2023022823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 03/28/2024] [Accepted: 04/15/2024] [Indexed: 04/26/2024] Open
Abstract
ABSTRACT Teclistamab, an off-the-shelf B-cell maturation antigen (BCMA) × CD3 bispecific antibody that mediates T-cell activation and subsequent lysis of BCMA-expressing myeloma cells, is approved for the treatment of patients with relapsed/refractory multiple myeloma (R/RMM). As a T-cell redirection therapy, clinical outcomes with teclistamab may be influenced by patient immune fitness and tumor antigen expression. We correlated tumor characteristics and baseline immune profiles with clinical response and disease burden in patients with R/RMM from the pivotal phase 1/2 MajesTEC-1 study, focusing on patients treated with 1.5 mg/kg of teclistamab (N = 165). Peripheral blood samples were collected at screening, and bone marrow samples were collected at screening and cycle 3. Better clinical outcomes to teclistamab correlated with higher baseline total T-cell counts in the periphery. In addition, responders (partial response or better) had a lower proportion of immunosuppressive regulatory T cells (Tregs), T cells expressing coinhibitory receptors (CD38, PD-1, and PD-1/TIM-3), and soluble BCMA and a T-cell profile suggestive of a more cytolytic potential, compared with nonresponders. Neither frequency of baseline bone marrow BCMA expression nor BCMA-receptor density was associated with clinical response to teclistamab. Improved progression-free survival was observed in patients with a lower frequency of T cells expressing exhaustion markers and immunosuppressive Tregs. Overall, response to teclistamab was associated with baseline immune fitness; nonresponders had immune profiles suggestive of immune suppression and T-cell dysfunction. These findings illustrate the importance of the contribution of the immune landscape to T-cell redirection therapy response. This trial was registered at www.ClinicalTrials.gov as #NCT03145181/NCT04557098.
Collapse
Affiliation(s)
| | | | | | | | - Sarah Stein
- Janssen Research & Development, Spring House, PA
| | | | - Onsay Lau
- Janssen Research & Development, Spring House, PA
| | | | - Cuc Davis
- Janssen Research & Development, Spring House, PA
| | | | | | | | | | | | | | - Lixia Pei
- Janssen Research & Development, Raritan, NJ
| | | | | | | | | | | | | | - Nizar J. Bahlis
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, AB, Canada
| | | | | |
Collapse
|
2
|
Vo A, Ammerman N, Jordan SC. New Therapies for Highly Sensitized Patients on the Waiting List. KIDNEY360 2024; 5:1207-1225. [PMID: 38995690 PMCID: PMC11371354 DOI: 10.34067/kid.0000000000000509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 07/08/2024] [Indexed: 07/14/2024]
Abstract
Exposure to HLA alloantigens through pregnancy, blood products, and previous transplantations induce powerful immunologic responses that create an immunologic barrier to successful transplantation. This is commonly detected through screening for HLA antibodies using Luminex beads coated with HLA antigens at transplant evaluation. Currently accepted approaches to desensitization include plasmapheresis/low-dose or high-dose intravenous Ig plus anti-CD20. However, these approaches are often unsuccessful because of the inability to remove high titer circulating HLA antibodies and limit rebound responses by long-lived anti-HLA antibody secreting plasma cells (PCs) and memory B cells (B MEM ). This is especially significant for patients with a calculated panel reactive antibody of 99%-100%. Newer desensitization approaches, such as imlifidase (IgG endopeptidase), rapidly inactivate IgG molecules and create an antibody-free zone by cleaving IgG into F(ab'2) and Fc fragments, thus eliminating complement and cell-mediated injury to the graft. This represents an important advancement in desensitization. However, the efficacy of imlifidase is limited by pathogenic antibody rebound, increasing the potential for antibody-mediated rejection. Controlling antibody rebound requires new strategies that address the issues of antibody depletion and inhibition of B MEM and PC responses. This will likely require a combination of agents that effectively and rapidly deplete pathogenic antibodies and prevent immune cell activation pathways responsible for antibody rebound. Here, using anti-IL-6 receptor (tocilizumab) or anti-IL-6 (clazakizumab) could offer long-term control of B MEM and PC donor-specific HLA antibody responses. Agents aimed at eliminating long-lived PCs (anti-CD38 and anti-B-cell maturation antigen×CD3) are likely to benefit highly HLA sensitized patients. Complement inhibitors and novel agents aimed at inhibiting Fc neonatal receptor IgG recycling will be important in desensitization. Administering these agents alone or in combination will advance our ability to effectively desensitize patients and maintain durable suppression post-transplant. After many years of limited options, advanced therapeutics will likely improve efficacy of desensitization and improve access to kidney transplantation for highly HLA sensitized patients.
Collapse
Affiliation(s)
- Ashley Vo
- Transplant Center, Cedars-Sinai Medical Center, West Hollywood, California
| | | | | |
Collapse
|
3
|
Vo A, Ammerman N, Jordan SC. Advances in desensitization for human leukocyte antigen incompatible kidney transplantation. Curr Opin Organ Transplant 2024; 29:104-120. [PMID: 38088373 DOI: 10.1097/mot.0000000000001131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
PURPOSE OF REVIEW Human leukocyte antigen (HLA) sensitization is a major barrier to kidney transplantation induced by exposure to alloantigens through pregnancy, blood product exposure and previous transplantations. Desensitization strategies are undertaken to improve the chances of finding compatible organ offers. Standard approaches to desensitization include the use of plasmapheresis/low dose intravenous immunoglobulin (IVIG) or high dose IVIG plus anti-CD20. However, current methods to reduce HLA antibodies are not always successful, especially in those with calculated panel reactive antibody 99-100%. RECENT FINDINGS Newer desensitization strategies such as imlifidase [immunoglobulin G (IgG) endopeptidase] rapidly inactivates IgG molecules and creates an "antibody-free zone", representing an important advancement in desensitization. However, pathogenic antibodies rebound, increasing allograft injury that is not addressed by imlifidase. Here, use of anti-IL-6R (tocilizumab) or anti-interleukin-6 (clazakizumab) could offer long-term control of B-memory and plasma cell DSA responses to limit graft injury. Agents aimed at long-lived plasma cells (anti-CD38 and anti-BCMAxCD3) could reduce or eliminate HLA-producing plasma cells from marrow niches. Other agents such as complement inhibitors and novel agents inhibiting the Fc neonatal receptor (FcRn) mediated IgG recycling will likely find important roles in desensitization. SUMMARY Use of these agents alone or in combination will likely improve the efficacy and durability of desensitization therapies, improving access to kidney transplantation for immunologically disadvantaged patients.
Collapse
Affiliation(s)
- Ashley Vo
- Comprehensive Transplant Center, Cedars Sinai Medical Center, Los Angeles, California, USA
| | | | | |
Collapse
|
4
|
Puliyanda DP, Jordan SC. Management of the sensitized pediatric renal transplant candidate. Pediatr Transplant 2024; 28:e14694. [PMID: 38400645 DOI: 10.1111/petr.14694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 12/14/2023] [Accepted: 01/05/2024] [Indexed: 02/25/2024]
Abstract
Kidney transplantation is the treatment of choice for patients with ESRD as it is associated with improved patient survival and better quality of life, especially in children. There are several barriers to a successful transplant including organ shortage, anatomic barriers, and immunologic barriers. One of the biggest immunologic barriers that precludes transplantation is sensitization, when patients have antibodies prior to transplantation, resulting in positive crossmatches with donor. 30%-40% of adult patients on the wait list are sensitized. There is a growing number of pediatric patients on the wait list who are sensitized. This poses a unique challenge to the pediatric transplant community. Therefore, attempts to perform desensitization to remove or suppress pathogenic HLA antibodies resulting in acceptable crossmatches, and ultimately a successful transplant, while reducing the risk of acute rejection, are much needed in these children. This review article aims to address the management of such patients both prior to transplantation, with strategies to overcome sensitization, and after transplantation with monitoring for allograft rejection and other complications.
Collapse
Affiliation(s)
- Dechu P Puliyanda
- Department of Pediatrics, Comprehensive Transplant Center, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Stanley C Jordan
- Department of Pediatrics, Comprehensive Transplant Center, Cedars-Sinai Medical Center, Los Angeles, California, USA
| |
Collapse
|
5
|
Olejarz W, Basak G. Emerging Therapeutic Targets and Drug Resistance Mechanisms in Immunotherapy of Hematological Malignancies. Cancers (Basel) 2023; 15:5765. [PMID: 38136311 PMCID: PMC10741639 DOI: 10.3390/cancers15245765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/22/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
CAR-T cell therapy has revolutionized the treatment of hematological malignancies with high remission rates in the case of ALL and NHL. This therapy has some limitations such as long manufacturing periods, persistent restricted cell sources and high costs. Moreover, combination regimens increase the risk of immune-related adverse events, so the identification new therapeutic targets is important to minimize the risk of toxicities and to guide more effective approaches. Cancer cells employ several mechanisms to evade immunosurveillance, which causes resistance to immunotherapy; therefore, a very important therapeutic approach is to focus on the development of rational combinations of targeted therapies with non-overlapping toxicities. Recent progress in the development of new inhibitory clusters of differentiation (CDs), signaling pathway molecules, checkpoint inhibitors, and immunosuppressive cell subsets and factors in the tumor microenvironment (TME) has significantly improved anticancer responses. Novel strategies regarding combination immunotherapies with CAR-T cells are the most promising approach to cure cancer.
Collapse
Affiliation(s)
- Wioletta Olejarz
- Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy, Medical University of Warsaw, 02-091 Warsaw, Poland
- Centre for Preclinical Research, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Grzegorz Basak
- Department of Hematology, Transplantation and Internal Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland;
| |
Collapse
|
6
|
Wu C, Manchen P, Edelman A, Husnain M, Katsanis E, Fuchs D, Stephens L, Khurana S. Refractory Pure Red Blood Cell Aplasia Secondary to Major ABO-Incompatible Allogeneic Stem Cell Transplantation Successfully Treated With Daratumumab. J Hematol 2023; 12:277-282. [PMID: 38188476 PMCID: PMC10769644 DOI: 10.14740/jh1195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 10/30/2023] [Indexed: 01/09/2024] Open
Abstract
Pure red cell aplasia (PRCA) is a rare hematologic phenomenon that is usually associated with inherited genetic mutations such as in Diamond-Blackfan anemia. However, due to the emergence of allogenic stem cell transplantation in the treatment of various malignant and non-malignant disorders, the incidence of PRCA has increased. PRCA following hematopoietic stem cell transplant (HSCT) is more commonly seen in the setting of a major ABO-incompatible transplant. Treatment of allo-HSCT induced PRCA can be initially supportive as it takes time for the bone marrow to fully recover. However, prolonged and/or failure of the bone marrow to recover, significantly increases patient's risk of iron overload in the setting of frequent transfusions. Iron deposition can potentially lead to severe life-threatening multiorgan involvement which can be fatal. Therefore, earlier recognition and intervention with immunomodulators in patients who undergo frequent transfusions can be beneficial to mitigate this risk. Here, we present a case with severe transfusion-dependent PRCA following major ABO-incompatible allo-HSCT successfully treated with daratumumab.
Collapse
Affiliation(s)
- Clinton Wu
- Department of Medicine, University of Arizona, Tucson, AZ, USA
| | - Pete Manchen
- Department of Pathology, University of Arizona, Tucson, AZ, USA
| | - Ariela Edelman
- Department of Pathology, University of Arizona, Tucson, AZ, USA
| | - Muhammad Husnain
- Department of Medicine, University of Arizona, Tucson, AZ, USA
- University of Arizona Cancer Center, Tucson, AZ, USA
| | - Emmanuel Katsanis
- Department of Medicine, University of Arizona, Tucson, AZ, USA
- Department of Pathology, University of Arizona, Tucson, AZ, USA
- University of Arizona Cancer Center, Tucson, AZ, USA
- Department of Pediatrics, University of Arizona, Tucson, AZ, USA
- Department of Immunobiology, University of Arizona, Tucson, AZ, USA
| | - Deborah Fuchs
- Department of Pathology, University of Arizona, Tucson, AZ, USA
| | - Laura Stephens
- Department of Pathology, University of California San Diego Health, La Jolla, CA, USA
| | - Sharad Khurana
- Department of Medicine, University of Arizona, Tucson, AZ, USA
- University of Arizona Cancer Center, Tucson, AZ, USA
| |
Collapse
|
7
|
van de Donk NWCJ, O'Neill C, de Ruijter MEM, Verkleij CPM, Zweegman S. T-cell redirecting bispecific and trispecific antibodies in multiple myeloma beyond BCMA. Curr Opin Oncol 2023; 35:601-611. [PMID: 37501530 PMCID: PMC10566598 DOI: 10.1097/cco.0000000000000983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
PURPOSE OF REVIEW B-cell maturation antigen (BCMA)-directed T-cell immunotherapies, such as chimeric antigen receptor T-cells (CAR T-cells) and bispecific antibodies (BsAbs) have markedly improved the survival of triple-class refractory multiple myeloma (MM). However, the majority of patients still develops disease progression, underlining the need for new agents for these patients. RECENT FINDINGS Novel T-cell redirecting BsAbs targeting alternative tumor-associated antigens have shown great promise in heavily pretreated MM, including patients previously exposed to BCMA-directed therapies. This includes the G-protein-coupled receptor class 5 member D (GPRC5D)-targeting BsAbs talquetamab and forimtamig, as well as the Fc receptor-homolog 5 (FcRH5)-targeting BsAb cevostamab. Toxicity associated with these BsAbs includes cytokine-release syndrome, cytopenias, and infections. In addition, GPRC5D-targeting BsAbs are associated with specific 'on target/off tumor' toxicities including rash, nail disorders, and dysgeusia. Trispecifc antibodies targeting two different MM-associated antigens to prevent antigen escape are in early clinical development, as well as trispecific antibodies (TsAbs) that provide an additional co-stimulatory signal to T-cells to prevent their exhaustion. SUMMARY Various T-cell redirecting BsAbs are in advanced stages of clinical development with promising activity and a manageable toxicity profile. Ongoing studies are evaluating combination strategies, fixed-duration treatment, and use of BsAbs in earlier lines of therapy. TsAbs hold great promise for the future.
Collapse
Affiliation(s)
- Niels W C J van de Donk
- Department of Hematology, Amsterdam UMC, location Vrije Universiteit Amsterdam
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - Chloe O'Neill
- Department of Hematology, Amsterdam UMC, location Vrije Universiteit Amsterdam
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - Maaike E M de Ruijter
- Department of Hematology, Amsterdam UMC, location Vrije Universiteit Amsterdam
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - Christie P M Verkleij
- Department of Hematology, Amsterdam UMC, location Vrije Universiteit Amsterdam
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - Sonja Zweegman
- Department of Hematology, Amsterdam UMC, location Vrije Universiteit Amsterdam
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| |
Collapse
|
8
|
Verkleij CPM, Frerichs KA, Broekmans MEC, Duetz C, O'Neill CA, Bruins WSC, Homan-Weert PM, Minnema MC, Levin MD, Broijl A, Bos GMJ, Kersten MJ, Klein SK, Shikhagaie MM, Casneuf T, Abraham Y, Smets T, Vanhoof G, Cortes-Selva D, van Steenbergen L, Ramos E, Verona RI, Krevvata M, Sonneveld P, Zweegman S, Mutis T, van de Donk NWCJ. NK Cell Phenotype Is Associated With Response and Resistance to Daratumumab in Relapsed/Refractory Multiple Myeloma. Hemasphere 2023; 7:e881. [PMID: 37153876 PMCID: PMC10155898 DOI: 10.1097/hs9.0000000000000881] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 03/30/2023] [Indexed: 05/10/2023] Open
Abstract
The CD38-targeting antibody daratumumab has marked activity in multiple myeloma (MM). Natural killer (NK) cells play an important role during daratumumab therapy by mediating antibody-dependent cellular cytotoxicity via their FcγRIII receptor (CD16), but they are also rapidly decreased following initiation of daratumumab treatment. We characterized the NK cell phenotype at baseline and during daratumumab monotherapy by flow cytometry and cytometry by time of flight to assess its impact on response and development of resistance (DARA-ATRA study; NCT02751255). At baseline, nonresponding patients had a significantly lower proportion of CD16+ and granzyme B+ NK cells, and higher frequency of TIM-3+ and HLA-DR+ NK cells, consistent with a more activated/exhausted phenotype. These NK cell characteristics were also predictive of inferior progression-free survival and overall survival. Upon initiation of daratumumab treatment, NK cells were rapidly depleted. Persisting NK cells exhibited an activated and exhausted phenotype with reduced expression of CD16 and granzyme B, and increased expression of TIM-3 and HLA-DR. We observed that addition of healthy donor-derived purified NK cells to BM samples from patients with either primary or acquired daratumumab-resistance improved daratumumab-mediated MM cell killing. In conclusion, NK cell dysfunction plays a role in primary and acquired daratumumab resistance. This study supports the clinical evaluation of daratumumab combined with adoptive transfer of NK cells.
Collapse
Affiliation(s)
- Christie P M Verkleij
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Hematology, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - Kristine A Frerichs
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Hematology, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - Marloes E C Broekmans
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Hematology, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - Carolien Duetz
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Hematology, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - Chloe A O'Neill
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Hematology, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - Wassilis S C Bruins
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Hematology, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - Paola M Homan-Weert
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Hematology, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - Monique C Minnema
- University Medical Center Utrecht, Department of Hematology, Utrecht University, The Netherlands
| | - Mark-David Levin
- Department of Internal Medicine, Albert Schweitzer Hospital, Dordrecht, The Netherlands
| | - Annemiek Broijl
- Department of Hematology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Gerard M J Bos
- Department of Hematology, Maastricht University Medical Center, The Netherlands
| | - Marie José Kersten
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
- Amsterdam UMC Location University of Amsterdam, Department of Hematology, Amsterdam, The Netherlands
| | - Saskia K Klein
- Department of Internal Medicine, Meander Medical Center, Amersfoort, The Netherlands
- Department of Hematology, University Medical Center Groningen, The Netherlands
| | - Medya M Shikhagaie
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Hematology, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | | | - Yann Abraham
- Janssen Research and Development, Beerse, Belgium
| | - Tina Smets
- Janssen Research and Development, Beerse, Belgium
| | | | | | | | | | | | | | - Pieter Sonneveld
- Department of Hematology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Sonja Zweegman
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Hematology, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - Tuna Mutis
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Hematology, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - Niels W C J van de Donk
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Hematology, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| |
Collapse
|
9
|
Ghosh A, Khanam A, Ray K, Mathur P, Subramanian A, Poonia B, Kottilil S. CD38: an ecto-enzyme with functional diversity in T cells. Front Immunol 2023; 14:1146791. [PMID: 37180151 PMCID: PMC10172466 DOI: 10.3389/fimmu.2023.1146791] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 04/13/2023] [Indexed: 05/15/2023] Open
Abstract
CD38, a nicotinamide adenine dinucleotide (NAD)+ glycohydrolase, is considered an activation marker of T lymphocytes in humans that is highly expressed during certain chronic viral infections. T cells constitute a heterogeneous population; however, the expression and function of CD38 has been poorly defined in distinct T cell compartments. We investigated the expression and function of CD38 in naïve and effector T cell subsets in the peripheral blood mononuclear cells (PBMCs) from healthy donors and people with HIV (PWH) using flow cytometry. Further, we examined the impact of CD38 expression on intracellular NAD+ levels, mitochondrial function, and intracellular cytokine production in response to virus-specific peptide stimulation (HIV Group specific antigen; Gag). Naïve T cells from healthy donors showed remarkably higher levels of CD38 expression than those of effector cells with concomitant reduced intracellular NAD+ levels, decreased mitochondrial membrane potential and lower metabolic activity. Blockade of CD38 by a small molecule inhibitor, 78c, increased metabolic function, mitochondrial mass and mitochondrial membrane potential in the naïve T lymphocytes. PWH exhibited similar frequencies of CD38+ cells in the T cell subsets. However, CD38 expression increased on Gag-specific IFN-γ and TNF-α producing cell compartments among effector T cells. 78c treatment resulted in reduced cytokine production, indicating its distinct expression and functional profile in different T cell subsets. In summary, in naïve cells high CD38 expression reflects lower metabolic activity, while in effector cells it preferentially contributes to immunopathogenesis by increasing inflammatory cytokine production. Thus, CD38 may be considered as a therapeutic target in chronic viral infections to reduce ongoing immune activation.
Collapse
Affiliation(s)
- Alip Ghosh
- Division of Clinical Care and Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Arshi Khanam
- Division of Clinical Care and Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Krishanu Ray
- Division of Vaccine Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Poonam Mathur
- Division of Clinical Care and Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Ananya Subramanian
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, CA, United States
| | - Bhawna Poonia
- Division of Clinical Care and Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Shyam Kottilil
- Division of Clinical Care and Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
10
|
Siddiqui BA, Chapin BF, Jindal S, Duan F, Basu S, Yadav SS, Gu AD, Espejo AB, Kinder M, Pettaway CA, Ward JF, Tidwell RSS, Troncoso P, Corn PG, Logothetis CJ, Knoblauch R, Hutnick N, Gottardis M, Drake CG, Sharma P, Subudhi SK. Immune and pathologic responses in patients with localized prostate cancer who received daratumumab (anti-CD38) or edicotinib (CSF-1R inhibitor). J Immunother Cancer 2023; 11:e006262. [PMID: 36948506 PMCID: PMC10040066 DOI: 10.1136/jitc-2022-006262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2023] [Indexed: 03/24/2023] Open
Abstract
BACKGROUND The prostate tumor microenvironment (TME) is immunosuppressive, with few effector T cells and enrichment of inhibitory immune populations, leading to limited responses to treatments such as immune checkpoint therapies (ICTs). The immune composition of the prostate TME differs across soft tissue and bone, the most common site of treatment-refractory metastasis. Understanding immunosuppressive mechanisms specific to prostate TMEs will enable rational immunotherapy strategies to generate effective antitumor immune responses. Daratumumab (anti-CD38 antibody) and edicotinib (colony-stimulating factor-1 receptor (CSF-1R) inhibitor) may alter the balance within the prostate TME to promote antitumor immune responses. HYPOTHESIS Daratumumab or edicotinib will be safe and will alter the immune TME, leading to antitumor responses in localized prostate cancer. PATIENTS AND METHODS In this presurgical study, patients with localized prostate cancer received 4 weekly doses of daratumumab or 4 weeks of daily edicotinib prior to radical prostatectomy (RP). Treated and untreated control (Gleason score ≥8 in prostate biopsy) prostatectomy specimens and patient-matched pre- and post-treatment peripheral blood mononuclear cells (PBMCs) and bone marrow samples were evaluated. The primary endpoint was incidence of adverse events (AEs). The secondary endpoint was pathologic complete remission (pCR) rate. RESULTS Twenty-five patients were treated (daratumumab, n=15; edicotinib, n=10). All patients underwent RP without delays. Grade 3 treatment-related AEs with daratumumab occurred in 3 patients (12%), and no ≥grade 3 treatment-related AEs occurred with edicotinib. No changes in serum prostate-specific antigen (PSA) levels or pCRs were observed. Daratumumab led to a decreased frequency of CD38+ T cells, natural killer cells, and myeloid cells in prostate tumors, bone marrow, and PBMCs. There were no consistent changes in CSF-1R+ immune cells in prostate, bone marrow, or PBMCs with edicotinib. Neither treatment induced T cell infiltration into the prostate TME. CONCLUSIONS Daratumumab and edicotinib treatment was safe and well-tolerated in patients with localized prostate cancer but did not induce pCRs. Decreases in CD38+ immune cells were observed in prostate tumors, bone marrow, and PBMCs with daratumumab, but changes in CSF-1R+ immune cells were not consistently observed with edicotinib. Neither myeloid-targeted agent alone was sufficient to generate antitumor responses in prostate cancer; thus, combinations with agents to induce T cell infiltration (eg, ICTs) will be needed to overcome the immunosuppressive prostate TME.
Collapse
Affiliation(s)
- Bilal A Siddiqui
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Brian F Chapin
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Sonali Jindal
- The Immunotherapy Platform, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Fei Duan
- The Immunotherapy Platform, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Sreyashi Basu
- The Immunotherapy Platform, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Shalini S Yadav
- The Immunotherapy Platform, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ai-Di Gu
- The Immunotherapy Platform, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Alexsandra B Espejo
- The Immunotherapy Platform, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Michelle Kinder
- Janssen Research & Development, Spring House, Pennsylvania, USA
| | - Curtis A Pettaway
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - John F Ward
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Rebecca S S Tidwell
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Patricia Troncoso
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Paul G Corn
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Christopher J Logothetis
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | - Natalie Hutnick
- Janssen Research & Development, Spring House, Pennsylvania, USA
| | - Marco Gottardis
- Janssen Research & Development, Spring House, Pennsylvania, USA
| | - Charles G Drake
- Janssen Research & Development, Spring House, Pennsylvania, USA
- Department of Medicine, Columbia University Medical Center, New York, New York, USA
- Department of Urology, Columbia University Medical Center, New York, New York, USA
| | - Padmanee Sharma
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- The Immunotherapy Platform, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Sumit K Subudhi
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
11
|
Sethi S, Jordan SC. Novel therapies for treatment of antibody-mediated rejection of the kidney. Curr Opin Organ Transplant 2023; 28:29-35. [PMID: 36579683 DOI: 10.1097/mot.0000000000001037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
PURPOSE OF REVIEW We aim to discuss current literature on novel therapies for antibody-mediated rejection (AMR) in kidney transplantation with a focus on chronic AMR. RECENT FINDINGS IL-6/IL-6 receptor blockers appear promising in the treatment of chronic AMR. Blocking this pathway was shown to reduce human leucocyte antigen-antibodies, improve histologic inflammation and increase T-regulatory cells. Based on experience in desensitization, IgG degrading endopeptidase, imlifidase, could be effective in AMR. There have been case reports describing the successful use of plasma cell/natural killer-cell-directed anti-CD38 antibody in the treatment of AMR. Off-target effects have been noted and strategies to mitigate these will be needed when using these agents. Complement inhibitors could be an effective add-on strategy to antibody-depleting therapies but their role in AMR needs to be better defined. Combining proteasome inhibitors and costimulation blockers has shown encouraging results in the prevention of AMR in animal models and is now being investigated in humans. Other novel strategies such as Fc neonatal receptor blockers which inhibit the recycling of pathogenic IgG and bispecific antibodies against B-cell maturation antigen/CD3+ T cells warrant further investigation. SUMMARY There are now a number of emerging therapies with varied targets and mechanism(s) of action that hold promise in the management of AMR and improving allograft survival.
Collapse
Affiliation(s)
- Supreet Sethi
- Division of Nephrology, Department of Medicine, Comprehensive Transplant Center, Cedars Sinai Medical Center, Los Angeles, California, USA
| | | |
Collapse
|
12
|
Gao L, Du X, Li J, Qin FXF. Evolving roles of CD38 metabolism in solid tumour microenvironment. Br J Cancer 2023; 128:492-504. [PMID: 36396822 PMCID: PMC9938187 DOI: 10.1038/s41416-022-02052-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/20/2022] [Accepted: 10/27/2022] [Indexed: 11/19/2022] Open
Abstract
Given that plenty of clinical findings and reviews have already explained in detail on the progression of CD38 in multiple myeloma and haematological system tumours, here we no longer give unnecessary discussion on the above progression. Though therapeutic antibodies have been regarded as a greatest breakthrough in multiple myeloma immunotherapies due to the durable anti-tumour responses in the clinic, but the role of CD38 in the immunologic regulation and evasion of non-hematopoietic solid tumours are just initiated and controversial. Therefore, we will focus on the bio-function of CD38 enzymatic substrates or metabolites in the variety of non-hematopoietic malignancies and the potential therapeutic value of targeting the CD38-NAD+ or CD38-cADPR/ADPR signal axis. Though limited, we review some ongoing researches and clinical trials on therapeutic approaches in solid tumour as well.
Collapse
Affiliation(s)
- Long Gao
- Department of Infectious Disease, The First Affiliated Hospital of Anhui Medical University, 230022, Hefei, China
| | - Xiaohong Du
- Institute of Clinical Medicine Research, Suzhou Science and Technology Town Hospital, Suzhou, China
| | - Jiabin Li
- Department of Infectious Disease, The First Affiliated Hospital of Anhui Medical University, 230022, Hefei, China.
| | - F Xiao-Feng Qin
- Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, 100005, Beijing, China.
- Suzhou Institute of Systems Medicine, 215123, Suzhou, China.
| |
Collapse
|
13
|
Deng J, Ke H. Overcoming the resistance of hepatocellular carcinoma to PD-1/PD-L1 inhibitor and the resultant immunosuppression by CD38 siRNA-loaded extracellular vesicles. Oncoimmunology 2023; 12:2152635. [PMID: 36605619 PMCID: PMC9809939 DOI: 10.1080/2162402x.2022.2152635] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Extracellular vesicles (EVs) are promising tools for drug delivery across different biological barriers. Here, we evaluated the potential of EVs-mediated delivery of CD38 siRNA on the immunosuppression of hepatocellular carcinoma (HCC). EVs were isolated from bone marrow mesenchymal stem cell culture medium and loaded with CD38 siRNA to prepare EVs/siCD38. Loss-of-function assays were conducted to investigate the biological functions of EVs/siCD38 in HCC cells. Xenograft mouse models were performed for further validation. High CD38 expression was found in HCC. EVs/siCD38 inhibited CD38 enzyme activity, decreased adenosine production, and promoted macrophage repolarization to M1 type, thus inhibiting HCC cell growth and metastasis in vitro as well as tumor growth in mice. Mechanistically, CD38 was upregulated in mice resistant to PD-1/PD-L1 inhibitor and EVs/siCD38 reversed the resistance of tumor to PD-1/PD-L1 inhibitor in vivo. Our results provide functional evidence for the use of EV-mediated delivery of CD38 siRNA to prevent immunosuppression feature of HCC.
Collapse
Affiliation(s)
- Jun Deng
- Department of General Surgery, the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China,CONTACT Jun Deng Department of General Surgery, the First Affiliated Hospital of Nanchang University, No. 1519, Dongyue Street, Nanchang, 330006, Jiangxi Province, China
| | - Hui Ke
- Surgical Dressing Room, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| |
Collapse
|
14
|
Merino-Vico A, Frazzei G, van Hamburg JP, Tas SW. Targeting B cells and plasma cells in autoimmune diseases: From established treatments to novel therapeutic approaches. Eur J Immunol 2023; 53:e2149675. [PMID: 36314264 PMCID: PMC10099814 DOI: 10.1002/eji.202149675] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/27/2022] [Accepted: 10/27/2022] [Indexed: 02/02/2023]
Abstract
Autoimmune diseases are characterized by the recognition of self-antigens by the immune system, which leads to inflammation and tissue damage. B cells are directly and indirectly involved in the pathophysiology of autoimmunity, both via antigen-presentation to T cells and production of proinflammatory cytokines and/or autoantibodies. Consequently, B lineage cells have been identified as therapeutic targets in autoimmune diseases. B cell depleting strategies have proven beneficial in the treatment of rheumatoid arthritis (RA), systemic lupus erythematous (SLE), ANCA-associated vasculitis (AAV), multiple sclerosis (MS), and a wide range of other immune-mediated inflammatory diseases (IMIDs). However, not all patients respond to treatment or may not reach (drug-free) remission. Moreover, B cell depleting therapies do not always target all B cell subsets, such as short-lived and long-lived plasma cells. These cells play an active role in autoimmunity and in certain diseases their depletion would be beneficial to achieve disease remission. In the current review article, we provide an overview of novel strategies to target B lineage cells in autoimmune diseases, with the focus on rheumatic diseases. Both advanced therapies that have recently become available and more experimental treatments that may reach the clinic in the near future are discussed.
Collapse
Affiliation(s)
- Ana Merino-Vico
- Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands.,Department of Clinical Immunology and Rheumatology, Amsterdam Rheumatology and Immunology Center, Amsterdam University Medical Centers, University of Amsterdam, Netherlands
| | - Giulia Frazzei
- Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands.,Department of Clinical Immunology and Rheumatology, Amsterdam Rheumatology and Immunology Center, Amsterdam University Medical Centers, University of Amsterdam, Netherlands
| | - Jan Piet van Hamburg
- Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands.,Department of Clinical Immunology and Rheumatology, Amsterdam Rheumatology and Immunology Center, Amsterdam University Medical Centers, University of Amsterdam, Netherlands
| | - Sander W Tas
- Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands.,Department of Clinical Immunology and Rheumatology, Amsterdam Rheumatology and Immunology Center, Amsterdam University Medical Centers, University of Amsterdam, Netherlands
| |
Collapse
|
15
|
Targeting CD38 in Neoplasms and Non-Cancer Diseases. Cancers (Basel) 2022; 14:cancers14174169. [PMID: 36077708 PMCID: PMC9454480 DOI: 10.3390/cancers14174169] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/21/2022] [Accepted: 08/25/2022] [Indexed: 01/12/2023] Open
Abstract
Simple Summary CD38 remains an interesting target for anticancer therapy. Its relatively high abundance in neoplasms and crucial impact on NAD+/cADPR metabolism and the activity of T cells allows for changing the immune response in autoimmune diseases, neoplasms, and finally the induction of cell death. Antibody-dependent cell cytotoxicity is responsible for cell death induced by targeting the tumor with anti-CD38 antibodies, such as daratumumab. A wide range of laboratory experiments and clinical trials show an especially promising role of anti-CD38 therapy against multiple myeloma, NK cell lymphomas, and CD19- B-cell malignancies. More studies are required to include more diseases in the therapeutic protocols involving the modulation of CD38 activity. Abstract CD38 is a myeloid antigen present both on the cell membrane and in the intracellular compartment of the cell. Its occurrence is often enhanced in cancer cells, thus making it a potential target in anticancer therapy. Daratumumab and isatuximab already received FDA approval, and novel agents such as MOR202, TAK079 and TNB-738 undergo clinical trials. Also, novel therapeutics such as SAR442085 aim to outrank the older antibodies against CD38. Multiple myeloma and immunoglobulin light-chain amyloidosis may be effectively treated with anti-CD38 immunotherapy. Its role in other hematological malignancies is also important concerning both diagnostic process and potential treatment in the future. Aside from the hematological malignancies, CD38 remains a potential target in gastrointestinal, neurological and pulmonary system disorders. Due to the strong interaction of CD38 with TCR and CD16 on T cells, it may also serve as the biomarker in transplant rejection in renal transplant patients. Besides, CD38 finds its role outside oncology in systemic lupus erythematosus and collagen-induced arthritis. CD38 plays an important role in viral infections, including AIDS and COVID-19. Most of the undergoing clinical trials focus on the use of anti-CD38 antibodies in the therapy of multiple myeloma, CD19- B-cell malignancies, and NK cell lymphomas. This review focuses on targeting CD38 in cancer and non-cancerous diseases using antibodies, cell-based therapies and CD38 inhibitors. We also provide a summary of current clinical trials targeting CD38.
Collapse
|
16
|
Biologic Agents in Crohn's Patients Reduce CD4 + T Cells Activation and Are Inversely Related to Treg Cells. Can J Gastroenterol Hepatol 2022; 2022:1307159. [PMID: 35959163 PMCID: PMC9357708 DOI: 10.1155/2022/1307159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 07/07/2022] [Indexed: 11/26/2022] Open
Abstract
Crohn's disease (CD) is a chronic inflammatory disease with a complex interface of broad factors. There are two main treatments for Chron's disease: biological therapy and nonbiological therapy. Biological agent therapy (e.g., anti-TNF) is the most frequently prescribed treatment; however, it is not universally accessible. In fact, in Brazil, many patients are only given the option of receiving nonbiological therapy. This approach prolongs the subsequent clinical relapse; however, this procedure could be implicated in the immune response and enhance disease severity. Our purpose was to assess the effects of different treatments on CD4+ T cells in a cohort of patients with Crohn's disease compared with healthy individuals. To examine the immune status in a Brazilian cohort, we analyzed CD4+ T cells, activation status, cytokine production, and Treg cells in blood of Crohn's patients. Patients that underwent biological therapy can recover the percentage of CD4+CD73+ T cells, decrease the CD4+ T cell activation/effector functions, and maintain the peripheral percentage of regulatory T cells. These results show that anti-TNF agents can improve CD4+ T cell subsets, thereby inducing Crohn's patients to relapse and remission rates.
Collapse
|
17
|
Tu Y, Yao Z, Yang W, Tao S, Li B, Wang Y, Su Z, Li S. Application of Nanoparticles in Tumour Targeted Drug Delivery and Vaccine. FRONTIERS IN NANOTECHNOLOGY 2022. [DOI: 10.3389/fnano.2022.948705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cancer is a major cause of death worldwide, and nearly 1 in 6 deaths each year is caused by cancer. Traditional cancer treatment strategies cannot completely solve cancer recurrence and metastasis. With the development of nanotechnology, the study of nanoparticles (NPs) has gradually become a hotspot of medical research. NPs have various advantages. NPs exploit the enhanced permeability and retention (EPR) of tumour cells to achieve targeted drug delivery and can be retained in tumours long-term. NPs can be used as a powerful design platform for vaccines as well as immunization enhancers. Liposomes, as organic nanomaterials, are widely used in the preparation of nanodrugs and vaccines. Currently, most of the anticancer drugs that have been approved and entered clinical practice are prepared from lipid materials. However, the current clinical conversion rate of NPs is still extremely low, and the transition of NPs from the laboratory to clinical practice is still a substantial challenge. In this paper, we review the in vivo targeted delivery methods, material characteristics of NPs and the application of NPs in vaccine preparation. The application of nanoliposomes is also emphasized. Furthermore, the challenges and limitations of NPs are briefly discussed.
Collapse
|
18
|
CD38: An important regulator of T cell function. Biomed Pharmacother 2022; 153:113395. [PMID: 35834988 DOI: 10.1016/j.biopha.2022.113395] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/03/2022] [Accepted: 07/07/2022] [Indexed: 11/23/2022] Open
Abstract
Cluster of differentiation 38 (CD38) is a multifunctional extracellular enzyme on the cell surface with NADase and cyclase activities. CD38 is not only expressed in human immune cells, such as lymphocytes and plasma cells, but also is abnormally expressed in a variety of tumor cells, which is closely related to the occurrence and development of tumors. T cells are one of the important immune cells in the body. As NAD consuming enzymes, CD38, ART2, SIRT1 and PARP1 are closely related to the number and function of T cells. CD38 may also influence the activity of ART2, SIRT1 and PARP1 through the CD38-NAD+ axis to indirectly affect the number and function of T cells. Thus, CD38-NAD+ axis has a profound effect on T cell activity. In this paper, we reviewed the role and mechanism of CD38+ CD4+ T cells / CD38+ CD8+ T cells in cellular immunity and the effects of the CD38-NAD+ axis on T cell activity. We also summarized the relationship between the CD38 expression level on T cell surface and disease prediction and prognosis, the effects of anti-CD38 monoclonal antibodies on T cell activity and function, and the role of anti-CD38 chimeric antigen receptor (CAR) T cell therapy in tumor immunity. This will provide an important theoretical basis for a comprehensive understanding of the relationship between CD38 and T cells.
Collapse
|
19
|
Iser IC, Vedovatto S, Oliveira FD, Beckenkamp LR, Lenz G, Wink MR. The crossroads of adenosinergic pathway and epithelial-mesenchymal plasticity in cancer. Semin Cancer Biol 2022; 86:202-213. [PMID: 35779713 DOI: 10.1016/j.semcancer.2022.06.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/24/2022] [Accepted: 06/26/2022] [Indexed: 10/31/2022]
Abstract
Epithelial-mesenchymal transition (EMT) is a key mechanism related to tumor progression, invasion, metastasis, resistance to therapy and poor prognosis in several types of cancer. However, targeting EMT or partial-EMT, as well as the molecules involved in this process, has remained a challenge. Recently, the CD73 enzyme, which hydrolyzes AMP to produce adenosine (ADO), has been linked to the EMT process. This relationship is not only due to the production of the immunosuppressant ADO but also to its role as a receptor for extracellular matrix proteins, being involved in cell adhesion and migration. This article reviews the crosstalk between the adenosinergic pathway and the EMT program and the impact of this interrelation on cancer development and progression. An in silico analysis of RNAseq datasets showed that several tumor types have a significant correlation between an EMT score and NT5E (CD73) and ENTPD1 (CD39) expressions, with the strongest correlations in prostate adenocarcinoma. Furthermore, it is evident that the cooperation between EMT and adenosinergic pathway in tumor progression is context and tumor-dependent. The increased knowledge about this topic will help broaden the view to explore new treatments and therapies for different types of cancer.
Collapse
Affiliation(s)
- Isabele Cristiana Iser
- Department of Basics Health Sciences and Laboratory of Cell Biology, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| | - Samlai Vedovatto
- Department of Biophysics and Center of Biotechnology, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Fernanda Dittrich Oliveira
- Department of Biophysics and Center of Biotechnology, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Liziane Raquel Beckenkamp
- Department of Basics Health Sciences and Laboratory of Cell Biology, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| | - Guido Lenz
- Department of Biophysics and Center of Biotechnology, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Márcia Rosângela Wink
- Department of Basics Health Sciences and Laboratory of Cell Biology, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil.
| |
Collapse
|
20
|
Ohmine K, Uchibori R. Novel immunotherapies in multiple myeloma. Int J Hematol 2022; 115:799-810. [PMID: 35583724 DOI: 10.1007/s12185-022-03365-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 11/24/2022]
Abstract
For a substantial period, options for the treatment of multiple myeloma (MM) were limited; however, the advent of novel therapies into clinical practice in the 1990s resulted in dramatic changes in the prognosis of the disease. Subsequently, new proteasome inhibitors and immunomodulators with innovations in efficacy and toxicity were introduced; yet there remains a spectrum of patients with poor outcomes with current treatment strategies. One of the causes of disease progression in MM is the loss of the ability of the dysfunctional immune environment to control virulent cell clones. In recent years, therapies to overcome the immunosuppressive tumor microenvironment and activate the host immune system have shown promise in MM, especially in relapsed and refractory disease. Clinical use of this approach has been approved for several immunotherapies, and a number of studies are currently underway in clinical trials. This review outlines three of the newest and most promising approaches being investigated to enhance the immune system against MM: (1) overcoming immunosuppression with checkpoint inhibitors, (2) boosting immunity against tumors with vaccines, and (3) enhancing immune effectors with adoptive cell therapy. Information on the latest clinical trials in each class will be provided, and further developments will be discussed.
Collapse
Affiliation(s)
- Ken Ohmine
- Division of Hematology, Department of Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan.
- Division of Immuno-Gene and Cell Therapy (Takara Bio), Jichi Medical University, Shimotsuke, Tochigi, Japan.
| | - Ryosuke Uchibori
- Division of Immuno-Gene and Cell Therapy (Takara Bio), Jichi Medical University, Shimotsuke, Tochigi, Japan
| |
Collapse
|
21
|
Geraldes C, Neves M, Chacim S, da Costa FL. Practical Considerations for the Daratumumab Management in Portuguese Routine Clinical Practice: Recommendations From an Expert Panel of Hematologists. Front Oncol 2022; 11:817762. [PMID: 35186719 PMCID: PMC8855501 DOI: 10.3389/fonc.2021.817762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 12/15/2021] [Indexed: 11/13/2022] Open
Abstract
The recent therapeutic progress in multiple myeloma (MM) has led to the introduction of novel and highly potent drug classes. Daratumumab was the first CD38-targeting antibody showing to be effective and safe in MM patients as monotherapy and in combination regimens, which led to its rapid implementation in clinical practice. Considering that treatment discontinuation for drug-related adverse events can impact patients’ quality of life and outcomes, the treatment decision should consider different factors and be weighted for each patient individually. Here, we aimed to guide clinicians using daratumumab treatment for MM by addressing practical real-world considerations based on an expert panel of Portuguese hematologists. Carefully following the recommendations mentioned in daratumumab’s SmPC, and of those from other drugs used in combination regimens, along with ensuring a good communication with all healthcare professionals involved, is critical to prevent any complications arising from treatment. The risk of infection should be assessed for all patients under treatment with daratumumab and patients should be educated on the potential adverse events. Recommendations on prophylaxis and vaccination should be considered to avoid infections, and delays in the planned therapeutic schedule may be required to prevent adverse consequences of hematological toxicity. Daratumumab treatment is effective and feasible in patients with renal impairment, although careful patient monitoring and a frequent communication with the Nephrology department are of the utmost importance. Sharing clinical practice plays an important role in medical education by allowing to maximize treatment efficacy and minimize its safety risks.
Collapse
Affiliation(s)
- Catarina Geraldes
- Departamento de Hematologia Clínica, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
- Laboratório de Oncobiologia e Hematologia e Clínica Universitária de Hematologia, Faculdade de Medicina, Universidade de Coimbra, Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Centro Académico-Clínico de Coimbra (CACC), Coimbra, Portugal
- *Correspondence: Catarina Geraldes,
| | | | - Sérgio Chacim
- Instituto Português de Oncologia do Porto, Porto, Portugal
| | | |
Collapse
|
22
|
Frerichs KA, Minnema MC, Levin MD, Broijl A, Bos GMJ, Kersten MJ, Mutis T, Verkleij CPM, Nijhof IS, Maas-Bosman PWC, Klein SK, Zweegman S, Sonneveld P, van de Donk NWCJ. Efficacy and safety of daratumumab combined with all-trans retinoic acid in relapsed/refractory multiple myeloma. Blood Adv 2021; 5:5128-5139. [PMID: 34625791 PMCID: PMC9153006 DOI: 10.1182/bloodadvances.2021005220] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 09/10/2021] [Indexed: 12/22/2022] Open
Abstract
The efficacy of daratumumab depends partially on CD38 expression on multiple myeloma (MM) cells. We have previously shown that all-trans retinoic acid (ATRA) upregulates CD38 expression and reverts daratumumab-resistance ex vivo. We therefore evaluated the optimal dose, efficacy, and safety of daratumumab combined with ATRA in patients with daratumumab-refractory MM in a phase 1/2 study (NCT02751255). In part A of the study, 63 patients were treated with daratumumab monotherapy. Fifty patients with daratumumab-refractory MM were subsequently enrolled in part B and treated with daratumumab (reintensified schedule) combined with ATRA until disease progression. The recommended phase 2 dose of ATRA in combination with daratumumab was defined as 45 mg/m2. At this dose, the overall response rate (ORR) was 5%, indicating that the primary endpoint (ORR ≥15%) was not met. However, most patients (66%) achieved at least stable disease. After a median follow-up of 43 months, the median progression-free survival (PFS) for all patients was 2.8 months. Patients who previously achieved at least a partial response or minimal response/stable disease with prior daratumumab monotherapy had a significantly longer PFS compared with patients who immediately progressed during daratumumab as single agent (median PFS 3.4 and 2.8 vs 1.3 months). The median overall survival was 19.1 months. The addition of ATRA did not increase the incidence of adverse events. Flow cytometric analysis revealed that ATRA temporarily increased CD38 expression on immune cell subsets. In conclusion, the addition of ATRA and reintensification of daratumumab had limited activity in patients with daratumumab-refractory MM, which may be explained by the transient upregulation of CD38 expression. This trial was registered at www.clinicaltrials.gov as #NCT02751255.
Collapse
Affiliation(s)
- Kristine A. Frerichs
- Department of Hematology, Amsterdam UMC, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Monique C. Minnema
- Department of Hematology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Mark-David Levin
- Department of Internal Medicine, Albert Schweitzer Hospital, Dordrecht, The Netherlands
| | - Annemiek Broijl
- Department of Hematology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Gerard M. J. Bos
- Department of Hematology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Marie José Kersten
- Department of Hematology, Amsterdam UMC, University of Amsterdam, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Tuna Mutis
- Department of Hematology, Amsterdam UMC, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Christie P. M. Verkleij
- Department of Hematology, Amsterdam UMC, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Inger S. Nijhof
- Department of Hematology, Amsterdam UMC, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Patricia W. C. Maas-Bosman
- Department of Hematology, Amsterdam UMC, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Saskia K. Klein
- Department of Internal Medicine, Meander Medical Center, Amersfoort, The Netherlands; and
- Department of Hematology, University Medical Center Groningen, Groningen, The Netherlands
| | - Sonja Zweegman
- Department of Hematology, Amsterdam UMC, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Pieter Sonneveld
- Department of Hematology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Niels W. C. J. van de Donk
- Department of Hematology, Amsterdam UMC, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
23
|
Sethi S, Ammerman N, Vo A, Jordan SC. Approach to Highly Sensitized Kidney Transplant Candidates and a Positive Crossmatch. Adv Chronic Kidney Dis 2021; 28:587-595. [PMID: 35367027 DOI: 10.1053/j.ackd.2021.09.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 09/08/2021] [Indexed: 11/11/2022]
Abstract
Human leukocyte antigen (HLA)-incompatible kidney transplantation offers survival benefit compared with ongoing dialysis. There have been considerable advances in the last decade to allow for increased access to transplant for the HLA-sensitized kidney transplant candidates. These include increased priority in the kidney allocation system, kidney paired donation, and novel desensitization strategies. A better understanding of the role of B cells, plasma cells, and complement and inflammatory cytokines in the pathophysiology of HLA antibody-mediated allograft injury has led to the use of novel therapeutics for desensitization and treatment of antibody-mediated rejection. Here we discuss current approaches to kidney transplantation in HLA-sensitized kidney transplant candidates.
Collapse
|
24
|
Benton TZ, Mills CM, Turner JM, Francis MJ, Solomon DJ, Burger PB, Peterson YK, Dolloff NG, Bachmann AS, Woster PM. Selective targeting of CD38 hydrolase and cyclase activity as an approach to immunostimulation. RSC Adv 2021; 11:33260-33270. [PMID: 35497564 PMCID: PMC9042253 DOI: 10.1039/d1ra06266b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/03/2021] [Indexed: 11/21/2022] Open
Abstract
The ectoenzyme CD38 is highly expressed on the surface of mature immune cells, where they are a marker for cell activation, and also on the surface of multiple tumor cells such as multiple myeloma (MM). CD38-targeted monoclonal antibodies (MABs) such as daratumumab and isatuximab bind to CD38 and promote cancer cell death by stimulating the antitumor immune response. Although MABs are achieving unprecedented success in a percentage of cases, high rates of resistance limit their efficacy. Formation of the immunosuppressive intermediate adenosine is a major route by which this resistance is mediated. Thus there is an urgent need for small molecule agents that boost the immune response in T-cells. Importantly, CD38 is a dual-function enzyme, serving as a hydrolase and a nicotinamide adenine dinucleotide (NAD+) cyclase, and both of these activities promote immunosuppression. We have employed virtual and physical screening to identify novel compounds that are selective for either the hydrolase or the cyclase activity of CD38, and have demonstrated that these compounds activate T cells in vitro. We are currently optimizing these inhibitors for use in immunotherapy. These small molecule inhibitors of the CD38-hydrolase or cyclase activity can serve as chemical probes to determine the mechanism by which CD38 promotes resistance to MAB therapy, and could become novel and effective therapeutic agents that produce immunostimulatory effects. Our studies have identified the first small molecule inhibitors of CD38 specifically for use as immunostimulants.
Collapse
Affiliation(s)
- Thomas Z Benton
- Dept. of Drug Discovery and Biomedical Sciences, Medical University of South Carolina 70 President St Charleston SC 29425 USA
| | - Catherine M Mills
- Dept. of Drug Discovery and Biomedical Sciences, Medical University of South Carolina 70 President St Charleston SC 29425 USA
| | - Jonathan M Turner
- Dept. of Drug Discovery and Biomedical Sciences, Medical University of South Carolina 70 President St Charleston SC 29425 USA
| | - Megan J Francis
- Dept. of Drug Discovery and Biomedical Sciences, Medical University of South Carolina 70 President St Charleston SC 29425 USA
| | - Dalan J Solomon
- Dept. of Drug Discovery and Biomedical Sciences, Medical University of South Carolina 70 President St Charleston SC 29425 USA
| | - Pieter B Burger
- Dept. of Drug Discovery and Biomedical Sciences, Medical University of South Carolina 70 President St Charleston SC 29425 USA
| | - Yuri K Peterson
- Dept. of Drug Discovery and Biomedical Sciences, Medical University of South Carolina 70 President St Charleston SC 29425 USA
| | - Nathan G Dolloff
- Dept of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina 173 Ashley Ave. Charleston SC 29425 USA
| | - André S Bachmann
- Dept of Pediatrics and Human Development, College of Human Medicine, Michigan State University 400 Monroe Ave. NW Grand Rapids MI 49503 USA
| | - Patrick M Woster
- Dept. of Drug Discovery and Biomedical Sciences, Medical University of South Carolina 70 President St Charleston SC 29425 USA
| |
Collapse
|
25
|
Abramson HN. Immunotherapy of Multiple Myeloma: Promise and Challenges. Immunotargets Ther 2021; 10:343-371. [PMID: 34527606 PMCID: PMC8437262 DOI: 10.2147/itt.s306103] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 08/25/2021] [Indexed: 12/16/2022] Open
Abstract
Whereas the treatment of MM was dependent solely on alkylating agents and corticosteroids during the prior three decades, the landscape of therapeutic measures to treat the disease began to expand enormously early in the current century. The introduction of new classes of small-molecule drugs, such as proteasome blockers (bortezomib and carfilzomib), immunomodulators (lenalidomide and pomalidomide), nuclear export inhibitors (selinexor), and histone deacetylase blockers (panobinostat), as well as the application of autologous stem cell transplantation (ASCT), resulted in a seismic shift in how the disease is treated. The picture changed dramatically once again starting with the 2015 FDA approval of two monoclonal antibodies (mAbs) - the anti-CD38 daratumumab and the anti-SLAMF7 elotuzumab. Daratumumab, in particular, has had a great impact on MM therapy and today is often included in various regimens to treat the disease, both in newly diagnosed cases and in the relapse/refractory setting. Recently, other immunotherapies have been added to the arsenal of drugs available to fight this malignancy. These include isatuximab (also anti-CD38) and, in the past year, the antibody-drug conjugate (ADC) belantamab mafodotin and the chimeric antigen receptor (CAR) T-cell product idecabtagene vicleucel (ide-cel). While the accumulated benefits of these newer agents have resulted in a doubling of the disease's five-year survival rate to more than 5 years and improved quality of life, the disease remains incurable. Almost without exception patients experience relapse and/or become refractory to the drugs used, making the search for innovative therapies all the more essential. This review covers the current scope of anti-myeloma immunotherapeutic agents, both those in clinical use and on the horizon, including naked mAbs, ADCs, bi- and multi-targeted mAbs, and CAR T-cells. Emphasis is placed on the benefits of each along with the challenges that need to be overcome if MM is to be considered curable in the future.
Collapse
Affiliation(s)
- Hanley N Abramson
- Wayne State University, Department of Pharmaceutical Sciences, Detroit, MI, 48201, USA
| |
Collapse
|
26
|
García-Fernández C, Saz A, Fornaguera C, Borrós S. Cancer immunotherapies revisited: state of the art of conventional treatments and next-generation nanomedicines. Cancer Gene Ther 2021; 28:935-946. [PMID: 33837365 DOI: 10.1038/s41417-021-00333-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/24/2021] [Accepted: 03/24/2021] [Indexed: 02/02/2023]
Abstract
Nowadays, the landscape of cancer treatments has broadened thanks to the clinical application of immunotherapeutics. After decades of failures, cancer immunotherapy represents an exciting alternative for those patients suffering from a wide variety of cancers, especially for those skin cancers, such as the early stages of melanoma. However, those cancers affecting internal organs still face a long way to success, because of the poor biodistribution of immunotherapies. Here, nanomedicine appears as a hopeful strategy to modulate the biodistribution aiming at target organ accumulation. In this way, efficacy will be improved, while reducing the side effects at the same time. In this review, we aim to highlight the most promising cancer immunotherapeutic strategies. From monoclonal antibodies and their traditional use as targeted therapies to their current use as immune checkpoint inhibitors; as well as adoptive cell transfer therapies; oncolytic viruses, and therapeutic cancer vaccination. Then, we aim to discuss the important role of nanomedicine to improve the performance of these immunotherapeutic tools to finally review the already marketed nanomedicine-based cancer immunotherapies.
Collapse
Affiliation(s)
- Coral García-Fernández
- Grup d'Enginyeria de Materials (Gemat), Institut Químic de Sarrià (IQS), Univeritat Ramon Llull (URL), Barcelona, Spain
| | - Anna Saz
- Grup d'Enginyeria de Materials (Gemat), Institut Químic de Sarrià (IQS), Univeritat Ramon Llull (URL), Barcelona, Spain
| | - Cristina Fornaguera
- Grup d'Enginyeria de Materials (Gemat), Institut Químic de Sarrià (IQS), Univeritat Ramon Llull (URL), Barcelona, Spain.
| | - Salvador Borrós
- Grup d'Enginyeria de Materials (Gemat), Institut Químic de Sarrià (IQS), Univeritat Ramon Llull (URL), Barcelona, Spain
| |
Collapse
|
27
|
Romano A, Storti P, Marchica V, Scandura G, Notarfranchi L, Craviotto L, Di Raimondo F, Giuliani N. Mechanisms of Action of the New Antibodies in Use in Multiple Myeloma. Front Oncol 2021; 11:684561. [PMID: 34307150 PMCID: PMC8297441 DOI: 10.3389/fonc.2021.684561] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 06/09/2021] [Indexed: 12/19/2022] Open
Abstract
Monoclonal antibodies (mAbs) directed against antigen-specific of multiple myeloma (MM) cells have Fc-dependent immune effector mechanisms, such as complement-dependent cytotoxicity (CDC), antibody-dependent cellular cytotoxicity (ADCC), and antibody-dependent cellular phagocytosis (ADCP), but the choice of the antigen is crucial for the development of effective immuno-therapy in MM. Recently new immunotherapeutic options in MM patients have been developed against different myeloma-related antigens as drug conjugate-antibody, bispecific T-cell engagers (BiTEs) and chimeric antigen receptor (CAR)-T cells. In this review, we will highlight the mechanism of action of immuno-therapy currently available in clinical practice to target CD38, SLAMF7, and BCMA, focusing on the biological role of the targets and on mechanisms of actions of the different immunotherapeutic approaches underlying their advantages and disadvantages with critical review of the literature data.
Collapse
Affiliation(s)
- Alessandra Romano
- Department of Surgery and Medical Specialties, University of Catania, Catania, Italy
| | - Paola Storti
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | | | - Grazia Scandura
- Department of Surgery and Medical Specialties, University of Catania, Catania, Italy
| | | | - Luisa Craviotto
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Francesco Di Raimondo
- Department of Surgery and Medical Specialties, University of Catania, Catania, Italy
- U.O.C. Ematologia, A.O.U. Policlinico–San Marco, Catania, Italy
| | | |
Collapse
|
28
|
Matsuda Y, Watanabe T, Li XK. Approaches for Controlling Antibody-Mediated Allograft Rejection Through Targeting B Cells. Front Immunol 2021; 12:682334. [PMID: 34276669 PMCID: PMC8282180 DOI: 10.3389/fimmu.2021.682334] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 06/17/2021] [Indexed: 01/14/2023] Open
Abstract
Both acute and chronic antibody-mediated allograft rejection (AMR), which are directly mediated by B cells, remain difficult to treat. Long-lived plasma cells (LLPCs) in bone marrow (BM) play a crucial role in the production of the antibodies that induce AMR. However, LLPCs survive through a T cell-independent mechanism and resist conventional immunosuppressive therapy. Desensitization therapy is therefore performed, although it is accompanied by severe side effects and the pathological condition may be at an irreversible stage when these antibodies, which induce AMR development, are detected in the serum. In other words, AMR control requires the development of a diagnostic method that predicts its onset before LLPC differentiation and enables therapeutic intervention and the establishment of humoral immune monitoring methods providing more detailed information, including individual differences in the susceptibility to immunosuppressive agents and the pathological conditions. In this study, we reviewed recent studies related to the direct or indirect involvement of immunocompetent cells in the differentiation of naïve-B cells into LLPCs, the limitations of conventional methods, and the possible development of novel control methods in the context of AMR. This information will significantly contribute to the development of clinical applications for AMR and improve the prognosis of patients who undergo organ transplantation.
Collapse
Affiliation(s)
- Yoshiko Matsuda
- Division of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Takeshi Watanabe
- Laboratory of Immunology, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Xiao-Kang Li
- Division of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| |
Collapse
|
29
|
Koizumi Y, Mikamo H. Anti-Interferon Gamma Autoantibody and Disseminated Nontuberculous Mycobacteria Infection: What Should Be Done to Improve Its Clinical Outcome? Clin Infect Dis 2021; 72:2209-2211. [PMID: 32745203 DOI: 10.1093/cid/ciaa1098] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Indexed: 11/12/2022] Open
Affiliation(s)
- Yusuke Koizumi
- Department of Clinical Infectious Diseases, Aichi Medical University Hospital, Aichi, Japan.,Department of Infection Control and Prevention, Wakayama Medical University Hospital, Wakayama, Japan
| | - Hiroshige Mikamo
- Department of Clinical Infectious Diseases, Aichi Medical University Hospital, Aichi, Japan
| |
Collapse
|
30
|
Joher N, Matignon M, Grimbert P. HLA Desensitization in Solid Organ Transplantation: Anti-CD38 to Across the Immunological Barriers. Front Immunol 2021; 12:688301. [PMID: 34093594 PMCID: PMC8173048 DOI: 10.3389/fimmu.2021.688301] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/04/2021] [Indexed: 12/23/2022] Open
Abstract
The presence of anti-human leucocyte antigen (HLA) antibodies in the potential solid organ transplant recipient's blood is one of the main barriers to access to a transplantation. The HLA sensitization is associated with longer waitlist time, antibody mediated rejection and transplant lost leading to increased recipient's morbidity and mortality. However, solid organ transplantation across the HLA immunological barriers have been reported in recipients who were highly sensitized to HLA using desensitization protocols. These desensitization regimens are focused on the reduction of circulating HLA antibodies. Despite those strategies improve rates of transplantation, it remains several limitations including persistent high rejection rate and worse long-term outcomes when compare with non-sensitized recipient population. Currently, interest is growing in the development of new desensitization approaches which, beyond targeting antibodies, would be based on the modulation of alloimmune pathways. Plasma cells appears as an interesting target given their critical role in antibody production. In the last decade, CD38-targeting immunotherapies, such as daratumumab, have been recognized as a key component in the treatment of myeloma by inducing an important plasma cell depletion. This review focuses on an emerging concept based on targeting CD38 to desensitize in the field of transplantation.
Collapse
Affiliation(s)
- Nizar Joher
- Assistance Publique-Hôpitaux de Paris AP-HP, Hôpital Universitaire Henri Mondor, Service de Néphrologie et Transplantation, Fédération Hospitalo-Universitaire (Innovative Therapy for Immune Disorders), Créteil, France.,Université Paris Est Créteil UPEC, Institut National de la Santé et de la Recherche Médicale INSERM U955, Institut Mondor de Recherche Biomédicale IMRB, Équipe 21, Créteil, France
| | - Marie Matignon
- Assistance Publique-Hôpitaux de Paris AP-HP, Hôpital Universitaire Henri Mondor, Service de Néphrologie et Transplantation, Fédération Hospitalo-Universitaire (Innovative Therapy for Immune Disorders), Créteil, France.,Université Paris Est Créteil UPEC, Institut National de la Santé et de la Recherche Médicale INSERM U955, Institut Mondor de Recherche Biomédicale IMRB, Équipe 21, Créteil, France
| | - Philippe Grimbert
- Assistance Publique-Hôpitaux de Paris AP-HP, Hôpital Universitaire Henri Mondor, Service de Néphrologie et Transplantation, Fédération Hospitalo-Universitaire (Innovative Therapy for Immune Disorders), Créteil, France.,Université Paris Est Créteil UPEC, Institut National de la Santé et de la Recherche Médicale INSERM U955, Institut Mondor de Recherche Biomédicale IMRB, Équipe 21, Créteil, France
| |
Collapse
|
31
|
Neuroinflammation in Alzheimer's Disease. Biomedicines 2021; 9:biomedicines9050524. [PMID: 34067173 PMCID: PMC8150909 DOI: 10.3390/biomedicines9050524] [Citation(s) in RCA: 122] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/20/2021] [Accepted: 04/28/2021] [Indexed: 12/18/2022] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disease associated with human aging. Ten percent of individuals over 65 years have AD and its prevalence continues to rise with increasing age. There are currently no effective disease modifying treatments for AD, resulting in increasingly large socioeconomic and personal costs. Increasing age is associated with an increase in low-grade chronic inflammation (inflammaging) that may contribute to the neurodegenerative process in AD. Although the exact mechanisms remain unclear, aberrant elevation of reactive oxygen and nitrogen species (RONS) levels from several endogenous and exogenous processes in the brain may not only affect cell signaling, but also trigger cellular senescence, inflammation, and pyroptosis. Moreover, a compromised immune privilege of the brain that allows the infiltration of peripheral immune cells and infectious agents may play a role. Additionally, meta-inflammation as well as gut microbiota dysbiosis may drive the neuroinflammatory process. Considering that inflammatory/immune pathways are dysregulated in parallel with cognitive dysfunction in AD, elucidating the relationship between the central nervous system and the immune system may facilitate the development of a safe and effective therapy for AD. We discuss some current ideas on processes in inflammaging that appear to drive the neurodegenerative process in AD and summarize details on a few immunomodulatory strategies being developed to selectively target the detrimental aspects of neuroinflammation without affecting defense mechanisms against pathogens and tissue damage.
Collapse
|
32
|
Uckun FM. Overcoming the Immunosuppressive Tumor Microenvironment in Multiple Myeloma. Cancers (Basel) 2021; 13:cancers13092018. [PMID: 33922005 PMCID: PMC8122391 DOI: 10.3390/cancers13092018] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/07/2021] [Accepted: 04/20/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary This article provides a comprehensive review of new and emerging treatment strategies against multiple myeloma that employ precision medicines and/or drugs capable of improving the ability of the immune system to prevent or slow down the progression of multiple myeloma. These rationally designed new treatment methods have the potential to change the therapeutic landscape in multiple myeloma and improve the long-term survival outcome. Abstract SeverFigurel cellular elements of the bone marrow (BM) microenvironment in multiple myeloma (MM) patients contribute to the immune evasion, proliferation, and drug resistance of MM cells, including myeloid-derived suppressor cells (MDSCs), tumor-associated M2-like, “alternatively activated” macrophages, CD38+ regulatory B-cells (Bregs), and regulatory T-cells (Tregs). These immunosuppressive elements in bidirectional and multi-directional crosstalk with each other inhibit both memory and cytotoxic effector T-cell populations as well as natural killer (NK) cells. Immunomodulatory imide drugs (IMiDs), protease inhibitors (PI), monoclonal antibodies (MoAb), adoptive T-cell/NK cell therapy, and inhibitors of anti-apoptotic signaling pathways have emerged as promising therapeutic platforms that can be employed in various combinations as part of a rationally designed immunomodulatory strategy against an immunosuppressive tumor microenvironment (TME) in MM. These platforms provide the foundation for a new therapeutic paradigm for achieving improved survival of high-risk newly diagnosed as well as relapsed/refractory MM patients. Here we review the scientific rationale and clinical proof of concept for each of these platforms.
Collapse
Affiliation(s)
- Fatih M. Uckun
- Norris Comprehensive Cancer Center and Childrens Center for Cancer and Blood Diseases, University of Southern California Keck School of Medicine (USC KSOM), Los Angeles, CA 90027, USA;
- Department of Developmental Therapeutics, Immunology, and Integrative Medicine, Drug Discovery Institute, Ares Pharmaceuticals, St. Paul, MN 55110, USA
- Reven Pharmaceuticals, Translational Oncology Program, Golden, CO 80401, USA
| |
Collapse
|
33
|
Morandi F, Horenstein AL, Malavasi F. The Key Role of NAD + in Anti-Tumor Immune Response: An Update. Front Immunol 2021; 12:658263. [PMID: 33936090 PMCID: PMC8082456 DOI: 10.3389/fimmu.2021.658263] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/25/2021] [Indexed: 12/16/2022] Open
Abstract
Nicotinamide adenine dinucleotide (NAD+) is an important molecule that functions as a co-enzyme in numerous metabolic processes. Generated both through de novo synthesis and via salvage pathways, NAD+ is the substrate for a variety of NAD+-consuming enzymes. Among them is CD38, a cell surface ecto-enzyme widely expressed on different types of cells and endowed with the function of cADP-ribose synthases/NAD+ glycohydrolase. Surface CD38 expression is increased in different hematological and solid tumors, where it cooperates with other ecto-enzymes to produce the immunosuppressive molecule adenosine (ADO). Few studies have explored the correlation of NAD+ levels with T-cell mediated anti-tumor response in preclinical models. We therefore discuss these novel findings, examining the possible contribution of NAD+ depletion, along with ADO production, in the immunosuppressive activities of CD38 in the context of human tumors. Lastly, we discuss the use of pharmacological inhibitors of CD38 and supplementation of different NAD+ precursors to increase NAD+ levels and to boost T cell responses. Such molecules may be employed as adjuvant therapies, in combination with standard treatments, for cancer patients.
Collapse
Affiliation(s)
- Fabio Morandi
- Laboratorio Cellule Staminali Post-Natali e Terapie Cellulari, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Alberto Leonardo Horenstein
- Dipartimento Scienze Mediche, Università di Torino, Centro Ricerche Medicina Sperimentale (CeRMS) and Fondazione Ricerca Molinette Onlus, Torino, Italy
| | - Fabio Malavasi
- Dipartimento Scienze Mediche, Università di Torino, Centro Ricerche Medicina Sperimentale (CeRMS) and Fondazione Ricerca Molinette Onlus, Torino, Italy
| |
Collapse
|
34
|
Delforge M, Vlayen S, Kint N. Immunomodulators in newly diagnosed multiple myeloma: current and future concepts. Expert Rev Hematol 2021; 14:365-376. [PMID: 33733978 DOI: 10.1080/17474086.2021.1905513] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Introduction: Impressive therapeutic progress is being made in the management of multiple myeloma (MM). his progress is related to the introduction of several new classes of therapeutic agents including proteasome inhibitors, immunomodulatory drugs (IMiDs) and monoclonal antibodies (MoAbs).Areas covered: In this manuscript, the role of the IMiDs thalidomide and lenalidomide in the management of newly diagnosed MM is discussed. The mode of action of IMiDs and their role in the management of newly diagnosed MM patients is highlighted. In addition, clinical data on how MoAbs such as the anti-CD38 antibody daratumumab can further increase the efficacy of IMiD-based first-line anti-myeloma regimens are provided. A database search in PubMed was carried out.Expert Opinion: Immunomodulation has become an indispensable part of successful anti-myeloma regimens both at relapse and at diagnosis. The combination of lenalidomide plus dexamethasone with an anti-CD38 MoAb such as daratumumab and a proteasome inhibitor such as bortezomib is currently one of the most potent first-line treatment regimens for MM. A better understanding on how IMiDs synergize with existing and new anti-myeloma treatments can further improve the outcome for patients. Optimal first-line therapy will continue to benefit the long-term outcome of a growing population of young and elderly MM patients.
Collapse
Affiliation(s)
- Michel Delforge
- Department of Hematology, University of Leuven and Leuven Cancer Institute, Leuven, Belgium
| | - Sophie Vlayen
- Department of Regeneration and Development, University of Leuven, Leuven, Belgium
| | - Nicolas Kint
- Department of Hematology, University of Leuven and Leuven Cancer Institute, Leuven, Belgium
| |
Collapse
|
35
|
Immunotherapy with Antibodies in Multiple Myeloma: Monoclonals, Bispecifics, and Immunoconjugates. HEMATO 2021. [DOI: 10.3390/hemato2010007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In the 2010s, immunotherapy revolutionized the treatment landscape of multiple myeloma. CD38-targeting antibodies were initially applied as monotherapy in end-stage patients, but are now also approved by EMA/FDA in combination with standards-of-care in newly diagnosed disease or in patients with early relapse. The approved SLAMF7-targeting antibody can also be successfully combined with lenalidomide or pomalidomide in relapsed/refractory myeloma. Although this has resulted in improved clinical outcomes, there remains a high unmet need in patients who become refractory to immunomodulatory drugs, proteasome inhibitors and CD38-targeting antibodies. Several new antibody formats, such as antibody–drug conjugates (e.g., belantamab mafodotin, which was approved in 2020 and targets BCMA) and T cell redirecting bispecific antibodies (e.g., teclistamab, talquetamab, cevostamab, AMG-420, and CC-93269) are active in these triple-class refractory patients. Based on their promising efficacy, it is expected that these new antibody formats will also be combined with other agents in earlier disease settings.
Collapse
|
36
|
Roché P, Venton G, Berda-Haddad Y, Fritz S, Ivanov V, Mercier C, Colle J, Tichadou A, Fanciullino R, Lepidi H, Costello R, Farnault L. Could daratumumab induce the maturation of plasmablasts in Plasmablastic lymphoma?-Potential therapeutic applications. Eur J Haematol 2021; 106:589-592. [PMID: 33469987 DOI: 10.1111/ejh.13584] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 01/14/2021] [Indexed: 01/05/2023]
Affiliation(s)
- Pauline Roché
- Hematology and Cellular Therapy Department, La Conception, University Hospital of Marseille, AP-HM, Marseille, France
| | - Geoffroy Venton
- Hematology and Cellular Therapy Department, La Conception, University Hospital of Marseille, AP-HM, Marseille, France
| | - Yaël Berda-Haddad
- Hematology and Vascular Biology Laboratory, La Conception, University Hospital of Marseille, AP-HM, Marseille, France
| | - Shirley Fritz
- Hematology and Vascular Biology Laboratory, La Conception, University Hospital of Marseille, AP-HM, Marseille, France
| | - Vadim Ivanov
- Hematology and Cellular Therapy Department, La Conception, University Hospital of Marseille, AP-HM, Marseille, France
| | - Cédric Mercier
- Hematology and Cellular Therapy Department, La Conception, University Hospital of Marseille, AP-HM, Marseille, France
| | - Julien Colle
- Hematology and Cellular Therapy Department, La Conception, University Hospital of Marseille, AP-HM, Marseille, France
| | - Antoine Tichadou
- Hematology and Cellular Therapy Department, La Conception, University Hospital of Marseille, AP-HM, Marseille, France
| | - Raphaëlle Fanciullino
- Pharmacy Unit, La Conception,, University Hospital of Marseille, AP-HM, Marseille, France
| | - Hubert Lepidi
- Department of Pathology, La Timone Hospital, AP-HM, Marseille, France
| | - Régis Costello
- Hematology and Cellular Therapy Department, La Conception, University Hospital of Marseille, AP-HM, Marseille, France
| | - Laure Farnault
- Hematology and Cellular Therapy Department, La Conception, University Hospital of Marseille, AP-HM, Marseille, France
| |
Collapse
|
37
|
Lee HT, Kim Y, Park UB, Jeong TJ, Lee SH, Heo YS. Crystal structure of CD38 in complex with daratumumab, a first-in-class anti-CD38 antibody drug for treating multiple myeloma. Biochem Biophys Res Commun 2020; 536:26-31. [PMID: 33360095 DOI: 10.1016/j.bbrc.2020.12.048] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 10/22/2022]
Abstract
Multiple myeloma is a blood cancer characterized by the plasma cell malignancy in the bone marrow, resulting in the destruction of bone tissue. Recently, the US FDA approved two antibody drugs for the treatment of multiple myeloma, daratumumab and isatuximab, targeting CD38, a type II transmembrane glycoprotein highly expressed in plasma cells and multiple myeloma cells. Here, we report the crystal structure of CD38 in complex with the Fab fragment of daratumumab, providing its exact epitope on CD38 and the structural insights into the mechanism of action of the antibody drug. Daratumumab binds to a specific discontinuous region on CD38 that includes residues located opposite to the active site of CD38. All the six complementarity determining regions of daratumumab are involved in the CD38 interaction. The epitopes of daratumumab and isatuximab do not overlap at all and their bindings to CD38 induce different structural changes within the CD38 protein. This structural study can facilitate the design of improved biologics or effective combination therapies for the treatment of multiple myeloma.
Collapse
Affiliation(s)
- Hyun Tae Lee
- Department of Chemistry, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Yujin Kim
- Department of Chemistry, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Ui Beom Park
- Department of Chemistry, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Tae Jun Jeong
- Department of Chemistry, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Sang Hyung Lee
- Department of Chemistry, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Yong-Seok Heo
- Department of Chemistry, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea.
| |
Collapse
|
38
|
Verkleij CPM, Jhatakia A, Broekmans MEC, Frerichs KA, Zweegman S, Mutis T, Bezman NA, van de Donk NWCJ. Preclinical Rationale for Targeting the PD-1/PD-L1 Axis in Combination with a CD38 Antibody in Multiple Myeloma and Other CD38-Positive Malignancies. Cancers (Basel) 2020; 12:cancers12123713. [PMID: 33321969 PMCID: PMC7764511 DOI: 10.3390/cancers12123713] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/02/2020] [Accepted: 12/07/2020] [Indexed: 12/23/2022] Open
Abstract
Simple Summary The CD38-targeting antibody daratumumab mediates its anti-myeloma activities not only through direct effects on tumor cells, but also by its effects on T-cell immunity through depletion of CD38+ immune suppressor cells. We hypothesized that combining daratumumab with modulators of other potent immune inhibitory pathways, such as the PD-1/PD-L1 axis, may further improve its efficacy. We show that during MM progression there is increased expression of the PD-1/PD-L1 pathway components in the bone marrow microenvironment. Although nivolumab (a PD-1 checkpoint inhibitor) moderately increased T-cell frequencies in ex vivo experiments with bone marrow samples from MM patients, no single agent activity was observed, and addition of nivolumab did not enhance the activity of daratumumab in these short-term assays. However, with a longer treatment duration, in mouse experiments, we demonstrate that anti-CD38 and anti-PD-1 antibodies synergize to eradicate MM cells. In addition, our results suggest that this combined immunotherapeutic approach may also be beneficial in other CD38-positive malignancies. Abstract The CD38-targeting antibody daratumumab mediates its anti-myeloma activities not only through Fc-receptor-dependent effector mechanisms, but also by its effects on T-cell immunity through depletion of CD38+ regulatory T-cells, regulatory B-cells, and myeloid-derived suppressor cells. Therefore, combining daratumumab with modulators of other potent immune inhibitory pathways, such as the PD-1/PD-L1 axis, may further improve its efficacy. We show that multiple myeloma (MM) cells from relapsed/refractory patients have increased expression of PD-L1, compared to newly diagnosed patients. Furthermore, PD-1 is upregulated on T-cells from both newly diagnosed and relapsed/refractory MM patients, compared to healthy controls. In short-term experiments with bone marrow samples from MM patients, daratumumab-mediated lysis was mainly associated with the MM cells’ CD38 expression levels and the effector (NK-cells/monocytes/T-cells)-to-target ratio, but not with the PD-L1 expression levels or PD-1+ T-cell frequencies. Although PD-1 blockade with nivolumab did not affect MM cell viability or enhanced daratumumab-mediated lysis in short-term ex vivo experiments, nivolumab resulted in a mild but clear increase in T-cell numbers. Moreover, with a longer treatment duration, PD-1 blockade markedly improved anti-CD38 antibody-mediated cytotoxicity in vivo in murine CD38+ tumor models. In conclusion, dual targeting of CD38 and PD-1 may represent a promising strategy for treating MM and other CD38-positive malignancies.
Collapse
Affiliation(s)
- Christie P. M. Verkleij
- Department of Hematology, Cancer Center Amsterdam, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands; (C.P.M.V.); (M.E.C.B.); (K.A.F.); (S.Z.); (T.M.)
| | - Amy Jhatakia
- Bristol-Myers Squibb, Redwood City, CA 94063, USA; (A.J.); (N.A.B.)
| | - Marloes E. C. Broekmans
- Department of Hematology, Cancer Center Amsterdam, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands; (C.P.M.V.); (M.E.C.B.); (K.A.F.); (S.Z.); (T.M.)
| | - Kristine A. Frerichs
- Department of Hematology, Cancer Center Amsterdam, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands; (C.P.M.V.); (M.E.C.B.); (K.A.F.); (S.Z.); (T.M.)
| | - Sonja Zweegman
- Department of Hematology, Cancer Center Amsterdam, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands; (C.P.M.V.); (M.E.C.B.); (K.A.F.); (S.Z.); (T.M.)
| | - Tuna Mutis
- Department of Hematology, Cancer Center Amsterdam, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands; (C.P.M.V.); (M.E.C.B.); (K.A.F.); (S.Z.); (T.M.)
| | - Natalie A. Bezman
- Bristol-Myers Squibb, Redwood City, CA 94063, USA; (A.J.); (N.A.B.)
- Arsenal Bio, San Francisco, CA 94080, USA
| | - Niels W. C. J. van de Donk
- Department of Hematology, Cancer Center Amsterdam, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands; (C.P.M.V.); (M.E.C.B.); (K.A.F.); (S.Z.); (T.M.)
- Correspondence: ; Tel.: +31-(0)20-4442604
| |
Collapse
|
39
|
Munafò A, Burgaletto C, Di Benedetto G, Di Mauro M, Di Mauro R, Bernardini R, Cantarella G. Repositioning of Immunomodulators: A Ray of Hope for Alzheimer's Disease? Front Neurosci 2020; 14:614643. [PMID: 33343293 PMCID: PMC7746859 DOI: 10.3389/fnins.2020.614643] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 11/12/2020] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD) is the most common age-related neurodegenerative disorder characterized by cognitive decline and by the presence of amyloid β plaques and neurofibrillary tangles in the brain. Despite recent advances in understanding its pathophysiological mechanisms, to date, there are no disease-modifying therapeutic options, to slow or halt the evolution of neurodegenerative processes in AD. Current pharmacological treatments only transiently mitigate the severity of symptoms, with modest or null overall improvement. Emerging evidence supports the concept that AD is affected by the impaired ability of the immune system to restrain the brain's pathology. Deep understanding of the relationship between the nervous and the immune system may provide a novel arena to develop effective and safe drugs for AD treatment. Considering the crucial role of inflammatory/immune pathways in AD, here we discuss the current status of the immuno-oncological, immunomodulatory and anti-TNF-α drugs which are being used in preclinical studies or in ongoing clinical trials by means of the drug-repositioning approach.
Collapse
Affiliation(s)
- Antonio Munafò
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| | - Chiara Burgaletto
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| | - Giulia Di Benedetto
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| | - Marco Di Mauro
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| | - Rosaria Di Mauro
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| | - Renato Bernardini
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy.,Unit of Clinical Toxicology, University Hospital, University of Catania, Catania, Italy
| | - Giuseppina Cantarella
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| |
Collapse
|
40
|
Li L, Wang Y. Recent updates for antibody therapy for acute lymphoblastic leukemia. Exp Hematol Oncol 2020; 9:33. [PMID: 33292550 PMCID: PMC7697374 DOI: 10.1186/s40164-020-00189-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/19/2020] [Indexed: 02/07/2023] Open
Abstract
Acute lymphoblastic leukemia (ALL) is a hematologic malignancy arising from precursors of the lymphoid lineage. Conventional cytotoxic chemotherapies have resulted in high cure rates of up to 90% in pediatric ALL, but the outcomes for adult patients remain suboptimal with 5-year survival rates of only 30%-40%. Current immunotherapies exploit the performance of antibodies through several different mechanisms, including naked antibodies, antibodies linked to cytotoxic agents, and T-cell re-directing antibodies. Compared with chemotherapy, the application of an antibody-drug conjugates (ADC) called inotuzumab ozogamicin in relapsed or refractory (R/R) CD22+. ALL resulted in a complete remission (CR) rate of 81% and an overall median survival of 7.7 months with reduced toxicity. Similarly, blinatumomab, the first FDA-approved bispecific antibody (BsAb), produced a 44% complete response rate and an overall median survival of 7.7 months in a widely treated ALL population. In addition, approximately 80% of patients getting complete remission with evidence of minimal residual disease (MRD) achieved a complete MRD response with the use of blinatumomab. These results highlight the great promise of antibody-based therapy for ALL. How to reasonably determine the place of antibody drugs in the treatment of ALL remains a major problem to be solved for ongoing and future researches. Meanwhile the combination of antibody-based therapy with traditional standard of care (SOC) chemotherapy, chimeric antigen receptor (CAR) T-cell therapy and HSCT is also a challenge. Here, we will review some important milestones of antibody-based therapies, including combinational strategies, and antibodies under clinical development for ALL.
Collapse
Affiliation(s)
- Le Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Ying Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.
| |
Collapse
|
41
|
The Circular Life of Human CD38: From Basic Science to Clinics and Back. Molecules 2020; 25:molecules25204844. [PMID: 33096610 PMCID: PMC7587951 DOI: 10.3390/molecules25204844] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/08/2020] [Accepted: 10/15/2020] [Indexed: 11/16/2022] Open
Abstract
Monoclonal antibodies (mAbs) were initially considered as a possible “magic bullet” for in vivo elimination of tumor cells. mAbs represented the first step: however, as they were murine in nature (the earliest experience on the field), they were considered unfit for human applications. This prompted the development of techniques for cloning the variable regions of conventional murine antibodies, genetically mounted on human IgG. The last step in this years-long process was the design for the preparation of fully human reagents. The choice of the target molecule was also problematic, since cancer-specific targets are quite limited in number. To overcome this obstacle in the planning phases of antibody-mediated therapy, attention was focused on a set of normal molecules, whose quantitative distribution may balance a tissue-dependent generalized expression. The results and clinical success obtained with anti-CD20 mAbs revived interest in this type of strategy. Using multiple myeloma (MM) as a tumor model was challenging first of all because the plasma cells and their neoplastic counterpart eluded the efforts of the Workshop on Differentiation Antigens to find a target molecule exclusively expressed by these cells. For this reason, attention was turned to surface molecules which fulfill the requisites of being reasonably good targets, even if not specifically restricted to tumor cells. In 2009, we proposed CD38 as a MM target in virtue of its expression: it is absent on early hematological progenitors, has variable but generalized limited expression by normal cells, but is extremely high in plasma cells and in myeloma. Further, regulation of its expression appeared to be dependent on a variety of factors, including exposure to all-trans retinoic acid (ATRA), a potent and highly specific inducer of CD38 expression in human promyelocytic leukemia cells that are now approved for in vivo use. This review discusses the history of human CD38, from its initial characterization to its targeting in antibody-mediated therapy of human myeloma.
Collapse
|
42
|
Evolving Role of Daratumumab: From Backbencher to Frontline Agent. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2020; 20:572-587. [DOI: 10.1016/j.clml.2020.03.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 03/08/2020] [Accepted: 03/19/2020] [Indexed: 12/11/2022]
|
43
|
Cerrano M, Castella B, Lia G, Olivi M, Faraci DG, Butera S, Martella F, Scaldaferri M, Cattel F, Boccadoro M, Massaia M, Ferrero D, Bruno B, Giaccone L. Immunomodulatory and clinical effects of daratumumab in T-cell acute lymphoblastic leukaemia. Br J Haematol 2020; 191:e28-e32. [PMID: 32686081 DOI: 10.1111/bjh.16960] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Marco Cerrano
- Division of Haematology, Department of Oncology, A.O.U. Città della Salute e della Scienza di Torino, Presidio Molinette, Torino, Italy.,Division of Haematology, Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | | | - Giuseppe Lia
- Division of Haematology, Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Matteo Olivi
- Division of Haematology, Department of Oncology, A.O.U. Città della Salute e della Scienza di Torino, Presidio Molinette, Torino, Italy.,Division of Haematology, Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Danilo G Faraci
- Division of Haematology, Department of Oncology, A.O.U. Città della Salute e della Scienza di Torino, Presidio Molinette, Torino, Italy.,Division of Haematology, Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Sara Butera
- Division of Haematology, Department of Oncology, A.O.U. Città della Salute e della Scienza di Torino, Presidio Molinette, Torino, Italy.,Division of Haematology, Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Federica Martella
- Division of Haematology, Department of Oncology, A.O.U. Città della Salute e della Scienza di Torino, Presidio Molinette, Torino, Italy.,Division of Haematology, Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Matilde Scaldaferri
- SC Farmacia, A.O.U. Città della Salute e della Scienza di Torino, Presidio Molinette, Torino, Italy
| | - Francesco Cattel
- SC Farmacia, A.O.U. Città della Salute e della Scienza di Torino, Presidio Molinette, Torino, Italy
| | - Mario Boccadoro
- Division of Haematology, Department of Oncology, A.O.U. Città della Salute e della Scienza di Torino, Presidio Molinette, Torino, Italy.,Division of Haematology, Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | | | - Dario Ferrero
- Division of Haematology, Department of Oncology, A.O.U. Città della Salute e della Scienza di Torino, Presidio Molinette, Torino, Italy.,Division of Haematology, Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Benedetto Bruno
- Division of Haematology, Department of Oncology, A.O.U. Città della Salute e della Scienza di Torino, Presidio Molinette, Torino, Italy.,Division of Haematology, Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Luisa Giaccone
- Division of Haematology, Department of Oncology, A.O.U. Città della Salute e della Scienza di Torino, Presidio Molinette, Torino, Italy.,Division of Haematology, Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| |
Collapse
|
44
|
Parikh RA, Chaon BC, Berkenstock MK. Ocular Complications of Checkpoint Inhibitors and Immunotherapeutic Agents: A Case Series. Ocul Immunol Inflamm 2020; 29:1585-1590. [PMID: 32643982 DOI: 10.1080/09273948.2020.1766082] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Ophthalmologists have a role in assessing immune-related adverse events (IRAE) in oncology patients on immunotherapy. We assessed the utility of a hospital-wide toxicity team in referring patients with new ocular symptoms for examination. We also identified new immunotherapy agents causing ocular side-effects. DESIGN A cohort study of eight consecutive patients on immunotherapy, who developed ocular IRAE from November 1, 2017 to June 30, 2019. All were seen at the Ocular Immunology Division of the Wilmer Eye Institute and referred by the Johns Hopkins Toxicity Team. RESULTS All eight patients on had IRAEs; were treated with corticosteroid drops or observation with clinical resolution. Two new agents, epocadostat and daratumumab, were associated with the development of uveitis. CONCLUSION Ophthalmologists play an important role in a hospital-wide toxicity team and need to include IRAEs in their differential diagnosis. Given new drug development, ophthalmologists may be the first to identify IRAEs.
Collapse
Affiliation(s)
- Ruby A Parikh
- Ocular Immunology Division, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Benjamin C Chaon
- Ocular Immunology Division, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Meghan K Berkenstock
- Ocular Immunology Division, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
45
|
Roccatello D, Fenoglio R, Sciascia S, Naretto C, Rossi D, Ferro M, Barreca A, Malavasi F, Baldovino S. CD38 and Anti-CD38 Monoclonal Antibodies in AL Amyloidosis: Targeting Plasma Cells and beyond. Int J Mol Sci 2020; 21:E4129. [PMID: 32531894 PMCID: PMC7312896 DOI: 10.3390/ijms21114129] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/04/2020] [Accepted: 06/05/2020] [Indexed: 02/07/2023] Open
Abstract
Immunoglobulin light chain amyloidosis (AL amyloidosis) is a rare systemic disease characterized by monoclonal light chains (LCs) depositing in tissue as insoluble fibrils, causing irreversible tissue damage. The mechanisms involved in aggregation and deposition of LCs are not fully understood, but CD138/38 plasma cells (PCs) are undoubtedly involved in monoclonal LC production.CD38 is a pleiotropic molecule detectable on the surface of PCs and maintained during the neoplastic transformation in multiple myeloma (MM). CD38 is expressed on T, B and NK cell populations as well, though at a lower cell surface density. CD38 is an ideal target in the management of PC dyscrasia, including AL amyloidosis, and indeed anti-CD38 monoclonal antibodies (MoAbs) have promising therapeutic potential. Anti-CD38 MoAbs act both as PC-depleting agents and as modulators of the balance of the immune cells. These aspects, together with their interaction with Fc receptors (FcRs) and neonatal FcRs, are specifically addressed in this paper. Moreover, the initiallyavailable experiences with the anti-CD38 MoAb DARA in AL amyloidosis are reviewed.
Collapse
Affiliation(s)
- Dario Roccatello
- Nephrology and Dialysis Unit & CMID (Center of Research of Immunopathology and Rare Diseases), Coordinating Center of the Network for Rare Diseases of Piedmont and Aosta Valley, San Giovanni Bosco Hub Hospital of Turin, and Department of Clinical and Biological Sciences, University of Turin, 10154 Turin, Italy; (R.F.); (S.S.); (C.N.); (D.R.); (M.F.); (S.B.)
| | - Roberta Fenoglio
- Nephrology and Dialysis Unit & CMID (Center of Research of Immunopathology and Rare Diseases), Coordinating Center of the Network for Rare Diseases of Piedmont and Aosta Valley, San Giovanni Bosco Hub Hospital of Turin, and Department of Clinical and Biological Sciences, University of Turin, 10154 Turin, Italy; (R.F.); (S.S.); (C.N.); (D.R.); (M.F.); (S.B.)
| | - Savino Sciascia
- Nephrology and Dialysis Unit & CMID (Center of Research of Immunopathology and Rare Diseases), Coordinating Center of the Network for Rare Diseases of Piedmont and Aosta Valley, San Giovanni Bosco Hub Hospital of Turin, and Department of Clinical and Biological Sciences, University of Turin, 10154 Turin, Italy; (R.F.); (S.S.); (C.N.); (D.R.); (M.F.); (S.B.)
| | - Carla Naretto
- Nephrology and Dialysis Unit & CMID (Center of Research of Immunopathology and Rare Diseases), Coordinating Center of the Network for Rare Diseases of Piedmont and Aosta Valley, San Giovanni Bosco Hub Hospital of Turin, and Department of Clinical and Biological Sciences, University of Turin, 10154 Turin, Italy; (R.F.); (S.S.); (C.N.); (D.R.); (M.F.); (S.B.)
| | - Daniela Rossi
- Nephrology and Dialysis Unit & CMID (Center of Research of Immunopathology and Rare Diseases), Coordinating Center of the Network for Rare Diseases of Piedmont and Aosta Valley, San Giovanni Bosco Hub Hospital of Turin, and Department of Clinical and Biological Sciences, University of Turin, 10154 Turin, Italy; (R.F.); (S.S.); (C.N.); (D.R.); (M.F.); (S.B.)
| | - Michela Ferro
- Nephrology and Dialysis Unit & CMID (Center of Research of Immunopathology and Rare Diseases), Coordinating Center of the Network for Rare Diseases of Piedmont and Aosta Valley, San Giovanni Bosco Hub Hospital of Turin, and Department of Clinical and Biological Sciences, University of Turin, 10154 Turin, Italy; (R.F.); (S.S.); (C.N.); (D.R.); (M.F.); (S.B.)
| | - Antonella Barreca
- Pathology Division, Department of Oncology, University of Turin, 10154 Turin, Italy;
| | - Fabio Malavasi
- Department of Medical Science, University of Turin, and Fondazione Ricerca Molinette, 10154 Turin, Italy;
| | - Simone Baldovino
- Nephrology and Dialysis Unit & CMID (Center of Research of Immunopathology and Rare Diseases), Coordinating Center of the Network for Rare Diseases of Piedmont and Aosta Valley, San Giovanni Bosco Hub Hospital of Turin, and Department of Clinical and Biological Sciences, University of Turin, 10154 Turin, Italy; (R.F.); (S.S.); (C.N.); (D.R.); (M.F.); (S.B.)
| |
Collapse
|
46
|
Jordan SC, Ammerman N, Choi J, Huang E, Peng A, Sethi S, Najjar R, Kim I, Toyoda M, Kumar S, Lim K, Vo A. The role of novel therapeutic approaches for prevention of allosensitization and antibody-mediated rejection. Am J Transplant 2020; 20 Suppl 4:42-56. [PMID: 32538536 DOI: 10.1111/ajt.15913] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 03/05/2020] [Accepted: 03/30/2020] [Indexed: 02/06/2023]
Abstract
Modification of pathogenic antibodies and their effector functions in autoimmune diseases or use of B cell/plasma cell-directed anticancer therapies have illuminated the biologic relevance of B cells, plasma cells (PCs), and pathogenic antibodies and complement in alloimmunity. They have also rejuvenated interest in how B cells mediate multiple effector functions that include antibody production, antigen presentation to T cells, costimulation, and the production of immune stimulating and immune modulatory cytokines that drive dysfunctional immune responses. Current methods to reduce alloantibodies are only modestly successful. Rituximab is used for desensitization and antibody-mediated rejection (AMR) treatment by targeting CD20 found on B-lymphocytes. However, PCs do not express CD20, likely explaining the limited success of this approach. Intravenous immunoglobulin and plasmapheresis (PLEX) have limited success due to antibody rebound. Despite attempts to develop tolerable therapeutics for management of AMR, none, to date, have been universally accepted or obtained Food and Drug Administration approval. Lack of approved therapeutics often results in patients having a much shorter graft survival due to AMR. Repurposing drugs from autoimmunity and cancer immunotherapy has rapidly yielded important advancements in the care of AMR patients. Here we discuss emerging therapeutics aimed at prevention and treatment of AMR.
Collapse
Affiliation(s)
- Stanley C Jordan
- Comprehensive Transplant Center, Transplant Immunotherapy Program, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Noriko Ammerman
- Comprehensive Transplant Center, Transplant Immunotherapy Program, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Jua Choi
- Comprehensive Transplant Center, Transplant Immunotherapy Program, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Edmund Huang
- Comprehensive Transplant Center, Transplant Immunotherapy Program, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Alice Peng
- Comprehensive Transplant Center, Transplant Immunotherapy Program, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Supreet Sethi
- Comprehensive Transplant Center, Transplant Immunotherapy Program, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Reiad Najjar
- Comprehensive Transplant Center, Transplant Immunotherapy Program, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Irene Kim
- Comprehensive Transplant Center, Transplant Immunotherapy Program, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Mieko Toyoda
- Comprehensive Transplant Center, Transplant Immunotherapy Program, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Sanjeev Kumar
- Comprehensive Transplant Center, Transplant Immunotherapy Program, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Kathlyn Lim
- Comprehensive Transplant Center, Transplant Immunotherapy Program, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Ashley Vo
- Comprehensive Transplant Center, Transplant Immunotherapy Program, Cedars-Sinai Medical Center, Los Angeles, California, USA
| |
Collapse
|
47
|
Nikolaenko L, Chhabra S, Biran N, Chowdhury A, Hari PN, Krishnan A, Richter J. Graft-Versus-Host Disease in Multiple Myeloma Patients Treated With Daratumumab After Allogeneic Transplantation. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2020; 20:407-414. [DOI: 10.1016/j.clml.2020.01.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/11/2020] [Accepted: 01/16/2020] [Indexed: 01/05/2023]
|
48
|
Immunomodulatory drugs activate NK cells via both Zap-70 and cereblon-dependent pathways. Leukemia 2020; 35:177-188. [PMID: 32238854 PMCID: PMC7529681 DOI: 10.1038/s41375-020-0809-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 03/17/2020] [Accepted: 03/18/2020] [Indexed: 11/29/2022]
Abstract
Immunomodulatory drugs (IMiDs) lenalidomide and pomalidomide show remarkable anti-tumor activity in multiple myeloma (MM) via directly inhibiting MM cell growth in the bone marrow (BM) microenvironment and promoting immune effector cell function. They are known to bind to the ubiquitin 3 ligase CRBN complex and thereby trigger degradation of IKZF1/3. In this study, we demonstrate that IMiDs also directly bind and activate zeta-chain-associated protein kinase-70 (Zap-70) via its tyrosine residue phosphorylation in T cells. IMiDs also triggered phosphorylation of Zap-70 in NK cells. Importantly, increased granzyme-B (GZM-B) expression and NK cell activity triggered by IMiDs is associated with Zap-70 activation and inhibited by Zap-70 knockdown, independent of CRBN. We also demonstrate a second mechanism whereby IMiDs trigger GZM-B and NK cytotoxicity which is CRBN- and IKZF3-mediated and inhibited by knockdown of CRBN or IKZF-3, independent of Zap-70. Our studies therefore show that IMiDs can enhance NK and T cell cytotoxicity in (1) ZAP-70-mediated CRBN independent, as well as (2) CRBN-mediated ZAP-70 independent mechanisms; and provide the framework for developing novel therapeutics to activate Zap-70 and thereby enhance T and NK anti-MM cytotoxicity.
Collapse
|
49
|
Storti P, Vescovini R, Costa F, Marchica V, Toscani D, Dalla Palma B, Craviotto L, Malavasi F, Giuliani N. CD14 + CD16 + monocytes are involved in daratumumab-mediated myeloma cells killing and in anti-CD47 therapeutic strategy. Br J Haematol 2020; 190:430-436. [PMID: 32162328 DOI: 10.1111/bjh.16548] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 01/31/2020] [Indexed: 01/08/2023]
Abstract
A deep elucidation of the mechanisms of action of anti-CD38 monoclonal antibodies (mAbs), such as daratumumab (DARA), is required to identify patients with multiple myeloma (MM) who are more responsive to this treatment. In the present study, an autologous ex vivo approach was established, focussing on the role of the monocytes in the anti CD38-mediated killing of MM cells. In bone marrow (BM) samples from 29 patients with MM, we found that the ratio between monocytes (CD14+ ) and MM cells (CD138+ ) influences the response to DARA. Further, the exposure of the BM samples to DARA is followed by the formation of a CD138+ CD14+ double-positive (DP) population, that quantitatively correlates with the anti-MM cells killing. These effects were dependent on the presence of a CD14+ CD16+ monocyte subset and on high CD16 expression levels. Lastly, the addition of a mAb neutralising the CD47/signal-regulatory protein α (SIRPα) axis was able to increase the killing mediated by DARA. The effects were observed only in coincidence with high CD14+ :CD138+ ratio, with a significant presence of the DP population and were correlated with CD16 expression. In conclusion, the present study underlines the critical role of the CD16+ monocytes in DARA anti-MM killing effects and gives a rationale to test the combination of an anti-CD47 mAb with anti-CD38 mAbs.
Collapse
Affiliation(s)
- Paola Storti
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Rosanna Vescovini
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Federica Costa
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | | | - Denise Toscani
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Benedetta Dalla Palma
- Department of Medicine and Surgery, University of Parma, Parma, Italy.,Hematology, "Azienda Ospedaliero-Universitaria di Parma", Parma, Italy
| | - Luisa Craviotto
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Fabio Malavasi
- Department of Medical Science, University of Turin, Turin, Italy.,Fondazione Ricerca Molinette, Turin, Italy
| | - Nicola Giuliani
- Department of Medicine and Surgery, University of Parma, Parma, Italy.,Hematology, "Azienda Ospedaliero-Universitaria di Parma", Parma, Italy
| |
Collapse
|
50
|
Pearse RN. Sequence matters: elotuzumab more effective if used before daratumumab. Leuk Lymphoma 2020; 61:507-509. [DOI: 10.1080/10428194.2019.1703972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|