1
|
Wang YL, Niu S, Yu HT, Yang GZ, Liu YQ, Hu G, Zhao F. Discovery of Acaricidal, Insecticidal, and Fungicidal Candidates Inspired by Natural Ethyl Cinnamate Compounds Isolated from Polygonum orientale L. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:24967-24978. [PMID: 39475547 DOI: 10.1021/acs.jafc.4c05711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2024]
Abstract
As a continuation of our research on the pesticide development of Polygonum orientale L., the chemical constituents of the seeds of P. orientale were systematically investigated. Eleven natural compounds (PO-1 to PO-11) were isolated from the EtOAc extract of P. orientale. Notably, compound PO-9 and its dimeric compound PO-10 were first isolated from P. orientale and possessed excellent acaricidal activity against Tetranychus cinnabarinus. With PO-9 and PO-10 as the lead compounds, two series of cinnamate derivatives were further synthesized, and their acaricidal, insecticidal, and fungicidal activities were evaluated systematically. The insecticidal activity results showed that dimeric derivative NKY-70 displayed the highest acaricidal activity against T. cinnabarinus and insecticidal activities against Brevicoryne brassicae and Myzus persicae. Furthermore, most of these compounds showed excellent in vitro antifungal activity against plant fungi. Compound NKY-66 displayed the highest and broad spectrum of antifungal activity against 23 fungi, and the respective EC50 values were 0.09, 0.08, 0.12, 0.18, 0.12, and 0.09 mg/mL against Valsa mali, Fusarium oxysporum f. sp. cucumerinum, Fusarium graminearum, Magnaporthe oryzae, Colletotrichum capsici, and Phytophthora infestans, which were more potent than those of chlorothalonil and procymidone. Moreover, the in vivo fungicidal evaluation also demonstrated that compound NKY-66 could effectively control plant fungal diseases in the greenhouse and in the field, such as damping off, powdery mildew, and cucumber downy mildew. Therefore, these findings implied that the cinnamate derivative NKY-66 displayed superior in vitro and in vivo fungicidal activities and could be a potential candidate against plant fungal diseases.
Collapse
Affiliation(s)
- Yu-Ling Wang
- Institute of Plant Protection, Gansu Academy of Agricultural Sciences, Lanzhou 730070, People's Republic of China
| | - Shujun Niu
- Institute of Plant Protection, Gansu Academy of Agricultural Sciences, Lanzhou 730070, People's Republic of China
| | - Hai-Tao Yu
- Institute of Plant Protection, Gansu Academy of Agricultural Sciences, Lanzhou 730070, People's Republic of China
| | - Guan-Zhou Yang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Ying-Qian Liu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Guanfang Hu
- Institute of Plant Protection, Gansu Academy of Agricultural Sciences, Lanzhou 730070, People's Republic of China
| | - Feng Zhao
- Institute of Plant Protection, Gansu Academy of Agricultural Sciences, Lanzhou 730070, People's Republic of China
| |
Collapse
|
2
|
Han XY, Han YR, Xu HY, Hu YW, Yan XY, Du GH, She ZF, Xiao B. The anti-rheumatoid arthritic activity of Artemisia ordosica Krasch. (traditional Chinese/Mongolian medicine) extract in collagen-induced arthritis in rats. J Pharm Pharmacol 2024; 76:1463-1473. [PMID: 39066578 DOI: 10.1093/jpp/rgae097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 07/06/2024] [Indexed: 07/28/2024]
Abstract
OBJECTIVES Rheumatoid arthritis (RA) seriously affects the daily life of people. The whole plant of Artemisia ordosica Krasch. (AOK) has been used in folk medicine. This study aimed to investigate the in vivo anti-RA effects of AOK extract (AOKE) on collagen-induced arthritis in rats. METHODS AOKE (400, 200, or 100 mg/kg) was administered orally to animals for 30 days. Body weight, paw swelling, arthritis index, thymus, and spleen indices, and pathological changes were assessed for effects of AOKE on RA. Furthermore, the inflammatory cytokines in rat serum were detected. In addition, the expressions of STAT3, Caspase-3, Galectin-3, and S100A9 in synovial tissue were researched using immunohistochemistry. KEY FINDINGS The AOKE significantly reduced the arthritis indices, paw swelling, spleen, and thymus indices. Meanwhile, AOKE (400 mg/kg) decreased the levels of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, IL-17A, and increased the level of IL-10 in rat serum. Histopathological examination showed that AOKE reduced inflammatory cell infiltration and cartilage erosion. Then, AOKE decreased the expressions of STAT3, Galectin-3, S100A9, and increased the expression of Caspase-3. CONCLUSION AOKE had interesting anti-RA activity in rats, which deserved further research for the development and clinical use of this medicinal resource.
Collapse
Affiliation(s)
- Xiao-Yan Han
- General Clinical Research Center, Ordos School of Clinical Medicine, Inner Mongolia Medical University, Inner Mongolia, Ordos 017000, China
| | - Ya-Ru Han
- General Clinical Research Center, Ordos School of Clinical Medicine, Inner Mongolia Medical University, Inner Mongolia, Ordos 017000, China
| | - Hao-Yu Xu
- General Clinical Research Center, Ordos School of Clinical Medicine, Inner Mongolia Medical University, Inner Mongolia, Ordos 017000, China
| | - Ya-Wei Hu
- General Clinical Research Center, Ordos School of Clinical Medicine, Inner Mongolia Medical University, Inner Mongolia, Ordos 017000, China
| | - Xiao-Yan Yan
- General Clinical Research Center, Ordos School of Clinical Medicine, Inner Mongolia Medical University, Inner Mongolia, Ordos 017000, China
| | - Guan-Hua Du
- Beijing Key Laboratory of Drug Target Identification, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Zhan-Fei She
- General Clinical Research Center, Ordos School of Clinical Medicine, Inner Mongolia Medical University, Inner Mongolia, Ordos 017000, China
| | - Bin Xiao
- General Clinical Research Center, Ordos School of Clinical Medicine, Inner Mongolia Medical University, Inner Mongolia, Ordos 017000, China
- Beijing Key Laboratory of Drug Target Identification, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
3
|
Liu C, He Y, Wang M, Sun J, Pan J, Liu T, Li Y, Zhou M, Huang Y, Li Y, Zhang Y, Lu Y. Regulation of the SIRT3/SOD2 Signaling Pathway by a Compound Mixture from Polygonum orientale L. for Myocardial Damage. Pharmaceuticals (Basel) 2024; 17:1288. [PMID: 39458930 PMCID: PMC11510516 DOI: 10.3390/ph17101288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/18/2024] [Accepted: 09/25/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Polygonum orientale L. (PO) has demonstrated notable efficacy in treating coronary heart disease. Previous research identified eight key active components in PO for cardiomyocyte protection, but the underlying mechanisms remained unclear; Methods: Network pharmacology and molecular docking were used to identify potential target proteins of PO's active components. Experimental models assessed the cardioprotective effects and mechanisms; Results: Network analysis and molecular docking revealed that the active components exhibited the highest binding affinity with SOD2, indicating it as a key element in the cardiac protection of PO. In vivo, PO extract improved myocardial structure and function, and increased SOD2 protein levels. In vitro, the active components of PO (Mixture) mitigated oxidative stress and apoptosis, upregulating SIRT3 and decreasing acetylated SOD2, leading to increased SOD2 and reduced ROS levels. The observed effects were reversed by a SIRT3 inhibitor, indicating the involvement of the SIRT3/SOD2 signaling pathway; Conclusions: This comprehensive approach elucidated the critical mechanisms underlying the cardioprotective properties of PO's bioactive constituents, highlighting the regulation of the SIRT3/SOD2 signaling pathway as a new mechanism for PO's anti-cardiovascular disease effects, and suggesting the Mixture's potential as a promising drug candidate.
Collapse
Affiliation(s)
- Chunhua Liu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang 550004, China
| | - Yu He
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang 550004, China
- School of Pharmacy, Guizhou Medical University, Guiyang 550025, China
| | - Mingjin Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang 550004, China
- School of Pharmacy, Guizhou Medical University, Guiyang 550025, China
| | - Jia Sun
- Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, China
| | - Jie Pan
- Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, China
| | - Ting Liu
- Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, China
| | - Yueting Li
- Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, China
| | - Meng Zhou
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang 550004, China
| | - Yong Huang
- Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, China
| | - Yongjun Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang 550004, China
| | - Yanmin Zhang
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Yuan Lu
- Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, China
| |
Collapse
|
4
|
Wang S, Huang Y, Sun Y, Wang J, Tang X. Physiological, transcriptomic, and metabolomic analyses reveal that Pantoea sp. YSD J2 inoculation improves the accumulation of flavonoids in Cyperus esculentus L. var. sativus. Heliyon 2024; 10:e35966. [PMID: 39224290 PMCID: PMC11367128 DOI: 10.1016/j.heliyon.2024.e35966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/01/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024] Open
Abstract
Plant growth-promoting microorganisms (PGPMs), such as Pantoea sp. YSD J2, promote plant development and stress resistance, while their role in flavonoids accumulation still needs to be further understood. To investigate the complex flavonoid biosynthesis pathway of Cyperus esculentus L. var. sativus (tigernut), we compared Pantoea sp. YSD J2 inoculation (YSD J2) and water inoculation (CK) groups. YSD J2 significantly elevated the content of indole-3-acetic acid (IAA) and orientin. Furthermore, when analyzing flavonoid metabolome, YSD J2 caused increased levels of uralenol, petunidin-3-O-glucoside-5-O-arabinoside, luteolin-7-O-glucuronide-(2 → 1)-glucuronide, kaempferol-3-O-neohesperidoside, cyanidin-3-O-(2″-O-glucosyl)glucoside, kaempferol-3-O-glucuronide-7-O-glucoside, quercetin-3-O-glucoside, luteolin-7-O-glucuronide-(2 → 1)-(2″-sinapoyl)glucuronide, and quercetin-4'-O-glucoside, which further enhanced antioxidant activity. We then performed RNA-seq and LC-MS/MS, aiming to validate key genes and related flavonoid metabolites under YSD J2 inoculation, and rebuild the gene-metabolites regulatory subnetworks. Furthermore, the expression patterns of the trans cinnamate 4-monooxygenase (CYP73A), flavonol-3-O-L-rhamnoside-7-O-glucosyltransferase (UGT73C6), shikimate O-hydroxycinnamoyltransferase (HCT), chalcone isomerase (CHI), flavonol synthase (FLS), and anthocyanidin synthase (ANS) genes were confirmed by qRT-PCR. Additionally, 4 transcription factors (TF) (especially bHLH34, Cluster-37505.3) under YSD J2 inoculation are also engaged in regulating flavonoid accumulation. Moreover, the current work sheds new light on studying the regulatory effect of Pantoea sp. YSD J2 on tigernut development and flavonoid biosynthesis.
Collapse
Affiliation(s)
- Saisai Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Dongchuan Road 800, Minhang District, Shanghai, 200240, PR China
- Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Dongchuan Road 800, Minhang District, Shanghai, 200240, PR China
- Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Dongchuan Road 800, Minhang District, Shanghai, 200240, PR China
| | - Yanna Huang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Dongchuan Road 800, Minhang District, Shanghai, 200240, PR China
- Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Dongchuan Road 800, Minhang District, Shanghai, 200240, PR China
- Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Dongchuan Road 800, Minhang District, Shanghai, 200240, PR China
| | - Yu Sun
- Biotechnology Research Institute Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Beidi Road 2901, Minhang District, Shanghai, 201106, PR China
| | - Jinbin Wang
- Biotechnology Research Institute Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Beidi Road 2901, Minhang District, Shanghai, 201106, PR China
| | - Xueming Tang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Dongchuan Road 800, Minhang District, Shanghai, 200240, PR China
- Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Dongchuan Road 800, Minhang District, Shanghai, 200240, PR China
- Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Dongchuan Road 800, Minhang District, Shanghai, 200240, PR China
| |
Collapse
|
5
|
Bhoi A, Dwivedi SD, Singh D, Keshavkant S, Singh MR. Mechanistic prospective and pharmacological attributes of quercetin in attenuation of different types of arthritis. 3 Biotech 2023; 13:362. [PMID: 37840879 PMCID: PMC10570262 DOI: 10.1007/s13205-023-03787-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 09/08/2023] [Indexed: 10/17/2023] Open
Abstract
Arthritis is a frequent autoimmune disease with undefined etiology and pathogenesis. Scientific community constantly fascinating quercetin (QUR), as it is the best-known flavonoid among others for curative and preventive properties against a wide range of diseases. Due to its multifaceted activities, the implementation of QUR against various types of arthritis namely, rheumatoid arthritis (RA), osteoarthritis (OA), gouty arthritis (GA) and psoriotic arthritis (PsA) has greatly increased in recent years. Many research evidenced that QUR regulates a wide range of pathways for instance NF-κB, MAK, Wnt/β-catenine, Notch, etc., that are majorly associated with the inflammatory mechanisms. Besides, the bioavailability of QUR is a major constrain to its therapeutic potential, and drug delivery techniques have experienced significant development to overcome the problem of its limited application. Hence, this review compiled the cutting-edge experiments on versatile effects of QUR on inflammatory diseases like RA, OA, GA and PsA, sources and bioavailability, therapeutic challenges, pharmacokinetics, clinical studies as well as toxicological impacts. The use of QUR in a health context would offer a tearing and potential therapeutic method, supporting the advancement of public health, particularly, of arthritic patients worldwide.
Collapse
Affiliation(s)
- Anita Bhoi
- School of Studies in Biotechnology, Pt. Ravishankar Shukla University, Raipur, 492 010 India
| | - Shradha Devi Dwivedi
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, 492 010 India
| | - Deependra Singh
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, 492 010 India
| | - S. Keshavkant
- School of Studies in Biotechnology, Pt. Ravishankar Shukla University, Raipur, 492 010 India
| | - Manju Rawat Singh
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, 492 010 India
| |
Collapse
|
6
|
Li W, Yan W, Liu Y, Hou G, Li C. Treatment of rheumatoid arthritis with curcumin analog 3,5-bis(arylidene)-4-piperidone. Future Med Chem 2023; 15:2051-2064. [PMID: 37929594 DOI: 10.4155/fmc-2023-0119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 09/18/2023] [Indexed: 11/07/2023] Open
Abstract
Rheumatoid arthritis (RA) is an inflammatory disease. Curcumin can inhibit NF-κB and reduce the expression of inflammation-related genes. Aim: To evaluate the potential development of 6d in the clinical treatment of inflammatory diseases such as RA. Methods: Using a skeleton fusion strategy to synthesize curcumin analogues for 6d. This work evaluates anti-inflammatory activity by conducting anti-arthritis experiments (adjuvant-induced RA models) on rats. Western blot and ELISA were used to detect the expression of inflammatory-related proteins and cytokines. Molecular docking analysis confirmed the binding effect of 6d with active sites. Conclusion: 6d inhibits NF-κB has a protective effect on arthritis caused by RA.
Collapse
Affiliation(s)
- Wenxuan Li
- School of Pharmacy, the Key Laboratory of Prescription Effect & Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, Binzhou Medical University, Yantai, Shandong, China
- Pharmacy Department, Sunshine Union Hospital, Weifang, Shandong, China
| | - Weibin Yan
- School of Pharmacy, the Key Laboratory of Prescription Effect & Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, Binzhou Medical University, Yantai, Shandong, China
| | - Yongjun Liu
- Department of Chinese Medicine, Shandong Drug & Food Vocational College, Weihai, Shandong, China
| | - Guige Hou
- School of Pharmacy, the Key Laboratory of Prescription Effect & Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, Binzhou Medical University, Yantai, Shandong, China
| | - Chengbo Li
- School of Pharmacy, the Key Laboratory of Prescription Effect & Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, Binzhou Medical University, Yantai, Shandong, China
| |
Collapse
|
7
|
An S, Yan X, Chen H, Zhou X. Investigation of the Mechanism of Action of Periploca forrestii Schltr. Extract on Adjuvant Collagen Rats Based on UPLC-Q-Orbitrap-HRMS Non-Targeted Lipidomics. Molecules 2023; 28:6751. [PMID: 37836594 PMCID: PMC10574421 DOI: 10.3390/molecules28196751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/11/2023] [Accepted: 09/19/2023] [Indexed: 10/15/2023] Open
Abstract
Periploca forrestii Schltr. (P. forrestii) is a classical medicinal plant and is commonly used in traditional medicine for the treatment of rheumatoid arthritis, soft tissue injuries, and traumatic injuries. The aim of this study was to evaluate the anti-arthritic effects of three fractions of P. forrestii alcoholic extracts (PAE), P. forrestii water extracts (PWE), and total flavonoids from P. forrestii (PTF) on Freund's complete adjuvant (FCA)-induced arthritis in rats, and to use a non-targeted lipidomic method to investigate the mechanism of action of the three fractions of P. forrestii in the treatment of rheumatoid arthritis. To assess the effectiveness of anti-rheumatoid arthritis, various indicators were measured, including joint swelling, histopathological changes in the joints, serum cytokines (tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6)), and the joint inflammatory substance prostaglandin E2 (PGE2). Finally, ultra-performance liquid chromatography-quadrupole-orbitrap-high-resolution mass spectrometry (UPLC-Q-Orbitrap-HRMS) was used to determine the non-targeted lipid histology of the collected rat serum and urine samples to investigate the possible mechanism of action. PWE, PAE, and PTF were all effective in treating FCA-induced rheumatoid arthritis. The administered groups all reduced joint swelling and lowered serum inflammatory factor levels in rats. In the screening of lipid metabolite differences between serum and urine of the rat model group and the normal group, a total of 52 different metabolites were screened, and the levels of lipid metabolites in PWE, PAE, and PTF were significantly higher than those in the normal group after administration. In addition, PWE, PAE, and PTF may have significant therapeutic effects on FCA-induced arthritis by modulating nicotinic acid, nicotinamide, and histidine metabolic pathways.
Collapse
Affiliation(s)
- Silan An
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, 116 Baoshan North Rd., Guiyang 550001, China; (S.A.); (X.Y.)
- Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine, Guizhou Normal University, 116 Baoshan North Rd., Guiyang 550001, China
- The Research Center for Quality Control of Natural Medicine, Guizhou Normal University, 116 Baoshan North Rd., Guiyang 550001, China
| | - Xiaoting Yan
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, 116 Baoshan North Rd., Guiyang 550001, China; (S.A.); (X.Y.)
- Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine, Guizhou Normal University, 116 Baoshan North Rd., Guiyang 550001, China
- The Research Center for Quality Control of Natural Medicine, Guizhou Normal University, 116 Baoshan North Rd., Guiyang 550001, China
| | - Huaguo Chen
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, 116 Baoshan North Rd., Guiyang 550001, China; (S.A.); (X.Y.)
- Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine, Guizhou Normal University, 116 Baoshan North Rd., Guiyang 550001, China
- The Research Center for Quality Control of Natural Medicine, Guizhou Normal University, 116 Baoshan North Rd., Guiyang 550001, China
| | - Xin Zhou
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, 116 Baoshan North Rd., Guiyang 550001, China; (S.A.); (X.Y.)
- Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine, Guizhou Normal University, 116 Baoshan North Rd., Guiyang 550001, China
- The Research Center for Quality Control of Natural Medicine, Guizhou Normal University, 116 Baoshan North Rd., Guiyang 550001, China
| |
Collapse
|
8
|
Luo Y, Shen Y, Zong L, Xie J, Dai L, Luo X. Anti-rheumatoid arthritis potential of Rhododendron molle G. Don leaf extract in adjuvant induced arthritis rats. JOURNAL OF ETHNOPHARMACOLOGY 2023; 307:116175. [PMID: 36702447 DOI: 10.1016/j.jep.2023.116175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 01/12/2023] [Accepted: 01/15/2023] [Indexed: 06/18/2023]
Abstract
AIM OF THE STUDY The aim of this study was to test the anti-rheumatic arthritis effects of Rhododendron molle G. Don leaf extract in arthritis rats and inflammatory RAW 264.7 cells. Preliminary analysis and comparison of potential medicinal components of three polar extracts by HPLC and UHPLC-Q-TOF-MS. MATERIALS AND METHODS SD rats were subcutaneously injected with complete Freund's adjuvant (CFA) to induce inflammation on the right hind paw. RAW 264.7 cells were induced by lipopolysaccharide (LPS) to established cell inflammatory model. The volume of rat hind paw was measured with a volume meter to detect swelling, and the weight of rats was measured with an electronic balance. The severity of arthritis in rats was evaluated by arthritis score. The pathological sections of rat hind paw joints were observed by hematoxylin-eosin staining, and the contents of IL-6 and IL-1β in serum were detected. qRT-PCR was used to detect the expression of IL-1β, IL-6, TNF-α and COX-2 genes in RAW 264.7 cells. The release of nitric oxide was measured by Griess reaction. The expression levels of IL-6 and IL-1β were detected by Western-Blot. RESULTS and discussion: The chloroform extract from R. molle leaves (CERL), Ethyl acetate extract from R. molle leaves (EERL), n-butanol extract from R. molle leaves (BERL) could significantly inhibit hind paws swelling and reduce arthritis index in arthritis rats. And it showed dose dependence. Compared with tripterygium glycosides (TG) tablets, an effective drug of RA treatment, CERL have better anti-RA effect after administration. In addition, the three kinds of the polar extracts of Rhododendron molle leaves (PERL) had lower toxicity, with the LD50 279.87, 239.65, 500.08 (mg/kg) respectively, while TG group's LD50 was 96.00 (mg/kg). In vitro experiments showed that the three PERLs can significantly inhibit the level of pro-inflammatory factors and inflammatory mediator, such as TNF-α, IL-1β, IL-6, COX-2 and NO, which were consistent with their anti-RA ability. Among the three kinds of PERLs, CERL showed the best inhibitory activity. CONCLUSION The R. molle leaf is a potential medicinal part for the treatment of RA. This study explored the anti-RA and anti-inflammatory activities of CERL, EERL, BERL, which laid a foundation for further promoting the clinical application of R. molle.
Collapse
Affiliation(s)
- Yuqiang Luo
- College of Life Science, Jiangxi Normal University, Nanchang, 330022, China.
| | - Yu Shen
- College of Life Science, Jiangxi Normal University, Nanchang, 330022, China.
| | - Luye Zong
- College of Life Science, Jiangxi Normal University, Nanchang, 330022, China.
| | - Jiankun Xie
- College of Life Science, Jiangxi Normal University, Nanchang, 330022, China.
| | - Liangfang Dai
- College of Life Science, Jiangxi Normal University, Nanchang, 330022, China.
| | - Xiangdong Luo
- College of Life Science, Jiangxi Normal University, Nanchang, 330022, China.
| |
Collapse
|
9
|
Macrophage-Targeted Dextran Sulfate-Dexamethasone Conjugate Micelles for Effective Treatment of Rheumatoid Arthritis. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020591. [PMID: 36677648 PMCID: PMC9863669 DOI: 10.3390/molecules28020591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 01/11/2023]
Abstract
Rheumatoid arthritis (RA) is a chronic, systemic immune disease that causes joint affection and even disability. Activated macrophages play an important role in the pathogenesis and progression of RA by producing pro-inflammatory factors. The use of dexamethasone (DXM) is effective in relieving the intractable pain and inflammatory progression of RA. However, long-term use of DXM is strongly associated with increased rates of diabetes, osteoporosis, bone fractures, and mortality, which hinders its clinical use. In this study, the dextran sulfate-cisaconitic anhydride-dexamethasone (DXM@DS-cad-DXM) micelles were prepared to treat RA by selectively recognizing scavenger receptor (SR) on the activated macrophages. The potent targeting property of DXM@DS-cad-DXM micelles to SR was by fluorescence microscope. Additionally, the effective accumulation and powerful anti-inflammatory activity of DXM@DS-cad-DXM micelles were observed in the inflamed joints of adjuvant-induced arthritis (AIA) rats after intravenous administration. Overall, DXM@DS-cad-DXM micelles are a potentially effective nanomedicine for targeted therapy of RA.
Collapse
|
10
|
Mendie LE, Hemalatha S. Bioactive Compounds from Nyctanthes arbor tristis Linn as Potential Inhibitors of Janus Kinases (JAKs) Involved in Rheumatoid Arthritis. Appl Biochem Biotechnol 2023; 195:314-330. [PMID: 36083429 DOI: 10.1007/s12010-022-04121-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2022] [Indexed: 01/13/2023]
Abstract
Nyctanthes arbor tristis L (NAT) is one of the herbal plants whose parts are commonly used to treat diverse ailment including RA. Although the etiology of the autoimmune disorder RA is still unclear, actions of cytokines have been greatly associated with the mechanism of RA. Despite the huge development of drugs to combat this disorder, the search for alternative medicine is increasing due to the adverse effects of these synthetic drugs. Here, the ability of 30 selected bioactive compounds from the parts of NAT to bind effectively to target proteins of the Janus kinases as a potent inhibitor was predicted in an in silico manner through molecular docking procedure using Autodock 4.2.6 and their interactions visualized using Discovery Studio, followed by evaluating the physiochemical and ADMET properties of compounds of the lowest binding energy comparable to the reference drug baricitinib. Comparing the predicted target information with the standard drug baricitinib, 7 bioactive compounds may be potential lead drug for the treatment of RA owing to their lowest binding energy ranging from - 7.0 kcal/mol to - 10.49 kcal/mol and their pharmacokinetics properties. This can be used for further in vivo and in vitro studies to establish their potency as JAKs inhibitors to treat RA.
Collapse
Affiliation(s)
- Love Edet Mendie
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, 600048, Tamil Nadu, India
| | - S Hemalatha
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, 600048, Tamil Nadu, India.
| |
Collapse
|
11
|
Akhter S, Irfan HM, Alamgeer, Ullah A, Jahan S, Roman M, Latif MB, Mustafa Z, Almutairi FM, Althobaiti YS. Noscapine hydrochloride (benzyl-isoquinoline alkaloid) effectively prevents protein denaturation through reduction of IL-6, NF-kB, COX-2, Prostaglandin-E2 in rheumatic rats. Saudi Pharm J 2022; 30:1791-1801. [PMID: 36601515 PMCID: PMC9805980 DOI: 10.1016/j.jsps.2022.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 10/13/2022] [Indexed: 11/08/2022] Open
Abstract
Noscapine hydrochloride (benzyl-isoquinoline antitussive alkaloid) is an opium derivative and generally used as a cough suppressant. Numerous studies on noscapine hydrochloride have reported that it has potent anti-inflammatory activity. However, the mechanisms by which it exerts an anti-inflammatory function is not well understood. Protein denaturation is the primary step that leads to the organ destruction and permanent arthritic disability. The above-mentioned facts provided the ground to plan this study using different in-vitro and in-vivo approaches. RT-qPCR and ELISA assays were used to assess the inflammatory markers related to protein denaturation in complete adjuvant persuaded rheumatism in Sprague - Dawley rats. The results were collected as paw volume and body weight changes, arthritic scoring and serum antioxidant enzymes assays. These findings demonstrated that all doses of noscapine hydrochloride (10, 20 and 40 mg/kg) studied in this study, significantly (p < 0.001) decreased the protein denaturation by preventing the increase in levels of interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), nuclear factor-kB (NF-kB), cyclooxygenase-2 (COX-2) and prostaglandin E2. Noscapine hydrochloride significantly reduced the paw volume (p < 0.001), arthritic scoring and reversed the body mass as compared to arthritic control diseased rats.
Collapse
Affiliation(s)
- Shanila Akhter
- College of Pharmacy, University of Sargodha, Sargodha, 40100, Pakistan
| | - Hafiz Muhammad Irfan
- College of Pharmacy, University of Sargodha, Sargodha, 40100, Pakistan,Corresponding authors at: Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, University of Hafr AlBatin, Hafr AlBatin 39524, Eastern Provine, Saudi Arabia. (F.M. Almutairi).
| | - Alamgeer
- Department of Pharmacology, Punjab University College of Pharmacy, University of the Punjab, Lahore, 54590, Pakistan
| | - Aman Ullah
- College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad, 44000, Pakistan
| | - Shah Jahan
- Department of Immunology, University of Health Sciences, Lahore, 54600, Pakistan
| | - Muhammad Roman
- Department of Immunology, University of Health Sciences, Lahore, 54600, Pakistan
| | - Muhammad Bilal Latif
- Department of Pathology and Laboratory Medicine, School of Medicine, Emory University, Atlanta, 30322, USA
| | - Zaid Mustafa
- Department of Agricultural Sciences, Allama Iqbal Open University Islamabad, 44000, Pakistan
| | - Farooq M. Almutairi
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, University of Hafr AlBatin, Hafr AlBatin, 39524, Saudi Arabia,Corresponding authors at: Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, University of Hafr AlBatin, Hafr AlBatin 39524, Eastern Provine, Saudi Arabia. (F.M. Almutairi).
| | - Yusuf S. Althobaiti
- Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, 21944, Saudi Arabia,Addiction and Neuroscience Research Unit, Taif University, 21944, Saudi Arabia
| |
Collapse
|
12
|
Eriodictyol Suppresses Gastric Cancer Cells via Inhibition of PI3K/AKT Pathway. Pharmaceuticals (Basel) 2022; 15:ph15121477. [PMID: 36558929 PMCID: PMC9788236 DOI: 10.3390/ph15121477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/21/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
Gastric cancer (GC) is among the five most common malignancies worldwide. Traditional chemotherapy cannot efficiently treat the disease and faces the problems of side effects and chemoresistance. Polygoni orientalis Fructus (POF), with flavonoids as the main bioactive compounds, exerts anti-cancer potential. In this study, we compared the anti-GC effects of the main flavonoids from POF and investigated the anti-cancer effects of eriodictyol towards GC both in vitro and in vivo. CCK-8 assays were performed to examine the inhibitory effects of common flavonoids from POF on GC cell viability. Colony formation assays were used to determine cell proliferation after eriodictyol treatment. Cell cycle distribution was analyzed using flow cytometry. Induction of apoptosis was assessed with Annexin V/PI staining and measurement of related proteins. Anti-cancer effects in vivo were investigated using a xenograft mouse model. Potential targets of eriodictyol were clarified by network pharmacological analysis, evaluated by molecular docking, and validated with Western blotting. We found that eriodictyol exhibited the most effective inhibitory effect on cell viability of GC cells among the common flavonoids from POF including quercetin, taxifolin, and kaempferol. Eriodictyol suppressed colony formation of GC cells and induced cell apoptosis. The inhibitory effects of eriodictyol on tumor growth were also validated using a xenograft mouse model. Moreover, no obvious toxicity was identified with eriodictyol treatment. Network pharmacology analysis revealed that PI3K/AKT signaling ranked first among the anti-GC targets. The molecular docking model of eriodictyol and PI3K was constructed, and the binding energy was evaluated. Furthermore, efficient inhibition of phosphorylation and activation of PI3K/AKT by eriodictyol was validated in GC cells. Taken together, our results identify eriodictyol as the most effective anti-GC flavonoids from POF and the potential targets of eriodictyol in GC. These findings suggest that eriodictyol has the potential to be a natural source of anti-GC agents.
Collapse
|
13
|
Zhang Y, Liu Y, Peng F, Wei X, Hao H, Li W, Zhao Y. Cedrol from ginger alleviates rheumatoid arthritis through dynamic regulation of intestinal microenvironment. Food Funct 2022; 13:11825-11839. [PMID: 36314362 DOI: 10.1039/d2fo01983c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
The imbalance of intestinal flora would induce immune inflammation. Cedrol (CE), found from ginger by our group earlier, has been proven to play an excellent role in ameliorating rheumatoid arthritis (RA) via acting on JAK3, MAPK, and NF-κB. However, there have been no studies on CE ameliorating RA through the regulation of the micro-environment. In this study, the adjuvant arthritis model (AIA) is established to evaluate the weight, arthritis score, paw swelling, bone destruction, immune organ index, inflammatory cell infiltration, cartilage erosion, and metabolic enzymes of kidneys in AIA rats after CE intervention. The results indicated CE could alleviate paw swelling, reduce arthritis score, decrease the secretion of TNF-α, IL-6, and IL-1β in serum in a dose-dependent manner, and inhibit the immune organ index of the spleen while having no significant effect on metabolic enzymes of the kidney. In addition, pathological sections of ankle and knee joints suggested CE might significantly prevent inflammatory cell infiltration, synovial hyperplasia, and joint degeneration and protect articular cartilage. Then, for the first time, 16S rRNA gene was applied to analyze the regulatory effect of CE on intestinal flora. CE could effectively improve the uniformity, diversity, and richness of intestinal flora, reduce the number of pathogenic bacteria, and increase the proportion of beneficial bacteria, and it significantly inhibited the abundance of Prevotella in RA rats, which was 12.43 times smaller than that in methotrexate. The distribution and excretion of CE in vivo were detected by GC-MS. It was found that CE would massively accumulate in the gastrointestinal tract after oral administration, which is then mainly excreted through feces. Interestingly, the research suggested that CE, which plays a role in the dynamic regulation of the intestinal micro-environment, could be used as a potential component to prevent RA.
Collapse
Affiliation(s)
- Yumeng Zhang
- Shenyang Pharmaceutical University, Shenyang 110016, China.
- Chinese Medicine Gene Expression Regulation Laboratory, State Administration of Traditional Chinese Medicine, and Basic Laboratory of Integrated Traditional Chinese and Western Medicine, Shanxi University of Chinese Medicine, Taiyuan 030000, China.
| | - Yang Liu
- Chinese Medicine Gene Expression Regulation Laboratory, State Administration of Traditional Chinese Medicine, and Basic Laboratory of Integrated Traditional Chinese and Western Medicine, Shanxi University of Chinese Medicine, Taiyuan 030000, China.
| | - Fei Peng
- Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Xinrui Wei
- Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Huiqin Hao
- Chinese Medicine Gene Expression Regulation Laboratory, State Administration of Traditional Chinese Medicine, and Basic Laboratory of Integrated Traditional Chinese and Western Medicine, Shanxi University of Chinese Medicine, Taiyuan 030000, China.
| | - Wei Li
- Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Yuqing Zhao
- Shenyang Pharmaceutical University, Shenyang 110016, China.
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji 133002, China
| |
Collapse
|
14
|
Abo-Elghiet F, Ibrahim MH, El Hassab MA, Bader A, Abdallah QMA, Temraz A. LC/MS analysis of Viscum cruciatum Sieber ex Boiss. extract with anti-proliferative activity against MCF-7 cell line via G0/G1 cell cycle arrest: An in-silico and in-vitro study. JOURNAL OF ETHNOPHARMACOLOGY 2022; 295:115439. [PMID: 35667581 DOI: 10.1016/j.jep.2022.115439] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 05/30/2022] [Accepted: 06/02/2022] [Indexed: 05/26/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Viscum cruciatum Sieb is a well-known medicinal plant in Jordan containing various secondary metabolites. It has traditionally been used to treat many ailments, most notably cancer. However, there is a significant gap between scientific research and its value in traditional medicine. AIM OF THE WORK To evaluate the antiproliferative activity of different V. cruciatum extracts against MCF-7 breast cancer cell lines and recognize the affected cell cycle phase. Besides, identifying the bioactive components present in the active extract using LC/MS technique. Also, to determine the possible mechanism of action by in silico and in-vitro study. MATERIALS AND METHODS V. cruciatum was extracted using solvents with increasing polarity. The antiproliferative effects of the extracts against MCF-7 cell lines were evaluated using SRB assay. Further, flow cytometry was used to identify the inhibited phase of the cell cycle, while LC/MS-MS technique was used to analyze the chemical composition of the most active extract. After that, the putative mechanism of action was investigated through in-silico docking, molecular dynamic simulation for compounds with the highest docking scores, and Western blot analysis of cyclin-dependent kinases (CDK2/4/6). RESULTS The chloroform/methanol 90/10 (ChMe) extract showed the most potent antiproliferative effect against MCF-7 cells (IC50 = 23.8 μg/mL), and cell cycle arrest at the G0/G1phase. Furthermore, LC-MS/MS analysis revealed the presence of several polyphenolics belonging to the flavonoids and phenolic acids classes. Additionally, quercetin-4'-glucoside, 3, 5, 7-trihydroxy-4'-methoxy flavone, and hesperetin-7-O-neohesperidoside demonstrated the highest docking binding scores and stable complexes against CDK2 and CDK4/6. Moreover, RMSD (root-mean-square deviation), RMSF (root-mean-square fluctuation), Rg (radius of gyration), and energy analysis during molecular dynamic simulation indicated the stable binding of the studied complexes. These results were supported by Western blot analysis, which revealed the downregulation of CDK2, CDK4, and CDK6 protein expression in MCF-7 cell lines. CONCLUSION These findings emphasized the potential breast anticancer activity of the V. cruciatum ChMe extract by arresting the G0/G1 phase of the cell cycle, which could be related to its flavonoid content. Moreover, the results provided experimental support for the traditional anticancer activity of V. cruciatum, and its ChMe extract might be a source of chemoprotective or chemotherapeutic isolates.
Collapse
Affiliation(s)
- Fatma Abo-Elghiet
- Department of Pharmacognosy, Faculty of Pharmacy for Girls, Al-Azhar University, Nasr City, Cairo, Egypt.
| | - Mona H Ibrahim
- Department of Pharmaceutical Medicinal Chemistry and Drug Design, Faculty of Pharmacy for Girls, Al-Azhar University, Nasr City, Cairo, Egypt.
| | - Mahmoud A El Hassab
- Department of Medicinal Chemistry, Faculty of Pharmacy, King Salman International University (KSIU), South Sinai, Egypt.
| | - Ammar Bader
- Department of Pharmacognosy, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia.
| | - Qasem M A Abdallah
- Faculty of Pharmacy and Medical Sciences, University of Petra, Amman, Jordan.
| | - Abeer Temraz
- Department of Pharmacognosy, Faculty of Pharmacy for Girls, Al-Azhar University, Nasr City, Cairo, Egypt.
| |
Collapse
|
15
|
Anti-Arthritic Effect of the Hydroethanolic Root Extract of Psydrax subcordata in Rats. Adv Pharmacol Pharm Sci 2022; 2022:9748382. [PMID: 36061079 PMCID: PMC9433293 DOI: 10.1155/2022/9748382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/18/2022] [Accepted: 07/23/2022] [Indexed: 11/20/2022] Open
Abstract
Background In Ghana, decoctions of various parts of Psydrax subcordata, Bridson (Rubiaceae) are employed in the management of inflammatory conditions. However, not much scientific data is available to back such folkloric use of the plant. This study, therefore, seeks to investigate the chronic anti-inflammatory activity of hydroethanolic root extract of Psydrax subcordata (PSRE) using the adjuvant-induced arthritis model in rats. Methods Freund's adjuvant-induced arthritis model was used to assess the ameliorative effects of PSRE in chronic inflammation. The effect of PSRE on tissue and joint integrity in arthritis was also evaluated by histopathology and microscopy. The effect of PSRE on oxidative markers and serum transforming growth factor (TGF) beta 1 was also determined via chemical assays. Results Oral PSRE (30–300 mg/kg) inhibited both ipsilateral and contralateral paw arthritis when given prophylactically and therapeutically in rats. It reduced paw defect on X-ray with histologically-reduced inflammatory cells and synovial hyperplasia. Finally, PSRE significantly reduced TGF-beta 1 levels and raised antioxidants such as reduced glutathione, catalase, and superoxide dismutase levels in arthritic rats. Conclusion The findings show that hydroethanolic root extract of Psydrax subcordata possesses anti-inflammatory properties in rodents.
Collapse
|
16
|
Cellat M, İşler CT, Kutlu T, Kuzu M, Etyemez M, Alakuş H, Güvenç M. Investigation of the effects of safranal on the experimentally created rheumatoid arthritis model in rats. J Biochem Mol Toxicol 2022; 36:e23140. [PMID: 35674002 DOI: 10.1002/jbt.23140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 03/12/2022] [Accepted: 05/30/2022] [Indexed: 12/10/2022]
Abstract
Rheumatoid arthritis (RA) is a systemic chronic disease characterized by inflammation and synovitis. More effective treatment methods with less side effects need to be developed. In this context, current study investigated the therapeutic effects of safranal in a model of complete Freund's adjuvant (CFA)-induced RA. The control group was given 1 ml of saline orally starting from the 8th day, and 0.2 ml of CFA was given to the RA, RA + Safranal and RA + Methotrexate (MTX) groups on the 0th day of the experiment. Starting from the 8th day of the experiment, 1 ml of saline was given to the RA group, safranal was given at 200 mg/kg of body weight to the RA + MTX group, and 3 mg/kg of MTX to the RA + MTX group twice a week. The results showed that weight gain decreased in the RA group compared to the control group while arthritis index score, thymus index, and planter temperature were found to be increased. Additionally, a deterioration in blood parameters, an increase in alanine aminotransferase, aspartate aminotransferase, urea, creatinine, C-reactive protein, and malondialdehyde levels, and a decrease in reduced glutathione levels and glutathione peroxidase and catalase (CAT) activities were seen while tumor necrosis factor-α, interleukin-6 (IL-6), cyclooxygenase-2, nuclear factor kappa B levels were found to be increased. However, the safranal had a regulatory effect on all the values, except IL-6 and CAT, and blood parameters. Moreover, histopathological examination revealed that safranal reduced inflammatory cell infiltration and edema.
Collapse
Affiliation(s)
- Mustafa Cellat
- Department of Physiology, Faculty of Veterinary Medicine, Hatay Mustafa Kemal University, Hatay, Türkiye
| | - Cafer T İşler
- Department of Surgery, Faculty of Veterinary Medicine, Hatay Mustafa Kemal University, Hatay, Türkiye
| | - Tuncer Kutlu
- Department of Pathology, Faculty of Veterinary Medicine, Hatay Mustafa Kemal University, Hatay, Türkiye
| | - Müslüm Kuzu
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Karabuk University, Karabuk, Türkiye
| | - Muhammed Etyemez
- Department of Physiology, Faculty of Veterinary Medicine, Hatay Mustafa Kemal University, Hatay, Türkiye
| | - Halil Alakuş
- Department of Surgery, Faculty of Veterinary Medicine, Hatay Mustafa Kemal University, Hatay, Türkiye
| | - Mehmet Güvenç
- Department of Physiology, Faculty of Veterinary Medicine, Hatay Mustafa Kemal University, Hatay, Türkiye
| |
Collapse
|
17
|
Ma X, Zhang X, Kong Y, Su B, Wu L, Liu D, Wang X. Therapeutic effects of Panax notoginseng saponins in rheumatoid arthritis: network pharmacology and experimental validation. Bioengineered 2022; 13:14438-14449. [PMID: 36694450 PMCID: PMC9995134 DOI: 10.1080/21655979.2022.2086379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Panax notoginseng saponins (PNS) have been reported to have good anti-inflammatory effects. However, the anti-inflammatory effect mechanism in rheumatoid arthritis (RA) remains unknown. The focus of this research was to investigate the molecular mechanism of PNS in the treatment of RA. The primary active components of PNS were tested utilizing the Traditional Chinese Medicine Systems Pharmacology Database (TCMSP) and Analysis Platform based on oral bioavailability and drug-likeness. The target databases for knee osteoarthritis were created using GeneCards and Online Mendelian Inheritance in Man (OMIM). The visual interactive network structure 'active component - action target - illness' was created using Cytoscape software. A protein interaction network was built, and associated protein interactions were analyzed using the STRING database. The key targets were analyzed using Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and Gene Ontology (GO) biological process enrichment analyses. The effects of PNS on cell growth were studied in human umbilical vein endothelial cells (HUVECs) treated with various doses of PNS, and the optimum concentration of PNS was identified. PNS was studied for its implication on angiogenesis and migration. The active components of PNS had 114 common targets, including cell metabolism and apoptosis, according to the network analysis. The therapeutic effects of the PNS components were suggested to be mediated through apoptotic and cytokine signaling pathways. In vitro, PNS therapy boosted HUVEC proliferation. Wound healing, Boyden chamber and tube formation tests suggested that PNS may increase HUVEC activity and capillary-like tube branching. This study clarified that for the treatment of RA, PNS has multisystem, multicomponent, and multitargeted properties.
Collapse
Affiliation(s)
- Xinnan Ma
- Department of Orthopedic Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Xin Zhang
- Department of Orthopedic Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yuanhang Kong
- Department of Orthopedic Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Bo Su
- Department of Orthopedic Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Leilei Wu
- Department of Orthopedic Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Daqian Liu
- Department of Orthopedic Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Xintao Wang
- Department of Orthopedic Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
18
|
Peng Y, Bu L, Zhang X, Ji Z, Xie H, Liang G. Identification and molecular mechanism of a tri-peptide inhibitor targeting iNOS from duck embryo protein hydrolysates by experimental and bioinformatics studies. Bioorg Chem 2022; 122:105736. [DOI: 10.1016/j.bioorg.2022.105736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 03/04/2022] [Accepted: 03/08/2022] [Indexed: 11/29/2022]
|
19
|
Tossetta G, Fantone S, Licini C, Marzioni D, Mattioli-Belmonte M. The multifaced role of HtrA1 in the development of joint and skeletal disorders. Bone 2022; 157:116350. [PMID: 35131488 DOI: 10.1016/j.bone.2022.116350] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/21/2022] [Accepted: 02/01/2022] [Indexed: 12/15/2022]
Abstract
HtrA1 (High temperature requirement A1) family proteins include four members, widely conserved from prokaryotes to eukaryotes, named HtrA1, HtrA2, HtrA3 and HtrA4. HtrA1 is a serine protease involved in a variety of biological functions regulating many signaling pathways degrading specific components and playing key roles in many human diseases such as neurodegenerative disorders, pregnancy complications and cancer. Due to its role in the breakdown of many ExtraCellular Matrix (ECM) components of articular cartilage such as fibronectin, decorin and aggrecan, HtrA1 encouraged many researches on studying its role in several skeletal diseases (SDs). These studies were further inspired by the fact that HtrA1 is able to regulate the signaling of one of the most important cytokines involved in SDs, the TGFβ-1. This review aims to summarize the data currently available on the role of HtrA1 in skeletal diseases such as Osteoporosis, Rheumatoid Arthritis, Osteoarthritis and Intervertebral Disc Degeneration (IDD). The use of HtrA1 as a marker of frailty in geriatric medicine would represent a powerful tool for identifying older individuals at risk of developing skeletal disorders, evaluating an appropriate intervention to improve quality care in these people avoiding or improving age-related SDs in the elderly population.
Collapse
Affiliation(s)
- Giovanni Tossetta
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126 Ancona, Italy; Clinic of Obstetrics and Gynaecology, Department of Clinical Sciences, Università Politecnica delle Marche, Salesi Hospital, Azienda Ospedaliero Universitaria, Ancona, Italy.
| | - Sonia Fantone
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Caterina Licini
- Department of Clinical and Molecular Sciences (DISCLIMO), Università Politecnica delle Marche, Via Tronto 10/a, Ancona 60126, Italy
| | - Daniela Marzioni
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Monica Mattioli-Belmonte
- Department of Clinical and Molecular Sciences (DISCLIMO), Università Politecnica delle Marche, Via Tronto 10/a, Ancona 60126, Italy
| |
Collapse
|
20
|
Guo RB, Zhang XY, Yan DK, Yu YJ, Wang YJ, Geng HX, Wu YN, Liu Y, Kong L, Li XT. Folate-modified triptolide liposomes target activated macrophages for safe rheumatoid arthritis therapy. Biomater Sci 2021; 10:499-513. [PMID: 34904598 DOI: 10.1039/d1bm01520f] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease characterized by synovial joint hyperplasia, joint inflammation, cartilage erosion and bone destruction. Macrophages play an essential role in the pathogenesis of RA, and folate receptor β (FR-β) is highly expressed on the surface of activated synovial macrophages in RA patients. Triptolide (TP) has anti-inflammatory properties, and it can protect the cartilage matrix, but its clinical application has been limited due to poor solubility, low bioavailability and systemic toxicity. Therefore, we constructed folate-modified triptolide liposomes (FA-TP-Lips) to target macrophages, thereby treating RA in a safe and effective way. The experiments indicated that FA-TP-Lips had properties of small particle size, uniform particle size distribution, high drug encapsulation and long circulation. Furthermore, FA-TP-Lips showed reduced cytotoxicity, increased cellular uptake and significant anti-inflammatory effects in vitro. It also inhibited osteoclastogenesis. In vivo experiments revealed that liposomes could prolong the circulation of TP in the body, as well as exhibit significant cartilage-protective and anti-inflammatory effects with lower toxicity compared with the free TP group, thereby providing a promising new approach for the treatment of RA.
Collapse
Affiliation(s)
- Rui-Bo Guo
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Shengming 1 Road 77, Double D port, Dalian 116600, China.
| | - Xin-Yue Zhang
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Shengming 1 Road 77, Double D port, Dalian 116600, China.
| | - De-Kang Yan
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Shengming 1 Road 77, Double D port, Dalian 116600, China.
| | - Ying-Jie Yu
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Shengming 1 Road 77, Double D port, Dalian 116600, China.
| | - Yu-Jia Wang
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Shengming 1 Road 77, Double D port, Dalian 116600, China.
| | - Hong-Xia Geng
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Shengming 1 Road 77, Double D port, Dalian 116600, China.
| | - Ya-Nan Wu
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Shengming 1 Road 77, Double D port, Dalian 116600, China.
| | - Yang Liu
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Shengming 1 Road 77, Double D port, Dalian 116600, China.
| | - Liang Kong
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Shengming 1 Road 77, Double D port, Dalian 116600, China.
| | - Xue-Tao Li
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Shengming 1 Road 77, Double D port, Dalian 116600, China.
| |
Collapse
|
21
|
Lin J, Sun AR, Li J, Yuan T, Cheng W, Ke L, Chen J, Sun W, Mi S, Zhang P. A Three-Dimensional Co-Culture Model for Rheumatoid Arthritis Pannus Tissue. Front Bioeng Biotechnol 2021; 9:764212. [PMID: 34869276 PMCID: PMC8638776 DOI: 10.3389/fbioe.2021.764212] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/27/2021] [Indexed: 11/13/2022] Open
Abstract
Three-dimensional (3D) co-culture models have closer physiological cell composition and behavior than traditional 2D culture. They exhibit pharmacological effects like in vivo responses, and therefore serve as a high-throughput drug screening model to evaluate drug efficacy and safety in vitro. In this study, we created a 3D co-culture environment to mimic pathological characteristics of rheumatoid arthritis (RA) pannus tissue. 3D scaffold was constructed by bioprinting technology with synovial fibroblasts (MH7A), vascular endothelial cells (EA.hy 926) and gelatin/alginate hydrogels. Cell viability was observed during 7-day culture and the proliferation rate of co-culture cells showed a stable increase stage. Cell-cell interactions were evaluated in the 3D printed scaffold and we found that spheroid size increased with time. TNF-α stimulated MH7A and EA.hy 926 in 3D pannus model showed higher vascular endothelial growth factor (VEGF) and angiopoietin (ANG) protein expression over time. For drug validation, methotrexate (MTX) was used to examine inhibition effects of angiogenesis in 3D pannus co-culture model. In conclusion, this 3D co-culture pannus model with biological characteristics may help the development of anti-RA drug research.
Collapse
Affiliation(s)
- Jietao Lin
- Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Science, Shenzhen, China.,University of Chinese Academy of Sciences, Beijing, China.,Shenzhen Engineering Research Center for Medical Bioactive Materials, Shenzhen, China
| | - Antonia RuJia Sun
- Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Science, Shenzhen, China.,University of Chinese Academy of Sciences, Beijing, China.,Shenzhen Engineering Research Center for Medical Bioactive Materials, Shenzhen, China
| | - Jian Li
- Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Science, Shenzhen, China.,University of Chinese Academy of Sciences, Beijing, China.,Shenzhen Engineering Research Center for Medical Bioactive Materials, Shenzhen, China
| | - Tianying Yuan
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, China
| | - Wenxiang Cheng
- Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Science, Shenzhen, China.,University of Chinese Academy of Sciences, Beijing, China.,Shenzhen Engineering Research Center for Medical Bioactive Materials, Shenzhen, China
| | - Liqing Ke
- Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Science, Shenzhen, China.,University of Chinese Academy of Sciences, Beijing, China.,Shenzhen Engineering Research Center for Medical Bioactive Materials, Shenzhen, China
| | - Jianhai Chen
- Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Science, Shenzhen, China.,University of Chinese Academy of Sciences, Beijing, China.,Shenzhen Engineering Research Center for Medical Bioactive Materials, Shenzhen, China
| | - Wei Sun
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, China
| | - Shengli Mi
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, China
| | - Peng Zhang
- Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Science, Shenzhen, China.,University of Chinese Academy of Sciences, Beijing, China.,Shenzhen Engineering Research Center for Medical Bioactive Materials, Shenzhen, China
| |
Collapse
|
22
|
Si M, Ma Z, Zhang J, Li X, Li R, Wang C, Jia H, Luo S. Qingluoyin granules protect against adjuvant-induced arthritis in rats via downregulating the CXCL12/CXCR4-NF-κB signalling pathway. PHARMACEUTICAL BIOLOGY 2021; 59:1441-1451. [PMID: 34693865 PMCID: PMC8547818 DOI: 10.1080/13880209.2021.1991386] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 09/02/2021] [Accepted: 10/05/2021] [Indexed: 06/13/2023]
Abstract
CONTEXT Qingluoyin (QLY) is a traditional Chinese medicine (TCM) formula which has been used in treating human rheumatoid arthritis (RA) for years in China. OBJECTIVE This study investigates the effect of QLY granules on adjuvant arthritis (AA) and the possible mechanism. MATERIALS AND METHODS Sprague-Dawley (SD) rats were injected with Complete Freund's adjuvant (CFA) to induce the AA model. After the onset of arthritis, rats received intragastric administrations of the QLY granules (1.35, 2.70, and 5.40 g/kg) or Tripterygium glycosides (TG) tablets (positive drug, 10 mg/kg) for 14 d. After 28 d immunization, the symptoms, inflammatory parameters and molecular mechanisms were investigated. RESULTS In the QLY granule (1.35, 2.70, and 5.40 g/kg) therapy groups, the arthritis index decreased to 6.30 ± 2.06, 5.80 ± 1.55, 5.30 ± 1.16 compared with the model (9.00 ± 3.01), paw swelling decreased to 1.56 ± 0.40, 1.28 ± 0.38, 1.12 ± 0.41 mL compared with the model (2.22 ± 0.73 mL). QLY granules (1.35, 2.70 and 5.40 g/kg) significantly reduced the thymus and the spleen indexes, inhibited the production of pro-inflammatory cytokines, and alleviated the pathological changes of joints compared with the model group. Furthermore, the treatment of QLY granules (2.70 and 5.40 g/kg) markedly inhibited CXCL12, CXCR4 (in spleen and synovium) and p-NF-κB p65 (in synovium) protein expression of AA rats. CONCLUSIONS QLY granules have obvious therapeutic effects on AA rats, which may be associated with downregulating the CXCL12/CXCR4-NF-κB signalling pathway. QLY granules can be used as a candidate for the treatment of RA, which deserves further study.
Collapse
Affiliation(s)
- Min Si
- Anhui Academy of Medical Sciences, Hefei, Anhui, China
| | - Zheng Ma
- Anhui Academy of Medical Sciences, Hefei, Anhui, China
| | - Jie Zhang
- Anhui Academy of Medical Sciences, Hefei, Anhui, China
| | - Xinwei Li
- Anhui Academy of Medical Sciences, Hefei, Anhui, China
| | - Rui Li
- Anhui Academy of Medical Sciences, Hefei, Anhui, China
| | - Chao Wang
- Anhui Academy of Medical Sciences, Hefei, Anhui, China
| | - Huiyu Jia
- Anhui Academy of Medical Sciences, Hefei, Anhui, China
| | - Shengyong Luo
- Anhui Academy of Medical Sciences, Hefei, Anhui, China
| |
Collapse
|
23
|
Zhang X, Zhang M, Wang Z, Zhu N, Zhang J, Sha Z, Li Z, Huang X. A review of the traditional uses, phytochemistry, pharmacology and quality control of the ethnic medicinal plant Persicaria orientalis (L.) Spach in China. JOURNAL OF ETHNOPHARMACOLOGY 2021; 280:113521. [PMID: 33127561 DOI: 10.1016/j.jep.2020.113521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 10/19/2020] [Accepted: 10/24/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Persicaria orientalis (L.) Spach (syn. Polygonum orientale L.) is a potent medicinal herb widely used in many ethnic groups, such as the Han, Tibetan, Mongolian, Zhuang, Miao, Yao, Yi, Korean, Dong, Hani, Lisu, Naxi and She people in China. Aims of the review: This article aims to present the research progress on P. orientalis, which is helpful to understand the multi-purpose of Chinese herbal medicine (CHM) and prompt its medicinal value. MATERIALS AND METHODS Information on P. orientalis was obtained from published materials, including monographs on medicinal plants, ancient and modern recorded classics, pharmacopoeias and electronic databases, such as Web of Science, Science Direct, Springer, AGRIS, Europe PMC, SCI Finder, PubMed, CNKI, Wanfang DATA, J-STAGE, classical treatises of modern pharmaceutical science and Flora Reipublicae Popularis Sinicae (FRPS). RESULTS Clinical applications of traditional medicine of P. orientalis have therapeutic effects for dispelling rheumatism, promoting digestion, aiding diuresis and activating blood circulation. A total of 153 chemical constituents have been identified from P. orientalis, including flavonoids, carboxylic acids, phenolic acids, amino acids, hydrocarbons, chromones, lignans, volatile oils, amides and other components. Its active ingredients have a wide range of pharmacological effects, such as anti-oxidative, anti-aging, anti-inflammation, analgesia, anti-myocardial ischemia, anti-abortion, and anti-rheumatoid arthritis, as well as protective effects on cerebral ischemia and liver injury. By establishing stable detection methods, the quality standards of P. orientalis medicinal materials have been guaranteed, such as determination of the iconic components, harvesting periods and optimization of specific components extraction processes. CONCLUSIONS P. orientalis has different pharmacological activities based on the diversity of chemical constituents. However, the existing reports mainly focus on the extracts, and these studies on its corresponding compounds are not clear enough. The information suggests that P. orientalis has good potential medicinal value, and more attention should be paid to further explore its bioactive components.
Collapse
Affiliation(s)
- Xiaorui Zhang
- School of Pharmacy, Minzu University of China, Beijing, 100081, China
| | - Mingshuo Zhang
- School of Pharmacy, Minzu University of China, Beijing, 100081, China
| | - Zhixin Wang
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing, 100191, China
| | - Na Zhu
- School of Pharmacy, Minzu University of China, Beijing, 100081, China
| | - Jinfang Zhang
- School of Pharmacy, Minzu University of China, Beijing, 100081, China
| | - Zijun Sha
- School of Pharmacy, Minzu University of China, Beijing, 100081, China
| | - Zhiyong Li
- School of Pharmacy, Minzu University of China, Beijing, 100081, China.
| | - Xiulan Huang
- School of Pharmacy, Minzu University of China, Beijing, 100081, China.
| |
Collapse
|
24
|
Gonçalves AC, Flores-Félix JD, Costa AR, Falcão A, Alves G, Silva LR. Hepatoprotective Effects of Sweet Cherry Extracts (cv. Saco). Foods 2021; 10:foods10112623. [PMID: 34828905 PMCID: PMC8621173 DOI: 10.3390/foods10112623] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 10/26/2021] [Accepted: 10/26/2021] [Indexed: 12/16/2022] Open
Abstract
Cancer is the second cause of death worldwide. Among cancers, hepatocellular carcinoma is one of the most prevalent. Evidence indicates that the daily consumption of fruits and vegetables can prevent the onset of various cancers due to the presence of bioactive compounds. Sweet cherries are known for their richness in phenolics, including anthocyanins, which are the major constituents, and presumably, the key contributors to their biological activity. Therefore, the present study aimed to evaluate the effects of three different cherry fractions on human hepatocellular carcinoma (HepG2) cells viability and effectiveness to improve the redox status of these cells under oxidative damage induced by nitric oxide radicals and hydrogen peroxide. Phenolic characterization of fractions was performed by Fourier transform infrared spectroscopy. The obtained results indicated that enriched phenolic fractions of sweet cherries (cv. Saco, can impair cell viability and suppress cells growth after 72 h of exposure, promoting necrosis at the highest tested concentrations (>50 µg/mL). Additionally, fractions also showed the capacity to protect these cells against oxidative injury by capturing radicals before they can attack cells’ membrane and by modulating reactive oxygen and nitrogen species generation, as demonstrated by bioinformatic tools.
Collapse
Affiliation(s)
- Ana C. Gonçalves
- CICS–UBI—Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal; (A.C.G.); (J.D.F.-F.); (A.R.C.); (G.A.)
- CIBIT—Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, 3000-548 Coimbra, Portugal;
| | - José D. Flores-Félix
- CICS–UBI—Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal; (A.C.G.); (J.D.F.-F.); (A.R.C.); (G.A.)
| | - Ana R. Costa
- CICS–UBI—Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal; (A.C.G.); (J.D.F.-F.); (A.R.C.); (G.A.)
| | - Amílcar Falcão
- CIBIT—Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, 3000-548 Coimbra, Portugal;
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Gilberto Alves
- CICS–UBI—Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal; (A.C.G.); (J.D.F.-F.); (A.R.C.); (G.A.)
| | - Luís R. Silva
- CICS–UBI—Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal; (A.C.G.); (J.D.F.-F.); (A.R.C.); (G.A.)
- CPIRN-UDI/IPG—Centro de Potencial e Inovação em Recursos Naturais, Unidade de Investigação para o Desenvolvimento do Interior do Instituto Politécnico da Guarda, 6300-559 Guarda, Portugal
- Correspondence: ; Tel.: +351-275-329-077
| |
Collapse
|
25
|
Gou K, Wang Y, Guo X, Wang Y, Bian Y, Zhao H, Guo Y, Pang Y, Xie L, Li S, Li H. Carboxyl-functionalized mesoporous silica nanoparticles for the controlled delivery of poorly water-soluble non-steroidal anti-inflammatory drugs. Acta Biomater 2021; 134:576-592. [PMID: 34280558 DOI: 10.1016/j.actbio.2021.07.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/06/2021] [Accepted: 07/12/2021] [Indexed: 11/27/2022]
Abstract
The purpose of this study was to investigate the delivery of poorly water-soluble non-steroidal anti-inflammatory drugs (NSAIDs) by carboxyl-functionalized mesoporous silica nanoparticles (MSN-COOH) with high specific surface area (SBET). In this study, MSN-COOH was prepared by collaborative self-assembly using cetyltrimethylammonium bromide (CTAB) as template and hydrolysis (3-triethoxyl-propyl) succinic anhydride (TESPSA) as co-structure auxiliary directing agent (CSDA). The drug delivery systems were constructed with NSAIDs including Nimesulide (NMS) and Indomethacin (IMC) as model drugs. Moreover, the characterization techniques, hemolysis and bio-adsorption testes, in vitro drug release and in vivo biological studies of MSN-COOH were also carried out. The characterization results showed that MSN-COOH is spheres with clearly visible irregular honeycomb nanopores and rough surface (SBET: 1257 m2/g, pore volume (VP): 1.17 cm3/g). After loading NMS/IMC into MSN-COOH with high drug loading efficiency (NMS: 98.7 and IMC: 98.2%), most crystalline NMS and IMC converted to amorphous phase confirmed using differential scanning calorimeter (DSC) and X-ray power diffraction (XRD) analysis. Meanwhile, MSN-COOH significantly increased the dissolution of NMS and IMC compared with non-functionalized mesoporous silica nanoparticles (MSN), which was also confirmed by wettability experiments. The results of in vivo biological effects showed that MSN-COOH had higher bioavailability of NMS and IMC than MSN, and exerted strong anti-inflammatory effects by delivering more NMS and IMC in vivo. STATEMENT OF SIGNIFICANCE: This study successfully prepared MSNs-COOH (mesoporous silica nanoparticles modified with negatively charged carboxyl groups on the surface and in the pores) with high specific surface area and pore volume by using the negatively charged carboxyl group (hyd-TESPSA) and the positively charged CTAB self-assembled through electrostatic attraction under alkaline conditions. The drug delivery systems were constructed with Nimesulide (NMS) and Indomethacin (IMC) as model drugs. The results showed MSNs-COOH had high drug loading capacity and also exhibited good in vitro drug release properties. Interestingly, NMS loaded MSNs-COOH also had a potential pH responsive release effect. In vivo biological studies revealed that NMS/IMC loaded MSNs-COOH could evidently improve the bioavailability and played the strong anti-inflammatory effects.
Collapse
|
26
|
Chen K, Qu J, Chen H, Wang J, Hua H, Li J, Zhou L, Zhang W, Li Z. Investigating the medicinal potential, material basis and mechanism of Polygoni Orientalis Fructus based on multi-technology integrated network pharmacology. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 91:153685. [PMID: 34339945 DOI: 10.1016/j.phymed.2021.153685] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/20/2021] [Accepted: 07/17/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Polygoni Orientalis Fructus (POF) refers to the dried ripe fruit of Polygonum orientale L. which has a long historical application in clinic for treatment of various conditions in China. However, its chemical constituents, pharmacological effects and their coupled correlation have not been intensively investigated. PURPOSE In present work, we aimed to elucidate the medicinal material basis, optimum indication and corresponding therapeutic mechanism of POF. METHODS The main phytochemical ingredients in POF were characterized by liquid chromatography-mass spectrometry (LC-MS) analysis. The optimum medicinal potential and corresponding molecular mechanism of POF were deduced based on integrated statistic pattern recognition and network pharmacology. The deduced pharmacologic efficacy and mechanism of POF were further validated through in vitro study in free-fatty acid (FFA)-induced LO2 cells. RESULTS Total 30 main phytochemical ingredients were identified in POF in which 18 ingredients were screened to yield 277 potential targets. Based on analyzing the quantitative data matrix of drug-disease targets by statistic pattern recognition, non-alcoholic fatty liver disease (NAFLD) was screened as the optimum indication of POF from 23 candidate diseases. Promising action targets (PPARG, IL6, TNF, IL1B, IKBKB, RELA, etc.) and signaling pathways (AMPK signaling pathway, NF-κB signaling pathway, etc.) were screened and refined to elucidate the therapeutic mechanism of POF against NAFLD based on network pharmacology. In vitro study demonstrated that POF effectively alleviated FFA-induced steatosis, oxidative stress, mitochondrial dysfunction and inflammation, and these beneficial effects were attributed to the activation of AMPK signaling pathway and suppression of NF-κB signaling pathway. CONCLUSION POF could be exploited as a promising phytotherapy in the treatment of NAFLD.
Collapse
Affiliation(s)
- Kai Chen
- Department of Pharmacy, The Hospital Affiliated to Medical School of Yangzhou University (Taizhou People's Hospital), Taizhou, China
| | - Jianjiang Qu
- Department of Pharmacy, The Hospital Affiliated to Medical School of Yangzhou University (Taizhou People's Hospital), Taizhou, China
| | - Hongwei Chen
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China
| | - Jue Wang
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China
| | - Huilian Hua
- Department of Pharmacy, The Hospital Affiliated to Medical School of Yangzhou University (Taizhou People's Hospital), Taizhou, China
| | - Jindong Li
- Department of Pharmacy, The Hospital Affiliated to Medical School of Yangzhou University (Taizhou People's Hospital), Taizhou, China
| | - Lei Zhou
- Jiangsu Engineering Research Center of Cardiovascular Drugs Targeting Endothelial Cells, College of Health Sciences, School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Wei Zhang
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China.
| | - Zheng Li
- Jiangsu Engineering Research Center of Cardiovascular Drugs Targeting Endothelial Cells, College of Health Sciences, School of Life Science, Jiangsu Normal University, Xuzhou, China; State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China.
| |
Collapse
|
27
|
Yoshino Y, Marunaka K, Kobayashi M, Matsunaga H, Shu S, Matsunaga T, Ikari A. Protective Effects of Ethanol Extract of Brazilian Green Propolis and Apigenin against Weak Ultraviolet Ray-B-Induced Barrier Dysfunction via Suppressing Nitric Oxide Production and Mislocalization of Claudin-1 in HaCaT Cells. Int J Mol Sci 2021; 22:ijms221910326. [PMID: 34638666 PMCID: PMC8508977 DOI: 10.3390/ijms221910326] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/18/2021] [Accepted: 09/23/2021] [Indexed: 12/12/2022] Open
Abstract
Once weak ultraviolet ray-B (UVB) irradiates the skin cells, the generation of reactive nitrogen species (RNS), but not reactive oxygen species (ROS), is stimulated for the mislocalization of claudin-1 (CLDN1), an essential protein for forming tight junctions (TJs). Since our skin is constantly exposed to sunlight throughout our lives, an effective protection strategy is needed to maintain the skin barrier against weak UVB. In the present study, we investigated whether an ethanol extract of Brazilian green propolis (EBGP) and flavonoids had a protective effect against weak UVB irradiation-induced barrier dysfunction in human keratinocyte-derived HaCaT cells. A pretreatment with EBGP suppressed TJ permeability, RNS production, and the nitration level of CLDN1 in the weak UVB-exposed cells. Among the propolis components, apigenin and apigenin-like flavonoids have potent protective effects against NO production and the mislocalization of CLDN1 induced by UVB. The analyses between structures and biological function revealed that the chemically and structurally characteristic flavonoids with a hydroxyl group at the 4′ position on the B-ring might contribute to its protective effect on barrier dysfunction caused by weak UVB irradiation. In conclusion, EBGP and its component apigenin protect HaCaT cells from weak UVB irradiation-induced TJ barrier dysfunction mediated by suppressing NO production.
Collapse
Affiliation(s)
- Yuta Yoshino
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu 501-1196, Japan; (Y.Y.); (K.M.); (M.K.); (H.M.); (S.S.)
| | - Kana Marunaka
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu 501-1196, Japan; (Y.Y.); (K.M.); (M.K.); (H.M.); (S.S.)
| | - Mao Kobayashi
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu 501-1196, Japan; (Y.Y.); (K.M.); (M.K.); (H.M.); (S.S.)
| | - Haruka Matsunaga
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu 501-1196, Japan; (Y.Y.); (K.M.); (M.K.); (H.M.); (S.S.)
| | - Shokoku Shu
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu 501-1196, Japan; (Y.Y.); (K.M.); (M.K.); (H.M.); (S.S.)
| | - Toshiyuki Matsunaga
- Education Center of Green Pharmaceutical Sciences, Gifu Pharmaceutical University, Gifu 502-8585, Japan;
| | - Akira Ikari
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu 501-1196, Japan; (Y.Y.); (K.M.); (M.K.); (H.M.); (S.S.)
- Correspondence: ; Tel./Fax: +81-(58)-2308124
| |
Collapse
|
28
|
Wei W, Lu W, Chen X, Yang Y, Zheng M. Use of Network Pharmacology to Investigate the Mechanism of the Compound Xuanju Capsule in the Treatment of Rheumatoid Arthritis. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5568791. [PMID: 34414237 PMCID: PMC8370818 DOI: 10.1155/2021/5568791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 07/24/2021] [Indexed: 12/03/2022]
Abstract
OBJECTIVE To clarify the therapeutic mechanisms of compound Xuanju capsule-treated rheumatoid arthritis (RA) based on network pharmacology tactics. METHOD The TCMSP, TCMID and STITCH databases were used to screen the active ingredients and targets in the compound Xuanju capsule; the OMIM, TTD, PharmGKB and GeneCards databases were applied to screen the RA-related disease targets. Then, the obtained targets were imported into Cytoscape 3.7.1 software to construct the active ingredient-target network and the RA-related disease-target network. The active ingredient-target PPI network, the RA-related disease-target PPI network and the common target PPI network were built by using the STRING platform and Cytoscape 3.7.1 software. The GO and KEGG analyses of the common targets were analyzed by using the Metascape and Bioinformatics online tools. RESULTS A total of 51 active ingredients and 513 corresponding ingredient targets were harvested from the compound Xuanju capsule; 641 RA-related disease targets were obtained. After two PPI networks were constructed and merged, 116 RA-related targets of compound Xuanju capsules were identified and analyzed. 116 RA-related targets of compound Xuanju capsules are mainly involved in the biological processes and molecular functions, such as the cytokine-mediated signaling pathways, the response to lipopolysaccharide and the blood vascular development, the cytokine activity, the cytokine receptor binding and the receptor regulator activity. Furthermore, 116 RA-related targets of compound Xuanju capsules are concentrated in signaling pathways such as the IL-17, TNF, Th17 cell differentiation, Toll receptor and RA signaling pathway. CONCLUSION The compound Xuanju capsule had the action characteristics of multiple components, multiple targets, and multiple pathways in the treatment of RA, which might primarily reduce the release of proinflammatory factors (such as IL-6 and TNF-α) and increase the production of anti-inflammatory factors (such as IL-10) by regulating inflammation-related signaling pathways (such as IL-17), thereby alleviating the inflammatory damage and improving the bone tissue repair.
Collapse
Affiliation(s)
- Wenyang Wei
- Academic Research and Development Center of Zhejiang Strong Pharmaceutical Co., Ltd., Hangzhou, 310053 Zhejiang, China
| | - Wanpeng Lu
- Academic Research and Development Center of Zhejiang Strong Pharmaceutical Co., Ltd., Hangzhou, 310053 Zhejiang, China
| | - Xiaolong Chen
- Academic Research and Development Center of Zhejiang Strong Pharmaceutical Co., Ltd., Hangzhou, 310053 Zhejiang, China
| | - Yunfeng Yang
- Academic Research and Development Center of Zhejiang Strong Pharmaceutical Co., Ltd., Hangzhou, 310053 Zhejiang, China
| | - Mengkai Zheng
- Academic Research and Development Center of Zhejiang Strong Pharmaceutical Co., Ltd., Hangzhou, 310053 Zhejiang, China
| |
Collapse
|
29
|
Zhang Z, Cao P, Fang M, Zou T, Han J, Duan Y, Xu H, Yang X, Li QS. Design, synthesis, and SAR study of novel 4,5-dihydropyrazole-Thiazole derivatives with anti-inflammatory activities for the treatment of sepsis. Eur J Med Chem 2021; 225:113743. [PMID: 34403978 DOI: 10.1016/j.ejmech.2021.113743] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/01/2021] [Accepted: 08/02/2021] [Indexed: 12/24/2022]
Abstract
Systemic inflammatory response syndrome is a major feature of sepsis which is one of the major causes of death worldwide. It has been reported that 3,5-diaryl-4,5-dihydropyrazole and thiazole derivatives have many biological functions, especially in the aspect of anti-inflammation. According to the strategy of pharmacophore combination, we introduced thiazole moiety into dihydropyrazole skeleton to design and synthesize a novel series of 2-(3,5-diphenyl-4,5-dihydro-1H-pyrazol-1-yl)-4-methylthiazole derivatives, and evaluated their anti-inflammatory activities for sepsis treatment. Preliminary structure-activity relationship (SAR) analysis was conducted by their inhibitory activities against nitric oxide (NO) release in LPS-induced RAW264.7 cells, and the optimal compound E26 exhibited more potent anti-inflammatory activity than the positive control treatment indomethacin and dexamethasone. In further mechanism study, our results showed that compound E26 significantly suppressed the production of interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), NO and inhibited the expressions of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2) through blocking MAPKs signaling pathway. In addition, in vivo administration of compound E26 resulted in a significant improvement of LPS-induced sepsis in C57BL/6J mice, with reducing toxicity in multiple organs. Taken together, this study demonstrated the compound E26 could be a promising agent for the treatment of sepsis.
Collapse
Affiliation(s)
- Zhen Zhang
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Peichang Cao
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Mengyuan Fang
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Tingfeng Zou
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Jihong Han
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Yajun Duan
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Huajian Xu
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Xiaoxiao Yang
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China.
| | - Qing-Shan Li
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China.
| |
Collapse
|
30
|
Kamal RM, Sabry MM, Aly ZY, Hifnawy MS. Phytochemical and In-Vivo Anti-Arthritic Significance of Aloe thraskii Baker in Combined Therapy with Methotrexate in Adjuvant-Induced Arthritis in Rats. Molecules 2021; 26:molecules26123660. [PMID: 34203991 PMCID: PMC8232661 DOI: 10.3390/molecules26123660] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/03/2021] [Accepted: 06/13/2021] [Indexed: 01/10/2023] Open
Abstract
Unlike other widely known Aloe species used for treatment of rheumatoid arthritis, this species suffers from a lack of sufficient studies on its biological and chemical characters. This is what drove us to perform this work to evaluate the in vivo anti-arthritic potential of its leaf ethanolic extract. The in vivo anti-arthritic activity of the leaf ethanolic extract at 100 and 200 mg/kg/day b.wt. was evaluated alone and in combination with methotrexate (MTX) using complete Freund's adjuvant. Serum levels of rheumatoid factor, anti-cyclic citrullinated peptide (anti-CCP), cytokines pro-inflammatory marker, inflammatory mediator serum levels, and oxidative stress mediators were analyzed, in addition to liver function. Orientin, isoorientin, β-sitosterol, its palmitate and its glucoside were isolated. The combined therapy of MTX and the leaf ethanolic extract (especially at 200 mg/kg b.wt.) group showed better activity compared to MTX alone. Moreover, the combined therapy provided additional benefits in lowering the liver toxicity by comparison to MTX alone. We concluded that a synergetic combination of the leaf ethanolic extract and MTX is beneficial in the management of rheumatoid arthritis with fewer side effects on liver function, as well as the possibility of the leaf extract to stand alone as an effective natural anti-arthritic agent.
Collapse
Affiliation(s)
- Rania M. Kamal
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt; (R.M.K.); (M.S.H.)
| | - Manal M. Sabry
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt; (R.M.K.); (M.S.H.)
- Correspondence: ; Tel.: +20-201001918735
| | - Zeinab Y. Aly
- Department of Biochemistry, National Organization for Drug Control and Research (NODCAR), Giza 35521, Egypt;
| | - Mohamed S. Hifnawy
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt; (R.M.K.); (M.S.H.)
| |
Collapse
|
31
|
Lu Y, Li N, Zhu X, Pan J, Wang Y, Lan Y, Li Y, Wang A, Sun J, Liu C. Comparative analysis of excretion of six major compounds of Polygonum orientale L. extract in urine, feces and bile under physiological and myocardial ischemia conditions in rats using UPLC-MS/MS. Biomed Chromatogr 2021; 35:e5174. [PMID: 33998022 DOI: 10.1002/bmc.5174] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 03/25/2021] [Accepted: 04/19/2021] [Indexed: 11/07/2022]
Abstract
Polygonum orientale L. is a traditional Chinese medicine having extensive pharmacological activities including antimyocardial ischemia (MI) injury properties. Isoorientin, orientin, vitexin, quercitrin, astragalin and protocatechuic acid are the main compounds in P. orientale extract. The aim of this study was to establish an ultra-performance liquid chromatography-tandem mass spectrometry method for the determination of the content of these compounds in urine, feces and bile samples simultaneously and application of the method in a comparative excretion study in normal and MI model rats after oral administration of P. orientale extract. Chromatographic seperation was conducted on an Agilent Eclipse Plus C18 column with the mobile phase consisting of 0.1% formic acid-acetonitrile and 0.1% formic acid-water. Negative ion multiple reaction monitoring mode was used for quantification. The six compounds had good linearity (r ≥ 0.9921) and acceptable accuracy ranging from 10.10 to -5.82% The relative standard deviations of within-day precision and inter-day precision were <10.45 and 13.44%, respectively. The extraction recovery of the six analytes ranged from 80.31 to 101.47% and the matrix effect was 82.56-102.88%, indicating that the preparations of sample collected form urine, feces and bile were stable throughout analysis. The excretion amount of the six analytes increased in both normal and MI model rats' urine, feces and bile in a 24 h period and became stable between 36 and 48 h after administration. The total excretion rate of six compounds was <5% in urine, feces and bile of normal and MI model rats. The excretion peak period for all compounds in MI rats was slower than that in normal rats. This excretion study provides insights for further application and research on P. orientale.
Collapse
Affiliation(s)
- Yuan Lu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China
| | - Na Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China.,School of Pharmacy, Guizhou Medical University, Guiyang, China
| | - Xiaoqin Zhu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China.,School of Pharmacy, Guizhou Medical University, Guiyang, China
| | - Jie Pan
- Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang, China
| | - Yonglin Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China
| | - Yanyu Lan
- Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang, China
| | - Yongjun Li
- Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang, China
| | - Aimin Wang
- Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang, China
| | - Jia Sun
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China
| | - Chunhua Liu
- Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang, China
| |
Collapse
|
32
|
Behl T, Mehta K, Sehgal A, Singh S, Sharma N, Ahmadi A, Arora S, Bungau S. Exploring the role of polyphenols in rheumatoid arthritis. Crit Rev Food Sci Nutr 2021; 62:5372-5393. [PMID: 33998910 DOI: 10.1080/10408398.2021.1924613] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Rheumatoid arthritis (RA) is a chronic, inflammatory and autoimmune disorder which is mainly characterized by inflammation in joints, bone erosions and cartilaginous destruction that leads to joint dysfunction, deformation, and/or permanent functional impairment. The prevalence of RA is increasing, incurring a considerable burden on healthcare systems globally. The exact etiology of RA is unknown, with various pathways implicated in its pathophysiology. Non-steroidal anti-inflammatory drugs (NSAIDs) including celecoxib, diclofenac and ibuprofen, disease-modifying anti-rheumatic drugs (DMARD) including azathioprine, methotrexate and cyclosporine, biological agents including anakinra, infliximab, and rituximab and immunosuppressants are used for symptomatic relief in patients with RA, but these medications have severe adverse effects such as gastric ulcers, hypertension, hepatotoxicity and renal abnormalities which restrict their use in the treatment of RA; new RA treatments with minimal side-effects are urgently required. There is accumulating evidence that dietary polyphenols may show therapeutic efficacy in RA through their antioxidant, anti-inflammatory, apoptotic, and immunosuppressant activities and modulation of the tumor necrosis factor-α (TNF-α), interleukin (IL)-6, mitogen-activated protein kinase (MAPK), IL-1β, c-Jun N-terminal kinase (JNK), and nuclear factor κ light-chain-enhancer of activated B cell (NF-κB) pathways. While resveratrol, genistein, carnosol, epigallocatechin gallate, curcumin, kaempferol, and hydroxytyrosol have also been studied for the treatment of RA, the majority of data are derived from animal models. Here, we review the various pathways involved in the development of RA and the preclinical and clinical data supporting polyphenols as potential therapeutic agents in RA patients. Our review highlights that high-quality clinical studies are required to decisively establish the anti-rheumatic efficacy of polyphenolic compounds.
Collapse
Affiliation(s)
- Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Keshav Mehta
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Neelam Sharma
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Amirhossein Ahmadi
- Faculty of Pharmacy, Mazandaran University of Medial Sciences, Sari, Iran
| | - Sandeep Arora
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| |
Collapse
|
33
|
Liu C, Zhao Q, Zhong L, Li Q, Li R, Li S, Li Y, Li N, Su J, Dhondrup W, Meng X, Zhang Y, Tu Y, Wang X. Tibetan medicine Ershiwuwei Lvxue Pill attenuates collagen-induced arthritis via inhibition of JAK2/STAT3 signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2021; 270:113820. [PMID: 33465441 DOI: 10.1016/j.jep.2021.113820] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 12/18/2020] [Accepted: 01/11/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ershiwuwei Lvxue Pill (ELP, མགྲིན་མཚལ་ཉེར་ལྔ།), a traditional Tibetan medicine preparation, has been used hundreds of years for the clinical treatment of rheumatoid arthritis (RA) in the highland region of Tibet, China. However, the underlying mechanism of its therapeutic effect remains unclear. AIM OF THE STUDY The present study aimed to investigate the potential pharmacological mechanisms of anti-arthritic effect of ELP. MATERIALS AND METHODS The main chemical constituents of ELP were analyzed by ultra-performance liquid chromatography quadrupole-time-flight mass spectrometry (UPLC-Q-TOF-MS). Forty-eight male Wistar rats (220 ± 20 g) were randomly divided into six groups: normal group, collagen-induced arthritis (CIA) group, methotrexate group (1.05 mg/kg), ELP groups (115, 230 and 460 mg/kg). CIA rat models were assigned to evaluate the anti-RA activity of ELP by determining the paws swelling, arthritis score, organ coefficients of spleen and thymus, and histopathological analysis of knee joints of synovial tissues. The levels of TNF-α, IL-10, IL-6 and IL-17 in serum were measured by ELISA. In addition, mRNA and protein expression levels associated with JAK2/STAT3 signaling pathway in synovial tissues of CIA rats were detected by qRT-PCR, immunohistochemistry and Western blot analyses. RESULTS Fourteen main chemical constituents of ELP were quantitatively determined by UPLC-Q-TOF-MS analysis. Treatment with ELP reduced the paw swelling, arthritis score and organ coefficients of spleen and thymus. Histopathological examination revealed the protective effects of ELP on CIA rats with knee joint injury. The levels of serum pro-inflammatory cytokines (TNF-α, IL-6 and IL-17) were markedly reduced while the anti-inflammatory cytokine IL-10 was significantly increased with the treatment of ELP. Further investigations showed ELP down-regulated the mRNA and protein expression levels of Bcl-2, whereas up-regulated Bax, SOCS1 and SOCS3. Meanwhile, the ratios of p-JAK2/JAK2 and p-STAT3/STAT3 proteins from synovial tissues were dramatically decreased with the treatment of ELP, whereas no changes of the mRNA and protein expression levels of JAK2 and STAT3 were observed. CONCLUSION These results indicated that ELP reduced the severity of arthritis and joint swelling, suggesting an antirheumatic effect on CIA rats. The possible mechanism is related to inhibiting inflammatory response and inducing apoptosis in synovial tissues by regulating JAK2/STAT3 signaling pathway. However, further in vivo and in vitro investigations are still needed to clarify the underlying mechanism of ELP in treating RA.
Collapse
Affiliation(s)
- Chuan Liu
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Qian Zhao
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Lu Zhong
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Qiuyue Li
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Rui Li
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Shuang Li
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yangxin Li
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Ning Li
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jinsong Su
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Wüntrang Dhondrup
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xianli Meng
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yi Zhang
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; NMPA Key Laboratory for Quality Evaluation of Traditional Chinese Medicine (Traditional Chinese Patent Medicine), Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Ya Tu
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Development Research Center of Traditional Chinese Medicine, China Academy of Traditional Chinese Medicine, Beijing, 100700, China.
| | - Xiaobo Wang
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
34
|
Cai M, Ni WJ, Han L, Chen WD, Peng DY. Research Progress of Therapeutic Enzymes and Their Derivatives: Based on Herbal Medicinal Products in Rheumatoid Arthritis. Front Pharmacol 2021; 12:626342. [PMID: 33796022 PMCID: PMC8008143 DOI: 10.3389/fphar.2021.626342] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 01/07/2021] [Indexed: 12/19/2022] Open
Abstract
Rheumatoid arthritis (RA) acts as one of the most common, agnogenic and chronic inflammatory-autoimmune disorder which is characterized by persistent synovitis, cartilage destruction, and joint deformities, leads to a wide range of disabilities, and increased mortality, thus imposing enormous burdens. Several drugs with anti-inflammatory and immunomodulatory properties such as celecoxib, diclofenac and methotrexate are being selected as conventional drugs in the allopathic system of medicine for the treatment of RA in clinic. However, there are some serious side effects more or less when using these drugs because of their short poor bioavailability and biological half-life for a long time. These shortcomings greatly promote the exploration and application of new low- or no-toxicity drugs for treating the RA. Meanwhile, a growing number of studies demonstrate that several herbs present certain anti-inflammatory and anti-arthritic activities through different enzymes and their derivatives, which indicate that they are promising therapeutic strategies when targeting these mediators based on herbal medicinal products in RA research. This review article summarizes the roles of the main enzymes and their derivatives during the pathogenesis of RA, and clearly clarifies the explicit and potential targeted actions of herbal medicinal products that have anti-RA activity. Our review provides timely and critical reference for the scientific rationale use of herbal medicinal products, with the increasing basic research and clinical application of herbal medicinal products by patients with RA.
Collapse
Affiliation(s)
- Ming Cai
- Department of Pharmacy, The Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China.,Anhui University of Chinese Medicine, Hefei, China.,Key Laboratory of Chinese Medicinal Formula Research, Anhui University of Chinese Medicine, Hefei, China
| | - Wei-Jian Ni
- School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China.,Department of Pharmacy, Anhui Provincial Hospital, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
| | - Lan Han
- Anhui University of Chinese Medicine, Hefei, China.,Key Laboratory of Chinese Medicinal Formula Research, Anhui University of Chinese Medicine, Hefei, China
| | - Wei-Dong Chen
- Anhui University of Chinese Medicine, Hefei, China.,Key Laboratory of Chinese Medicinal Formula Research, Anhui University of Chinese Medicine, Hefei, China
| | - Dai-Yin Peng
- Anhui University of Chinese Medicine, Hefei, China.,Key Laboratory of Chinese Medicinal Formula Research, Anhui University of Chinese Medicine, Hefei, China
| |
Collapse
|
35
|
Shewaiter MA, Hammady TM, El-Gindy A, Hammadi SH, Gad S. Formulation and characterization of leflunomide/diclofenac sodium microemulsion base-gel for the transdermal treatment of inflammatory joint diseases. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102110] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
36
|
Zeng L, Li C, Jiang H, Chen Y, Li Z, Xu F, Liu R. Total Saponins from Nigella glandulifera Seeds Ameliorate Adjuvant-Induced Rheumatoid Arthritis in Rats by Inhibition of an Inflammatory Response and Bone Erosion. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6613527. [PMID: 33575330 PMCID: PMC7864740 DOI: 10.1155/2021/6613527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/09/2021] [Accepted: 01/13/2021] [Indexed: 12/14/2022]
Abstract
Rheumatoid arthritis (RA) is a widespread inflammatory disease whose clinical manifestations are joint swelling, pain, and disability, affecting approximately 1% of individuals worldwide. Conventional anti-RA drugs currently used in clinic have severe side effects. The present study is aimed at investigating the antiarthritic effects of total saponins from Nigella glandulifera seeds (TSNGS) in rats with adjuvant-induced rheumatoid arthritis (AIA). Arthritis score, paw swelling, and body weight were monitored throughout the period of TSNGS treatment. The histopathological features and levels of cytokines, including IFN-γ, TNF-α, IL-1β, IL-4, IL-6, IL-10, and IL-17A, and OPG/RANKL signaling, were measured to determine the amelioration by TSNGS and its potential mechanisms on the inflammatory response and bone erosion. The differentiation of regulatory T cells (Tregs) in serum was assessed by flow cytometry. The results demonstrate that TSNGS at 10 mg/kg, 50 mg/kg, and 250 mg/kg inhibited AIA-induced clinical score, paw swelling, and histological changes. TSNGS reduced the immune-inflammatory reaction by restoring the secretion and expression of inflammatory cytokines and elevating the proportion of CD4+ CD25+ Tregs, accompanied by an increase in transcription factor Foxp3 levels. TSNGS also displayed bone protection by upregulation of the OPG/RANKL pathway. Collectively, TSNGS inhibited arthritis in AIA rats and so represents a potential novel treatment for RA.
Collapse
Affiliation(s)
- Li Zeng
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Chenyang Li
- Key Laboratory of Uighur Medicine of Xinjiang Uygur Autonomous Region, Xinjiang Institute of Materia Medica, Urumqi 830004, China
| | - Hailun Jiang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yan Chen
- Key Laboratory of Uighur Medicine of Xinjiang Uygur Autonomous Region, Xinjiang Institute of Materia Medica, Urumqi 830004, China
| | - Zhuorong Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Fang Xu
- Key Laboratory of Uighur Medicine of Xinjiang Uygur Autonomous Region, Xinjiang Institute of Materia Medica, Urumqi 830004, China
| | - Rui Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
37
|
Guan F, Wang Q, Bao Y, Chao Y. Anti-rheumatic effect of quercetin and recent developments in nano formulation. RSC Adv 2021; 11:7280-7293. [PMID: 35423269 PMCID: PMC8695102 DOI: 10.1039/d0ra08817j] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 02/01/2021] [Indexed: 12/11/2022] Open
Abstract
Quercetin is a potential anti-rheumatoid drug. Nano formulation strategies could improve its solubility and efficacy.
Collapse
Affiliation(s)
- Feng Guan
- School of Pharmacy
- Heilongjiang University of Chinese Medicine
- Harbin 150040
- P. R. China
| | - Qi Wang
- Norwich Medical School
- University of East Anglia
- Norwich NR4 7UQ
- UK
| | - Yongping Bao
- Norwich Medical School
- University of East Anglia
- Norwich NR4 7UQ
- UK
| | - Yimin Chao
- School of Chemistry
- University of East Anglia
- Norwich NR4 7TJ
- UK
| |
Collapse
|
38
|
Manan M, Saleem U, Akash MS, Qasim M, Hayat M, Raza Z, Ahmad B. Antiarthritic Potential of Comprehensively Standardized Extract of Alternanthera bettzickiana: In Vitro and In Vivo Studies. ACS OMEGA 2020; 5:19478-19496. [PMID: 32803042 PMCID: PMC7424589 DOI: 10.1021/acsomega.0c01670] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 07/21/2020] [Indexed: 05/10/2023]
Abstract
Alternanthera bettzickiana is being used as a folk remedy for treating arthritis by conventional healers in Thailand. The current research was undertaken to explore the antiarthritic potential of A. bettzickiana ethanolic extract (ABEE). Plant characterization, molecular docking, and in vitro and in vivo (ABEE at 250, 500, and 1000 mg/kg was administered orally to rats once daily for 28 days) studies to explore the antiarthritic effect and enzyme-linked immunosorbent assay (ELISA) and real-time polymerase chain reaction (RT-PCR) analyses were performed. Oxidative stress biomarkers (superoxide dismutase (SOD), catalase (CAT), malondialdehyde (MDA)) in the serum and histopathological and radiographic assessment of joints were also carried out. Gallic acid, catechin, chlorogenic acid, sinapic acid, quercetin, and γ- and α-tocopherol were identified in high-performance liquid chromatography (HPLC). Molecular docking revealed a strong interaction between these compounds and cyclooxygenase (COX) enzymes. The extract significantly subdued paw swelling and arthritic scoring, inhibited cachexia, and considerably improved biochemical and hematological modifications. SOD and CAT levels increased and the MDA level decreased in ABEE-treated rats dose-dependently. Radiographic and histopathological analyses also supported the antiarthritic effect of ABEE, which was linked with the downregulation of nuclear factor (NF)-kB, COX-2, interleukin (IL)-6, tumour necrosis factor (TNF)-α, and IL-1β and upregulation of IL-10, I-kB, and IL-4 as compared to disease control rats. Results suggested that A. bettzickiana possessed antiarthritic potential, supporting its folkloric use for treating rheumatoid arthritis.
Collapse
Affiliation(s)
- Maria Manan
- Department
of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Faisalabad 38000, Pakistan
| | - Uzma Saleem
- Department
of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Faisalabad 38000, Pakistan
| | - Muhammad Sajid
Hamid Akash
- Department
of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Faisalabad 38000, Pakistan
| | - Muhammad Qasim
- Department
of Bioinformatics & Biotechnology, Government
College University, Faisalabad, Faisalabad 38000, Pakistan
| | - Muhammad Hayat
- Department
of Biochemistry, Government College University,
Faisalabad, Faisalabad 38000, Pakistan
| | - Zohaib Raza
- Department
of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Faisalabad 38000, Pakistan
| | - Bashir Ahmad
- Riphah
Institute of Pharmaceutical Sciences, Riphah
International University, Lahore, Lahore 54000, Pakistan
| |
Collapse
|
39
|
Li N, Lv T, Pan J, Liu C, Sun J, Lan Y, Wang A, Li Y, Wang Y, Lu Y. Comparative Tissue Distribution of 6 Major Polyphenolic Compounds in Normal and Myocardial Ischemia Model Rats After Oral Administration of the Polygonum orientale L. Extract. Nat Prod Commun 2020. [DOI: 10.1177/1934578x20929447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
A simple, rapid, and selective ultra-performance liquid chromatography-mass spectrometry (MS)/MS method was established to investigate tissue distribution of 6 polyphenolic compounds of Polygonum orientale L. extract in normal and myocardial ischemia (MI) model rat tissues, including isoorientin, orientin, vitexin, quercitrin, astragalin, and protocatechuic acid. An Agilent Eclipse Plus C18 column was used. The mobile phase consisted of acetonitrile and water, both with 0.1% formic acid. Quantification was performed in negative ion multiple reaction monitoring mode. All the analysts had good linearity with r ≥ 0.9912. Accuracy ranged from 12.49% to −13.98% for the 6 compounds; within-day variation (precision) was ≤9.98% and interday precision was ≤11.88%. Extraction recovery of the analysts ranged from 80.55% to 99.92%; the matrix was 81.00%–98.73%. The analyst preparations were stable throughout. The 6 compounds were rapidly distributed in various tissues after oral administration, without accumulation over 12 hours. Compared with normal rats, distributions of 6 compounds in the heart, liver, spleen, lung, kidney, brain, stomach, and intestine in MI model rats were different from those in the normal group. The study provides an insight for further research of P. orientale L.
Collapse
Affiliation(s)
- Na Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China
- School of Pharmacy, Guizhou Medical University, China, Guiyang
| | - Ting Lv
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China
- School of Pharmacy, Guizhou Medical University, China, Guiyang
| | - Jie Pan
- Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang, China
| | - Chunhua Liu
- Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang, China
| | - Jia Sun
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China
| | - Yanyu Lan
- Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang, China
| | - Aimin Wang
- Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang, China
| | - Yongjun Li
- Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang, China
| | - Yonglin Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China
| | - Yuan Lu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China
| |
Collapse
|
40
|
Du H, Wang Y, Zeng Y, Huang X, Liu D, Ye L, Li Y, Chen X, Liu T, Li H, Wu J, Yu Q, Wu Y, Jie L. Tanshinone IIA Suppresses Proliferation and Inflammatory Cytokine Production of Synovial Fibroblasts from Rheumatoid Arthritis Patients Induced by TNF-α and Attenuates the Inflammatory Response in AIA Mice. Front Pharmacol 2020; 11:568. [PMID: 32499694 PMCID: PMC7243269 DOI: 10.3389/fphar.2020.00568] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 04/14/2020] [Indexed: 12/20/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic and progressive autoimmune disease in which activated RA fibroblast-1ike synoviocytes (RA-FLSs) are one of the main factors responsible for inducing morbidity. Previous reports have shown that RA-FLSs have proliferative features similar to cancer cells, in addition to causing cartilage erosion that eventually causes joint damage. Thus, new therapeutic strategies and drugs that can effectively contain the abnormal hyperplasia of RA-FLSs and restrain RA development are necessary for the treatment of RA. Tanshinone IIA (Tan IIA), one of the main phytochemicals isolated from Salvia miltiorrhiza Bunge, is capable of promoting RA-FLS apoptosis and inhibiting arthritis in an AIA mouse model. In addition, RA patients treated at our clinic with Tan IIA showed significant improvements in their clinical symptoms. However, the details of the molecular mechanism by which Tan IIA effects RA are unknown. To clarify this mechanism, we evaluated the antiproliferative and inhibitory effects of proinflammatory factor production caused by Tan IIA to RA-FLSs. We demonstrated that Tan IIA can restrict the proliferation, migration, and invasion of RA-FLSs in a time- and dose-dependent manner. Moreover, Tan IIA effectively suppressed the increase in mRNA expression of some matrix metalloproteinases and proinflammatory factors induced by TNF-α in RA-FLSs, resulting in inflammatory reactivity inhibition and blocking the destruction of the knee joint. Through the integration of network pharmacology analyses with the experimental data obtained, it is revealed that the effects of Tan IIA on RA can be attributed to its influence on different signaling pathways, including MAPK, AKT/mTOR, HIF-1, and NF-kB. Taken together, these data suggest that the compound Tan IIA has great therapeutic potential for RA treatment.
Collapse
Affiliation(s)
- Hongyan Du
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Yuechun Wang
- Department of Rheumatology and Clinical Immunology, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,School of Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Yongchang Zeng
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Xiaoming Huang
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Dingfei Liu
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Lvlan Ye
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Yang Li
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Xiaochen Chen
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China.,School of Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Tiancai Liu
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Hongwei Li
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Jing Wu
- Department of Rheumatology and Clinical Immunology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Qinghong Yu
- Department of Rheumatology and Clinical Immunology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yingsong Wu
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Ligang Jie
- Department of Rheumatology and Clinical Immunology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
41
|
Cardioprotective effect of taurine and β-alanine against cardiac disease in myocardial ischemia and reperfusion-induced rats. ELECTRON J BIOTECHN 2020. [DOI: 10.1016/j.ejbt.2020.04.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
42
|
Gou KJ, Zeng R, Ma Y, Li AN, Yang K, Yan HX, Jin SR, Qu Y. Traditional uses, phytochemistry, and pharmacology of Persicaria orientalis (L.) Spach - A review. JOURNAL OF ETHNOPHARMACOLOGY 2020; 249:112407. [PMID: 31751652 DOI: 10.1016/j.jep.2019.112407] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 11/13/2019] [Accepted: 11/14/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Persicaria orientalis (L.) Spach (internationally accepted and only valid name; synonym: Polygonum orientale L.; family: Polygonaceae), which is named Hongcao in China, is a Chinese herbal medicine that has a wide range of pharmacological effects including treatment to rheumatoid arthritis, coronary heart disease, hernia, carbuncle sore, enhance immunity, antimicrobial, osteogenic and dilated bronchiectasis. AIM OF THIS REVIEW This review aims to provide systematically organized information on traditional uses of Persicaria orientalis (L.) Spach (P. orientalis) and to critically analyze evidences in phytotherapeutic, botanical, and pharmacological literatures that support its therapeutic potential in treatment to human diseases. Isolation of additional compounds and detailed pharmacological investigations are key areas to investigate. MATERIALS AND METHODS Relevant information on P. orientalis was collected through published scientific materials (including PubMed, ScienceDirect, Wiley, ACS, CNKI, Scifinder, Springer, Taylor & Francis, Web of Science, Google Scholar, and Baidu Scholar) and other literature sources (e.g., Chinese Pharmacopoeia, 2015 edition, Chinese herbal classic books and PhD and MSc thesis, etc.). RESULTS Traditional uses were compiled in this review, including classic prescriptions and historical applications. Approximately 70 compounds, mainly including flavonoids, phenolics, lignans, limonoids and steroids, have been isolated and identified from P. orientalis. Among them, flavonoids were main components. Crude extracts and pure compounds isolated from P. orientalis exhibited various pharmacological activities, such as protection against ischemia and hypoxia-induced myocardial cells and hypoxia/reoxygenation cardiomyocyte, increase the blood flow in myocardium, expanding bronchus, anti-inflammatory and analgesic, and antithrombotic effects and so on. CONCLUSIONS P. orientalis is a valuable source with therapeutic potential on a wide range of diseases especially cardiovascular-system disorders. Though most traditional uses of P. orientalis are supported by in vitro/vivo pharmacological studies, however, there is still a lack of researches on active pharmacodynamic ingredients as well as in-depth and in-vivo mechanistic studies. Therefore, isolation and identification of more active compounds (especially flavonoids), their structure-activity relationship and studies on pharmacodynamic mechanisms by more elaborative in-vivo studies on P. orientalis may be focused on in order to confirm efficacy of reported therapeutic effects of P. orientalis and help explore it's therapeutic potentials. Furthermore, research designs of pharmacological studies based on traditional uses of anti-rheumatoid arthritis through cell lines and animal models should also be considered as key research topics.
Collapse
Affiliation(s)
- Kai-Jun Gou
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Rui Zeng
- College of Pharmacy, Southwest Minzu University, Chengdu, 610041, China
| | - Yue Ma
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Ai-Nuan Li
- College of Pharmacy, Southwest Minzu University, Chengdu, 610041, China
| | - Kai Yang
- College of Pharmacy, Southwest Minzu University, Chengdu, 610041, China
| | - Heng-Xiu Yan
- College of Pharmacy, Southwest Minzu University, Chengdu, 610041, China
| | - Shen-Rui Jin
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Yan Qu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Guizhou Yibai Pharmaceutical Co., Ltd, Guiyang, 550008, China.
| |
Collapse
|
43
|
Inhibitory effects of orientin in mast cell-mediated allergic inflammation. Pharmacol Rep 2020; 72:1002-1010. [PMID: 32048267 DOI: 10.1007/s43440-019-00048-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 12/03/2019] [Accepted: 12/11/2019] [Indexed: 10/25/2022]
Abstract
BACKGROUND Mast cells are immune effector cells mediating allergic inflammation by the secretion of inflammatory mediators such as histamine and pro-inflammatory cytokines. Orientin is a naturally occurring bioactive flavonoid that possesses diverse biological properties, including anti-inflammation, anti-oxidative, anti-tumor, and cardio protection. The objective of this study was to rule out the effectiveness of orientin in mast cell-mediated allergic inflammation. METHODS In this study, in vitro effects of orientin were evaluated in RBL-2H3, mouse bone marrow-derived mast cells, rat peritoneal mast cells, and in vivo effects were evaluated by inducing passive cutaneous anaphylaxis (PCA) in Imprinting Control Region (ICR) mice. RESULTS Findings show that orientin suppressed the immunoglobulin E (IgE)-mediated mast cell degranulation by reducing intracellular calcium level in a concentration-dependent manner. Orientin suppressed the secretion of pro-inflammatory cytokines in mast cells. This inhibitory effects of orientin was through inhibition of FcεRI-mediated signaling proteins. In addition, oral administration of orientin suppressed the IgE-mediated PCA reactions in a dose-dependent manner, which was evidenced by reduced Evan's blue pigmentation and ear swelling. CONCLUSIONS Based on these findings, we suggest that orientin might have potential to alleviate allergic reaction and mast cell-mediated allergic disease.
Collapse
|
44
|
Guo WY, Chen LZ, Shen BN, Liu XH, Tai GP, Li QS, Gao L, Ruan BF. Synthesis and in vitro and in vivo anti-inflammatory activity of novel 4-ferrocenylchroman-2-one derivatives. J Enzyme Inhib Med Chem 2020; 34:1678-1689. [PMID: 31530032 PMCID: PMC6758610 DOI: 10.1080/14756366.2019.1664499] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
A series of novel 4-ferrocenylchroman-2-one derivatives were designed and synthesised to discover potent anti-inflammatory agents for treatment of arthritis. All the target compounds had been screened for their anti-inflammatory activity by evaluating the inhibition effect of LPS-induced NO production in RAW 264.7 macrophages. Among them, 4-ferrocenyl-3,4-dihydro-2H-benzo[g]chromen-2-one (3h) was found to be the most potent compound in inhibiting the productions of NO with low toxicity. This compound also exhibited significant inhibition of the productions of IL-6 and TNF-α in RAW 264.7 macrophages. Preliminary mechanism studies indicated that compound 3h could inhibit the activation of LPS-induced NF-κB and MAPKs signalling pathways. The in vivo anti-inflammatory effect of this compound was determined in the rat adjuvant-induced arthritis model.
Collapse
Affiliation(s)
- Wei-Yun Guo
- School of Food and Biological Engineering, Hefei University of Technology , Hefei , PR China
| | - Liu-Zeng Chen
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University , Hefei , PR China
| | - Bang-Nian Shen
- School of Food and Biological Engineering, Hefei University of Technology , Hefei , PR China
| | - Xin-Hua Liu
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University , Hefei , PR China
| | - Guang-Ping Tai
- Key Lab of Biofabrication of Anhui Higher Education Institution Centre for Advanced Biofabrication, Hefei University , Hefei , PR China
| | - Qing-Shan Li
- School of Food and Biological Engineering, Hefei University of Technology , Hefei , PR China
| | - Li Gao
- School of Food and Biological Engineering, Hefei University of Technology , Hefei , PR China
| | - Ban-Feng Ruan
- School of Food and Biological Engineering, Hefei University of Technology , Hefei , PR China
| |
Collapse
|
45
|
Golbahari S, Abtahi Froushani SM. Synergistic benefits of Nicotine and Thymol in alleviating experimental rheumatoid arthritis. Life Sci 2019; 239:117037. [PMID: 31730863 DOI: 10.1016/j.lfs.2019.117037] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 10/23/2019] [Accepted: 10/31/2019] [Indexed: 12/24/2022]
Abstract
PURPOSE Given to the anti-inflammatory effect of Nicotine and Thymol, this study was done to evaluate the effects of co-administration of Nicotine and Thymol on the clinical aspects, and immunity responses in Freund's complete adjuvant (FCA)-induced RA in Wistar rat. METHODS The study population contained a total of 50 male Wistar rats with a weight range 150 ± 7 g, which RA was induced through FCA at them. These animals were randomly allocated into five groups (n = 10): RA rats treated with PBS (100 mg/kg orally), RA rats treated with Thymol (100 mg/kg orally), RA rats treated with Nicotine (2.5mg/kg-orally), and RA rats treated with combined Nicotine and Thymol (half doses with each one-orally). All treatments were initiated at day seven p.i. when all rats showed a clinical score of ≥1. Clinical symptoms of the disease were recorded every other day until the day 23 p.i. RESULTS Obtained data revealed the combination therapy reduced the severity of the disease and improved weight-gaining more profound than each medication alone. Furthermore, combination therapy caused a reduction in some hematological and biochemical RA parameters, such as Rheumatoid factor, C-Reactive Protein, Nitric oxide, Myeloperoxidase, IL-1, and IL-17 more impressive than each treatment alone. Interestingly, the combination therapy with half doses of Nicotine and Thymol did not have any synergistic advantage in anti-proliferation effect, and therefore immunosuppression side effect compared with using each of agents alone. CONCLUSION Collectively, it is possible that combination therapy can be applied as a beneficial strategy to control RA.
Collapse
Affiliation(s)
- Sara Golbahari
- Department of Microbiology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | | |
Collapse
|
46
|
Du H, Zhang X, Zeng Y, Huang X, Chen H, Wang S, Wu J, Li Q, Zhu W, Li H, Liu T, Yu Q, Wu Y, Jie L. A Novel Phytochemical, DIM, Inhibits Proliferation, Migration, Invasion and TNF-α Induced Inflammatory Cytokine Production of Synovial Fibroblasts From Rheumatoid Arthritis Patients by Targeting MAPK and AKT/mTOR Signal Pathway. Front Immunol 2019; 10:1620. [PMID: 31396207 PMCID: PMC6663984 DOI: 10.3389/fimmu.2019.01620] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 06/28/2019] [Indexed: 01/19/2023] Open
Abstract
In rheumatoid arthritis(RA) pathogenesis, activated RA fibroblast-like synoviocytes (RA-FLSs) exhibit similar proliferative features as tumor cells and subsequent erosion to cartilage will eventually lead to joint destruction. Therefore, it is imperative to search for compounds, which can effectively inhibit the abnormal activation of RA-FLSs, and retard RA progression.3′3-Diindolylmethane (DIM), the major product of the acid-catalyzed oligomerization of indole-3-carbinol from cruciferous vegetables, has been reported to be functionally relevant to inhibition of migration, invasion and carcinogenesis in some solid tumors. In this study, we explored the anti-proliferation, anti-metastasis and anti-inflammation effects of DIM on RA-FLSs as well as the underlying molecular mechanisms. To do this, primary RA-FLSs were isolated from RA patients and an animal model. Cell proliferation, migration and invasion were measured using CCK-8, scratch, and Transwell assays, respectively. The effects of DIM on Matrix metalloproteinases (MMPs) and some inflammatory factors mRNA and key molecules such as some inflammatory factors and those involved in aberrantly-activated signaling pathway in response to tumor necrosis factor α(TNF-α), a typical characteristic mediator in RA-FLS, were quantitatively measured by real-time PCR and western blotting. Moreover, the effect of DIM on adjuvant induced arthritis(AIA) models was evaluated with C57BL/6 mice in vivo. The results showed that DIM inhibited proliferation, migration and invasion of RA-FLS in vitro. Meanwhile, DIM dramatically suppressed TNF-α–induced increases in the mRNA levels of MMP-2, MMP-3, MMP-8, and MMP-9; as well as the proinflammatory factors IL-6, IL-8, and IL-1β. Mechanistic studies revealed that DIM is able to suppress phosphorylated activation not only of p38, JNK in MAPK pathway but of AKT, mTOR and downstream molecules in the AKT/mTOR pathway. Moreover, DIM treatment decreased expression levels of proinflammatory cytokines in the serum and alleviated arthritis severity in the knee joints of AIA mice. Taken together, our findings demonstrate that DIM could inhibit proliferation, migration and invasion of RA-FLSs and reduce proinflammatory factors induced by TNF-α in vitro by blocking MAPK and AKT/mTOR pathway and prevent inflammation and knee joint destruction in vivo, which suggests that DIM might have therapeutic potential for RA.
Collapse
Affiliation(s)
- Hongyan Du
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Xi Zhang
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Yongchang Zeng
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Xiaoming Huang
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Hao Chen
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Suihai Wang
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Jing Wu
- Department of Rheumatology and Clinical Immunology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Qiang Li
- Department of Rheumatology and Clinical Immunology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Wei Zhu
- Department of Toxicology, Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| | - Hongwei Li
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Tiancai Liu
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Qinghong Yu
- Department of Rheumatology and Clinical Immunology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yingsong Wu
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Ligang Jie
- Department of Rheumatology and Clinical Immunology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|