1
|
Hasan M, Ahmed S, Imranuzzaman M, Bari R, Roy S, Hasan MM, Mia MM. Designing and development of efficient multi-epitope-based peptide vaccine candidate against emerging avian rotavirus strains: A vaccinomic approach. J Genet Eng Biotechnol 2024; 22:100398. [PMID: 39179326 PMCID: PMC11260576 DOI: 10.1016/j.jgeb.2024.100398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/17/2024] [Accepted: 06/19/2024] [Indexed: 08/26/2024]
Abstract
BACKGROUND Enteric avian rotavirus (ARV) is the etiological agent of several health problems that pose a global threat to commercial chickens. Therefore, to avoid these widespread epidemics and high mortality rates, only vaccine and strict biosecurity are required. METHOD The present study employs computational techniques to design a unique multi-epitope-based vaccine candidate that successfully activates immune cells against the ARV by combining adjuvant, linker, and B and T-cell epitopes. Starting, homologous sequences in the various ARV serotypes were revealed in the NCBI BLAST database, and then the two surface proteins (VP4 and VP7) of the ARV were retrieved from the UniprotKB database. The Clustal Omega server was then used to identify the conserved regions among the homologous sequences, and the B and T-cell epitopes were predicted using IEDB servers. Then, superior epitopes-2 MHC-1 epitopes, 2 MHC-2 epitopes, and 3B-cell epitopes-were combined with various adjuvants to create a total of four unique vaccine candidates. Afterward, the designed vaccine candidates underwent computational validation to assess their antigenicity, allergenicity, and stability. The vaccine candidate (V2) that demonstrated non-antigenicity, a high VaxiJen score, and non-allergenicity was ultimately chosen for molecular docking and dynamic simulation. RESULTS Although the V2 and V4 vaccine candidates were highly immunogenic, V2 had a higher solubility rate. The predicted values of the aliphatic index and GRAVY value were 30.4 and 0.417, respectively. In terms of binding energy, V2 outperformed V4. Being successfully docked with TLRs, V2 was praised as the finest. After adaptation, the sequence's 50.73 % GC content outside of the BglII or ApaI restriction sites indicated that it was equivalently safe to clone. The chosen sequence was then inserted into the pET28a(+) vector within the BglII and ApaI restriction sites. This resulted in a final clone that was 4914 base pairs long, with the inserted sequence accounting for 478 bp and the vector accounting for the remainder. CONCLUSIONS The immune-mediated simulation results for the selected vaccine construct showed significant response; thus, the study confirmed that the selected V2 vaccine candidate could enhance the immune response against ARV.
Collapse
Affiliation(s)
- Mahamudul Hasan
- Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet-3100, Bangladesh.
| | - Shakil Ahmed
- Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet-3100, Bangladesh.
| | - Md Imranuzzaman
- Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet-3100, Bangladesh; Department of Pharmacology and Toxicology, Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet-3100, Bangladesh
| | - Rezaul Bari
- Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet-3100, Bangladesh
| | - Shiplu Roy
- Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet-3100, Bangladesh; Department of Livestock Production and Management, Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet-3100, Bangladesh
| | - Md Mahadi Hasan
- Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet-3100, Bangladesh
| | - Md Mukthar Mia
- Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet-3100, Bangladesh; Department of Poultry Science, Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet-3100, Bangladesh
| |
Collapse
|
2
|
Jia Y, Wu Q, Li Y, Ma M, Song W, Chen R, Yao Y, Nair V, Zhang N, Liao M, Dai M. Revealing novel and conservative T-cell epitopes with MHC B2 restriction on H9N2 avian influenza virus (AIV). J Biol Chem 2024; 300:107395. [PMID: 38768812 PMCID: PMC11223079 DOI: 10.1016/j.jbc.2024.107395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/30/2024] [Accepted: 05/10/2024] [Indexed: 05/22/2024] Open
Abstract
B2 haplotype major histocompatibility complex (MHC) has been extensively reported to confer resistance to various avian diseases. But its peptide-binding motif is unknown, and the presenting peptide is rarely identified. Here, we identified its peptide-binding motif (X-A/V/I/L/P/S/G-X-X-X-X-X-X-V/I/L) in vitro using Random Peptide Library-based MHC I LC-MS/MS analysis. To further clarify the structure basis of motif, we determined the crystal structure of the BF2∗02:01-PB2552-560 complex at 1.9 Å resolution. We found that BF2∗02:01 had a relatively wide antigen-binding groove, and the structural characterization of pockets was consistent with the characterization of peptide-binding motif. The wider features of the peptide-binding motif and increased number of peptides bound by BF2∗02:01 than BF2∗04:01 might resolve the puzzles for the presence of potential H9N2 resistance in B2 chickens. Afterward, we explored the H9N2 avian influenza virus (AIV)-induced cellular immune response in B2 haplotype chickens in vivo. We found that ratio of CD8+ T cell and kinetic expression of cytotoxicity genes including Granzyme K, interferon-γ, NK lysin, and poly-(ADP-ribose) polymerase in peripheral blood mononuclear cells were significantly increased in defending against H9N2 AIV infection. Especially, we selected 425 epitopes as candidate epitopes based on the peptide-binding motif and further identified four CD8+ T-cell epitopes on H9N2 AIV including NS198-106, PB2552-560, NP182-190, and NP455-463 via ELI-spot interferon-γ detections after stimulating memory lymphocytes with peptides. More importantly, these epitopes were found to be conserved in H7N9 AIV and H9N2 AIV. These findings provide direction for developing effective T cell epitope vaccines using well-conserved internal viral antigens in chickens.
Collapse
Affiliation(s)
- Yusheng Jia
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, South China Agricultural University, Guangzhou, China
| | - Qingxin Wu
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, South China Agricultural University, Guangzhou, China
| | - Yilin Li
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, South China Agricultural University, Guangzhou, China
| | - Mulin Ma
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, South China Agricultural University, Guangzhou, China
| | - Wei Song
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, South China Agricultural University, Guangzhou, China
| | - Rongmao Chen
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, South China Agricultural University, Guangzhou, China
| | - Yongxiu Yao
- Viral Oncogenesis Group, The Pirbright Institute and UK-China Centre of Excellence for Research on Avian Diseases, Surrey, United Kingdom
| | - Venugopal Nair
- Viral Oncogenesis Group, The Pirbright Institute and UK-China Centre of Excellence for Research on Avian Diseases, Surrey, United Kingdom; Department of Zoology, Oxford University, Oxford, United Kingdom
| | - Nianzhi Zhang
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing, China.
| | - Ming Liao
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, South China Agricultural University, Guangzhou, China.
| | - Manman Dai
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
3
|
Tang Z, Wang S, Du L, Hu D, Chen X, Zheng H, Ding H, Chen S, Zhang L, Zhang N. The impact of micropolymorphism in Anpl-UAA on structural stability and peptide presentation. Int J Biol Macromol 2024; 267:131665. [PMID: 38636758 DOI: 10.1016/j.ijbiomac.2024.131665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 04/13/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024]
Abstract
Micropolymorphism significantly shapes the peptide-binding characteristics of major histocompatibility complex class I (MHC-I) molecules, affecting the host's resistance to pathogens, which is particularly pronounced in avian species displaying the "minimal essential MHC" expression pattern. In this study, we compared two duck MHC-I alleles, Anpl-UAA*77 and Anpl-UAA*78, that exhibit markedly different peptide binding properties despite their high sequence homology. Through mutagenesis experiments and crystallographic analysis of complexes with the influenza virus-derived peptide AEAIIVAMV (AEV9), we identified a critical role for the residue at position 62 in regulating hydrogen-bonding interactions between the peptide backbone and the peptide-binding groove. This modulation affects the characteristics of the B pocket and the stability of the loop region between the 310 helix and the α1 helix, leading to significant changes in the structure and stability of the peptide-MHC-I complex (pMHC-I). Moreover, the proportion of different residues at position 62 among Anpl-UAAs may reflect the correlation between pAnpl-UAA stability and duck body temperature. This research not only advances our understanding of the Anpl-UAA structure but also deepens our insight into the impact of MHC-I micropolymorphism on peptide binding.
Collapse
Affiliation(s)
- Ziche Tang
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Suqiu Wang
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Liubao Du
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Dongmei Hu
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Xiaoming Chen
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Hanyin Zheng
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Han Ding
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Shiwen Chen
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Lin Zhang
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, Shandong, China; Key Laboratory of Livestock and Poultry Multi-omics of MARA, Jinan 250100, Shandong, China.
| | - Nianzhi Zhang
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China..
| |
Collapse
|
4
|
Hu J, Song L, Ning M, Niu X, Han M, Gao C, Feng X, Cai H, Li T, Li F, Li H, Gong D, Song W, Liu L, Pu J, Liu J, Smith J, Sun H, Huang Y. A new chromosome-scale duck genome shows a major histocompatibility complex with several expanded multigene families. BMC Biol 2024; 22:31. [PMID: 38317190 PMCID: PMC10845735 DOI: 10.1186/s12915-024-01817-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 01/04/2024] [Indexed: 02/07/2024] Open
Abstract
BACKGROUND The duck (Anas platyrhynchos) is one of the principal natural hosts of influenza A virus (IAV), harbors almost all subtypes of IAVs and resists to many IAVs which cause extreme virulence in chicken and human. However, the response of duck's adaptive immune system to IAV infection is poorly characterized due to lack of a detailed gene map of the major histocompatibility complex (MHC). RESULTS We herein reported a chromosome-scale Beijing duck assembly by integrating Nanopore, Bionano, and Hi-C data. This new reference genome SKLA1.0 covers 40 chromosomes, improves the contig N50 of the previous duck assembly with highest contiguity (ZJU1.0) of more than a 5.79-fold, surpasses the chicken and zebra finch references in sequence contiguity and contains a complete genomic map of the MHC. Our 3D MHC genomic map demonstrated that gene family arrangement in this region was primordial; however, families such as AnplMHCI, AnplMHCIIβ, AnplDMB, NKRL (NK cell receptor-like genes) and BTN underwent gene expansion events making this area complex. These gene families are distributed in two TADs and genes sharing the same TAD may work in a co-regulated model. CONCLUSIONS These observations supported the hypothesis that duck's adaptive immunity had been optimized with expanded and diversified key immune genes which might help duck to combat influenza virus. This work provided a high-quality Beijing duck genome for biological research and shed light on new strategies for AIV control.
Collapse
Affiliation(s)
- Jiaxiang Hu
- State Key Laboratory of Farm Animal Biotech Breeding, College of Biology Sciences, China Agricultural University, No.2 Yuan Ming Yuan West Road, Hai Dian District, Beijing, 100193, China
| | - Linfei Song
- State Key Laboratory of Farm Animal Biotech Breeding, College of Biology Sciences, China Agricultural University, No.2 Yuan Ming Yuan West Road, Hai Dian District, Beijing, 100193, China
| | - Mengfei Ning
- State Key Laboratory of Farm Animal Biotech Breeding, College of Biology Sciences, China Agricultural University, No.2 Yuan Ming Yuan West Road, Hai Dian District, Beijing, 100193, China
| | - Xinyu Niu
- State Key Laboratory of Farm Animal Biotech Breeding, College of Biology Sciences, China Agricultural University, No.2 Yuan Ming Yuan West Road, Hai Dian District, Beijing, 100193, China
| | - Mengying Han
- State Key Laboratory of Farm Animal Biotech Breeding, College of Biology Sciences, China Agricultural University, No.2 Yuan Ming Yuan West Road, Hai Dian District, Beijing, 100193, China
| | - Chuze Gao
- State Key Laboratory of Farm Animal Biotech Breeding, College of Biology Sciences, China Agricultural University, No.2 Yuan Ming Yuan West Road, Hai Dian District, Beijing, 100193, China
| | - Xingwei Feng
- State Key Laboratory of Farm Animal Biotech Breeding, College of Biology Sciences, China Agricultural University, No.2 Yuan Ming Yuan West Road, Hai Dian District, Beijing, 100193, China
| | - Han Cai
- State Key Laboratory of Farm Animal Biotech Breeding, College of Biology Sciences, China Agricultural University, No.2 Yuan Ming Yuan West Road, Hai Dian District, Beijing, 100193, China
| | - Te Li
- State Key Laboratory of Farm Animal Biotech Breeding, College of Biology Sciences, China Agricultural University, No.2 Yuan Ming Yuan West Road, Hai Dian District, Beijing, 100193, China
| | - Fangtao Li
- Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, No.2 Yuan Ming Yuan West Road, Hai Dian District, Beijing, 100193, China
| | - Huifang Li
- Jiangsu Institute of Poultry Science, Yangzhou, China
| | - Daoqing Gong
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Weitao Song
- Jiangsu Institute of Poultry Science, Yangzhou, China
| | - Long Liu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Juan Pu
- Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, No.2 Yuan Ming Yuan West Road, Hai Dian District, Beijing, 100193, China
| | - Jinhua Liu
- Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, No.2 Yuan Ming Yuan West Road, Hai Dian District, Beijing, 100193, China
| | - Jacqueline Smith
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, EH25 9RG, UK
| | - Honglei Sun
- Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, No.2 Yuan Ming Yuan West Road, Hai Dian District, Beijing, 100193, China.
| | - Yinhua Huang
- State Key Laboratory of Farm Animal Biotech Breeding, College of Biology Sciences, China Agricultural University, No.2 Yuan Ming Yuan West Road, Hai Dian District, Beijing, 100193, China.
| |
Collapse
|
5
|
Vinkler M, Fiddaman SR, Těšický M, O'Connor EA, Savage AE, Lenz TL, Smith AL, Kaufman J, Bolnick DI, Davies CS, Dedić N, Flies AS, Samblás MMG, Henschen AE, Novák K, Palomar G, Raven N, Samaké K, Slade J, Veetil NK, Voukali E, Höglund J, Richardson DS, Westerdahl H. Understanding the evolution of immune genes in jawed vertebrates. J Evol Biol 2023; 36:847-873. [PMID: 37255207 PMCID: PMC10247546 DOI: 10.1111/jeb.14181] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 04/23/2023] [Accepted: 04/26/2023] [Indexed: 06/01/2023]
Abstract
Driven by co-evolution with pathogens, host immunity continuously adapts to optimize defence against pathogens within a given environment. Recent advances in genetics, genomics and transcriptomics have enabled a more detailed investigation into how immunogenetic variation shapes the diversity of immune responses seen across domestic and wild animal species. However, a deeper understanding of the diverse molecular mechanisms that shape immunity within and among species is still needed to gain insight into-and generate evolutionary hypotheses on-the ultimate drivers of immunological differences. Here, we discuss current advances in our understanding of molecular evolution underpinning jawed vertebrate immunity. First, we introduce the immunome concept, a framework for characterizing genes involved in immune defence from a comparative perspective, then we outline how immune genes of interest can be identified. Second, we focus on how different selection modes are observed acting across groups of immune genes and propose hypotheses to explain these differences. We then provide an overview of the approaches used so far to study the evolutionary heterogeneity of immune genes on macro and microevolutionary scales. Finally, we discuss some of the current evidence as to how specific pathogens affect the evolution of different groups of immune genes. This review results from the collective discussion on the current key challenges in evolutionary immunology conducted at the ESEB 2021 Online Satellite Symposium: Molecular evolution of the vertebrate immune system, from the lab to natural populations.
Collapse
Affiliation(s)
- Michal Vinkler
- Department of ZoologyFaculty of ScienceCharles UniversityPragueCzech Republic
| | | | - Martin Těšický
- Department of ZoologyFaculty of ScienceCharles UniversityPragueCzech Republic
| | | | - Anna E. Savage
- Department of BiologyUniversity of Central FloridaFloridaOrlandoUSA
| | - Tobias L. Lenz
- Research Unit for Evolutionary ImmunogenomicsDepartment of BiologyUniversity of HamburgHamburgGermany
| | | | - Jim Kaufman
- Institute for Immunology and Infection ResearchUniversity of EdinburghEdinburghUK
- Department of Veterinary MedicineUniversity of CambridgeCambridgeUK
| | - Daniel I. Bolnick
- Department of Ecology and Evolutionary BiologyUniversity of ConnecticutStorrsConnecticutUSA
| | | | - Neira Dedić
- Department of Botany and ZoologyMasaryk UniversityBrnoCzech Republic
| | - Andrew S. Flies
- Menzies Institute for Medical ResearchUniversity of TasmaniaHobartTasmaniaAustralia
| | - M. Mercedes Gómez Samblás
- Department of ZoologyFaculty of ScienceCharles UniversityPragueCzech Republic
- Department of ParasitologyUniversity of GranadaGranadaSpain
| | | | - Karel Novák
- Department of Genetics and BreedingInstitute of Animal SciencePragueUhříněvesCzech Republic
| | - Gemma Palomar
- Faculty of BiologyInstitute of Environmental SciencesJagiellonian UniversityKrakówPoland
| | - Nynke Raven
- Department of ScienceEngineering and Build EnvironmentDeakin UniversityVictoriaWaurn PondsAustralia
| | - Kalifa Samaké
- Department of Genetics and MicrobiologyFaculty of ScienceCharles UniversityPragueCzech Republic
| | - Joel Slade
- Department of BiologyCalifornia State UniversityFresnoCaliforniaUSA
| | | | - Eleni Voukali
- Department of ZoologyFaculty of ScienceCharles UniversityPragueCzech Republic
| | - Jacob Höglund
- Department of Ecology and GeneticsUppsala UniversitetUppsalaSweden
| | | | | |
Collapse
|
6
|
Sun Y, Ma L, Li S, Wang Y, Xiao R, Yang J, Dijkstra JM, Xia C. Crystal Structure of a Classical MHC Class I Molecule in Dogs; Comparison of DLA-88*0 and DLA-88*5 Category Molecules. Cells 2023; 12:cells12071097. [PMID: 37048169 PMCID: PMC10093629 DOI: 10.3390/cells12071097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/31/2023] [Accepted: 03/31/2023] [Indexed: 04/14/2023] Open
Abstract
DLA-88 is a classical major histocompatibility complex (MHC) class I gene in dogs, and allelic DLA-88 molecules have been divided into two categories named "DLA-88*0" and "DLA-88*5." The defining difference between the two categories concerns an LQW motif in the α2 domain helical region of the DLA-88*5 molecules that includes the insertion of an extra amino acid compared to MHC class I consensus length. We here show that this motif has been exchanged by recombination between different DLA-88 evolutionary lineages. Previously, with pDLA-88*508:01, the structure of a molecule of the DLA-88*5 category was elucidated. The present study is the first to elucidate a structure, using X-ray crystallography, of the DLA-88*0 category, namely DLA-88*001:04 complexed with β2m and a nonamer peptide derived from canine distemper virus (CDV). The LQW motif that distinguishes DLA-88*5 from DLA-88*0 causes a shallower peptide binding groove (PBG) and a leucine exposed at the top of the α2 domain helix expected to affect T cell selection. Peptide ligand amino acid substitution and pMHC-I complex formation and stability analyses revealed that P2 and P3 are the major anchor residue positions for binding to DLA-88*001:04. We speculate that the distribution pattern of the LQW motif among canine classical MHC class I alleles represents a strategy to enhance allogeneic rejection by T cells of transmissible cancers such as canine transmissible venereal tumor (CTVT).
Collapse
Affiliation(s)
- Yujiao Sun
- Yantai Institute of China Agricultural University, No. 2006, Binhai Mid-Rd, High-Tech Zone, Yantai City 264003, China
| | - Lizhen Ma
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing 100850, China
| | - Shen Li
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yawen Wang
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Ruiqi Xiao
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Junqi Yang
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Johannes M Dijkstra
- Center for Medical Science, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| | - Chun Xia
- Yantai Institute of China Agricultural University, No. 2006, Binhai Mid-Rd, High-Tech Zone, Yantai City 264003, China
| |
Collapse
|
7
|
Card DC, Van Camp AG, Santonastaso T, Jensen-Seaman MI, Anthony NM, Edwards SV. Structure and evolution of the squamate major histocompatibility complex as revealed by two Anolis lizard genomes. Front Genet 2022; 13:979746. [PMID: 36425073 PMCID: PMC9679377 DOI: 10.3389/fgene.2022.979746] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 10/20/2022] [Indexed: 11/10/2022] Open
Abstract
The major histocompatibility complex (MHC) is an important genomic region for adaptive immunity and has long been studied in ecological and evolutionary contexts, such as disease resistance and mate and kin selection. The MHC has been investigated extensively in mammals and birds but far less so in squamate reptiles, the third major radiation of amniotes. We localized the core MHC genomic region in two squamate species, the green anole (Anolis carolinensis) and brown anole (A. sagrei), and provide the first detailed characterization of the squamate MHC, including the presence and ordering of known MHC genes in these species and comparative assessments of genomic structure and composition in MHC regions. We find that the Anolis MHC, located on chromosome 2 in both species, contains homologs of many previously-identified mammalian MHC genes in a single core MHC region. The repetitive element composition in anole MHC regions was similar to those observed in mammals but had important distinctions, such as higher proportions of DNA transposons. Moreover, longer introns and intergenic regions result in a much larger squamate MHC region (11.7 Mb and 24.6 Mb in the green and brown anole, respectively). Evolutionary analyses of MHC homologs of anoles and other representative amniotes uncovered generally monophyletic relationships between species-specific homologs and a loss of the peptide-binding domain exon 2 in one of two mhc2β gene homologs of each anole species. Signals of diversifying selection in each anole species was evident across codons of mhc1, many of which appear functionally relevant given known structures of this protein from the green anole, chicken, and human. Altogether, our investigation fills a major gap in understanding of amniote MHC diversity and evolution and provides an important foundation for future squamate-specific or vertebrate-wide investigations of the MHC.
Collapse
Affiliation(s)
- Daren C. Card
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, United States
- Museum of Comparative Zoology, Harvard University, Cambridge, MA, United States
- *Correspondence: Daren C. Card,
| | - Andrew G. Van Camp
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, United States
- Museum of Comparative Zoology, Harvard University, Cambridge, MA, United States
| | - Trenten Santonastaso
- Department of Biological Sciences, University of New Orleans, New Orleans, LA, United States
| | | | - Nicola M. Anthony
- Department of Biological Sciences, University of New Orleans, New Orleans, LA, United States
| | - Scott V. Edwards
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, United States
- Museum of Comparative Zoology, Harvard University, Cambridge, MA, United States
| |
Collapse
|
8
|
Minias P, Palomar G, Dudek K, Babik W. Salamanders reveal novel trajectories of amphibian MHC evolution. Evolution 2022; 76:2436-2449. [PMID: 36000494 DOI: 10.1111/evo.14601] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 07/06/2022] [Accepted: 07/29/2022] [Indexed: 01/22/2023]
Abstract
Genes of the major histocompatibility complex (MHC) code for immune proteins that are crucial for pathogen recognition in vertebrates. MHC research in nonmodel taxa has long been hampered by its genomic complexity that makes the locus-specific genotyping challenging. The recent progress in sequencing and genotyping methodologies allows an extensive phylogenetic coverage in studies of MHC evolution. Here, we analyzed the peptide-binding region of MHC class I (MHC-I) in 30 species of salamanders from six families representative of Urodela phylogeny. This extensive dataset revealed an extreme diversity of MHC-I in salamanders, both in terms of sequence diversity (about 3000 variants) and architecture (2-22 gene copies per species). The signal of positive selection was moderate and consistent between both peptide-binding domains, but varied greatly between genera. Positions of positively selected sites mostly coincided with human peptide-binding sites, suggesting similar structural properties of MHC-I molecules across distant vertebrate lineages. Finally, we provided evidence for the common intraexonic recombination at MHC-I and for the role of life history traits in the processes of MHC-I expansion/contraction. Our study revealed novel evolutionary trajectories of amphibian MHC and it contributes to the understanding of the mechanisms that generated extraordinary MHC diversity throughout vertebrate evolution.
Collapse
Affiliation(s)
- Piotr Minias
- Department of Biodiversity Studies and Bioeducation, Faculty of Biology and Environmental Protection, University of Łódź, Łódź, 90-237, Poland
| | - Gemma Palomar
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Kraków, 30-387, Poland.,Parasitology Unit, Department of Biomedicine and Biotechnology, Faculty of Pharmacy, Universidad de Alcalá (UAH), Alcalá de Henares, Madrid, 28805, Spain
| | - Katarzyna Dudek
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Kraków, 30-387, Poland
| | - Wiesław Babik
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Kraków, 30-387, Poland
| |
Collapse
|
9
|
Mia MM, Hasan M, Ahmed S, Rahman MN. Insight into the first multi-epitope-based peptide subunit vaccine against avian influenza A virus (H5N6): An immunoinformatics approach. INFECTION, GENETICS AND EVOLUTION 2022; 104:105355. [PMID: 36007760 PMCID: PMC9394107 DOI: 10.1016/j.meegid.2022.105355] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 05/22/2022] [Accepted: 08/18/2022] [Indexed: 11/26/2022]
Abstract
The rampant spread of highly pathogenic avian influenza A (H5N6) virus has drawn additional concerns along with ongoing Covid-19 pandemic. Due to its migration-related diffusion, the situation is deteriorating. Without an existing effective therapy and vaccines, it will be baffling to take control measures. In this regard, we propose a revers vaccinology approach for prediction and design of a multi-epitope peptide based vaccine. The induction of humoral and cell-mediated immunity seems to be the paramount concern for a peptide vaccine candidate; thus, antigenic B and T cell epitopes were screened from the surface, membrane and envelope proteins of the avian influenza A (H5N6) virus, and passed through several immunological filters to determine the best possible one. Following that, the selected antigenic with immunogenic epitopes and adjuvant were linked to finalize the multi-epitope-based peptide vaccine by appropriate linkers. For the prediction of an effective binding, molecular docking was carried out between the vaccine and immunological receptors (TLR8). Strong binding affinity and good docking scores clarified the stringency of the vaccines. Furthermore, molecular dynamics simulation was performed within the highest binding affinity complex to observe the stability, and minimize the designed vaccine's high mobility region to order to increase its stability. Then, Codon optimization and other physicochemical properties were performed to reveal that the vaccine would be suitable for a higher expression at cloning level and satisfactory thermostability condition. In conclusion, predicting the overall in silico assessment, we anticipated that our designed vaccine would be a plausible prevention against avian influenza A (H5N6) virus.
Collapse
Affiliation(s)
- Md Mukthar Mia
- Department of Poultry Science, Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet 3100, Bangladesh; Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Mahamudul Hasan
- Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet 3100, Bangladesh.
| | - Shakil Ahmed
- Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Mohammad Nahian Rahman
- Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| |
Collapse
|
10
|
Kossack C, Fuentes N, Maisey K. In silico prediction of B and T cell epitopes of infectious salmon anemia virus proteins and molecular modeling of T cell epitopes to salmon major histocompatibility complex (MHC) class I. FISH & SHELLFISH IMMUNOLOGY 2022; 128:335-347. [PMID: 35963560 DOI: 10.1016/j.fsi.2022.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/31/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
Infectious salmon anemia (ISA) can be devastating in farmed Atlantic salmon (Salmo salar). The disease can evolve into epidemics if it is not contained and controlled. ISA epidemics were seen in Norway in the early 1990s and Chile in 2007-2009. Consequently, there is an urgent need to develop a vaccine to prevent or treat the infection. In this study, an immunoinformatic approach was employed to predict 32 lineal B-cell epitopes based on antigenicity and surface accessibility prediction for ISAV fusion (F), hemagglutinin-esterase (HE), and matrix (M) proteins. On the other hand, twelve conformational B-cell epitopes were also predicted. We further identified six antigenic cytotoxic T lymphocyte (CTL) epitopes and investigated the binding interactions with five salmon MHC-I proteins after docking the peptides to the binding groove of the MHC-I proteins. Our results showed that all the predicted epitopes could bind to salmon MHC-I with high negative ΔG values with medium to high binding affinities. Hence, the predicted epitopes have a high potential of being recognized by Atlantic salmon MHC-I to elicit a CD8+ T cell response in salmon. The predicted and analyzed B and T cell antigenic epitopes in this work might present an initial set of peptides for future vaccine development against ISAV. The ability to model and predict these interactions will ultimately lead to the ability to predict potential binding for MHCs and epitopes that were not studied previously. As current knowledge of salmon MHC specificity is limited, studying and modeling interactions in the peptide/MHC complex is a key to resolving unknown epitope specificity.
Collapse
Affiliation(s)
- C Kossack
- Laboratorio de Inmunología Comparativa, Centro de Biotecnología Acuícola (CBA), Universidad de Santiago de Chile, Alameda, 3363, Santiago, Chile
| | - N Fuentes
- Laboratorio de Inmunología Comparativa, Centro de Biotecnología Acuícola (CBA), Universidad de Santiago de Chile, Alameda, 3363, Santiago, Chile
| | - K Maisey
- Laboratorio de Inmunología Comparativa, Centro de Biotecnología Acuícola (CBA), Universidad de Santiago de Chile, Alameda, 3363, Santiago, Chile.
| |
Collapse
|
11
|
A Review of Suggested Mechanisms of MHC Odor Signaling. BIOLOGY 2022; 11:biology11081187. [PMID: 36009814 PMCID: PMC9405088 DOI: 10.3390/biology11081187] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/26/2022] [Accepted: 08/04/2022] [Indexed: 11/23/2022]
Abstract
Simple Summary Immune genes of the vertebrate MHC vary among individuals. Each individual collection is optimally diverse to provide resistance against some infectious diseases but not too diverse to cause autoimmune diseases. MHC-dependent mate choice aims for optimally complementary MHC alleles. Each potential partner signals through body odor his/her MHC alleles. Identifying the signal molecules was a long-lasting puzzle solved only recently after many deviations as described. Commensal microbiota which are controlled by the individual MHC genes differ among individuals. They were suspected repeatedly to provide the signal, though mice raised germ-free could still smell MHC genes. Carrier hypotheses came in various versions, centered around the specificity of each MHC molecule for binding peptides from diseases, shown to T lymphocytes to induce the immune response. Volatiles of various origins were suggested to fill the place of the peptide and thus reflect the identity of the MHC molecule. Finally, the bound peptides themselves were identified as the sought info-chemicals. Synthesized peptides affect mate choice as predicted. Specific olfactory neurons were shown to react to these peptides but only to the anchors that define the binding specificity. Even eggs choose sperm to produce offspring with optimal MHC, though the signaling pathway needs further research. Abstract Although an individual’s mix of MHC immune genes determines its resistance, finding MHC-dependent mate choice occurred by accident in inbred mice. Inbred mice prefer MHC dissimilar mates, even when the choice was restricted to urine. It took decades to find the info-chemicals, which have to be as polymorphic as the MHC. Microbiota were suggested repeatedly as the origin of the odor signal though germ-free mice maintained normal preference. Different versions of the ‘carrier hypothesis’ suggested MHC molecules carry volatiles after the bound peptide is released. Theory predicted an optimal individual MHC diversity to maximize resistance. The optimally complementary mate should be and is preferred as several studies show. Thus, the odor signal needs to transmit the exact information of the sender’s MHC alleles, as do MHC ligand peptides but not microbiota. The ‘MHC peptide hypothesis’ assumes that olfactory perception of the peptide ligand provides information about the MHC protein in a key-lock fashion. Olfactory neurons react only to the anchors of synthesized MHC peptides, which reflect the binding MHC molecule’s identity. Synthesized peptides supplemented to a male’s signal affect choice in the predicted way, however, not when anchors are mutated. Also, the human brain detects smelled synthesized self-peptides as such. After mate choice, the lottery of meiosis of randomly paired oocyte and sperm haplotypes would often produce MHC non-optimal offspring. In sticklebacks, eggs select MHC-compatible sperm, thus prefer the best combination close to the population optimum.
Collapse
|
12
|
Halabi S, Kaufman J. New vistas unfold: Chicken MHC molecules reveal unexpected ways to present peptides to the immune system. Front Immunol 2022; 13:886672. [PMID: 35967451 PMCID: PMC9372762 DOI: 10.3389/fimmu.2022.886672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 07/07/2022] [Indexed: 11/27/2022] Open
Abstract
The functions of a wide variety of molecules with structures similar to the classical class I and class II molecules encoded by the major histocompatibility complex (MHC) have been studied by biochemical and structural studies over decades, with many aspects for humans and mice now enshrined in textbooks as dogma. However, there is much variation of the MHC and MHC molecules among the other jawed vertebrates, understood in the most detail for the domestic chicken. Among the many unexpected features in chickens is the co-evolution between polymorphic TAP and tapasin genes with a dominantly-expressed class I gene based on a different genomic arrangement compared to typical mammals. Another important discovery was the hierarchy of class I alleles for a suite of properties including size of peptide repertoire, stability and cell surface expression level, which is also found in humans although not as extreme, and which led to the concept of generalists and specialists in response to infectious pathogens. Structural studies of chicken class I molecules have provided molecular explanations for the differences in peptide binding compared to typical mammals. These unexpected phenomena include the stringent binding with three anchor residues and acidic residues at the peptide C-terminus for fastidious alleles, and the remodelling binding sites, relaxed binding of anchor residues in broad hydrophobic pockets and extension at the peptide C-terminus for promiscuous alleles. The first few studies for chicken class II molecules have already uncovered unanticipated structural features, including an allele that binds peptides by a decamer core. It seems likely that the understanding of how MHC molecules bind and present peptides to lymphocytes will broaden considerably with further unexpected discoveries through biochemical and structural studies for chickens and other non-mammalian vertebrates.
Collapse
Affiliation(s)
- Samer Halabi
- Institute for Immunology and Infection Research, University of Edinburgh, Edinburgh, United Kingdom
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Jim Kaufman
- Institute for Immunology and Infection Research, University of Edinburgh, Edinburgh, United Kingdom
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
- *Correspondence: Jim Kaufman,
| |
Collapse
|
13
|
Zhang L, Li Z, Tang Z, Han L, Wei X, Xie X, Ren S, Meng K, Liu Y, Xu M, Qi L, Chen H, Wu J, Zhang N. Efficient Identification of Tembusu Virus CTL Epitopes in Inbred HBW/B4 Ducks Using a Novel MHC Class I-Restricted Epitope Screening Scheme. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:145-156. [PMID: 35623661 DOI: 10.4049/jimmunol.2100382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 04/28/2022] [Indexed: 06/15/2023]
Abstract
The identification of MHC class I-restricted CTL epitopes in certain species, particularly nonmammals, remains a challenge. In this study, we developed a four-step identification scheme and confirmed its efficiency by identifying the Anpl-UAA*76-restricted CTL epitopes of Tembusu virus (TMUV) in inbred haplotype ducks HBW/B4. First, the peptide binding motif of Anpl-UAA*76 was determined by random peptide library in de novo liquid chromatography-tandem mass spectrometry, a novel nonbiased, data-independent acquisition method that we previously established. Second, a total of 38 TMUV peptides matching the motif were screened from the viral proteome, among which 11 peptides were conserved across the different TMUV strains. Third, the conserved TMUV peptides were refolded in vitro with Anpl-UAA*76 and Anpl-β2-microglobulin to verify the results from the previous two steps. To clarify the structural basis of the obtained motif, we resolved the crystal structure of Anpl-UAA*76 with the TMUV NS3 peptide LRKRQLTVL and found that Asp34 is critical for the preferential binding of the B pocket to bind the second residue to arginine as an anchor residue. Fourth, the immunogenicity of the conserved TMUV peptides was tested in vivo using specific pathogen-free HBW/B4 ducks immunized with the attenuated TMUV vaccine. All 11 conserved TMUV epitopes could bind stably to Anpl-UAA*76 in vitro and stimulate the secretion of IFN-γ and lymphocyte proliferation, and three conserved and one nonconserved peptides were selected to evaluate the CTL responses in vivo by flow cytometry and their tetramers. We believe that this new scheme could improve the identification of MHC class I-restricted CTL epitopes, and our data provide a foundation for further study on duck anti-TMUV CTL immunity.
Collapse
Affiliation(s)
- Lin Zhang
- Shandong Key Laboratory of Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Zhuolin Li
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Ziche Tang
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Lingxia Han
- Division of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Xiaohui Wei
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xiaoli Xie
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Shuaimeng Ren
- Shandong Key Laboratory of Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
- College of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, Hebei, China
| | - Kai Meng
- Shandong Key Laboratory of Poultry Diseases Diagnosis and Immunology, Institute of Poultry, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Yueyue Liu
- Shandong Key Laboratory of Poultry Diseases Diagnosis and Immunology, Institute of Poultry, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Minli Xu
- Shandong Key Laboratory of Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Lihong Qi
- Shandong Key Laboratory of Poultry Diseases Diagnosis and Immunology, Institute of Poultry, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Hongyan Chen
- Division of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Jiaqiang Wu
- Shandong Key Laboratory of Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China;
- Shandong Key Laboratory of Poultry Diseases Diagnosis and Immunology, Institute of Poultry, Shandong Academy of Agricultural Sciences, Jinan, China
- Key Laboratory of Animal Resistant Biology of Shandong, College of Life Sciences, Shandong Normal University, Jinan, China; and
| | - Nianzhi Zhang
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing, China;
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, China Agricultural University, Beijing, China
| |
Collapse
|
14
|
Jin Y, Li Y, Jiang L, Wang W, Zheng C, Chen M, Wu Y, Dai J, Chen J, Yu M, Zeng G, Hao M, Zeng B. The relationship between MHC−peptide interaction and resistance to virus in chickens. Immun Inflamm Dis 2022; 10:e596. [PMID: 35146947 PMCID: PMC8926493 DOI: 10.1002/iid3.596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/24/2022] [Accepted: 01/28/2022] [Indexed: 11/18/2022] Open
Abstract
Introduction The MHC‐peptide interaction has a subtle influence on host resistance to virus. This paper aims to study the relationship between MHC‐peptide interaction and MHC‐related virus‐resistance. Methods By 3D homology modeling, the structure of chicken BF2 molecule BF2*0201 (PDB code: 4d0d) was studied and compared with the known structures of BF2 molecule BF2*0401 (PDB code: 4e0r) to elucidate the characteristics of BF2*0201‐binding antigenic peptides. Results The results show that due to the amino acid difference between the two binding groove of 4e0r and 4d0d, the size of the binding groove of the two are 1130 ų and1380 ų respectively, indicating the amino acid species that 4e0r binding peptide has lower selectivity than 4d0d; and because of large side chain conformation of Arg (especially Arg111) of 4e0r replaced by small side chain Tyr111 of 4d0d, the volume of central part of the binding groove of 4d0d is obviously larger than that of 4e0r, indicating that the restrictive of binding antigenic peptides for 4d0d is narrower than that of 4e0r; and on account of the chargeability of the binding groove of the two are different, namely the binding groove chargeability of 4e0r (strong positive polarity) and 4d0d (weak negative polarity). Conclusion There are generally more peptides presented by the BF2 of B2 haplotype than by that of B4 haplotype, leading to more resistance of B2 than that of B4 to virus.
Collapse
Affiliation(s)
- Yuan‐chang Jin
- Characteristic Laboratory of Animal Resources Conservation and Utilization of Chishui River Basin, Department of Biology and Agriculture Zunyi Normal College Zunyi People's Republic of China
| | - Yu‐feng Li
- College of Agriculture and Food Engineering Baise University Baise People's Republic of China
| | - Li‐xia Jiang
- Characteristic Laboratory of Animal Resources Conservation and Utilization of Chishui River Basin, Department of Biology and Agriculture Zunyi Normal College Zunyi People's Republic of China
| | - Wei Wang
- School of Life Science Hunan University of Science and Technology Xiangtan People's Republic of China
| | - Chuan‐dan Zheng
- Characteristic Laboratory of Animal Resources Conservation and Utilization of Chishui River Basin, Department of Biology and Agriculture Zunyi Normal College Zunyi People's Republic of China
| | - Ming‐li Chen
- Characteristic Laboratory of Animal Resources Conservation and Utilization of Chishui River Basin, Department of Biology and Agriculture Zunyi Normal College Zunyi People's Republic of China
| | - Yu‐jie Wu
- Characteristic Laboratory of Animal Resources Conservation and Utilization of Chishui River Basin, Department of Biology and Agriculture Zunyi Normal College Zunyi People's Republic of China
| | - Juan Dai
- Characteristic Laboratory of Animal Resources Conservation and Utilization of Chishui River Basin, Department of Biology and Agriculture Zunyi Normal College Zunyi People's Republic of China
| | - Jing‐fen Chen
- Characteristic Laboratory of Animal Resources Conservation and Utilization of Chishui River Basin, Department of Biology and Agriculture Zunyi Normal College Zunyi People's Republic of China
| | - Min‐min Yu
- Characteristic Laboratory of Animal Resources Conservation and Utilization of Chishui River Basin, Department of Biology and Agriculture Zunyi Normal College Zunyi People's Republic of China
| | - Gang Zeng
- Characteristic Laboratory of Animal Resources Conservation and Utilization of Chishui River Basin, Department of Biology and Agriculture Zunyi Normal College Zunyi People's Republic of China
| | - Mei‐lin Hao
- Characteristic Laboratory of Animal Resources Conservation and Utilization of Chishui River Basin, Department of Biology and Agriculture Zunyi Normal College Zunyi People's Republic of China
| | - Bo‐ping Zeng
- Characteristic Laboratory of Animal Resources Conservation and Utilization of Chishui River Basin, Department of Biology and Agriculture Zunyi Normal College Zunyi People's Republic of China
| |
Collapse
|
15
|
Wei X, Li S, Wang S, Feng G, Xie X, Li Z, Zhang N. Peptidomes and Structures Illustrate How SLA-I Micropolymorphism Influences the Preference of Binding Peptide Length. Front Immunol 2022; 13:820881. [PMID: 35296092 PMCID: PMC8918614 DOI: 10.3389/fimmu.2022.820881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 02/10/2022] [Indexed: 12/03/2022] Open
Abstract
Polymorphisms can affect MHC-I binding peptide length preferences, but the mechanism remains unclear. Using a random peptide library combined with LC-MS/MS and de novo sequencing (RPLD-MS) technique, we found that two swine MHC-I molecules with high sequence homology, SLA-1*04:01 and SLA-1*13:01, had significant differences in length preference of the binding peptides. Compared with SLA-1*04:01, SLA-1*13:01 binds fewer short peptides with 8-10 amino acids, but more long peptides. A dodecapeptide peptide (RW12) can bind to both SLA-1*04:01 and SLA-1*13:01, but their crystal structures indicate that the binding modes are significantly different: the entirety of RW12 is embedded in the peptide binding groove of SLA-1*04:01, but it obviously protrudes from the peptide binding groove of SLA-1*13:01. The structural comparative analysis showed that only five differential amino acids of SLA-1*13:01 and SLA-1*04:01 were involved in the binding of RW12, and they determine the different ways of long peptides binding, which makes SLA-1*04:01 more restrictive on long peptides than SLA-1*13:01, and thus binds fewer long peptides. In addition, we found that the N terminus of RW12 extends from the groove of SLA-1*13:01, which is similar to the case previously found in SLA-1*04:01. However, this unusual peptide binding does not affect their preferences of binding peptide length. Our study will be helpful to understand the effect of polymorphisms on the length distribution of MHC-I binding peptides, and to screen SLA-I-restricted epitopes of different lengths and to design effective epitope vaccines.
Collapse
Affiliation(s)
- Xiaohui Wei
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing, China
- National Health Commission (NHC) Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS) and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Shen Li
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Suqiu Wang
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Guojiao Feng
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xiaoli Xie
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Zhuolin Li
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Nianzhi Zhang
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing, China
- *Correspondence: Nianzhi Zhang,
| |
Collapse
|
16
|
Jin Y, Wang W, Yu M, Hao M, Zeng G, Chen J, Dai J, Wu Y. Study on the contrast of the MHC–peptide interaction of B2/B21 haplotype and MHC‐related virus resistance in chickens. Immun Inflamm Dis 2021; 9:1670-1677. [PMID: 34473901 PMCID: PMC8589374 DOI: 10.1002/iid3.520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 08/16/2021] [Accepted: 08/18/2021] [Indexed: 01/05/2023] Open
Abstract
Introduction Methods Results Conclusion
Collapse
Affiliation(s)
- Yuan‐chang Jin
- College of Biology and Agriculture (College of Food Science and Technology) Zunyi Normal College Zunyi Guizhou China
| | - Wei Wang
- School of Life Science Hunan University of Science and Technology Xiangtan Hunan China
| | - Min‐min Yu
- College of Biology and Agriculture (College of Food Science and Technology) Zunyi Normal College Zunyi Guizhou China
| | - Mei‐lin Hao
- College of Biology and Agriculture (College of Food Science and Technology) Zunyi Normal College Zunyi Guizhou China
| | - Gang Zeng
- College of Biology and Agriculture (College of Food Science and Technology) Zunyi Normal College Zunyi Guizhou China
| | - Jing‐fen Chen
- College of Biology and Agriculture (College of Food Science and Technology) Zunyi Normal College Zunyi Guizhou China
| | - Juan Dai
- College of Biology and Agriculture (College of Food Science and Technology) Zunyi Normal College Zunyi Guizhou China
| | - Yu‐jie Wu
- College of Biology and Agriculture (College of Food Science and Technology) Zunyi Normal College Zunyi Guizhou China
| |
Collapse
|
17
|
Mia MM, Hasan M, Hasan MM, Khan SS, Rahman MN, Ahmed S, Basak A, Sakib MN, Banik S. Multi-epitope based subunit vaccine construction against Banna virus targeting on two outer proteins (VP4 and VP9): A computational approach. INFECTION GENETICS AND EVOLUTION 2021; 95:105076. [PMID: 34500093 DOI: 10.1016/j.meegid.2021.105076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 08/28/2021] [Accepted: 09/03/2021] [Indexed: 11/17/2022]
Abstract
Recently, RNA viruses have gained a mammoth concern for causing various outbreaks, and due to pandemics, they are acquiring additional attention throughout the world. An emerging RNA as well as vector-borne Banna Virus (BAV) is a human pathogen resulting in encephalitis, fever, headache, muscle aches, and severe coma. Besides human, pathogenic BAV was also detected from pigs, cattle, ticks, midges, and mosquitoes in Indonesia, China, and Vietnam. Due to high mutation tendency and dearth of a species barrier, this virus will consider as a significant threat in the near future throughout the planet, particularly in Africa. Despite of severe human case fatalities in several countries, there are no specific therapeutics, available vaccines, and other preventive measures against BAV. Thus, to find out the effective therapeutics and preventive strategies are crying exigency. In the present study, a unique multi-epitope-based peptide vaccine candidate is constructed using bioinformatics' tools that efficiently instigate immune cells for generating BAV antibodies. The potential vaccine candidates were developed using both T and B -cell epitopes. UniprotKB database was used to retrieve of two outer proteins (VP9 and VP4), and homologous sequences of BAV taxid: 7763, 649,604, 77,763, and 8453 were searched by NCBI BLAST. These serotypes are the most closely associated with the disease. Then combining the best-selected epitopes in various combinations with different adjuvants, three distinct vaccine candidates were formed. The validity tests were performed for the screened vaccine candidate regarding stability, allergenicity, and antigenicity parameters. Moreover, molecular dynamic simulations of the selected vaccine with TLR-8 immune receptor confirmed the stability of the binding pose and showed a significant response to immune cells. Thus, the results established that the designed chimeric peptide vaccine could enhance the immune response against BAV.
Collapse
Affiliation(s)
- Md Mukthar Mia
- Department of Poultry Science, Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet 3100, Bangladesh; Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet 3100, Bangladesh..
| | - Mahamudul Hasan
- Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet 3100, Bangladesh..
| | - Md Mahadi Hasan
- Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Sumaya Shargin Khan
- Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Mohammad Nahian Rahman
- Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Shakil Ahmed
- Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Ankita Basak
- Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Md Nazmuj Sakib
- Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Shrabonti Banik
- Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| |
Collapse
|
18
|
Tregaskes CA, Kaufman J. Chickens as a simple system for scientific discovery: The example of the MHC. Mol Immunol 2021; 135:12-20. [PMID: 33845329 PMCID: PMC7611830 DOI: 10.1016/j.molimm.2021.03.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/08/2021] [Accepted: 03/17/2021] [Indexed: 01/07/2023]
Abstract
Chickens have played many roles in human societies over thousands of years, most recently as an important model species for scientific discovery, particularly for embryology, virology and immunology. In the last few decades, biomedical models like mice have become the most important model organism for understanding the mechanisms of disease, but for the study of outbred populations, they have many limitations. Research on humans directly addresses many questions about disease, but frank experiments into mechanisms are limited by practicality and ethics. For research into all levels of disease simultaneously, chickens combine many of the advantages of humans and of mice, and could provide an independent, integrated and overarching system to validate and/or challenge the dogmas that have arisen from current biomedical research. Moreover, some important systems are simpler in chickens than in typical mammals. An example is the major histocompatibility complex (MHC) that encodes the classical MHC molecules, which play crucial roles in the innate and adaptive immune systems. Compared to the large and complex MHCs of typical mammals, the chicken MHC is compact and simple, with single dominantly-expressed MHC molecules that can determine the response to infectious pathogens. As a result, some fundamental principles have been easier to discover in chickens, with the importance of generalist and specialist MHC alleles being the latest example.
Collapse
Affiliation(s)
- Clive A Tregaskes
- University of Cambridge, Department of Pathology, Tennis Court Road, Cambridge, CB2 1QP, United Kingdom
| | - Jim Kaufman
- University of Cambridge, Department of Pathology, Tennis Court Road, Cambridge, CB2 1QP, United Kingdom; University of Edinburgh, Institute for Immunology and Infection Research, Ashworth Laboratories, Kings Buildings, Edinburgh, EH9 3FL, United Kingdom.
| |
Collapse
|
19
|
Wu Y, Zhang N, Wei X, Lu S, Li S, Hashimoto K, Dijkstra JM, Xia C. The Structure of a Peptide-Loaded Shark MHC Class I Molecule Reveals Features of the Binding between β 2-Microglobulin and H Chain Conserved in Evolution. THE JOURNAL OF IMMUNOLOGY 2021; 207:308-321. [PMID: 34145057 DOI: 10.4049/jimmunol.2001165] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 04/23/2021] [Indexed: 12/22/2022]
Abstract
Cartilaginous fish are the most primitive extant species with MHC molecules. Using the nurse shark, the current study is, to the best of our knowledge, the first to present a peptide-loaded MHC class I (pMHC-I) structure for this class of animals. The overall structure was found to be similar between cartilaginous fish and bony animals, showing remarkable conservation of interactions between the three pMHC-I components H chain, β2-microglobulin (β2-m), and peptide ligand. In most previous studies, relatively little attention was given to the details of binding between the H chain and β2-m, and our study provides important new insights. A pronounced conserved feature involves the insertion of a large β2-m F56+W60 hydrophobic knob into a pleat of the β-sheet floor of the H chain α1α2 domain, with the knob being surrounded by conserved residues. Another conserved feature is a hydrogen bond between β2-m Y10 and a proline in the α3 domain of the H chain. By alanine substitution analysis, we found that the conserved β2-m residues Y10, D53, F56, and W60-each binding the H chain-are required for stable pMHC-I complex formation. For the β2-m residues Y10 and F56, such observations have not been reported before. The combined data indicate that for stable pMHC-I complex formation β2-m should not only bind the α1α2 domain but also the α3 domain. Knowing the conserved structural features of pMHC-I should be helpful for future elucidations of the mechanisms of pMHC-I complex formation and peptide editing.
Collapse
Affiliation(s)
- Yanan Wu
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing, China; and
| | - Nianzhi Zhang
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing, China; and
| | - Xiaohui Wei
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing, China; and
| | - Shuangshuang Lu
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing, China; and
| | - Shen Li
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing, China; and
| | - Keiichiro Hashimoto
- Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Japan
| | - Johannes M Dijkstra
- Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Japan
| | - Chun Xia
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing, China; and
| |
Collapse
|
20
|
Hosseini SS, Aghaiypour Kolyani K, Rafiei Tabatabaei R, Goudarzi H, Akhavan Sepahi A, Salemi M. In silico prediction of B and T cell epitopes based on NDV fusion protein for vaccine development against Newcastle disease virus. VETERINARY RESEARCH FORUM : AN INTERNATIONAL QUARTERLY JOURNAL 2021; 12:157-165. [PMID: 34345381 PMCID: PMC8328245 DOI: 10.30466/vrf.2019.98625.2351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 05/07/2019] [Indexed: 11/24/2022]
Abstract
Newcastle disease (ND) is known as the most common diseases of economic importance worldwide. Vaccination against virulent strains of Newcastle disease virus (NDV) has failed during some outbreaks. Here, we aimed to assess the epitopes of NDV fusion protein as targets for a peptide-based vaccine. To explore the most antigenic epitopes on the F protein, we retrieved virulent strains of genotype VII from National Center for Biotechnology Information (NCBI). Linear and conformational B-cell epitopes were identified. Moreover, T-cell epitopes with high and moderate binding affinities to human major histocompatibility complex (MHC) class I and class II alleles were predicted using bioinformatics tools. Subsequently, the overlapped epitopes of B-cell and MHC class I and MHC class II were determined. To validate our predictions, the best epitopes were docked, to chicken MHC class I (B-F) alleles using the HADDOCK flexible docking server. Seven ‘high ranked epitopes’ were identified. Among them, ‘LYCTRIVTF’ and ‘MRATYLETL’ showed the highest scores. The other five epitopes including LSGEFDATY, LTTPPYMALK, LYLTELTTV, DCIKITQQV and SIAATNEAV obtained very encouraging results as well. SIAATNEAV had been recognized as a neutralizing epitope of F protein using monoclonal antibodies before. Taken together, our results demonstrated that the identified epitopes needed to be tested by in vitro and in vivo experiments.
Collapse
Affiliation(s)
| | - Khosrow Aghaiypour Kolyani
- Department of Genomics and Genetic Engineering, Razi Vaccine and Serum Research Institute (RVSRI), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Robab Rafiei Tabatabaei
- Department of Microbiology, Faculty of Basic Sciences, Islamic Azad University, Tehran North Branch, Tehran, Iran
| | - Hossein Goudarzi
- Central Laboratory Department, Razi Vaccine and Serum Research Institute Agricultural Research, AREEO, Karaj, Iran
| | - Abbas Akhavan Sepahi
- Department of Microbiology, Faculty of Science, Tehran North Branch, Islamic Azad University, Tehran, Iran
| | - Maryam Salemi
- Department of Genomics and Genetic Engineering, Razi Vaccine and Serum Research Institute (RVSRI), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| |
Collapse
|
21
|
Wu Y, Zhang N, Hashimoto K, Xia C, Dijkstra JM. Structural Comparison Between MHC Classes I and II; in Evolution, a Class-II-Like Molecule Probably Came First. Front Immunol 2021; 12:621153. [PMID: 34194421 PMCID: PMC8236899 DOI: 10.3389/fimmu.2021.621153] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 05/04/2021] [Indexed: 01/03/2023] Open
Abstract
Structures of peptide-loaded major histocompatibility complex class I (pMHC-I) and class II (pMHC-II) complexes are similar. However, whereas pMHC-II complexes include similar-sized IIα and IIβ chains, pMHC-I complexes include a heavy chain (HC) and a single domain molecule β2-microglobulin (β2-m). Recently, we elucidated several pMHC-I and pMHC-II structures of primitive vertebrate species. In the present study, a comprehensive comparison of pMHC-I and pMHC-II structures helps to understand pMHC structural evolution and supports the earlier proposed—though debated—direction of MHC evolution from class II-type to class I. Extant pMHC-II structures share major functional characteristics with a deduced MHC-II-type homodimer ancestor. Evolutionary establishment of pMHC-I presumably involved important new functions such as (i) increased peptide selectivity by binding the peptides in a closed groove (ii), structural amplification of peptide ligand sequence differences by binding in a non-relaxed fashion, and (iii) increased peptide selectivity by syngeneic heterotrimer complex formation between peptide, HC, and β2-m. These new functions were associated with structures that since their establishment in early pMHC-I have been very well conserved, including a shifted and reorganized P1 pocket (aka A pocket), and insertion of a β2-m hydrophobic knob into the peptide binding domain β-sheet floor. A comparison between divergent species indicates better sequence conservation of peptide binding domains among MHC-I than among MHC-II, agreeing with more demanding interactions within pMHC-I complexes. In lungfishes, genes encoding fusions of all MHC-IIα and MHC-IIβ extracellular domains were identified, and although these lungfish genes presumably derived from classical MHC-II, they provide an alternative mechanistic hypothesis for how evolution from class II-type to class I may have occurred.
Collapse
Affiliation(s)
- Yanan Wu
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Nianzhi Zhang
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Keiichiro Hashimoto
- Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Japan
| | - Chun Xia
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Johannes M Dijkstra
- Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Japan
| |
Collapse
|
22
|
Jantz-Naeem N, Springer S. Venus flytrap or pas de trois? The dynamics of MHC class I molecules. Curr Opin Immunol 2021; 70:82-89. [PMID: 33993034 DOI: 10.1016/j.coi.2021.04.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/05/2021] [Accepted: 04/08/2021] [Indexed: 11/25/2022]
Abstract
The peptide binding site of major histocompatibility complex (MHC) class I molecules is natively unfolded when devoid of peptides. Peptide binding stabilizes the structure and slows the dynamics, but peptide-specific and subtype-specific motions influence, and are influenced by, interaction with assembly chaperones, the T cell receptor, and other class I-binding proteins. The molecular mechanisms of cooperation between peptide, class I heavy chain, and beta-2 microglobulin are insufficiently known but are being elucidated by nuclear magnetic resonance and other modern methods. It appears that micropolymorphic clusters of charged amino acids, often hidden in the molecule interior, determine the dynamics and thus chaperone dependence, cellular fate, and disease association of class I.
Collapse
Affiliation(s)
- Nouria Jantz-Naeem
- Department of Life Sciences and Chemistry, Jacobs University, Bremen, Germany
| | - Sebastian Springer
- Department of Life Sciences and Chemistry, Jacobs University, Bremen, Germany.
| |
Collapse
|
23
|
Halabi S, Ghosh M, Stevanović S, Rammensee HG, Bertzbach LD, Kaufer BB, Moncrieffe MC, Kaspers B, Härtle S, Kaufman J. The dominantly expressed class II molecule from a resistant MHC haplotype presents only a few Marek's disease virus peptides by using an unprecedented binding motif. PLoS Biol 2021; 19:e3001057. [PMID: 33901176 PMCID: PMC8101999 DOI: 10.1371/journal.pbio.3001057] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 05/06/2021] [Accepted: 03/31/2021] [Indexed: 12/14/2022] Open
Abstract
Viral diseases pose major threats to humans and other animals, including the billions of chickens that are an important food source as well as a public health concern due to zoonotic pathogens. Unlike humans and other typical mammals, the major histocompatibility complex (MHC) of chickens can confer decisive resistance or susceptibility to many viral diseases. An iconic example is Marek's disease, caused by an oncogenic herpesvirus with over 100 genes. Classical MHC class I and class II molecules present antigenic peptides to T lymphocytes, and it has been hard to understand how such MHC molecules could be involved in susceptibility to Marek's disease, given the potential number of peptides from over 100 genes. We used a new in vitro infection system and immunopeptidomics to determine peptide motifs for the 2 class II molecules expressed by the MHC haplotype B2, which is known to confer resistance to Marek's disease. Surprisingly, we found that the vast majority of viral peptide epitopes presented by chicken class II molecules arise from only 4 viral genes, nearly all having the peptide motif for BL2*02, the dominantly expressed class II molecule in chickens. We expressed BL2*02 linked to several Marek's disease virus (MDV) peptides and determined one X-ray crystal structure, showing how a single small amino acid in the binding site causes a crinkle in the peptide, leading to a core binding peptide of 10 amino acids, compared to the 9 amino acids in all other reported class II molecules. The limited number of potential T cell epitopes from such a complex virus can explain the differential MHC-determined resistance to MDV, but raises questions of mechanism and opportunities for vaccine targets in this important food species, as well as providing a basis for understanding class II molecules in other species including humans.
Collapse
Affiliation(s)
- Samer Halabi
- University of Cambridge, Department of Pathology, Cambridge, United Kingdom
- University of Edinburgh, Institute for Immunology and Infection Research, Edinburgh, United Kingdom
| | - Michael Ghosh
- University of Tübingen, Department of Immunology, Institute of Cell Biology, Tübingen, Germany
| | - Stefan Stevanović
- University of Tübingen, Department of Immunology, Institute of Cell Biology, Tübingen, Germany
| | - Hans-Georg Rammensee
- University of Tübingen, Department of Immunology, Institute of Cell Biology, Tübingen, Germany
| | | | | | | | - Bernd Kaspers
- Ludwig Maximillians University, Veterinary Faculty, Planegg, Germany
| | - Sonja Härtle
- Ludwig Maximillians University, Veterinary Faculty, Planegg, Germany
| | - Jim Kaufman
- University of Cambridge, Department of Pathology, Cambridge, United Kingdom
- University of Edinburgh, Institute for Immunology and Infection Research, Edinburgh, United Kingdom
- University of Cambridge, Department of Veterinary Medicine, Cambridge, United Kingdom
| |
Collapse
|
24
|
Ma F, Luo L, Wang Q. Response of the ileum transcriptome to fructo-oligosaccharides in Taiping chickens. Anim Biotechnol 2021; 33:1217-1228. [PMID: 33591232 DOI: 10.1080/10495398.2021.1884565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The aim of this study was to investigate the effects of fructo-oligosaccharide (FOS) supplementation intake of Taiping chickens (Gallus gallus domesticus) and its stimulating effects on ileum. 120 healthy chickens were randomly divided into two groups; control group (CT) and fructo-oligosaccharides group (FOS). At the 60th day of age, ileum mucosa of three chickens per group were collected and performed transcriptome profiling of Taiping chicken ileum mucosa using the Hiseq™ 2500 sequencing platform. Compared with CT group, 50 genes were differentially expressed in the FOS group. Ten of the differently expressed genes were further validated by RT-qPCR. In addition, gene ontology and Kyoto encyclopedia of genes and genomes analyses revealed that these differentially expressed genes were mainly enriched to drug metabolism-cytochrome P450, metabolism of xenobiotics by cytochrome P450, retinol metabolism, fat digestion and absorption, herpes simplex infection and valine, leucine and isoleucine biosynthesis. The results of this study provided the help to our understanding application of fructo-oligosaccharides in indigenous chicken production and provide a theoretical basis for the genetic development of indigenous chickens.
Collapse
Affiliation(s)
- Fang Ma
- Key Laboratory of Resource Utilization of Agricultural Solid Waste in Gansu Province, Tianshui Normal University, Tianshui, Gansu Province, P. R. China
| | - Lintong Luo
- Key Laboratory of Resource Utilization of Agricultural Solid Waste in Gansu Province, Tianshui Normal University, Tianshui, Gansu Province, P. R. China
| | - Qianning Wang
- Key Laboratory of Resource Utilization of Agricultural Solid Waste in Gansu Province, Tianshui Normal University, Tianshui, Gansu Province, P. R. China
| |
Collapse
|
25
|
Kaufman J. From Chickens to Humans: The Importance of Peptide Repertoires for MHC Class I Alleles. Front Immunol 2020; 11:601089. [PMID: 33381122 PMCID: PMC7767893 DOI: 10.3389/fimmu.2020.601089] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 10/30/2020] [Indexed: 12/21/2022] Open
Abstract
In humans, killer immunoglobulin-like receptors (KIRs), expressed on natural killer (NK) and thymus-derived (T) cells, and their ligands, primarily the classical class I molecules of the major histocompatibility complex (MHC) expressed on nearly all cells, are both polymorphic. The variation of this receptor-ligand interaction, based on which alleles have been inherited, is known to play crucial roles in resistance to infectious disease, autoimmunity, and reproduction in humans. However, not all the variation in response is inherited, since KIR binding can be affected by a portion of the peptide bound to the class I molecules, with the particular peptide presented affecting the NK response. The extent to which the large multigene family of chicken immunoglobulin-like receptors (ChIRs) is involved in functions similar to KIRs is suspected but not proven. However, much is understood about the two MHC-I molecules encoded in the chicken MHC. The BF2 molecule is expressed at a high level and is thought to be the predominant ligand of cytotoxic T lymphocytes (CTLs), while the BF1 molecule is expressed at a much lower level if at all and is thought to be primarily a ligand for NK cells. Recently, a hierarchy of BF2 alleles with a suite of correlated properties has been defined, from those expressed at a high level on the cell surface but with a narrow range of bound peptides to those expressed at a lower level on the cell surface but with a very wide repertoire of bound peptides. Interestingly, there is a similar hierarchy for human class I alleles, although the hierarchy is not as wide. It is a question whether KIRs and ChIRs recognize class I molecules with bound peptide in a similar way, and whether fastidious to promiscuous hierarchy of class I molecules affect both T and NK cell function. Such effects might be different from those predicted by the similarities of peptide-binding based on peptide motifs, as enshrined in the idea of supertypes. Since the size of peptide repertoire can be very different for alleles with similar peptide motifs from the same supertype, the relative importance of these two properties may be testable.
Collapse
Affiliation(s)
- Jim Kaufman
- School of Biological Sciences, Institute for Immunology and Infection Research, University of Edinburgh, Edinburgh, United Kingdom.,Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
26
|
Liu Y, Chen R, Liang R, Sun B, Wu Y, Zhang L, Kaufman J, Xia C. The Combination of CD8αα and Peptide-MHC-I in a Face-to-Face Mode Promotes Chicken γδT Cells Response. Front Immunol 2020; 11:605085. [PMID: 33329601 PMCID: PMC7719794 DOI: 10.3389/fimmu.2020.605085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 10/27/2020] [Indexed: 11/29/2022] Open
Abstract
The CD8αα homodimer is crucial to both thymic T cell selection and the antigen recognition of cytotoxic T cells. The CD8-pMHC-I interaction can enhance CTL immunity via stabilizing the TCR-pMHC-I interaction and optimizing the cross-reactivity and Ag sensitivity of CD8+ T cells at various stages of development. To date, only human and mouse CD8-pMHC-I complexes have been determined. Here, we resolved the pBF2*1501 complex and the cCD8αα/pBF2*1501 and cCD8αα/pBF2*0401 complexes in nonmammals for the first time. Remarkably, cCD8αα/pBF2*1501 and the cCD8αα/pBF2*0401 complex both exhibited two binding modes, including an “antibody-like” mode similar to that of the known mammal CD8/pMHC-I complexes and a “face-to-face” mode that has been observed only in chickens to date. Compared to the “antibody-like” mode, the “face-to-face” binding mode changes the binding orientation of the cCD8αα homodimer to pMHC-I, which might facilitate abundant γδT cells to bind diverse peptides presented by limited BF2 alleles in chicken. Moreover, the forces involving in the interaction of cCD8αα/pBF2*1501 and the cCD8αα/pBF2*0401 are different in this two binding model, which might change the strength of the CD8-pMHC-I interaction, amplifying T cell cross-reactivity in chickens. The coreceptor CD8αα of TCR has evolved two peptide-MHC-I binding patterns in chickens, which might enhance the T cell response to major or emerging pathogens, including chicken-derived pathogens that are relevant to human health, such as high-pathogenicity influenza viruses.
Collapse
Affiliation(s)
- Yanjie Liu
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing, China.,Key Laboratory for Insect-Pollinator Biology of the Ministry of Agriculture, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Rong Chen
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Ruiying Liang
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Beibei Sun
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yanan Wu
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Lijie Zhang
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jim Kaufman
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom.,Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Chun Xia
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
27
|
Zhang L, Liu Y, Meng G, Liang R, Zhang B, Xia C. Structural and Biophysical Insights into the TCRαβ Complex in Chickens. iScience 2020; 23:101828. [PMID: 33305184 PMCID: PMC7711287 DOI: 10.1016/j.isci.2020.101828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/16/2020] [Accepted: 11/16/2020] [Indexed: 10/25/2022] Open
Abstract
In this work, chicken HPAIV H5N1 epitope-specific TCRαβ (ch-TCRαβ) was isolated and its structure was determined. The Cα domain of ch-TCRαβ does not exhibit the typical structure of human TCRαβ, and the DE loop extends outward, resulting in close proximity between the Cα domain of ch-TCRαβ and CD3εδ/γ. The FG loop of the Cβ domain of ch-TCRαβ is shorter. The changes in the C domains of ch-TCRαβ and the difference in chicken CD3εδ/γ confirm that the complexes formed by TCRαβ and CD3εδ/γ differ from those in humans. In the chicken complex, a positively charged cleft is formed between the two CDR3 loops that might accommodate the acidic side chains of the chicken pMHC-I-bound HPAIV epitope intermediate portion oriented toward ch-TCRαβ. This is the first reported structure of chicken TCRαβ, and it provides a structural model of the ancestral TCR system in the immune synapses between T cells and antigen-presenting cells in lower vertebrates.
Collapse
Affiliation(s)
- Lijie Zhang
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Haidian District, Beijing 100193, China.,Joint National Laboratory for Antibody Drug Engineering, Key Laboratory of Cell and Molecular Immunology, School of Medical Sciences, Henan University, Kaifeng 475004, China
| | - Yanjie Liu
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Haidian District, Beijing 100193, China
| | - Geng Meng
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Haidian District, Beijing 100193, China
| | - Ruiying Liang
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Haidian District, Beijing 100193, China
| | - Bing Zhang
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Haidian District, Beijing 100193, China
| | - Chun Xia
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Haidian District, Beijing 100193, China
| |
Collapse
|
28
|
Feng J, Zhang HJ, Wu SG, Qi GH, Wang J. Uterine transcriptome analysis reveals mRNA expression changes associated with the ultrastructure differences of eggshell in young and aged laying hens. BMC Genomics 2020; 21:770. [PMID: 33167850 PMCID: PMC7654033 DOI: 10.1186/s12864-020-07177-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 10/22/2020] [Indexed: 12/21/2022] Open
Abstract
Background Lower eggshell quality in the late laying period leads to economic loss. It is a major threat to the quality and safety of egg products. Age-related variations in ultrastructure were thought to induce this deterioration. Eggshell formation is a highly complex process under precise regulation of genes and biological pathways in uterus of laying hens. Herein, we evaluated the physical, mechanical and ultrastructure properties of eggshell and conducted RNA sequencing to learn the transcriptomic differences in uterus between laying hens in the peak (young hens) and late phase (aged hens) of production. Results The declined breaking strength and fracture toughness of eggshell were observed in aged hen group compared to those in young hen group, accompanied with ultrastructure variations including the increased thickness of mammillary layer and the decreased incidence of early fusion. During the initial stage of eggshell formation, a total of 183 differentially expressed genes (DEGs; 125 upregulated and 58 downregulated) were identified in uterus of laying hens in the late phase in relative to those at peak production. The DEGs annotated to Gene Ontology terms related to antigen processing and presentation were downregulated in aged hens compared to young hens. The contents of proinflammatory cytokine IL-1β in uterus were higher in aged hens relative to those in young hens. Besides, the genes of some matrix proteins potentially involved in eggshell mineralization, such as ovalbumin, versican and glypican 3, were also differentially expressed between two groups. Conclusions Altered gene expression of matrix proteins along with the compromised immune function in uterus of laying hens in the late phase of production may conduce to age-related impairments of eggshell ultrastructure and mechanical properties. The current study enhances our understanding of the age-related deteriorations in eggshell ultrastructure and provides potential targets for improvement of eggshell quality in the late laying period. Supplementary Information Supplementary information accompanies this paper at 10.1186/s12864-020-07177-7.
Collapse
Affiliation(s)
- Jia Feng
- Laboratory of Quality & Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture & Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Hai-Jun Zhang
- Laboratory of Quality & Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture & Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Shu-Geng Wu
- Laboratory of Quality & Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture & Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Guang-Hai Qi
- Laboratory of Quality & Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture & Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Jing Wang
- Laboratory of Quality & Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture & Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
29
|
Truong AD, Hong Y, Ly VD, Nguyen HT, Nguyen CT, Vu HT, Chu NT, Van Hoang T, Thanh Tran HT, Dang HV, Hong YH. Interleukin-dependent modulation of the expression of MHC class I and MHC class II genes in chicken HD11 cells. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 110:103729. [PMID: 32387556 DOI: 10.1016/j.dci.2020.103729] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/29/2020] [Accepted: 04/29/2020] [Indexed: 06/11/2023]
Abstract
Interleukins (ILs) regulate cell surface antigens known as activation markers, which have distinct functional roles. However, the regulation of major histocompatibility complex (MHC) class I, MHC class II, and related genes by cytokines in chickens is not well understood. In the present study, we evaluated the influence of certain recently discovered chicken interleukins-i.e., IL-11, IL-12B, IL-17A, IL-17B, IL-26, and IL-34-on the expression and regulation of genes related to MHC class I, MHC class II, and the associated proteins in an HD11 chicken macrophage cell line. We used quantitative reverse transcription polymerase chain reaction (qRT-PCR), immunocytochemical, and flow cytometric analyses to assess dose- and time-dependent expression in the HD11 cell line and found that the ILs induced MHC class I, MHC class II, and associated protein. As NF-κB is actively involved in cell activation and is constitutively activated in many immune cells, we also determined whether NF-κB regulates MHC class I, MHC class II, and related gene expression in the HD11 cell line. The NF-κB inhibitor sulfasalazine (Sz) dose-dependently inhibited MHC class I and MHC class II in the HD11 cell line. Sz also downregulated the expression of MHC class I, MHC class II, and the associated proteins in the IL-induced HD11 cell line. The expression of MHC class I, MHC class II, and associated genes was accompanied by the Sz-sensitive degradation of the p65 (RelA) and p50 subunits of NF-κB and IκBα. Our results indicate that the different effects of each IL on the expression of genes related to MHC class I, MHC class II, and the associated proteins are involved with the regulation of the dose and duration of antigenic peptide presentation and, thus, also influence Th1, Th2, and Th17 production.
Collapse
Affiliation(s)
- Anh Duc Truong
- Department of Animal Science and Technology, Chung-Ang University, Anseong, 17546, Republic of Korea; Department of Biochemistry and Immunology, National Institute of Veterinary Research, 86 Truong Chinh, Dong Da, Hanoi, 100000, Viet Nam
| | - Yeojin Hong
- Department of Animal Science and Technology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Viet Duc Ly
- Department of Biochemistry and Immunology, National Institute of Veterinary Research, 86 Truong Chinh, Dong Da, Hanoi, 100000, Viet Nam
| | - Huyen Thi Nguyen
- Department of Biochemistry and Immunology, National Institute of Veterinary Research, 86 Truong Chinh, Dong Da, Hanoi, 100000, Viet Nam
| | - Chinh Thi Nguyen
- Department of Biochemistry and Immunology, National Institute of Veterinary Research, 86 Truong Chinh, Dong Da, Hanoi, 100000, Viet Nam
| | - Hao Thi Vu
- Department of Animal Science and Technology, Chung-Ang University, Anseong, 17546, Republic of Korea; Department of Biochemistry and Immunology, National Institute of Veterinary Research, 86 Truong Chinh, Dong Da, Hanoi, 100000, Viet Nam
| | - Nhu Thi Chu
- Department of Biochemistry and Immunology, National Institute of Veterinary Research, 86 Truong Chinh, Dong Da, Hanoi, 100000, Viet Nam
| | - Tuan Van Hoang
- Department of Biochemistry and Immunology, National Institute of Veterinary Research, 86 Truong Chinh, Dong Da, Hanoi, 100000, Viet Nam
| | - Ha Thi Thanh Tran
- Department of Biochemistry and Immunology, National Institute of Veterinary Research, 86 Truong Chinh, Dong Da, Hanoi, 100000, Viet Nam
| | - Hoang Vu Dang
- Department of Biochemistry and Immunology, National Institute of Veterinary Research, 86 Truong Chinh, Dong Da, Hanoi, 100000, Viet Nam
| | - Yeong Ho Hong
- Department of Animal Science and Technology, Chung-Ang University, Anseong, 17546, Republic of Korea.
| |
Collapse
|
30
|
Smith J, Lipkin E, Soller M, Fulton JE, Burt DW. Mapping QTL Associated with Resistance to Avian Oncogenic Marek's Disease Virus (MDV) Reveals Major Candidate Genes and Variants. Genes (Basel) 2020; 11:genes11091019. [PMID: 32872585 PMCID: PMC7564597 DOI: 10.3390/genes11091019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 08/20/2020] [Accepted: 08/26/2020] [Indexed: 01/13/2023] Open
Abstract
Marek’s disease (MD) represents a significant global economic and animal welfare issue. Marek’s disease virus (MDV) is a highly contagious oncogenic and highly immune-suppressive α-herpes virus, which infects chickens, causing neurological effects and tumour formation. Though partially controlled by vaccination, MD continues to have a profound impact on animal health and on the poultry industry. Genetic selection provides an alternative and complementary method to vaccination. However, even after years of study, the genetic mechanisms underlying resistance to MDV remain poorly understood. The Major Histocompatability Complex (MHC) is known to play a role in disease resistance, along with a handful of other non-MHC genes. In this study, one of the largest to date, we used a multi-facetted approach to identify quantitative trait locus regions (QTLR) influencing resistance to MDV, including an F6 population from a full-sib advanced intercross line (FSIL) between two elite commercial layer lines differing in resistance to MDV, RNA-seq information from virus challenged chicks, and genome wide association study (GWAS) from multiple commercial lines. Candidate genomic elements residing in the QTLR were further tested for association with offspring mortality in the face of MDV challenge in eight pure lines of elite egg-layer birds. Thirty-eight QTLR were found on 19 chicken chromosomes. Candidate genes, microRNAs, long non-coding RNAs and potentially functional mutations were identified in these regions. Association tests were carried out in 26 of the QTLR, using eight pure lines of elite egg-layer birds. Numerous candidate genomic elements were strongly associated with MD resistance. Genomic regions significantly associated with resistance to MDV were mapped and candidate genes identified. Various QTLR elements were shown to have a strong genetic association with resistance. These results provide a large number of significant targets for mitigating the effects of MDV infection on both poultry health and the economy, whether by means of selective breeding, improved vaccine design, or gene-editing technologies.
Collapse
Affiliation(s)
- Jacqueline Smith
- The Roslin Institute and Royal (Dick) School of Veterinary Studies R(D)SVS, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - Ehud Lipkin
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 91904, Israel
| | - Morris Soller
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 91904, Israel
| | - Janet E Fulton
- Hy-Line International, P.O. Box 310, 2583 240th St., Dallas Center, IA 50063, USA
| | - David W Burt
- The Roslin Institute and Royal (Dick) School of Veterinary Studies R(D)SVS, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| |
Collapse
|
31
|
Strict Assembly Restriction of Peptides from Rabbit Hemorrhagic Disease Virus Presented by Rabbit Major Histocompatibility Complex Class I Molecule RLA-A1. J Virol 2020; 94:JVI.00396-20. [PMID: 32522857 DOI: 10.1128/jvi.00396-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 06/02/2020] [Indexed: 12/28/2022] Open
Abstract
Rabbits are pivotal domestic animals for both the economy and as an animal model for human diseases. A large number of rabbits have been infected by rabbit hemorrhagic disease virus (RHDV) in natural and artificial pandemics in the past. Differences in presentation of antigenic peptides by polymorphic major histocompatibility complex (MHC) molecules to T-cell receptors (TCR) on T lymphocytes are associated with viral clearance in mammals. Here, we screened and identified a series of peptides derived from RHDV binding to the rabbit MHC class I molecule, RLA-A1. The small, hydrophobic B and F pockets of RLA-A1 capture a peptide motif analogous to that recognized by human class I molecule HLA-A*0201, with more restricted aliphatic anchors at P2 and PΩ positions. Moreover, the rabbit molecule is characterized by an uncommon residue combination of Gly53, Val55, and Glu56, making the 310 helix and the loop between the 310 and α1 helices closer to the α2 helix. A wider A pocket in RLA-A1 can induce a special conformation of the P1 anchor and may play a pivotal role in peptide assembly and TCR recognition. Our study broadens the knowledge of T-cell immunity in domestic animals and also provides useful insights for vaccine development to prevent infectious diseases in rabbits.IMPORTANCE We screened rabbit MHC class I RLA-A1-restricted peptides from the capsid protein VP60 of rabbit hemorrhagic disease virus (RHDV) and determined the structures of RLA-A1 complexed with three peptides, VP60-1, VP60-2, and VP60-10. From the structures, we found that the peptide binding motifs of RLA-A1 are extremely constraining. Thus, there is a generally restricted peptide selection for RLA-A1 compared to that for human HLA-A*0201. In addition, uncommon residues Gly53, Val55, and Glu56 of RLA-A1 are located between the 310 helix and α1 helix, which makes the steric position of the 310 helix in RLA-A1 much closer to the α2 helix than that found in other mammalian MHC class I molecules. This special conformation between the 310 helix and α1 helix plays a pivotal role in rabbit MHC class I assembly. Our results provide new insights into MHC class I molecule assembly and peptide presentation of domestic mammals. Furthermore, these data also broaden our knowledge on T-cell immunity in rabbits and may also provide useful information for vaccine development to prevent infectious diseases in rabbits.
Collapse
|
32
|
Těšický M, Velová H, Novotný M, Kreisinger J, Beneš V, Vinkler M. Positive selection and convergent evolution shape molecular phenotypic traits of innate immunity receptors in tits (Paridae). Mol Ecol 2020; 29:3056-3070. [PMID: 32652716 DOI: 10.1111/mec.15547] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 06/09/2020] [Accepted: 06/26/2020] [Indexed: 01/04/2023]
Abstract
Despite widespread variability and redundancy abounding animal immunity, little is currently known about the rate of evolutionary convergence (functionally analogous traits not inherited from a common ancestor) in host molecular adaptations to parasite selective pressures. Toll-like receptors (TLRs) provide the molecular interface allowing hosts to recognize pathogenic structures and trigger early danger signals initiating an immune response. Using a novel combination of bioinformatic approaches, here we explore genetic variation in ligand-binding regions of bacteria-sensing TLR4 and TLR5 in 29 species belonging to the tit family of passerine birds (Aves: Paridae). Three out of the four consensual positively selected sites in TLR4 and six out of 14 positively selected positions in TLR5 were located on the receptor surface near the functionally important sites, and based on the phylogenetic pattern evolved in a convergent (parallel) manner. This type of evolution was also seen at one N-glycosylation site and two positively selected phosphorylation sites, providing the first evidence of convergence in post-translational modifications in evolutionary immunology. Finally, the overall mismatch between phylogeny and the clustering of surface charge distribution demonstrates that convergence is common in overall TLR4 and TLR5 molecular phenotypes involved in ligand binding. Our analysis did not reveal any broad ecological traits explaining the convergence observed in electrostatic potentials, suggesting that information on microbial symbionts may be needed to explain TLR evolution. Adopting state-of-the-art predictive structural bionformatics, we have outlined a new broadly applicable methodological approach to estimate the functional significance of positively selected variation and test for the adaptive molecular convergence in protein-coding polymorphisms.
Collapse
Affiliation(s)
- Martin Těšický
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Hana Velová
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Marian Novotný
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Jakub Kreisinger
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Vladimír Beneš
- European Molecular Laboratory Heidelberg, Heidelberg, Germany
| | - Michal Vinkler
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
33
|
Li Z, Zhang N, Ma L, Zhang L, Meng G, Xia C. The Mechanism of β2m Molecule-Induced Changes in the Peptide Presentation Profile in a Bony Fish. iScience 2020; 23:101119. [PMID: 32438322 PMCID: PMC7240133 DOI: 10.1016/j.isci.2020.101119] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 03/14/2020] [Accepted: 04/28/2020] [Indexed: 01/08/2023] Open
Abstract
Contemporary antigen presentation knowledge is based on the existence of a single β2m locus, and a classical MHC class I forms a complex with a peptide (i.e., pMHC-I) to trigger CTL immunity. However, two β2m loci have been found in diploid bony fish; the function of the two β2m molecules is unclear. Here, we determined the variant peptide profiles originating from different products of the β2m loci binding to the same MHC-I molecule and further solved the crystal structures of the two pMHC-I molecules (i.e., pCtid-UAA-β2m-2 and pCtid-UAA-β2m-1-II). Of note, in pCtid-UAA-β2m-2, a unique hydrogen bond network formed in the bottom of the peptide-binding groove (PBG) led to α2-helix drift, ultimately leading to structural changes in the PBG. The mechanism of the change in peptide presentation profiles by β2m molecules is illustrated. The results are also of great significance for antivirus and antitumor functions in cold-blooded vertebrates and even humans.
Collapse
Affiliation(s)
- Zibin Li
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Nianzhi Zhang
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Lizhen Ma
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Lijie Zhang
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Geng Meng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, 100094, China
| | - Chun Xia
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
34
|
Li X, Zhang L, Liu Y, Ma L, Zhang N, Xia C. Structures of the MHC-I molecule BF2*1501 disclose the preferred presentation of an H5N1 virus-derived epitope. J Biol Chem 2020; 295:5292-5306. [PMID: 32152225 PMCID: PMC7170506 DOI: 10.1074/jbc.ra120.012713] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/06/2020] [Indexed: 01/05/2023] Open
Abstract
Lethal infections by strains of the highly-pathogenic avian influenza virus (HPAIV) H5N1 pose serious threats to both the poultry industry and public health worldwide. A lack of confirmed HPAIV epitopes recognized by cytotoxic T lymphocytes (CTLs) has hindered the utilization of CD8+ T-cell-mediated immunity and has precluded the development of effectively diversified epitope-based vaccination approaches. In particular, an HPAIV H5N1 CTL-recognized epitope based on the peptide MHC-I-β2m (pMHC-I) complex has not yet been designed. Here, screening a collection of selected peptides of several HPAIV strains against a specific pathogen-free pMHC-I (pBF2*1501), we identified a highly-conserved HPAIV H5N1 CTL epitope, named HPAIV-PA123-130 We determined the structure of the BF2*1501-PA123-130 complex at 2.1 Å resolution to elucidate the molecular mechanisms of a preferential presentation of the highly-conserved PA123-130 epitope in the chicken B15 lineage. Conformational characteristics of the PA123-130 epitope with a protruding Tyr-7 residue indicated that this epitope has great potential to be recognized by specific TCRs. Moreover, significantly increased numbers of CD8+ T cells specific for the HPAIV-PA123-130 epitope in peptide-immunized chickens indicated that a repertoire of CD8+ T cells can specifically respond to this epitope. We anticipate that the identification and structural characterization of the PA123-130 epitope reported here could enable further studies of CTL immunity against HPAIV H5N1. Such studies may aid in the development of vaccine development strategies using well-conserved internal viral antigens in chickens.
Collapse
Affiliation(s)
- Xiaoying Li
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing 100094, People's Republic of China; School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, People's Republic of China
| | - Lijie Zhang
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing 100094, People's Republic of China
| | - Yanjie Liu
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing 100094, People's Republic of China; Key Laboratory for Insect-Pollinator Biology of the Ministry of Agriculture, Institute of Apiculture, Chinese Academy of Agricultural Sciences, Beijing 100093, People's Republic of China
| | - Lizhen Ma
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing 100094, People's Republic of China
| | - Nianzhi Zhang
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing 100094, People's Republic of China
| | - Chun Xia
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing 100094, People's Republic of China; Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, China Agricultural University, Beijing 100094, People's Republic of China.
| |
Collapse
|
35
|
Ma L, Zhang N, Qu Z, Liang R, Zhang L, Zhang B, Meng G, Dijkstra JM, Li S, Xia MC. A Glimpse of the Peptide Profile Presentation by Xenopus laevis MHC Class I: Crystal Structure of p Xela-UAA Reveals a Distinct Peptide-Binding Groove. THE JOURNAL OF IMMUNOLOGY 2019; 204:147-158. [PMID: 31776204 DOI: 10.4049/jimmunol.1900865] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 09/27/2019] [Indexed: 12/15/2022]
Abstract
The African clawed frog, Xenopus laevis, is a model species for amphibians. Before metamorphosis, tadpoles do not efficiently express the single classical MHC class I (MHC-I) molecule Xela-UAA, but after metamorphosis, adults express this molecule in abundance. To elucidate the Ag-presenting mechanism of Xela-UAA, in this study, the Xela-UAA structure complex (pXela-UAAg) bound with a peptide from a synthetic random peptide library was determined. The amino acid homology between the Xela-UAA and MHC-I sequences of different species is <45%, and these differences are fully reflected in the three-dimensional structure of pXela-UAAg. Because of polymorphisms and interspecific differences in amino acid sequences, pXela-UAAg forms a distinct peptide-binding groove and presents a unique peptide profile. The most important feature of pXela-UAAg is the two-amino acid insertion in the α2-helical region, which forms a protrusion of ∼3.8 Å that is involved in TCR docking. Comparison of peptide-MHC-I complex (pMHC-I) structures showed that only four amino acids in β2-microglobulin that were bound to MHC-I are conserved in almost all jawed vertebrates, and the most unique feature in nonmammalian pMHC-I molecules is that the AB loop bound β2-microglobulin. Additionally, the binding distance between pMHC-I and CD8 molecules in nonmammals is different from that in mammals. These unique features of pXela-UAAg provide enhanced knowledge of T cell immunity and bridge the knowledge gap regarding the coevolutionary progression of the MHC-I complex from aquatic to terrestrial species.
Collapse
Affiliation(s)
- Lizhen Ma
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Nianzhi Zhang
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Zehui Qu
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Ruiying Liang
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Lijie Zhang
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Bing Zhang
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Geng Meng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing 100094, China; and
| | - Johannes M Dijkstra
- Institute for Comprehensive Medical Science, Fujita Health University, Toyoake 470-1192, Japan
| | - Shen Li
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Max Chun Xia
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China;
| |
Collapse
|
36
|
Ning S, Wang ZB, Qi P, Xiao J, Wang XJ. Crystallization of SLA-2*04:02:02 complexed with a CTL epitope derived from FMDV. Res Vet Sci 2019; 128:90-98. [PMID: 31760318 DOI: 10.1016/j.rvsc.2019.11.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 09/23/2019] [Accepted: 11/06/2019] [Indexed: 10/25/2022]
Abstract
Presentation of viral epitopes by swine MHC I (termed leukocyte antigen class I, SLA I) to cytotoxic T lymphocytes (CTLs) is crucial for swine immunity. The SLA-2 structure, however, remains largely unknown. To illustrate the structural basis of swine CTL epitope presentation, the crystal structure of SLA-2*04:02:02 complexed with one peptide, derived from foot-and-mouth disease virus (FMDV), was analyzed in this study. SLA-2*04:02:02 and swine β2-microglobulin (sβ2m) were refolded in vitro in the presence of peptides. X-ray diffraction data of SLA-2*04:02:02-peptide-sβ2m (referred to as p/SLA-2*04:02:02) were collected. The diffraction dataset was 2.3 Å in resolution and the space group was P3(2)21. Relevant data included a = 101.8 Å, b = 101.8 Å, c = 73.455 Å,α = 90.00°, β = 90.00°, γ = 120.00°. The structure of p/SLA-2*04:02:02 was analyzed. The results revealed that Glu24, Met68, Gly76, and Gln173 in PBG of SLA-2*04:02:02 are different from other MHC I. Furthermore, Asn63 is different from other SLA I. Gln57, Met174 and Gln180 in PBG of SLA I are different from other species' MHC I. All of these features are different from known mammalian peptide-MHC class I complexes (referred to as p/MHC I). In addition, P4-His, P6-Val, and P8-Pro in the peptide were exposed, and these residues as epitopes can be presented by SLA-2*04:02:02. This study not only provides a structural basis for peptide presentation by SLA-2, but also screens one potential FMDV CTL epitope. The results may be of interest in future vaccine development.
Collapse
Affiliation(s)
- Shuo Ning
- Key Laboratory of Epidemiology of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, 100193 Beijing, China
| | - Zhen-Bao Wang
- Key Laboratory of Zhongmu Institutes of China Animal Husbandry Industry Co. Ltd., 100095 Beijing, China
| | - Peng Qi
- Key Laboratory of Zhongmu Institutes of China Animal Husbandry Industry Co. Ltd., 100095 Beijing, China.
| | - Jin Xiao
- Key Laboratory of Zhongmu Institutes of China Animal Husbandry Industry Co. Ltd., 100095 Beijing, China.
| | - Xiao-Jia Wang
- Key Laboratory of Epidemiology of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, 100193 Beijing, China.
| |
Collapse
|
37
|
O'Connor EA, Westerdahl H, Burri R, Edwards SV. Avian MHC Evolution in the Era of Genomics: Phase 1.0. Cells 2019; 8:E1152. [PMID: 31561531 PMCID: PMC6829271 DOI: 10.3390/cells8101152] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/16/2019] [Accepted: 09/20/2019] [Indexed: 12/14/2022] Open
Abstract
Birds are a wonderfully diverse and accessible clade with an exceptional range of ecologies and behaviors, making the study of the avian major histocompatibility complex (MHC) of great interest. In the last 20 years, particularly with the advent of high-throughput sequencing, the avian MHC has been explored in great depth in several dimensions: its ability to explain ecological patterns in nature, such as mating preferences; its correlation with parasite resistance; and its structural evolution across the avian tree of life. Here, we review the latest pulse of avian MHC studies spurred by high-throughput sequencing. Despite high-throughput approaches to MHC studies, substantial areas remain in need of improvement with regard to our understanding of MHC structure, diversity, and evolution. Recent studies of the avian MHC have nonetheless revealed intriguing connections between MHC structure and life history traits, and highlight the advantages of long-term ecological studies for understanding the patterns of MHC variation in the wild. Given the exceptional diversity of birds, their accessibility, and the ease of sequencing their genomes, studies of avian MHC promise to improve our understanding of the many dimensions and consequences of MHC variation in nature. However, significant improvements in assembling complete MHC regions with long-read sequencing will be required for truly transformative studies.
Collapse
Affiliation(s)
| | | | - Reto Burri
- Department of Population Ecology, Institute of Ecology & Evolution, Friedrich Schiller University Jena, 07737 Jena, Germany.
| | - Scott V Edwards
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
38
|
Dai M, Xu C, Chen W, Liao M. Progress on chicken T cell immunity to viruses. Cell Mol Life Sci 2019; 76:2779-2788. [PMID: 31101935 PMCID: PMC11105491 DOI: 10.1007/s00018-019-03117-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 04/14/2019] [Accepted: 04/24/2019] [Indexed: 12/20/2022]
Abstract
Avian virus infection remains one of the most important threats to the poultry industry. Pathogens such as avian influenza virus (AIV), avian infectious bronchitis virus (IBV), and infectious bursal disease virus (IBDV) are normally controlled by antibodies specific for surface proteins and cellular immune responses. However, standard vaccines aimed at inducing neutralizing antibodies must be administered annually and can be rendered ineffective because immune-selective pressure results in the continuous mutation of viral surface proteins of different strains circulating from year to year. Chicken T cells have been shown to play a crucial role in fighting virus infection, offering lasting and cross-strain protection, and offer the potential for developing universal vaccines. This review provides an overview of our current knowledge of chicken T cell immunity to viruses. More importantly, we point out the limitations and barriers of current research and a potential direction for future studies.
Collapse
Affiliation(s)
- Manman Dai
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, People's Republic of China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, People's Republic of China
| | - Chenggang Xu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, People's Republic of China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, People's Republic of China
- Key Laboratory of Veterinary Vaccine Innovation of the Ministry of Agriculture, Guangzhou, People's Republic of China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, People's Republic of China
| | - Weisan Chen
- T Cell Lab, Department of Biochemistry and Genetics, La Trobe Institute of Molecular Science, La Trobe University, Bundoora, Australia.
| | - Ming Liao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, People's Republic of China.
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, People's Republic of China.
- Key Laboratory of Veterinary Vaccine Innovation of the Ministry of Agriculture, Guangzhou, People's Republic of China.
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, People's Republic of China.
| |
Collapse
|
39
|
Qu Z, Li Z, Ma L, Wei X, Zhang L, Liang R, Meng G, Zhang N, Xia C. Structure and Peptidome of the Bat MHC Class I Molecule Reveal a Novel Mechanism Leading to High-Affinity Peptide Binding. THE JOURNAL OF IMMUNOLOGY 2019; 202:3493-3506. [PMID: 31076531 DOI: 10.4049/jimmunol.1900001] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 04/10/2019] [Indexed: 01/21/2023]
Abstract
Bats are natural reservoir hosts, harboring more than 100 viruses, some of which are lethal to humans. The asymptomatic coexistence with viruses is thought to be connected to the unique immune system of bats. MHC class I (MHC I) presentation is closely related to cytotoxic lymphocyte immunity, which plays an important role in viral resistance. To investigate the characteristics of MHC I presentation in bats, the crystal structures of peptide-MHC I complexes of Pteropus alecto, Ptal-N*01:01/HEV-1 (DFANTFLP) and Ptal-N*01:01/HEV-2 (DYINTNLVP), and two related mutants, Ptal-N*01:01/HEV-1PΩL (DFANTFLL) and Ptal-N*01:01ΔMDL/HEV-1, were determined. Through structural analysis, we found that Ptal-N*01:01 had a multi-Ala-assembled pocket B and a flexible hydrophobic pocket F, which could accommodate variable anchor residues and allow Ptal-N*01:01 to bind numerous peptides. Three sequential amino acids, Met, Asp, and Leu, absent from the α1 domain of the H chain in other mammals, were present in this domain in the bat. Upon deleting these amino acids and determining the structure in p/Ptal-N*01:01ΔMDL/HEV-1, we found they helped form an extra salt-bridge chain between the H chain and the N-terminal aspartic acid of the peptide. By introducing an MHC I random peptide library for de novo liquid chromatography-tandem mass spectrometry analysis, we found that this insertion module, present in all types of bats, can promote MHC I presentation of peptides with high affinity during the peptide exchange process. This study will help us better understand how bat MHC I presents high-affinity peptides from an extensive binding peptidome and provides a foundation to understand the cellular immunity of bats.
Collapse
Affiliation(s)
- Zehui Qu
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Haidian District, Beijing 100094, China
| | - Zibin Li
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Haidian District, Beijing 100094, China
| | - Lizhen Ma
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Haidian District, Beijing 100094, China
| | - Xiaohui Wei
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Haidian District, Beijing 100094, China
| | - Lijie Zhang
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Haidian District, Beijing 100094, China
| | - Ruiying Liang
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Haidian District, Beijing 100094, China
| | - Geng Meng
- Department of Veterinary Biomedicine, College of Veterinary Medicine, China Agricultural University, Haidian District, Beijing 100094, China; and
| | - Nianzhi Zhang
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Haidian District, Beijing 100094, China;
| | - Chun Xia
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Haidian District, Beijing 100094, China; .,Key Laboratory of Animal Epidemiology, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Haidian District, Beijing 100094, China
| |
Collapse
|
40
|
Immunoinformatics Approach for Multiepitopes Vaccine Prediction against Glycoprotein B of Avian Infectious Laryngotracheitis Virus. Adv Bioinformatics 2019; 2019:1270485. [PMID: 31011331 PMCID: PMC6442309 DOI: 10.1155/2019/1270485] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 02/17/2019] [Indexed: 12/13/2022] Open
Abstract
Infectious laryngotracheitis virus (ILTV) is a gallid herpesvirus type 1, a member of the genus Iltovirus. It causes an infection in the upper respiratory tract mainly trachea which results in significant economic losses in the poultry industry worldwide. Vaccination against ILTV produced latent infected carriers' birds, which become a source of virus transmission to nonvaccinated flocks. Thus this study aimed to design safe multiepitopes vaccine against glycoprotein B of ILT virus using immunoinformatic tools. Forty-four sequences of complete envelope glycoprotein B were retrieved from GenBank of National Center for Biotechnology Information (NCBI) and aligned for conservancy by multiple sequence alignment (MSA). Immune Epitope Database (IEDB) analysis resources were used to predict and analyze candidate epitopes that could act as a promising peptide vaccine. For B cell epitopes, thirty-one linear epitopes were predicted using Bepipred. However eight epitopes were found to be on both surface and antigenic epitopes using Emini surface accessibility and antigenicity, respectively. Three epitopes (190KKLP193, 386YSSTHVRS393, and 317KESV320) were proposed as B cell epitopes. For T cells several epitopes were interacted with MHC class I with high affinity and specificity, but the best recognized epitopes were 118YVFNVTLYY126, 335VSYKNSYHF343, and 622YLLYEDYTF630. MHC-II binding epitopes, 301FLTDEQFTI309,277FLEIANYQV285, and 743IASFLSNPF751, were proposed as promising epitopes due to their high affinity for MHC-II molecules. Moreover the docked ligand epitopes from MHC-1 molecule exhibited high binding affinity with the receptors; BF chicken alleles (BF2 2101 and 0401) expressed by the lower global energy of the molecules. In this study nine epitopes were predicted as promising vaccine candidate against ILTV. In vivo and in vitro studies are required to support the effectiveness of these predicted epitopes as a multipeptide vaccine through clinical trials.
Collapse
|
41
|
Xiao J, Xiang W, Zhang Y, Peng W, Zhao M, Niu L, Chai Y, Qi J, Wang F, Qi P, Pan C, Han L, Wang M, Kaufman J, Gao GF, Liu WJ. An Invariant Arginine in Common with MHC Class II Allows Extension at the C-Terminal End of Peptides Bound to Chicken MHC Class I. THE JOURNAL OF IMMUNOLOGY 2018; 201:3084-3095. [PMID: 30341185 DOI: 10.4049/jimmunol.1800611] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 09/11/2018] [Indexed: 12/30/2022]
Abstract
MHC molecules are found in all jawed vertebrates and are known to present peptides to T lymphocytes. In mammals, peptides can hang out either end of the peptide-binding groove of classical class II molecules, whereas the N and C termini of peptides are typically tightly bound to specific pockets in classical class I molecules. The chicken MHC, like many nonmammalian vertebrates, has a single dominantly expressed classical class I molecule encoded by the BF2 locus. We determined the structures of BF2*1201 bound to two peptides and found that the C terminus of one peptide hangs outside of the groove with a conformation much like the peptides bound to class II molecules. We found that BF2*1201 binds many peptides that hang out of the groove at the C terminus, and the sequences and structures of this MHC class I allele were determined to investigate the basis for this phenomenon. The classical class I molecules of mammals have a nearly invariant Tyr (Tyr84 in humans) that coordinates the peptide C terminus, but all classical class I molecules outside of mammals have an Arg in that position in common with mammalian class II molecules. We find that this invariant Arg residue switches conformation to allow peptides to hang out of the groove of BF2*1201, suggesting that this phenomenon is common in chickens and other nonmammalian vertebrates, perhaps allowing the single dominantly expressed class I molecule to bind a larger repertoire of peptides.
Collapse
Affiliation(s)
- Jin Xiao
- Key Laboratory of Veterinary Bioproduction and Chemical Medicine of the Ministry of Agriculture, Engineering and Technology Research Center for Beijing Veterinary Peptide Vaccine Design and Preparation, Zhongmu Institutes of China Animal Husbandry Industry Co. Ltd., Beijing 100095, China.,College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Wangzhen Xiang
- Key Laboratory of Veterinary Bioproduction and Chemical Medicine of the Ministry of Agriculture, Engineering and Technology Research Center for Beijing Veterinary Peptide Vaccine Design and Preparation, Zhongmu Institutes of China Animal Husbandry Industry Co. Ltd., Beijing 100095, China.,College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yongli Zhang
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Weiyu Peng
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China.,College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Min Zhao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ling Niu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yan Chai
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jianxun Qi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Fei Wang
- Key Laboratory of Veterinary Bioproduction and Chemical Medicine of the Ministry of Agriculture, Engineering and Technology Research Center for Beijing Veterinary Peptide Vaccine Design and Preparation, Zhongmu Institutes of China Animal Husbandry Industry Co. Ltd., Beijing 100095, China
| | - Peng Qi
- Key Laboratory of Veterinary Bioproduction and Chemical Medicine of the Ministry of Agriculture, Engineering and Technology Research Center for Beijing Veterinary Peptide Vaccine Design and Preparation, Zhongmu Institutes of China Animal Husbandry Industry Co. Ltd., Beijing 100095, China
| | - Chungang Pan
- Key Laboratory of Veterinary Bioproduction and Chemical Medicine of the Ministry of Agriculture, Engineering and Technology Research Center for Beijing Veterinary Peptide Vaccine Design and Preparation, Zhongmu Institutes of China Animal Husbandry Industry Co. Ltd., Beijing 100095, China
| | - Lingxia Han
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Ming Wang
- Key Laboratory of Veterinary Bioproduction and Chemical Medicine of the Ministry of Agriculture, Engineering and Technology Research Center for Beijing Veterinary Peptide Vaccine Design and Preparation, Zhongmu Institutes of China Animal Husbandry Industry Co. Ltd., Beijing 100095, China.,College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Jim Kaufman
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, United Kingdom; .,Department of Veterinary Medicine, University of Cambridge, Cambridge CB2 1QP, United Kingdom; and
| | - George F Gao
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China; .,NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China.,CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.,China Research Network of Immunity and Health, Beijing Institutes of Life Science Chinese Academy of Sciences, Beijing 100101, China
| | - William J Liu
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China; .,NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| |
Collapse
|
42
|
Zhang L, Lin D, Yu S, Bai J, Jiang W, Su W, Huang Y, Yang S, Wu J. Polymorphism of duck MHC class molecules. Immunogenetics 2018; 71:49-59. [PMID: 30187087 DOI: 10.1007/s00251-018-1076-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 08/10/2018] [Indexed: 01/09/2023]
Abstract
Major histocompatibility complex class I (MHC I) molecules are critically involved in defense against pathogens, and their high polymorphism is advantageous to a range of immune responses, especially in duck displaying biased expression of one MHC I gene. Here, we examined MHC I polymorphism in two duck (Anas platyrhynchos) breeds from China: Shaoxing (SX) and Jinding (JD). Twenty-seven unique UAA alleles identified from the MHC I genes of these breeds were analyzed concerning amino acid composition, homology, and phylogenetic relationships. Based on amino acid sequence homology, allelic groups of Anas platyrhynchos MHC I (Anpl-MHC I) were established and their distribution was analyzed. Then, highly variable sites (HVSs) in peptide-binding domains (PBD) were estimated and located in the three-dimensional structure of Anpl-MHC I. The UAA alleles identified showed high polymorphism, based on full-length sequence homology. By adding the alleles found here to known Anpl-MHC I genes from domestic ducks, they could be divided into 17 groups and four novel groups were revealed for SX and JD ducks. The UAA alleles of the two breeds were not divergent from the MHC I of other duck breeds, and HVSs were mostly located in the peptide-binding groove (PBG), suggesting that they might determine peptide-binding characteristics and subsequently influence peptide presentation and recognition. The results from the present study enrich Anpl-MHC I polymorphism data and clarify the distribution of alleles with different peptide-binding specificities, which might also accelerate effective vaccine development and help control various infections in ducks.
Collapse
Affiliation(s)
- Lin Zhang
- Shandong Key Laboratory of Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Science, No. 8, Sangyuan Road, Jinan, Shandong, China.
| | - Dongmei Lin
- College of Life Sciences and Food Engineering, Hebei University of Engineering, 199, Guangming South Street, Handan, Hebei, China
| | - Sen Yu
- Shandong Key Laboratory of Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Science, No. 8, Sangyuan Road, Jinan, Shandong, China
| | - Junping Bai
- Shandong Key Laboratory of Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Science, No. 8, Sangyuan Road, Jinan, Shandong, China
- College of Life Sciences and Food Engineering, Hebei University of Engineering, 199, Guangming South Street, Handan, Hebei, China
| | - Wanchun Jiang
- College of Life Sciences and Food Engineering, Hebei University of Engineering, 199, Guangming South Street, Handan, Hebei, China
| | - Wenzheng Su
- Shandong Key Laboratory of Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Science, No. 8, Sangyuan Road, Jinan, Shandong, China
| | - Yanyan Huang
- Shandong Key Laboratory of Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Science, No. 8, Sangyuan Road, Jinan, Shandong, China
| | - Shaohua Yang
- Shandong Key Laboratory of Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Science, No. 8, Sangyuan Road, Jinan, Shandong, China
| | - Jiaqiang Wu
- Shandong Key Laboratory of Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Science, No. 8, Sangyuan Road, Jinan, Shandong, China.
| |
Collapse
|
43
|
Two class I genes of the chicken MHC have different functions: BF1 is recognized by NK cells while BF2 is recognized by CTLs. Immunogenetics 2018; 70:599-611. [DOI: 10.1007/s00251-018-1066-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 05/26/2018] [Indexed: 12/30/2022]
|
44
|
Králová T, Albrecht T, Bryja J, Hořák D, Johnsen A, Lifjeld JT, Novotný M, Sedláček O, Velová H, Vinkler M. Signatures of diversifying selection and convergence acting on passerine Toll-like receptor 4 in an evolutionary context. Mol Ecol 2018; 27:2871-2883. [PMID: 29772096 DOI: 10.1111/mec.14724] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 04/23/2018] [Accepted: 04/24/2018] [Indexed: 12/26/2022]
Abstract
Positive selection acting on Toll-like receptors (TLRs) has been recently investigated to reveal evolutionary mechanisms of host-pathogen molecular co-adaptation. Much of this research, however, has focused mainly on the identification of sites predicted to be under positive selection, bringing little insight into the functional differences and similarities among species and a limited understanding of convergent evolution in the innate immune molecules. In this study, we provide evidence of phenotypic variability in the avian TLR4 ligand-binding region (LBR), the direct interface between host and pathogen molecular structures. We show that 55 passerine species vary substantially in the distribution of electrostatic potential on the surface of the receptor, and based on these distinct patterns, we identified four species clusters. Seven of the 34 evolutionarily nonconservative and positively selected residues correspond topologically to sites previously identified as being important for lipopolysaccharide, lipid IVa or MD-2 binding. Five of these positions codetermine the identity of the charge clusters. Groups of species that host-related communities of pathogens were predicted to cluster based on their TLR4 LBR charge. Despite some evidence for convergence among taxa, there were no clear associations between the TLR4 LBR charge distribution and any of the general ecological characteristics compared (migration, latitudinal distribution and diet). Closely related species, however, mostly belonged to the same surface charge cluster indicating that phylogenetic constraints are key determinants shaping TLR4 adaptive evolution. Our results suggest that host innate immune evolution is consistent with Fahrenholz's rule on the cospeciation of hosts and their parasites.
Collapse
Affiliation(s)
- Tereza Králová
- Institute of Vertebrate Biology, The Czech Academy of Sciences, Brno, Czech Republic.,Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Tomáš Albrecht
- Institute of Vertebrate Biology, The Czech Academy of Sciences, Brno, Czech Republic.,Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Josef Bryja
- Institute of Vertebrate Biology, The Czech Academy of Sciences, Brno, Czech Republic.,Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - David Hořák
- Department of Ecology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Arild Johnsen
- Natural History Museum, University of Oslo, Oslo, Norway
| | - Jan T Lifjeld
- Natural History Museum, University of Oslo, Oslo, Norway
| | - Marian Novotný
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Ondřej Sedláček
- Department of Ecology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Hana Velová
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Michal Vinkler
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
45
|
Minias P, Pikus E, Whittingham LA, Dunn PO. A global analysis of selection at the avian MHC. Evolution 2018; 72:1278-1293. [PMID: 29665025 DOI: 10.1111/evo.13490] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 03/29/2018] [Accepted: 04/09/2018] [Indexed: 12/29/2022]
Abstract
Recent advancements in sequencing technology have resulted in rapid progress in the study of the major histocompatibility complex (MHC) in non-model avian species. Here, we analyze a global dataset of avian MHC class I and class II sequences (ca. 11,000 sequences from over 250 species) to gain insight into the processes that govern macroevolution of MHC genes in birds. Analysis of substitution rates revealed striking differences in the patterns of diversifying selection between passerine and non-passerine birds. Non-passerines showed stronger selection at MHC class II, which is primarily involved in recognition of extracellular pathogens, while passerines showed stronger selection at MHC class I, which is involved in recognition of intracellular pathogens. Positions of positively selected amino-acid residues showed marked discrepancies with peptide-binding residues (PBRs) of human MHC molecules, suggesting that using a human classification of PBRs to assess selection patterns at the avian MHC may be unjustified. Finally, our analysis provided evidence that indel mutations can make a substantial contribution to adaptive variation at the avian MHC.
Collapse
Affiliation(s)
- Piotr Minias
- Department of Biodiversity Studies and Bioeducation, Faculty of Biology and Environmental Protection, University of Łódź, Łódź, 90-237, Poland
| | - Ewa Pikus
- Department of Biodiversity Studies and Bioeducation, Faculty of Biology and Environmental Protection, University of Łódź, Łódź, 90-237, Poland
| | - Linda A Whittingham
- Behavioral and Molecular Ecology Group, Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, 53211
| | - Peter O Dunn
- Department of Biodiversity Studies and Bioeducation, Faculty of Biology and Environmental Protection, University of Łódź, Łódź, 90-237, Poland.,Behavioral and Molecular Ecology Group, Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, 53211
| |
Collapse
|
46
|
Kaufman J. Unfinished Business: Evolution of the MHC and the Adaptive Immune System of Jawed Vertebrates. Annu Rev Immunol 2018; 36:383-409. [DOI: 10.1146/annurev-immunol-051116-052450] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jim Kaufman
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, United Kingdom
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB2 0ES, United Kingdom
| |
Collapse
|
47
|
Singh T, Fakiola M, Oommen J, Singh AP, Singh AK, Smith N, Chakravarty J, Sundar S, Blackwell JM. Epitope-Binding Characteristics for Risk versus Protective DRB1 Alleles for Visceral Leishmaniasis. THE JOURNAL OF IMMUNOLOGY 2018; 200:2727-2737. [PMID: 29507109 DOI: 10.4049/jimmunol.1701764] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 02/08/2018] [Indexed: 11/19/2022]
Abstract
HLA-DRB1 is the major genetic risk factor for visceral leishmaniasis (VL). We used SNP2HLA to impute HLA-DRB1 alleles and SNPTEST to carry out association analyses in 889 human cases and 977 controls from India. NetMHCIIpan 2.1 was used to map epitopes and binding affinities across 49 Leishmania vaccine candidates, as well as across peptide epitopes captured from dendritic cells treated with crude Leishmania Ag and identified using mass spectrometry and alignment to amino acid sequences of a reference Leishmania genome. Cytokines were measured in peptide-stimulated whole blood from 26 cured VL cases and eight endemic healthy controls. HLA-DRB1*1501 and DRB1*1404/DRB1*1301 were the most significant protective and risk alleles, respectively, with specific residues at aa positions 11 and 13 unique to protective alleles. We observed greater peptide promiscuity in sequence motifs for 9-mer core epitopes predicted to bind to risk (*1404/*1301) compared with protective (*1501) DRB1 alleles. There was a higher frequency of basic amino acids in DRB1*1404/*1301-specific epitopes compared with hydrophobic and polar amino acids in DRB1*1501-specific epitopes at anchor residues pocket 4 and pocket 6, which interact with residues at DRB1 positions 11 and 13. Cured VL patients made variable, but robust, IFN-γ, TNF, and IL-10 responses to 20-mer peptides based on captured epitopes, with peptides based on DRB1*1501-captured epitopes resulting in a higher proportion (odds ratio 2.23, 95% confidence interval 1.17-4.25, p = 0.017) of patients with IFN-γ/IL-10 ratios > 2-fold compared with peptides based on DRB1*1301-captured epitopes. Our data provide insight into the molecular mechanisms underpinning the association of HLA-DRB1 alleles with risk versus protection in VL in humans.
Collapse
Affiliation(s)
- Toolika Singh
- Institute of Medical Sciences, Banaras Hindu University, Varanasi OS 221 005, India
| | - Michaela Fakiola
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, United Kingdom
| | - Joyce Oommen
- Telethon Kids Institute, The University of Western Australia, Subiaco, Western Australia 6008, Australia; and
| | - Akhil Pratap Singh
- Institute of Medical Sciences, Banaras Hindu University, Varanasi OS 221 005, India
| | - Abhishek K Singh
- Institute of Medical Sciences, Banaras Hindu University, Varanasi OS 221 005, India
| | - Noel Smith
- Lonza Biologics PLC, Great Abington, Cambridge CB21 6GS, United Kingdom
| | - Jaya Chakravarty
- Institute of Medical Sciences, Banaras Hindu University, Varanasi OS 221 005, India
| | - Shyam Sundar
- Institute of Medical Sciences, Banaras Hindu University, Varanasi OS 221 005, India
| | - Jenefer M Blackwell
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, United Kingdom; .,Telethon Kids Institute, The University of Western Australia, Subiaco, Western Australia 6008, Australia; and
| |
Collapse
|
48
|
Hilton HG, McMurtrey CP, Han AS, Djaoud Z, Guethlein LA, Blokhuis JH, Pugh JL, Goyos A, Horowitz A, Buchli R, Jackson KW, Bardet W, Bushnell DA, Robinson PJ, Mendoza JL, Birnbaum ME, Nielsen M, Garcia KC, Hildebrand WH, Parham P. The Intergenic Recombinant HLA-B∗46:01 Has a Distinctive Peptidome that Includes KIR2DL3 Ligands. Cell Rep 2018; 19:1394-1405. [PMID: 28514659 PMCID: PMC5510751 DOI: 10.1016/j.celrep.2017.04.059] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 03/07/2017] [Accepted: 04/20/2017] [Indexed: 01/26/2023] Open
Abstract
HLA-B∗46:01 was formed by an intergenic mini-conversion, between HLA-B∗15:01 and HLA-C∗01:02, in Southeast Asia during the last 50,000 years, and it has since become the most common HLA-B allele in the region. A functional effect of the mini-conversion was introduction of the C1 epitope into HLA-B∗46:01, making it an exceptional HLA-B allotype that is recognized by the C1-specific natural killer (NK) cell receptor KIR2DL3. High-resolution mass spectrometry showed that HLA-B∗46:01 has a low-diversity peptidome that is distinct from those of its parents. A minority (21%) of HLA-B∗46:01 peptides, with common C-terminal characteristics, form ligands for KIR2DL3. The HLA-B∗46:01 peptidome is predicted to be enriched for peptide antigens derived from Mycobacterium leprae. Overall, the results indicate that the distinctive peptidome and functions of HLA-B∗46:01 provide carriers with resistance to leprosy, which drove its rapid rise in frequency in Southeast Asia. The interlocus recombinant HLA-B∗46:01 is found at high frequency in Southeast Asia HLA-B∗46:01 has a low-diversity peptidome that is distinct from both its parents A subset of HLA-B∗46:01 peptides provides ligands for the NK cell receptor KIR2DL3 The unique features of HLA-B∗46:01 correlate with protection against leprosy
Collapse
Affiliation(s)
- Hugo G Hilton
- Department of Structural Biology, School of Medicine, Stanford University, Stanford, CA 94305, USA; Department of Microbiology & Immunology, School of Medicine, Stanford University, Stanford, CA 94305, USA.
| | - Curtis P McMurtrey
- Department of Microbiology & Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Alex S Han
- Department of Structural Biology, School of Medicine, Stanford University, Stanford, CA 94305, USA; Department of Microbiology & Immunology, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Zakia Djaoud
- Department of Structural Biology, School of Medicine, Stanford University, Stanford, CA 94305, USA; Department of Microbiology & Immunology, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Lisbeth A Guethlein
- Department of Structural Biology, School of Medicine, Stanford University, Stanford, CA 94305, USA; Department of Microbiology & Immunology, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Jeroen H Blokhuis
- Department of Structural Biology, School of Medicine, Stanford University, Stanford, CA 94305, USA; Department of Microbiology & Immunology, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Jason L Pugh
- Department of Structural Biology, School of Medicine, Stanford University, Stanford, CA 94305, USA; Department of Microbiology & Immunology, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Ana Goyos
- Department of Structural Biology, School of Medicine, Stanford University, Stanford, CA 94305, USA; Department of Microbiology & Immunology, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Amir Horowitz
- Department of Structural Biology, School of Medicine, Stanford University, Stanford, CA 94305, USA; Department of Microbiology & Immunology, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Rico Buchli
- Pure Protein LLC, Oklahoma City, OK 73104, USA
| | - Ken W Jackson
- Department of Microbiology & Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Wilfred Bardet
- Department of Microbiology & Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - David A Bushnell
- Department of Structural Biology, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Philip J Robinson
- Department of Structural Biology, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Juan L Mendoza
- Department of Structural Biology, School of Medicine, Stanford University, Stanford, CA 94305, USA; Department of Molecular & Cellular Physiology, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Michael E Birnbaum
- Department of Structural Biology, School of Medicine, Stanford University, Stanford, CA 94305, USA; Department of Molecular & Cellular Physiology, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Morten Nielsen
- Department of Bio and Health Informatics, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark; Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín, Buenos Aires, Argentina
| | - K Christopher Garcia
- Department of Structural Biology, School of Medicine, Stanford University, Stanford, CA 94305, USA; Department of Molecular & Cellular Physiology, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - William H Hildebrand
- Department of Microbiology & Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Peter Parham
- Department of Structural Biology, School of Medicine, Stanford University, Stanford, CA 94305, USA; Department of Microbiology & Immunology, School of Medicine, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
49
|
Kaufman J. Generalists and Specialists: A New View of How MHC Class I Molecules Fight Infectious Pathogens. Trends Immunol 2018; 39:367-379. [PMID: 29396014 PMCID: PMC5929564 DOI: 10.1016/j.it.2018.01.001] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/22/2017] [Accepted: 01/03/2018] [Indexed: 12/24/2022]
Abstract
In comparison with the major histocompatibility complexes (MHCs) of typical mammals, the chicken MHC is simple and compact with a single dominantly expressed class I molecule that can determine the immune response. In addition to providing useful information for the poultry industry and allowing insights into the evolution of the adaptive immune system, the simplicity of the chicken MHC has allowed the discovery of phenomena that are more difficult to discern in the more complicated mammalian systems. This review discusses the new concept that poorly expressed promiscuous class I alleles act as generalists to protect against a wide variety of infectious pathogens, while highly expressed fastidious class I alleles can act as specialists to protect against new and dangerous pathogens. A broad overview of classical MHC I expression and bound peptides reveals an inverse correlation between repertoire breadth and cell-surface expression in some chicken and human alleles. Several chicken class I alleles with wide peptide-binding repertoires (promiscuity) are associated with resistance to a variety of common diseases. Conversely, a narrow peptide-binding repertoire (fastidiousness) in some human HLA-B alleles is associated with resistance to HIV progression. Cell-surface expression of some classical class I alleles depends on the regulation of translocation to the cell surface rather than of transcription or translation. MHC translocation is influenced by peptide translocation in chickens and by tapasin interaction in humans.
Collapse
Affiliation(s)
- Jim Kaufman
- University of Cambridge, Department of Pathology, Tennis Court Road, Cambridge CB2 1QP, UK; University of Cambridge, Department of Veterinary Medicine, Madingley Road, Cambridge CB2 0ES, UK.
| |
Collapse
|
50
|
Lack of evidence for selection favouring MHC haplotypes that combine high functional diversity. Heredity (Edinb) 2018; 120:396-406. [PMID: 29362475 DOI: 10.1038/s41437-017-0047-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 12/14/2017] [Accepted: 12/15/2017] [Indexed: 02/02/2023] Open
Abstract
High rates of gene duplication and the highest levels of functional allelic diversity in vertebrate genomes are the main hallmarks of the major histocompatibility complex (MHC), a multigene family with a primordial role in pathogen recognition. The usual tight linkage among MHC gene duplicates may provide an opportunity for the evolution of haplotypes that associate functionally divergent alleles and thus grant the transmission of optimal levels of diversity to coming generations. Even though such associations may be a crucial component of disease resistance, this hypothesis has been given little attention in wild populations. Here, we leveraged pedigree data from a barn owl (Tyto alba) population to characterize MHC haplotype structure across two MHC class I (MHC-I) and two MHC class IIB (MHC-IIB) duplicates, in order to test the hypothesis that haplotypes' genetic diversity is higher than expected from randomly associated alleles. After showing that MHC loci are tightly linked within classes, we found limited evidence for shifts towards MHC haplotypes combining high diversity. Neither amino acid nor functional within-haplotype diversity were significantly higher than in random sets of haplotypes, regardless of MHC class. Our results therefore provide no evidence for selection towards high-diversity MHC haplotypes in barn owls. Rather, high rates of concerted evolution may constrain the evolution of high-diversity haplotypes at MHC-I, while, in contrast, for MHC-IIB, fixed differences among loci may provide barn owls with already optimized functional diversity. This suggests that at the MHC-I and MHC-IIB respectively, different evolutionary dynamics may govern the evolution of within-haplotype diversity.
Collapse
|