1
|
Liu Q, Zhu X, Guo S. From pancreas to lungs: The role of immune cells in severe acute pancreatitis and acute lung injury. Immun Inflamm Dis 2024; 12:e1351. [PMID: 39023414 PMCID: PMC11256889 DOI: 10.1002/iid3.1351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/25/2024] [Accepted: 07/08/2024] [Indexed: 07/20/2024] Open
Abstract
BACKGROUND Severe acute pancreatitis (SAP) is a potentially lethal inflammatory pancreatitis condition that is usually linked to multiple organ failure. When it comes to SAP, the lung is the main organ that is frequently involved. Many SAP patients experience respiratory failure following an acute lung injury (ALI). Clinicians provide insufficient care for compounded ALI since the underlying pathophysiology is unknown. The mortality rate of SAP patients is severely impacted by it. OBJECTIVE The study aims to provide insight into immune cells, specifically their roles and modifications during SAP and ALI, through a comprehensive literature review. The emphasis is on immune cells as a therapeutic approach for treating SAP and ALI. FINDINGS Immune cells play an important role in the complicated pathophysiology ofSAP and ALI by maintaining the right balance of pro- and anti-inflammatory responses. Immunomodulatory drugs now in the market have low thepeutic efficacy because they selectively target one immune cell while ignoring immune cell interactions. Accurate management of dysregulated immune responses is necessary. A critical initial step is precisely characterizing the activity of the immune cells during SAP and ALI. CONCLUSION Given the increasing incidence of SAP, immunotherapy is emerging as a potential treatment option for these patients. Interactions among immune cells improve our understanding of the intricacy of concurrent ALI in SAP patients. Acquiring expertise in these domains will stimulate the development of innovative immunomodulation therapies that will improve the outlook for patients with SAP and ALI.
Collapse
Affiliation(s)
- Qi Liu
- Emergency Medicine Clinical Research Center, Beijing Chao‐Yang HospitalCapital Medical UniversityBeijingChina
- Beijing Key Laboratory of Cardiopulmonary Cerebral ResuscitationBeijingChina
| | - Xiaomei Zhu
- Emergency Medicine Clinical Research Center, Beijing Chao‐Yang HospitalCapital Medical UniversityBeijingChina
- Beijing Key Laboratory of Cardiopulmonary Cerebral ResuscitationBeijingChina
| | - Shubin Guo
- Emergency Medicine Clinical Research Center, Beijing Chao‐Yang HospitalCapital Medical UniversityBeijingChina
- Beijing Key Laboratory of Cardiopulmonary Cerebral ResuscitationBeijingChina
| |
Collapse
|
2
|
Caputo LDS, Alves CDL, Laranjeira IM, Fonseca-Rodrigues D, da Silva Filho AA, Dias ACP, Pinto-Ribeiro F, Pereira Junior ODS, de Paula ACC, Nagato AC, Corrêa JODA. Copaiba oil minimizes inflammation and promotes parenchyma re-epithelization in acute allergic asthma model induced by ovalbumin in BALB/c mice. Front Pharmacol 2024; 15:1356598. [PMID: 38666018 PMCID: PMC11043548 DOI: 10.3389/fphar.2024.1356598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/18/2024] [Indexed: 04/28/2024] Open
Abstract
Introduction: Asthma is a condition of airflow limitation, common throughout the world, with high mortality rates, especially as it still faces some obstacles in its management. As it constitutes a public health challenge, this study aimed to investigate the effect of copaiba oil (e.g., Copaifera langsdorffii), as a treatment resource, at doses of 50 and 100 mg/kg on certain mediators of acute lung inflammation (IL-33, GATA3, FOXP3, STAT3, and TBET) and early mechanisms of lung remodeling (degradation of elastic fiber tissues, collagen deposition, and goblet cell hyperplasia). Methods: Using an ovalbumin-induced acute allergic asthma model in BALB/c mice, we analyzed the inflammatory mediators through immunohistochemistry and the mechanisms of lung remodeling through histopathology, employing orcein, Masson's trichrome, and periodic acid-Schiff staining. Results: Copaiba oil treatment (CO) reduced IL-33 and increased FOXP3 by stimulating the FOXP3/GATA3 and FOXP3/STAT3 pathways. Additionally, it upregulated TBET, suggesting an additional role in controlling GATA3 activity. In the respiratory epithelium, CO decreased the fragmentation of elastic fibers while increasing the deposition of collagen fibers, favoring epithelial restructuring. Simultaneously, CO reduced goblet cell hyperplasia. Discussion: Although additional research is warranted, the demonstrated anti-inflammatory and re-epithelializing action makes CO a viable option in exploring new treatments for acute allergic asthma.
Collapse
Affiliation(s)
- Ludmila de Souza Caputo
- Department of Pharmaceutical Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Carolina de Lima Alves
- Department of Pharmaceutical Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Inês Martins Laranjeira
- Life and Health Sciences Research Institute, ICVS, School of Medicine, Campus of Gualtar, University of Minho, Braga, Portugal
- ICVS/3B‟s - PT Government Associate Laboratory, Braga, Portugal
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB, University of Trás-os-Montes e Alto Douro, Vila Real, Portugal
- Centre of Molecular and Environmental Biology, CBMA, University of Minho, Campus de Gualtar, Braga, Portugal
| | - Diana Fonseca-Rodrigues
- Life and Health Sciences Research Institute, ICVS, School of Medicine, Campus of Gualtar, University of Minho, Braga, Portugal
- ICVS/3B‟s - PT Government Associate Laboratory, Braga, Portugal
| | | | - Alberto Carlos Pires Dias
- Centre of Molecular and Environmental Biology, CBMA, University of Minho, Campus de Gualtar, Braga, Portugal
| | - Filipa Pinto-Ribeiro
- Life and Health Sciences Research Institute, ICVS, School of Medicine, Campus of Gualtar, University of Minho, Braga, Portugal
- ICVS/3B‟s - PT Government Associate Laboratory, Braga, Portugal
| | | | | | - Akinori Cardozo Nagato
- Department of Physiology, Federal University of Juiz de Fora, UFJF, Juiz de Fora, Brazil
| | | |
Collapse
|
3
|
Chen CH, Weng TH, Huang HH, Huang LY, Huang KY, Chen PR, Yeh KY, Huang CT, Chien YT, Chuang PY, Lin YL, Tsai NM, Liu SJ, Su YC, Weng SL, Liao KW. A flexible liposomal polymer complex as a platform of specific and regulable immune regulation for individual cancer immunotherapy. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2023; 42:29. [PMID: 36691089 PMCID: PMC9869520 DOI: 10.1186/s13046-023-02601-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/16/2023] [Indexed: 01/24/2023]
Abstract
BACKGROUND The applicability and therapeutic efficacy of specific personalized immunotherapy for cancer patients is limited by the genetic diversity of the host or the tumor. Side-effects such as immune-related adverse events (IRAEs) derived from the administration of immunotherapy have also been observed. Therefore, regulatory immunotherapy is required for cancer patients and should be developed. METHODS The cationic lipo-PEG-PEI complex (LPPC) can stably and irreplaceably adsorb various proteins on its surface without covalent linkage, and the bound proteins maintain their original functions. In this study, LPPC was developed as an immunoregulatory platform for personalized immunotherapy for tumors to address the barriers related to the heterogenetic characteristics of MHC molecules or tumor associated antigens (TAAs) in the patient population. Here, the immune-suppressive and highly metastatic melanoma, B16F10 cells were used to examine the effects of this platform. Adsorption of anti-CD3 antibodies, HLA-A2/peptide, or dendritic cells' membrane proteins (MP) could flexibly provide pan-T-cell responses, specific Th1 responses, or specific Th1 and Th2 responses, depending on the host needs. Furthermore, with regulatory antibodies, the immuno-LPPC complex properly mediated immune responses by adsorbing positive or negative antibodies, such as anti-CD28 or anti-CTLA4 antibodies. RESULTS The results clearly showed that treatment with LPPC/MP/CD28 complexes activated specific Th1 and Th2 responses, including cytokine release, CTL and prevented T-cell apoptosis. Moreover, LPPC/MP/CD28 complexes could eliminate metastatic B16F10 melanoma cells in the lung more efficiently than LPPC/MP. Interestingly, the melanoma resistance of mice treated with LPPC/MP/CD28 complexes would be reversed to susceptible after administration with LPPC/MP/CTLA4 complexes. NGS data revealed that LPPC/MP/CD28 complexes could enhance the gene expression of cytokine and chemokine pathways to strengthen immune activation than LPPC/MP, and that LPPC/MP/CTLA4 could abolish the LPPC/MP complex-mediated gene expression back to un-treatment. CONCLUSIONS Overall, we proved a convenient and flexible immunotherapy platform for developing personalized cancer therapy.
Collapse
Affiliation(s)
- Chia-Hung Chen
- grid.413593.90000 0004 0573 007XDepartment of Medical Research, Hsinchu MacKay Memorial Hospital, Hsinchu City, 30071 Taiwan
| | - Tzu-Han Weng
- grid.413593.90000 0004 0573 007XDepartment of Dermatology, MacKay Memorial Hospital, Taipei City, 10449 Taiwan
| | - Hsiao-Hsuan Huang
- grid.260539.b0000 0001 2059 7017Industrial Development Graduate Program of College of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu City, 30068 Taiwan
| | - Ling-Ya Huang
- grid.260539.b0000 0001 2059 7017Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu City, 30068 Taiwan
| | - Kai-Yao Huang
- grid.413593.90000 0004 0573 007XDepartment of Medical Research, Hsinchu MacKay Memorial Hospital, Hsinchu City, 30071 Taiwan ,grid.452449.a0000 0004 1762 5613Department of Medicine, MacKay Medical College, 25245 New Taipei City, Taiwan
| | - Pin-Rong Chen
- grid.260539.b0000 0001 2059 7017Institute of Molecular Medicine and Bioengineering, National Yang Ming Chiao Tung University, Hsinchu City, 30068 Taiwan
| | - Kuang-Yu Yeh
- grid.260539.b0000 0001 2059 7017Institute of Molecular Medicine and Bioengineering, National Yang Ming Chiao Tung University, Hsinchu City, 30068 Taiwan
| | - Chi-Ting Huang
- grid.260539.b0000 0001 2059 7017Department of Biological Science and Technology, National Yang Ming Chiao Tung University, 30068 Hsinchu City, Taiwan
| | - Yu-Tzu Chien
- grid.260539.b0000 0001 2059 7017Department of Biological Science and Technology, National Yang Ming Chiao Tung University, 30068 Hsinchu City, Taiwan
| | - Po-Ya Chuang
- grid.260539.b0000 0001 2059 7017Institute of Molecular Medicine and Bioengineering, National Yang Ming Chiao Tung University, Hsinchu City, 30068 Taiwan
| | - Yu-Ling Lin
- grid.28665.3f0000 0001 2287 1366Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 11529 Taiwan
| | - Nu-Man Tsai
- grid.411641.70000 0004 0532 2041Department of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung City, 40201 Taiwan ,grid.411645.30000 0004 0638 9256Department of Pathology and Clinical Laboratory, Chung Shan Medical University Hospital, Taichung City, 40201 Taiwan
| | - Shih-Jen Liu
- grid.59784.370000000406229172National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, 350401 Miaoli, Taiwan
| | - Yu-Cheng Su
- grid.260539.b0000 0001 2059 7017Department of Biological Science and Technology, National Yang Ming Chiao Tung University, 30068 Hsinchu City, Taiwan
| | - Shun-Long Weng
- grid.452449.a0000 0004 1762 5613Department of Medicine, MacKay Medical College, 25245 New Taipei City, Taiwan ,grid.413593.90000 0004 0573 007XDepartment of Obstetrics and Gynecology, Hsinchu MacKay Memorial Hospital, Hsinchu City, 30071 Taiwan ,grid.507991.30000 0004 0639 3191MacKay Junior College of Medicine, Nursing and Management, Taipei City, 11260 Taiwan
| | - Kuang-Wen Liao
- grid.260539.b0000 0001 2059 7017Institute of Molecular Medicine and Bioengineering, National Yang Ming Chiao Tung University, Hsinchu City, 30068 Taiwan ,grid.260539.b0000 0001 2059 7017Department of Biological Science and Technology, National Yang Ming Chiao Tung University, 30068 Hsinchu City, Taiwan ,grid.412019.f0000 0000 9476 5696Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung City, 80708 Taiwan ,grid.412019.f0000 0000 9476 5696College of Dental Medicine, Kaohsiung Medical University School of Dentistry, Kaohsiung City, 80708 Taiwan ,grid.64523.360000 0004 0532 3255Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan City, 70101 Taiwan ,grid.260539.b0000 0001 2059 7017Center for Intelligent Drug Systems and Smart Bio-Devices, National Yang Ming Chiao Tung University, Hsinchu City, 30068 Taiwan
| |
Collapse
|
4
|
IL-33 Deficiency Attenuates Lung Inflammation by Inducing Th17 Response and Impacting the Th17/Treg Balance in LPS-Induced ARDS Mice via Dendritic Cells. J Immunol Res 2022; 2022:9543083. [PMID: 36570798 PMCID: PMC9788894 DOI: 10.1155/2022/9543083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/25/2022] [Accepted: 11/26/2022] [Indexed: 12/23/2022] Open
Abstract
Objectives The characteristic pathophysiological feature of acute respiratory distress syndrome (ARDS) is a dysregulated inflammatory response. T helper 17 (Th17) cells in the lung are inflammatory cells that contribute to pulmonary inflammatory cascades. In addition, Th17/regulatory T cells (Treg cells) also play an important role in the inflammatory process. Dendritic cells (DCs) can regulate the differentiation of CD4+ T cells, including Th17 and Treg cells. Recent evidence revealed that interleukin-33 (IL-33) signaling could activate and mature DCs. Therefore, the aim of this study was to investigate the effects of IL-33 on inflammation and immunoregulation by inducing the Th17 response and influencing the Th17/Treg balance in LPS-induced ARDS. Methods IL-33 gene knockout mice and the administration of recombinant mouse IL-33 (rmIL-33) were used to investigate the role of IL-33 and the underlying mechanisms in an LPS-induced ARDS model. Hematoxylin and eosin (H&E) staining, wet/dry (W/D) weight ratios, cell counts, and the levels of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6), interleukin-17 (IL-17), and interleukin-10 (IL-10) in bronchoalveolar lavage fluid (BALF) were investigated. The levels of IL-33, orphan nuclear receptor gamma t (RORγt), and forkhead transcription factor protein 3 (FOXP3) protein in lung tissue were evaluated by Western blotting. The mRNA expression levels of IL-33 and RORγt were measured by quantitative real-time polymerase chain reaction (qRT-PCR). Th17 and Treg cell frequencies were determined by flow cytometry. The levels of IL-6 in the supernatant in a dendritic cell culture system were examined by ELISA. Results Increased expression of IL-33 was observed in mice with LPS-induced ARDS. IL-33 deficiency significantly inhibited inflammation and attenuated LPS-induced ARDS, whereas pretreatment with rmIL-33 aggravated pulmonary inflammatory response. Furthermore, depletion of IL-33 inhibited Th17 cells, significantly decreased RORγt mRNA and protein expression and IL-17 levels in BALF, and led to less differentiation of T cells into Th17 cells than Treg cells. Moreover, IL-33-/- DCs secreted less IL-6 and IL-23 than normal control DCs. Conclusion IL-33 deficiency alleviated lung injury in the LPS-induced ARDS model, which was closely related to suppressing Th17 responses and regulating the Th17/Treg balance. The expansion of Th17 cells and imbalance in Th17/Treg cells may be associated with IL-6 and IL-23 secreted from IL-33-activated DCs.
Collapse
|
5
|
Meltendorf S, Vogel K, Thurm C, Prätsch F, Reinhold A, Färber J, Heuft H, Kaasch AJ, Hachenberg T, Weinzierl S, Schraven B, Reinhold D, Brunner‐Weinzierl MC, Lingel H. IL-13 determines specific IgE responses and SARS-CoV-2 immunity after mild COVID-19 and novel mRNA vaccination. Eur J Immunol 2022; 52:1972-1979. [PMID: 36271745 PMCID: PMC9874813 DOI: 10.1002/eji.202249951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 09/23/2022] [Accepted: 10/20/2022] [Indexed: 01/27/2023]
Abstract
After recovery, mild and severe COVID-19 diseases are associated with long-term effects on the host immune system, such as prolonged T-cell activation or accumulation of autoantibodies. In this study, we show that mild SARS-CoV-2 infections, but not SARS-CoV-2 spike mRNA vaccinations, cause durable atopic risk factors such as a systemic Th2- and Th17-type environment as well as activation of B cells responsive of IgE against aeroallergens from house dust mite and mold. At an average of 100 days post mild SARS-CoV-2 infections, anti-mold responses were associated with low IL-13 levels and increased pro-inflammatory IL-6 titers. Acutely severely ill COVID-19 patients instead showed no evidence of atopic reactions. Considering convalescents of mild COVID-19 courses and mRNA-vaccinated individuals together, IL-13 was the predominant significantly upregulated factor, likely shaping SARS-CoV-2 immunity. Application of multiple regression analysis revealed that the IL-13 levels of both groups were determined by the Th17-type cytokines IL-17A and IL-22. Taken together, these results implicate a critical role for IL-13 in the aftermath of SARS-CoV-2 mild infections and mRNA vaccinations, conferring protection against airway directed, atopic side reactions that occur in mildly experienced COVID-19.
Collapse
Affiliation(s)
- Stefan Meltendorf
- Department of Experimental PediatricsOtto‐von‐Guericke‐University MagdeburgMagdeburgGermany
| | - Katrin Vogel
- Department of Experimental PediatricsOtto‐von‐Guericke‐University MagdeburgMagdeburgGermany
| | - Christoph Thurm
- Institute of Molecular and Clinical ImmunologyOtto‐von‐Guericke‐University MagdeburgMagdeburgGermany
| | - Florian Prätsch
- Department of Anesthesiology and Intensive Care MedicineUniversity Hospital MagdeburgMagdeburgGermany
| | - Annegret Reinhold
- Institute of Molecular and Clinical ImmunologyOtto‐von‐Guericke‐University MagdeburgMagdeburgGermany
| | - Jacqueline Färber
- Institute of Medical Microbiology and Hospital HygieneOtto‐von‐Guericke‐University MagdeburgMagdeburgGermany
| | - Hans‐Gert Heuft
- Department of Transfusion Medicine and ImmunohematologyUniversity Hospital MagdeburgMagdeburgGermany
| | - Achim J. Kaasch
- Institute of Medical Microbiology and Hospital HygieneOtto‐von‐Guericke‐University MagdeburgMagdeburgGermany
| | - Thomas Hachenberg
- Department of Anesthesiology and Intensive Care MedicineUniversity Hospital MagdeburgMagdeburgGermany
| | - Stefan Weinzierl
- Audio‐Communication GroupTechnical University BerlinBerlinGermany
| | - Burkhart Schraven
- Institute of Molecular and Clinical ImmunologyOtto‐von‐Guericke‐University MagdeburgMagdeburgGermany
| | - Dirk Reinhold
- Institute of Molecular and Clinical ImmunologyOtto‐von‐Guericke‐University MagdeburgMagdeburgGermany
| | | | - Holger Lingel
- Department of Experimental PediatricsOtto‐von‐Guericke‐University MagdeburgMagdeburgGermany
| |
Collapse
|
6
|
Emerging Effects of IL-33 on COVID-19. Int J Mol Sci 2022; 23:ijms232113656. [PMID: 36362440 PMCID: PMC9658128 DOI: 10.3390/ijms232113656] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/27/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
Since the start of COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), more than 6 million people have lost their lives worldwide directly or indirectly. Despite intensified efforts to clarify the immunopathology of COVID-19, the key factors and processes that trigger an inflammatory storm and lead to severe clinical outcomes in patients remain unclear. As an inflammatory storm factor, IL-33 is an alarmin cytokine, which plays an important role in cell damage or infection. Recent studies have shown that serum IL-33 is upregulated in COVID-19 patients and is strongly associated with poor outcomes. Increased IL-33 levels in severe infections may result from an inflammatory storm caused by strong interactions between activated immune cells. However, the effects of IL-33 in COVID-19 and the underlying mechanisms remain to be fully elucidated. In this review, we systematically discuss the biological properties of IL-33 under pathophysiological conditions and its regulation of immune cells, including neutrophils, innate lymphocytes (ILCs), dendritic cells, macrophages, CD4+ T cells, Th17/Treg cells, and CD8+ T cells, in COVID-19 phagocytosis. The aim of this review is to explore the potential value of the IL-33/immune cell pathway as a new target for early diagnosis, monitoring of severe cases, and clinical treatment of COVID-19.
Collapse
|
7
|
Kim J, Moreno A, Krueger JG. The imbalance between Type 17 T-cells and regulatory immune cell subsets in psoriasis vulgaris. Front Immunol 2022; 13:1005115. [PMID: 36110854 PMCID: PMC9468415 DOI: 10.3389/fimmu.2022.1005115] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 08/15/2022] [Indexed: 11/30/2022] Open
Abstract
Psoriasis vulgaris is a common inflammatory disease affecting 7.5 million adults just in the US. Previously, psoriasis immunopathogenesis has been viewed as the imbalance between CD4+ T-helper 17 (Th17) cells and regulatory T-cells (Tregs). However, current paradigms are rapidly evolving as new technologies to study immune cell subsets in the skin have been advanced. For example, recently minted single-cell RNA sequencing technology has provided the opportunity to compare highly differing transcriptomes of Type 17 T-cell (T17 cell) subsets depending on IL-17A vs. IL-17F expression. The expression of regulatory cytokines in T17 cell subsets provided evidence of T-cell plasticity between T17 cells and regulatory T-cells (Tregs) in humans. In addition to Tregs, other types of regulatory cells in the skin have been elucidated, including type 1 regulatory T-cells (Tr1 cells) and regulatory dendritic cells. More recently, investigators are attempting to apply single-cell technologies to clinical trials of biologics to test if monoclonal blockade of pathogenic T-cells will induce expansion of regulatory immune cell subsets involved in skin homeostasis.
Collapse
Affiliation(s)
- Jaehwan Kim
- Laboratory for Investigative Dermatology, The Rockefeller University, New York, NY, United States
- Dermatology Section, Veterans Affairs Northern California Health Care System, Mather, CA, United States
- Department of Dermatology, University of California Davis, Sacramento, CA, United States
- *Correspondence: Jaehwan Kim, ; James G. Krueger,
| | - Ariana Moreno
- Laboratory for Investigative Dermatology, The Rockefeller University, New York, NY, United States
| | - James G. Krueger
- Laboratory for Investigative Dermatology, The Rockefeller University, New York, NY, United States
- *Correspondence: Jaehwan Kim, ; James G. Krueger,
| |
Collapse
|
8
|
Filip-Psurska B, Zachary H, Strzykalska A, Wietrzyk J. Vitamin D, Th17 Lymphocytes, and Breast Cancer. Cancers (Basel) 2022; 14:cancers14153649. [PMID: 35954312 PMCID: PMC9367508 DOI: 10.3390/cancers14153649] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary The effect of vitamin D3 on the development of breast cancer (favorable, ineffective, or even unfavorable) depends on many factors, such as age, menopausal status, or obesity. The immunomodulatory effect of vitamin D may be unfavorable in case of breast cancer progression. The effect of vitamin D on Th17 cells may depend on disease type and patients’ age. Our goal was to summarize the data available and to find indications of vitamin D treatment failure or success. Therefore, in this review, we present data describing the effects of vitamin D3 on Th17 cells, mainly in breast cancer. Abstract Vitamin D3, which is well known to maintain calcium homeostasis, plays an important role in various cellular processes. It regulates the proliferation and differentiation of several normal cells, including immune and neoplastic cells, influences the cell cycle, and stimulates cell maturation and apoptosis through a mechanism dependent on the vitamin D receptor. The involvement of vitamin D3 in breast cancer development has been observed in numerous clinical studies. However, not all studies support the protective effect of vitamin D3 against the development of this condition. Furthermore, animal studies have revealed that calcitriol or its analogs may stimulate tumor growth or metastasis in some breast cancer models. It has been postulated that the effect of vitamin D3 on T helper (Th) 17 lymphocytes is one of the mechanisms promoting metastasis in these murine models. Herein we present a literature review on the existing data according to the interplay between vitamin D, Th17 cell and breast cancer. We also discuss the effects of this vitamin on Th17 lymphocytes in various disease entities known to date, due to the scarcity of scientific data on Th17 lymphocytes and breast cancer. The presented data indicate that the effect of vitamin D3 on breast cancer development depends on many factors, such as age, menopausal status, or obesity. According to that, more extensive clinical trials and studies are needed to assess the importance of vitamin D in breast cancer, especially when no correlations seem to be obvious.
Collapse
|
9
|
Nguyen NZN, Tran VG, Baek J, Kim Y, Youn EH, Na SW, Park SJ, Seo SK, Kwon B. IL-33 Coordinates Innate Defense to Systemic Candida albicans Infection by Regulating IL-23 and IL-10 in an Opposite Way. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:660-671. [PMID: 35022276 DOI: 10.4049/jimmunol.2100495] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 10/06/2021] [Indexed: 11/19/2022]
Abstract
Invasive candidiasis has high mortality rates in immunocompromised patients, causing serious health problems. In mouse models, innate immunity protects the host by rapidly mobilizing a variety of resistance and tolerance mechanisms to systemic Candida albicans infection. We have previously demonstrated that exogenous IL-33 regulates multiple steps of innate immunity involving resistance and tolerance processes. In this study, we systematically analyzed the in vivo functions of endogenous IL-33 using Il33 -/- mice and in vitro immune cell culture. Tubular epithelial cells mainly secreted IL-33 in response to systemic C. albicans infection. Il33 -/- mice showed increased mortality and morbidity, which were due to impaired fungal clearance. IL-33 initiated an innate defense mechanism by costimulating dendritic cells to produce IL-23 after systemic C. albicans infection, which in turn promoted the phagocytosis of neutrophils through secretion of GM-CSF by NK cells. The susceptibility of Il33 -/- mice was also associated with increased levels of IL-10, and neutralization of IL-10 resulted in enhanced fungal clearance in Il33 -/- mice. However, depletion of IL-10 overrode the effect of IL-33 on fungal clearance. In Il10 -/- mouse kidneys, MHC class II+F4/80+ macrophages were massively differentiated after C. albicans infection, and these cells were superior to MHC class II-F4/80+ macrophages that were preferentially differentiated in wild-type mouse kidneys in killing of extracellular hyphal C. albicans Taken together, our results identify IL-33 as critical early regulator controlling a serial downstream signaling events of innate defense to C. albicans infection.
Collapse
Affiliation(s)
- Nu Z N Nguyen
- BK21 Integrated Immunomodulation Education and Research Team, School of Biological Sciences, University of Ulsan, Ulsan, Republic of Korea
| | - Vuvi G Tran
- Center for Immunology and Infectious Diseases, University of California at Davis, Davis, CA
| | - Jiyeon Baek
- Biomedical Research Center, Ulsan University Hospital, School of Medicine, University of Ulsan, Ulsan, Republic of Korea
| | - Younghee Kim
- Biomedical Research Center, Ulsan University Hospital, School of Medicine, University of Ulsan, Ulsan, Republic of Korea
| | - Eun H Youn
- Department of Microbiology and Immunology, College of Medicine, Inje University, Busan, Republic of Korea
| | - Seung W Na
- Biomedical Research Center, Ulsan University Hospital, School of Medicine, University of Ulsan, Ulsan, Republic of Korea.,Division of Pulmonology, Department of Internal Medicine, Ulsan University Hospital, School of Medicine, University of Ulsan, Ulsan, Republic of Korea; and
| | - Sang J Park
- Biomedical Research Center, Ulsan University Hospital, School of Medicine, University of Ulsan, Ulsan, Republic of Korea.,Department of Surgery, Ulsan University Hospital, School of Medicine, University of Ulsan, Ulsan, Republic of Korea
| | - Su-Kil Seo
- Department of Microbiology and Immunology, College of Medicine, Inje University, Busan, Republic of Korea;
| | - Byungsuk Kwon
- BK21 Integrated Immunomodulation Education and Research Team, School of Biological Sciences, University of Ulsan, Ulsan, Republic of Korea; .,Biomedical Research Center, Ulsan University Hospital, School of Medicine, University of Ulsan, Ulsan, Republic of Korea
| |
Collapse
|
10
|
Adipose Tissue Immunomodulation and Treg/Th17 Imbalance in the Impaired Glucose Metabolism of Children with Obesity. CHILDREN-BASEL 2021; 8:children8070554. [PMID: 34199040 PMCID: PMC8305706 DOI: 10.3390/children8070554] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/18/2021] [Accepted: 06/25/2021] [Indexed: 12/12/2022]
Abstract
In the last few decades, obesity has increased dramatically in pediatric patients. Obesity is a chronic disease correlated with systemic inflammation, characterized by the presence of CD4 and CD8 T cell infiltration and modified immune response, which contributes to the development of obesity related diseases and metabolic disorders, including impaired glucose metabolism. In particular, Treg and Th17 cells are dynamically balanced under healthy conditions, but imbalance occurs in inflammatory and pathological states, such as obesity. Some studies demonstrated that peripheral Treg and Th17 cells exhibit increased imbalance with worsening of glucose metabolic dysfunction, already in children with obesity. In this review, we considered the role of adipose tissue immunomodulation and the potential role played by Treg/T17 imbalance on the impaired glucose metabolism in pediatric obesity. In the patient care, immune monitoring could play an important role to define preventive strategies of pediatric metabolic disease treatments.
Collapse
|
11
|
Zhang MF, Yang P, Shen MY, Wang X, Gao NX, Zhou XP, Zhou LL, Lu Y. MicroRNA-26b-5p alleviates murine collagen-induced arthritis by modulating Th17 cell plasticity. Cell Immunol 2021; 365:104382. [PMID: 34049010 DOI: 10.1016/j.cellimm.2021.104382] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 04/12/2021] [Accepted: 05/17/2021] [Indexed: 12/16/2022]
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease, and the abnormal differentiation of IL-17-producing T helper (Th17) cells is an important factor in the pathogenesis. Previous studies have shown that microRNAs (miRNAs, miR) act as key regulators of Th17 cells. However, the effects of miRNAs on Th17 cell differentiation and plasticity in RA are not clear. In this study, not only low miR-26b-5p expression and high IL-17A level were observed in the peripheral blood of RA patients, but also the negative correlation between miR-26b-5p and IL-17A was explored. The changes in collagen-induced arthritis (CIA) mice were consistent with those in RA patients. The results of in vitro experiments showed that miR-26b-5p mainly inhibited the initial differentiation of Th17 cells but did not impact the differentiation of induced-Treg into Th17-like cells. Meanwhile, miR-26b-5p mimics treatment alleviated inflammatory responses and reduced Th17 proportion in CIA mice. These results indicated that miR-26b-5p could alleviate the development of mice CIA by inhibiting the excessive Th17 cells, and that miR-26b-5p could modulate the plasticity of Th17 cell differentiation in RA, mainly block the initial differentiation. This may provide a novel strategy for the clinical treatment of RA.
Collapse
Affiliation(s)
- Ming-Fei Zhang
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, NO.138 Xianlin Road, 210023 Nanjing, Jiangsu Province, PR China
| | - Pei Yang
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, NO.138 Xianlin Road, 210023 Nanjing, Jiangsu Province, PR China
| | - Mei-Yu Shen
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, NO.138 Xianlin Road, 210023 Nanjing, Jiangsu Province, PR China
| | - Xiang Wang
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, NO.138 Xianlin Road, 210023 Nanjing, Jiangsu Province, PR China
| | - Nai-Xin Gao
- Department of Rheumatology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, NO.155 Hanzhong Road, 210029, Nanjing, Jiangsu Province, PR China; The First Clinical Medical College, Nanjing University of Chinese Medicine, NO.138 Xianlin Road, 210023, Nanjing, Jiangsu Province, PR China
| | - Xue-Ping Zhou
- The First Clinical Medical College, Nanjing University of Chinese Medicine, NO.138 Xianlin Road, 210023, Nanjing, Jiangsu Province, PR China
| | - Ling-Ling Zhou
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, NO.138 Xianlin Road, 210023 Nanjing, Jiangsu Province, PR China.
| | - Yan Lu
- Department of Rheumatology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, NO.155 Hanzhong Road, 210029, Nanjing, Jiangsu Province, PR China.
| |
Collapse
|
12
|
Lan F, Zhang N, Bachert C, Zhang L. Stability of regulatory T cells in T helper 2-biased allergic airway diseases. Allergy 2020; 75:1918-1926. [PMID: 32124987 DOI: 10.1111/all.14257] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 12/11/2022]
Abstract
Regulatory T (Treg) cells potentially suppress the deleterious activities of effector T cells and maintain a state of tolerance against antigens in the airway mucosa. A decrease in the number and function of Treg cells is observed in T helper 2 (Th2)-biased allergic airway diseases. However, adoptive transfer of naturally occurring Treg (tTreg) cells or peripherally derived Treg (pTreg) cells in asthmatic mouse models did not yield satisfactory results in any previous studies. Here, we review the recent progress in the identification and plasticity of tTreg and pTreg cells in Th2-biased airway diseases and summarize the factors affecting the stability and function of Treg cells. This review may serve as foundation for understanding the molecular mechanisms underlying the stability of tTreg and pTreg cells and development of effective strategies for treating allergic airway diseases.
Collapse
Affiliation(s)
- Feng Lan
- Department of Otolaryngology Head and Neck Surgery Beijing TongRen HospitalCapital Medical University Beijing China
- Beijing Key Laboratory of Nasal Disease Beijing Institute of Otolaryngology Beijing China
| | - Nan Zhang
- Upper Airways Research Laboratory ENT Department Ghent University Ghent Belgium
| | - Claus Bachert
- Upper Airways Research Laboratory ENT Department Ghent University Ghent Belgium
| | - Luo Zhang
- Department of Otolaryngology Head and Neck Surgery Beijing TongRen HospitalCapital Medical University Beijing China
- Beijing Key Laboratory of Nasal Disease Beijing Institute of Otolaryngology Beijing China
| |
Collapse
|