1
|
Peter A, Berneman ZN, Cools N. Cellular respiration in dendritic cells: Exploring oxygen-dependent pathways for potential therapeutic interventions. Free Radic Biol Med 2025; 227:536-556. [PMID: 39643130 DOI: 10.1016/j.freeradbiomed.2024.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 12/01/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
Dendritic cells (DCs) are specialized antigen-presenting cells crucial for initiating and regulating adaptive immune responses, making them promising candidates for therapeutic interventions in various immune-mediated diseases. Increasing evidence suggests that the microenvironment in which cells are cultured, as well as the milieu in which they perform their functions, significantly impact their immunomodulatory properties. Among these environmental factors, the role of oxygen in DC biology and its significance for both their in vitro generation and in vivo therapeutic application require investigation. Unlike the atmospheric oxygen level of 21 % commonly used in in vitro assays, physiological oxygen levels are much lower (3-9 %), and hypoxia (<1.3 %) is a prevalent condition of both healthy tissues and disease states. This mismatch between laboratory and physiological conditions underscores the critical need to culture and evaluate therapeutic cells under physiologically relevant oxygen levels to improve their translational relevance and clinical outcomes. This review explores the characteristic hallmarks of human DCs that are influenced by oxygen-dependent pathways, including metabolism, phenotype, cytokine secretion, and migration. Furthermore, we discuss the potential of manipulating oxygen levels to refine the generation and functionality of DCs for therapeutic purposes.
Collapse
Affiliation(s)
- Antonia Peter
- Laboratory of Experimental Hematology, Vaccine & Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Antwerp, Belgium.
| | - Zwi N Berneman
- Laboratory of Experimental Hematology, Vaccine & Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Antwerp, Belgium; Center for Cell Therapy and Regenerative Medicine, Antwerp University Hospital, 2650 Edegem, Belgium
| | - Nathalie Cools
- Laboratory of Experimental Hematology, Vaccine & Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Antwerp, Belgium; Center for Cell Therapy and Regenerative Medicine, Antwerp University Hospital, 2650 Edegem, Belgium
| |
Collapse
|
2
|
Welch BM, Parikh SA, Kay NE, Medina KL. Profound deficiencies in mature blood and bone marrow progenitor dendritic cells in Chronic Lymphocyticcytic Leukemia patients. RESEARCH SQUARE 2024:rs.3.rs-4953853. [PMID: 39399662 PMCID: PMC11469369 DOI: 10.21203/rs.3.rs-4953853/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Chronic lymphocytic leukemia (CLL) patients are immunocompromised and highly vulnerable to serious recurrent infections. Conventional dendritic cells (cDCs) and plasmacytoid DCs (pDCs) are principal sensors of infection and are essential in orchestrating innate and adaptive immune responses to resolve infection. This study identified significant deficiencies in six functionally distinct DC subsets in blood of untreated CLL (UT-CLL) patients and selective normalization of pDCs in response to acalabrutinib (a Bruton tyrosine kinase inhibitor) therapy. DCs are continuously replenished from hematopoiesis in bone marrow (BM). Four BM developmental intermediates that give rise to cDCs and pDCs were examined and significant reductions of these were identified in UT-CLL patients supporting a precursor/progeny relationship. The deficiencies in blood DCs and BM DC progenitors were significantly associated with alterations in the Flt3/FL signaling pathway critical to DC development and function. Regarding clinical parameter, cDC subset deficiencies are associated with adverse prognostic indicators of disease progression, including IGHV mutation, CD49d, CD38, and ZAP-70 status. Importantly, UT-CLL patients with shared DC subset deficiencies had shorter time-to-first treatment (TTFT), uncovering a profound alteration in innate immunity with the potential to instruct therapeutic decision-making.
Collapse
Affiliation(s)
- Baustin M. Welch
- Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Neil E. Kay
- Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
- Division of Hematology, Mayo Clinic, Rochester, MN 55905, USA
| | - Kay L. Medina
- Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
3
|
Cinti I, Vezyrgianni K, Denton AE. Unravelling the contribution of lymph node fibroblasts to vaccine responses. Adv Immunol 2024; 164:1-37. [PMID: 39523027 DOI: 10.1016/bs.ai.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Vaccination is one of the most effective medical interventions, saving millions of lives and reducing the morbidity of infections across the lifespan, from infancy to older age. The generation of plasma cells and memory B cells that produce high affinity class switched antibodies is central to this protection, and these cells are the ultimate output of the germinal centre response. Optimal germinal centre responses require different immune cells to interact with one another in the right place and at the right time and this delicate cellular ballet is coordinated by a network of interconnected stromal cells. In this review we will discuss the various types of lymphoid stromal cells and how they coordinate immune cell homeostasis, the induction and maintenance of the germinal centre response, and how this is disorganised in older bodies.
Collapse
Affiliation(s)
- Isabella Cinti
- Department of Immunology and Inflammation, Imperial College London, London, United Kingdom
| | - Kassandra Vezyrgianni
- Department of Immunology and Inflammation, Imperial College London, London, United Kingdom
| | - Alice E Denton
- Department of Immunology and Inflammation, Imperial College London, London, United Kingdom.
| |
Collapse
|
4
|
Xiao H, Ulmert I, Bach L, Huber J, Narasimhan H, Kurochkin I, Chang Y, Holst S, Mörbe U, Zhang L, Schlitzer A, Pereira CF, Schraml BU, Baumjohann D, Lahl K. Genomic deletion of Bcl6 differentially affects conventional dendritic cell subsets and compromises Tfh/Tfr/Th17 cell responses. Nat Commun 2024; 15:3554. [PMID: 38688934 PMCID: PMC11061177 DOI: 10.1038/s41467-024-46966-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 03/13/2024] [Indexed: 05/02/2024] Open
Abstract
Conventional dendritic cells (cDC) play key roles in immune induction, but what drives their heterogeneity and functional specialization is still ill-defined. Here we show that cDC-specific deletion of the transcriptional repressor Bcl6 in mice alters the phenotype and transcriptome of cDC1 and cDC2, while their lineage identity is preserved. Bcl6-deficient cDC1 are diminished in the periphery but maintain their ability to cross-present antigen to CD8+ T cells, confirming general maintenance of this subset. Surprisingly, the absence of Bcl6 in cDC causes a complete loss of Notch2-dependent cDC2 in the spleen and intestinal lamina propria. DC-targeted Bcl6-deficient mice induced fewer T follicular helper cells despite a profound impact on T follicular regulatory cells in response to immunization and mounted diminished Th17 immunity to Citrobacter rodentium in the colon. Our findings establish Bcl6 as an essential transcription factor for subsets of cDC and add to our understanding of the transcriptional landscape underlying cDC heterogeneity.
Collapse
Affiliation(s)
- Hongkui Xiao
- Section for Experimental and Translational Immunology, Institute for Health Technology, Technical University of Denmark (DTU), 2800, Kongens, Lyngby, Denmark
| | - Isabel Ulmert
- Section for Experimental and Translational Immunology, Institute for Health Technology, Technical University of Denmark (DTU), 2800, Kongens, Lyngby, Denmark
| | - Luisa Bach
- Medical Clinic III for Oncology, Hematology, Immuno-Oncology and Rheumatology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Johanna Huber
- Institute for Immunology, Biomedical Center, Faculty of Medicine, LMU Munich, Planegg-Martinsried, Munich, Germany
| | - Hamsa Narasimhan
- Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Faculty of Medicine, Ludwig-Maximillians-Universität München, Planegg-Martinsried, Munich, Germany
- Walter-Brendel-Centre of Experimental Medicine, University Hospital, LMU Munich, Planegg-Martinsried, Munich, Germany
| | - Ilia Kurochkin
- Cell Reprogramming in Hematopoiesis and Immunity Laboratory, Lund Stem Cell Center, Molecular Medicine and Gene Therapy, Lund University, Lund, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
| | - Yinshui Chang
- Medical Clinic III for Oncology, Hematology, Immuno-Oncology and Rheumatology, University Hospital Bonn, University of Bonn, Bonn, Germany
- Institute for Immunology, Biomedical Center, Faculty of Medicine, LMU Munich, Planegg-Martinsried, Munich, Germany
| | - Signe Holst
- Section for Experimental and Translational Immunology, Institute for Health Technology, Technical University of Denmark (DTU), 2800, Kongens, Lyngby, Denmark
- Department of Microbiology, Immunology, and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Urs Mörbe
- Section for Experimental and Translational Immunology, Institute for Health Technology, Technical University of Denmark (DTU), 2800, Kongens, Lyngby, Denmark
| | - Lili Zhang
- Quantitative Systems Biology, Life and Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Andreas Schlitzer
- Quantitative Systems Biology, Life and Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Carlos-Filipe Pereira
- Cell Reprogramming in Hematopoiesis and Immunity Laboratory, Lund Stem Cell Center, Molecular Medicine and Gene Therapy, Lund University, Lund, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Barbara U Schraml
- Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Faculty of Medicine, Ludwig-Maximillians-Universität München, Planegg-Martinsried, Munich, Germany
- Walter-Brendel-Centre of Experimental Medicine, University Hospital, LMU Munich, Planegg-Martinsried, Munich, Germany
| | - Dirk Baumjohann
- Medical Clinic III for Oncology, Hematology, Immuno-Oncology and Rheumatology, University Hospital Bonn, University of Bonn, Bonn, Germany.
- Institute for Immunology, Biomedical Center, Faculty of Medicine, LMU Munich, Planegg-Martinsried, Munich, Germany.
| | - Katharina Lahl
- Section for Experimental and Translational Immunology, Institute for Health Technology, Technical University of Denmark (DTU), 2800, Kongens, Lyngby, Denmark.
- Department of Microbiology, Immunology, and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada.
- Immunology Section, Lund University, Lund, 221 84, Sweden.
| |
Collapse
|
5
|
Lyons-Cohen MR, Shamskhou EA, Gerner MY. Site-specific regulation of Th2 differentiation within lymph node microenvironments. J Exp Med 2024; 221:e20231282. [PMID: 38442268 PMCID: PMC10912907 DOI: 10.1084/jem.20231282] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 12/13/2023] [Accepted: 02/08/2024] [Indexed: 03/07/2024] Open
Abstract
T helper 2 (Th2) responses protect against pathogens while also driving allergic inflammation, yet how large-scale Th2 responses are generated in tissue context remains unclear. Here, we used quantitative imaging to investigate early Th2 differentiation within lymph nodes (LNs) following cutaneous allergen administration. Contrary to current models, we observed extensive activation and "macro-clustering" of early Th2 cells with migratory type-2 dendritic cells (cDC2s), generating specialized Th2-promoting microenvironments. Macro-clustering was integrin-mediated and promoted localized cytokine exchange among T cells to reinforce differentiation, which contrasted the behavior during Th1 responses. Unexpectedly, formation of Th2 macro-clusters was dependent on the site of skin sensitization. Differences between sites were driven by divergent activation states of migratory cDC2 from different dermal tissues, with enhanced costimulatory molecule expression by cDC2 in Th2-generating LNs promoting prolonged T cell activation, macro-clustering, and cytokine sensing. Thus, the generation of dedicated Th2 priming microenvironments through enhanced costimulatory molecule signaling initiates Th2 responses in vivo and occurs in a skin site-specific manner.
Collapse
Affiliation(s)
- Miranda R. Lyons-Cohen
- Department of Immunology, School of Medicine, University of Washington, Seattle, WA, USA
| | - Elya A. Shamskhou
- Department of Immunology, School of Medicine, University of Washington, Seattle, WA, USA
| | - Michael Y. Gerner
- Department of Immunology, School of Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
6
|
Mahajan D, Kumar T, Rath PK, Sahoo AK, Mishra BP, Kumar S, Nayak NR, Jena MK. Dendritic Cells and the Establishment of Fetomaternal Tolerance for Successful Human Pregnancy. Arch Immunol Ther Exp (Warsz) 2024; 72:aite-2024-0010. [PMID: 38782369 DOI: 10.2478/aite-2024-0010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 02/26/2024] [Indexed: 05/25/2024]
Abstract
Pregnancy is a remarkable event where the semi-allogeneic fetus develops in the mother's uterus, despite genetic and immunological differences. The antigen handling and processing at the maternal-fetal interface during pregnancy appear to be crucial for the adaptation of the maternal immune system and for tolerance to the developing fetus and placenta. Maternal antigen-presenting cells (APCs), such as macrophages (Mφs) and dendritic cells (DCs), are present at the maternal-fetal interface throughout pregnancy and are believed to play a crucial role in this process. Despite numerous studies focusing on the significance of Mφs, there is limited knowledge regarding the contribution of DCs in fetomaternal tolerance during pregnancy, making it a relatively new and growing field of research. This review focuses on how the behavior of DCs at the maternal-fetal interface adapts to pregnancy's unique demands. Moreover, it discusses how DCs interact with other cells in the decidual leukocyte network to regulate uterine and placental homeostasis and the local maternal immune responses to the fetus. The review particularly examines the different cell lineages of DCs with specific surface markers, which have not been critically reviewed in previous publications. Additionally, it emphasizes the impact that even minor disruptions in DC functions can have on pregnancy-related complications and proposes further research into the potential therapeutic benefits of targeting DCs to manage these complications.
Collapse
Affiliation(s)
- Deviyani Mahajan
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Tarun Kumar
- Department of Veterinary Clinical Complex, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana 125001, India
| | - Prasana Kumar Rath
- Department of Veterinary Pathology, College of Veterinary Science and AH, Odisha University of Agriculture and Technology, Bhubaneswar, Odisha 751003, India
| | - Anjan Kumar Sahoo
- Department of Veterinary Pathology, College of Veterinary Science and AH, Odisha University of Agriculture and Technology, Bhubaneswar, Odisha 751003, India
- Department of Veterinary Surgery and Radiology, College of Veterinary Science and AH, Odisha University of Agriculture and Technology, Bhubaneswar, Odisha 751003, India
| | - Bidyut Prava Mishra
- Department of Veterinary Pathology, College of Veterinary Science and AH, Odisha University of Agriculture and Technology, Bhubaneswar, Odisha 751003, India
- Department of Livestock Products Technology, College of Veterinary Science and AH, Odisha University of Agriculture and Technology, Bhubaneswar, Odisha 751003, India
| | - Sudarshan Kumar
- Proteomics and Structural Biology Laboratory, Animal Biotechnology Centre, National Dairy Research Institute, Karnal, Haryana 132001, India
| | - Nihar Ranjan Nayak
- Department of Obstetrics and Gynecology, UMKC School of Medicine, Kansas City, MO 64108, USA
| | - Manoj Kumar Jena
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab 144411, India
| |
Collapse
|
7
|
Tatsumi N, El-Fenej J, Davila-Pagan A, Kumamoto Y. Rapid activation of IL-2 receptor signaling by CD301b + DC-derived IL-2 dictates the outcome of helper T cell differentiation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.26.564276. [PMID: 37961107 PMCID: PMC10634899 DOI: 10.1101/2023.10.26.564276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Effector T helper (Th) cell differentiation is fundamental to functional adaptive immunity. Different subsets of dendritic cells (DCs) preferentially induce different types of Th cells, but the fate instruction mechanism for Th type 2 (Th2) differentiation remains enigmatic, as the critical DC-derived cue has not been clearly identified. Here, we show that CD301b+ DCs, a major Th2-inducing DC subset, drive Th2 differentiation through cognate interaction by 'kick-starting' IL-2 receptor signaling in CD4T cells. Mechanistically, CD40 engagement induces IL-2 production selectively from CD301b+ DCs to maximize CD25 expression in CD4 T cells, which is required specifically for the Th2 fate decision. On the other hand, CD25 in CD301b+ DCs facilitates directed action of IL-2 toward cognate CD4T cells. Furthermore, CD301b+ DC-derived IL-2 skews CD4T cells away from the T follicular helper fate. These results highlight the critical role of DC-intrinsic CD40-IL-2 axis in bifurcation of Th cell fate.
Collapse
Affiliation(s)
- Naoya Tatsumi
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ 07103
- Department of Pathology, Immunology and Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ 07103
| | - Jihad El-Fenej
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ 07103
- Department of Pathology, Immunology and Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ 07103
| | - Alejandro Davila-Pagan
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ 07103
- Department of Pathology, Immunology and Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ 07103
| | - Yosuke Kumamoto
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ 07103
- Department of Pathology, Immunology and Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ 07103
| |
Collapse
|
8
|
Tatsumi N, Kumamoto Y. Role of mouse dendritic cell subsets in priming naive CD4 T cells. Curr Opin Immunol 2023; 83:102352. [PMID: 37276821 PMCID: PMC10524374 DOI: 10.1016/j.coi.2023.102352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 06/07/2023]
Abstract
Conventional dendritic cells (cDCs) are potent antigen-presenting cells that consist of developmentally, phenotypically, and functionally distinct subsets. Following immunization, each subset of cDCs acquires the antigen and presents it to CD4T (CD4+ T (cells)) cells with distinct spatiotemporal kinetics in the secondary lymphoid organs, often causing multiple waves of antigen presentation to CD4T cells. Here, we review the current understanding of the kinetics of antigen presentation by each cDC subset and its functional consequences in priming naive CD4T cells, and discuss its implications in the differentiation of CD4T cells.
Collapse
Affiliation(s)
- Naoya Tatsumi
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ, USA; Department of Pathology, Immunology and Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Yosuke Kumamoto
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ, USA; Department of Pathology, Immunology and Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ, USA.
| |
Collapse
|
9
|
Pilipović I, Stojić-Vukanić Z, Leposavić G. Adrenoceptors as potential target for add-on immunomodulatory therapy in multiple sclerosis. Pharmacol Ther 2023; 243:108358. [PMID: 36804434 DOI: 10.1016/j.pharmthera.2023.108358] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 02/03/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023]
Abstract
This review summarizes recent findings related to the role of the sympathetic nervous system (SNS) in pathogenesis of multiple sclerosis (MS) and its commonly used experimental model - experimental autoimmune encephalomyelitis (EAE). They indicate that noradrenaline, the key end-point mediator of the SNS, acting through β-adrenoceptor, has a contributory role in the early stages of MS/EAE development. This stage is characterized by the SNS hyperactivity (increased release of noradrenaline) reflecting the net effect of different factors, such as the disease-associated inflammation, stress, vitamin D hypovitaminosis, Epstein-Barr virus infection and dysbiosis. Thus, the administration of propranolol, a non-selective β-adrenoceptor blocker, readily crossing the blood-brain barrier, to experimental rats before the autoimmune challenge and in the early (preclinical/prodromal) phase of the disease mitigates EAE severity. This phenomenon has been ascribed to the alleviation of neuroinflammation (due to attenuation of primarily microglial activation/proinflammatory functions) and the diminution of the magnitude of the primary CD4+ T-cell autoimmune response (the effect associated with impaired autoantigen uptake by antigen presenting cells and their migration into draining lymph nodes). The former is partly related to breaking of the catecholamine-dependent self-amplifying microglial feed-forward loop and the positive feedback loop between microglia and the SNS, leading to down-regulation of the SNS hyperactivity and its enhancing influence on microglial activation/proinflammatory functions and the magnitude of autoimmune response. The effects of propranolol are shown to be more prominent in male EAE animals, the phenomenon important as males (like men) are likely to develop clinically more severe disease. Thus, these findings could serve as a firm scientific background for formulation of a new sex-specific immune-intervention strategy for the early phases of MS (characterized by the SNS hyperactivity) exploiting anti-(neuro)inflammatory and immunomodulatory properties of propranolol and other relatively cheap and safe adrenergic drugs with similar therapeutic profile.
Collapse
Affiliation(s)
- Ivan Pilipović
- Institute of Virology, Vaccines and Sera "Torlak", Belgrade, Serbia
| | - Zorica Stojić-Vukanić
- University of Belgrade-Faculty of Pharmacy, Department of Microbiology and Immunology, Belgrade, Serbia
| | - Gordana Leposavić
- University of Belgrade-Faculty of Pharmacy, Department of Pathobiology, Belgrade, Serbia.
| |
Collapse
|
10
|
Visser I, Koenraadt CJ, Koopmans MP, Rockx B. The significance of mosquito saliva in arbovirus transmission and pathogenesis in the vertebrate host. One Health 2023. [DOI: 10.1016/j.onehlt.2023.100506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023] Open
|
11
|
Vondra S, Höbler AL, Lackner AI, Raffetseder J, Mihalic ZN, Vogel A, Saleh L, Kunihs V, Haslinger P, Wahrmann M, Husslein H, Oberle R, Kargl J, Haider S, Latos P, Schabbauer G, Knöfler M, Ernerudh J, Pollheimer J. The human placenta shapes the phenotype of decidual macrophages. Cell Rep 2023; 42:111977. [PMID: 36640334 DOI: 10.1016/j.celrep.2022.111977] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 09/07/2022] [Accepted: 12/22/2022] [Indexed: 01/11/2023] Open
Abstract
During human pregnancy, placenta-derived extravillous trophoblasts (EVTs) invade the decidua and communicate with maternal immune cells. The decidua distinguishes into basalis (decB) and parietalis (decP). The latter remains unaffected by EVT invasion. By defining a specific gating strategy, we report the accumulation of macrophages in decB. We describe a decidua basalis-associated macrophage (decBAM) population with a differential transcriptome and secretome compared with decidua parietalis-associated macrophages (decPAMs). decBAMs are CD11chi and efficient inducers of Tregs, proliferate in situ, and secrete high levels of CXCL1, CXCL5, M-CSF, and IL-10. In contrast, decPAMs exert a dendritic cell-like, motile phenotype characterized by induced expression of HLA class II molecules, enhanced phagocytosis, and the ability to activate T cells. Strikingly, EVT-conditioned media convert decPAMs into a decBAM phenotype. These findings assign distinct macrophage phenotypes to decidual areas depending on placentation and further highlight a critical role for EVTs in the induction of decB-associated macrophage polarization.
Collapse
Affiliation(s)
- Sigrid Vondra
- Department of Obstetrics and Gynecology, Reproductive Biology Unit, Maternal-fetal Immunology Group, Medical University of Vienna, Vienna, Austria
| | - Anna-Lena Höbler
- Department of Obstetrics and Gynecology, Reproductive Biology Unit, Maternal-fetal Immunology Group, Medical University of Vienna, Vienna, Austria
| | - Andreas Ian Lackner
- Department of Obstetrics and Gynecology, Reproductive Biology Unit, Maternal-fetal Immunology Group, Medical University of Vienna, Vienna, Austria
| | - Johanna Raffetseder
- Division of Inflammation and Infection (II), Department of Biomedical and Clinical Sciences (BKV), Linköping University, Linköping, Sweden
| | - Zala Nikita Mihalic
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, Graz, Austria
| | - Andrea Vogel
- Institute for Vascular Biology, Center for Physiology and Pharmacology, Medical University Vienna, Vienna, Austria; Christian Doppler Laboratory for Arginine Metabolism in Rheumatoid Arthritis and Multiple Sclerosis, Vienna, Austria
| | - Leila Saleh
- Department of Obstetrics and Gynecology, Reproductive Biology Unit, Placental Development Group, Medical University of Vienna, Vienna, Austria
| | - Victoria Kunihs
- Department of Obstetrics and Gynecology, Reproductive Biology Unit, Placental Development Group, Medical University of Vienna, Vienna, Austria
| | - Peter Haslinger
- Department of Obstetrics and Gynecology, Reproductive Biology Unit, Maternal-fetal Immunology Group, Medical University of Vienna, Vienna, Austria
| | - Markus Wahrmann
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Heinrich Husslein
- Department of Obstetrics and Gynecology, Medical University of Vienna, Vienna, Austria
| | - Raimund Oberle
- Center for Pathobiochemistry and Genetics, Institute of Medical Chemistry, Medical University of Vienna, Vienna, Austria
| | - Julia Kargl
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, Graz, Austria
| | - Sandra Haider
- Institute for Vascular Biology, Center for Physiology and Pharmacology, Medical University Vienna, Vienna, Austria
| | - Paulina Latos
- Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Gernot Schabbauer
- Institute for Vascular Biology, Center for Physiology and Pharmacology, Medical University Vienna, Vienna, Austria; Christian Doppler Laboratory for Arginine Metabolism in Rheumatoid Arthritis and Multiple Sclerosis, Vienna, Austria
| | - Martin Knöfler
- Institute for Vascular Biology, Center for Physiology and Pharmacology, Medical University Vienna, Vienna, Austria
| | - Jan Ernerudh
- Department of Clinical Immunology and Transfusion Medicine, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Jürgen Pollheimer
- Department of Obstetrics and Gynecology, Reproductive Biology Unit, Maternal-fetal Immunology Group, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
12
|
Sterling KG, Dodd GK, Alhamdi S, Asimenios PG, Dagda RK, De Meirleir KL, Hudig D, Lombardi VC. Mucosal Immunity and the Gut-Microbiota-Brain-Axis in Neuroimmune Disease. Int J Mol Sci 2022; 23:13328. [PMID: 36362150 PMCID: PMC9655506 DOI: 10.3390/ijms232113328] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 07/30/2023] Open
Abstract
Recent advances in next-generation sequencing (NGS) technologies have opened the door to a wellspring of information regarding the composition of the gut microbiota. Leveraging NGS technology, early metagenomic studies revealed that several diseases, such as Alzheimer's disease, Parkinson's disease, autism, and myalgic encephalomyelitis, are characterized by alterations in the diversity of gut-associated microbes. More recently, interest has shifted toward understanding how these microbes impact their host, with a special emphasis on their interactions with the brain. Such interactions typically occur either systemically, through the production of small molecules in the gut that are released into circulation, or through signaling via the vagus nerves which directly connect the enteric nervous system to the central nervous system. Collectively, this system of communication is now commonly referred to as the gut-microbiota-brain axis. While equally important, little attention has focused on the causes of the alterations in the composition of gut microbiota. Although several factors can contribute, mucosal immunity plays a significant role in shaping the microbiota in both healthy individuals and in association with several diseases. The purpose of this review is to provide a brief overview of the components of mucosal immunity that impact the gut microbiota and then discuss how altered immunological conditions may shape the gut microbiota and consequently affect neuroimmune diseases, using a select group of common neuroimmune diseases as examples.
Collapse
Affiliation(s)
| | - Griffin Kutler Dodd
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA
| | - Shatha Alhamdi
- Clinical Immunology and Allergy Division, Department of Pediatrics, King Abdullah Specialist Children’s Hospital, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh 11426, Saudi Arabia
| | | | - Ruben K. Dagda
- Department of Pharmacology, School of Medicine, University of Nevada, Reno, NV 89557, USA
| | | | - Dorothy Hudig
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA
| | - Vincent C. Lombardi
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA
| |
Collapse
|
13
|
Eriksson M, Nylén S, Grönvik KO. T cell kinetics reveal expansion of distinct lung T cell subsets in acute versus in resolved influenza virus infection. Front Immunol 2022; 13:949299. [PMID: 36275685 PMCID: PMC9582761 DOI: 10.3389/fimmu.2022.949299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 09/23/2022] [Indexed: 11/13/2022] Open
Abstract
Influenza virus infection is restricted to airway-associated tissues and elicits both cellular and humoral responses ultimately resulting in generation of memory cells able to initiate a rapid immune response against re-infections. Resident memory T cells confer protection at the site of infection where lung-resident memory T cells are important for protecting the host against homologous and heterologous influenza virus infections. Mapping kinetics of local and systemic T cell memory formation is needed to better understand the role different T cells have in viral control and protection. After infecting BALB/c mice with influenza virus strain A/Puerto Rico/8/1934 H1N1 the main proportion of activated T cells and B cells expressing the early activation marker CD69 was detected in lungs and lung-draining mediastinal lymph nodes. Increased frequencies of activated cells were also observed in the peripheral lymphoid organs spleen, inguinal lymph nodes and mesenteric lymph nodes. Likewise, antigen-specific T cells were most abundant in lungs and mediastinal lymph nodes but present in all organs studied. CD8+CD103-CD49a+ lung-resident T cells expanded simultaneously with timing of viral clearance whereas CD8+CD103+CD49a+ lung-resident T cells was the most abundant subset after resolution of infection and antigen-specific, lung-resident T cells were detected up to seven months after infection. In conclusion, the results in this detailed kinetic study demonstrate that influenza virus infection elicits adaptive immune responses mainly in respiratory tract-associated tissues and that distinct subsets of lung-resident T cells expand at different time points during infection. These findings contribute to the understanding of the adaptive immune response locally and systemically following influenza virus infection and call for further studies on the roles of the lung-resident T cell subsets.
Collapse
Affiliation(s)
- Malin Eriksson
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- Department of Microbiology, National Veterinary Institute, Uppsala, Sweden
- *Correspondence: Malin Eriksson,
| | - Susanne Nylén
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | | |
Collapse
|
14
|
Abboud G, Elshikha AS, Kanda N, Zeumer-Spataro L, Morel L. Contribution of Dendritic Cell Subsets to T Cell-Dependent Responses in Mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:1066-1075. [PMID: 35140132 PMCID: PMC8881363 DOI: 10.4049/jimmunol.2100242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 12/21/2021] [Indexed: 02/01/2023]
Abstract
BATF3-deficient mice that lack CD8+ dendritic cells (DCs) showed an exacerbation of chronic graft-versus-host disease (cGVHD), including T follicular helper (Tfh) cell and autoantibody responses, whereas mice carrying the Sle2c2 lupus-suppressive locus with a mutation in the G-CSFR showed an expansion of CD8+ DCs and a poor mobilization of plasmacytoid DCs (pDCs) and responded poorly to cGVHD induction. Here, we investigated the contribution of CD8+ DCs and pDCs to the humoral response to protein immunization, where CD8neg DCs are thought to represent the major inducers. Both BATF3-/- and Sle2c2 mice had reduced humoral and germinal center (GC) responses compared with C57BL/6 (B6) controls. We showed that B6-derived CD4+ DCs are the major early producers of IL-6, followed by CD4-CD8- DCs. Surprisingly, IL-6 production and CD80 expression also increased in CD8+ DCs after immunization, and B6-derived CD8+ DCs rescued Ag-specific adaptive responses in BATF3-/- mice. In addition, inflammatory pDCs (ipDCs) produced more IL-6 than all conventional DCs combined. Interestingly, G-CSFR is highly expressed on pDCs. G-CSF expanded pDC and CD8+ DC numbers and IL-6 production by ipDCs and CD4+ DCs, and it improved the quality of Ab response, increasing the localization of Ag-specific T cells to the GC. Finally, G-CSF activated STAT3 in early G-CSFR+ common lymphoid progenitors of cDCs/pDCs but not in mature cells. In conclusion, we showed a multilayered role of DC subsets in priming Tfh cells in protein immunization, and we unveiled the importance of G-CSFR signaling in the development and function pDCs.
Collapse
Affiliation(s)
- Georges Abboud
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| | - Ahmed S. Elshikha
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, USA.,Department of Pharmaceutics, Zagazig University, Zagazig, Sharkia, 44519, Egypt
| | - Nathalie Kanda
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| | - Leilani Zeumer-Spataro
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| | - Laurence Morel
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL; and
| |
Collapse
|
15
|
Tatsumi N, Codrington AL, El-Fenej J, Phondge V, Kumamoto Y. Effective CD4 T cell priming requires repertoire scanning by CD301b + migratory cDC2 cells upon lymph node entry. Sci Immunol 2021; 6:eabg0336. [PMID: 34890253 DOI: 10.1126/sciimmunol.abg0336] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Naoya Tatsumi
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ 07103, USA.,Department of Pathology, Immunology and Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Alicia L Codrington
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ 07103, USA.,Department of Pathology, Immunology and Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Jihad El-Fenej
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ 07103, USA.,Department of Pathology, Immunology and Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Varoon Phondge
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ 07103, USA.,Department of Pathology, Immunology and Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Yosuke Kumamoto
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ 07103, USA.,Department of Pathology, Immunology and Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| |
Collapse
|
16
|
MA F, LF D, EI T, PA G. Herpes simplex virus interference with immunity: Focus on dendritic cells. Virulence 2021; 12:2583-2607. [PMID: 34895058 PMCID: PMC8677016 DOI: 10.1080/21505594.2021.1980990] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/20/2021] [Accepted: 09/10/2021] [Indexed: 12/12/2022] Open
Abstract
Herpes simplex virus type 1 (HSV-1) and type 2 (HSV-2) are highly prevalent in the human population. These viruses cause lifelong infections by establishing latency in neurons and undergo sporadic reactivations that promote recurrent disease and new infections. The success of HSVs in persisting in infected individuals is likely due to their multiple molecular determinants involved in escaping the host antiviral and immune responses. Importantly, HSVs infect and negatively modulate the function of dendritic cells (DCs), key immune cells that are involved in establishing effective and balanced immunity against viruses. Here, we review and discuss several molecular and cellular processes modulated by HSVs in DCs, such as autophagy, apoptosis, and the unfolded protein response. Given the central role of DCs in establishing optimal antiviral immunity, particular emphasis should be given to the outcome of the interactions occurring between HSVs and DCs.
Collapse
Affiliation(s)
- Farías MA
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Duarte LF
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Tognarelli EI
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - González PA
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
17
|
Weliwitigoda A, Palle P, Gessner M, Hubbard NW, Oukka M, Bettelli E. Cutting Edge: DOCK8 Regulates a Subset of Dendritic Cells That Is Critical for the Development of Experimental Autoimmune Encephalomyelitis. THE JOURNAL OF IMMUNOLOGY 2021; 207:2417-2422. [PMID: 34663621 DOI: 10.4049/jimmunol.2001294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 09/22/2021] [Indexed: 01/03/2023]
Abstract
Dedicator of cytokinesis 8 (DOCK8) is a guanine nucleotide exchange factor with an essential role in cytoskeletal rearrangement, cell migration, and survival of various immune cells. Interestingly, DOCK8-deficient mice are resistant to the development of experimental autoimmune encephalomyelitis (EAE). To understand if EAE resistance in these mice results from an alteration in dendritic cell (DC) functions, we generated mice with conditional deletion of DOCK8 in DCs and observed attenuated EAE in these mice compared with control mice. Additionally, we demonstrated that DOCK8 is important for the existence of splenic conventional DC2 and lymph node migratory DCs and further established that migratory DC, rather than resident DC, are essential for the generation and proliferation of pathogenic T cell populations upon immunization with myelin Ag in adjuvant. Therefore, our data suggest that limiting migratory DCs through DOCK8 deletion and possibly other mechanisms could limit the development of CNS autoimmunity.
Collapse
Affiliation(s)
- Asanga Weliwitigoda
- Immunology Program, Benaroya Research Institute, Seattle, WA; and.,Department of Immunology, University of Washington, Seattle, WA
| | - Pushpalatha Palle
- Immunology Program, Benaroya Research Institute, Seattle, WA; and.,Department of Immunology, University of Washington, Seattle, WA
| | - Melissa Gessner
- Immunology Program, Benaroya Research Institute, Seattle, WA; and.,Department of Immunology, University of Washington, Seattle, WA
| | | | - Mohamed Oukka
- Department of Immunology, University of Washington, Seattle, WA
| | - Estelle Bettelli
- Immunology Program, Benaroya Research Institute, Seattle, WA; and .,Department of Immunology, University of Washington, Seattle, WA
| |
Collapse
|
18
|
Wang J, Lareau CA, Bautista J, Gupta A, Sandor K, Germino J, Yin Y, Arvedson M, Reeder GC, Cramer NT, Xie F, Ntranos V, Satpathy AT, Anderson MS, Gardner JM. Single-cell multiomics defines tolerogenic extrathymic Aire-expressing populations with unique homology to thymic epithelium. Sci Immunol 2021; 6:eabl5053. [PMID: 34767455 PMCID: PMC8855935 DOI: 10.1126/sciimmunol.abl5053] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The autoimmune regulator (Aire), a well-defined transcriptional regulator in the thymus, is also found in extrathymic Aire-expressing cells (eTACs) in the secondary lymphoid organs. eTACs are hematopoietic antigen-presenting cells and inducers of immune tolerance, but their precise identity has remained unclear. Here, we use single-cell multiomics, transgenic murine models, and functional approaches to define eTACs at the transcriptional, genomic, and proteomic level. We find that eTACs consist of two similar cell types: CCR7+ Aire-expressing migratory dendritic cells (AmDCs) and an Airehi population coexpressing Aire and retinoic acid receptor–related orphan receptor γt (RORγt) that we term Janus cells (JCs). Both JCs and AmDCs have the highest transcriptional and genomic homology to CCR7+ migratory dendritic cells. eTACs, particularly JCs, have highly accessible chromatin and broad gene expression, including a range of tissue-specific antigens, as well as remarkable homology to medullary thymic epithelium and RANK-dependent Aire expression. Transgenic self-antigen expression by eTACs is sufficient to induce negative selection and prevent autoimmune diabetes. This transcriptional, genomic, and functional symmetry between eTACs (both JCs and AmDCs) and medullary thymic epithelium—the other principal Aire-expressing population and a key regulator of central tolerance—identifies a core program that may influence self-representation and tolerance across the spectrum of immune development.
Collapse
Affiliation(s)
- Jiaxi Wang
- Diabetes Center, University of California San Francisco
| | - Caleb A. Lareau
- Department of Pathology, Stanford University, Stanford, CA, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | | | - Alexander Gupta
- Diabetes Center, University of California San Francisco
- Department of Surgery, University of California San Francisco
| | - Katalin Sandor
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Joe Germino
- Diabetes Center, University of California San Francisco
| | - Yajie Yin
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Matt Arvedson
- Diabetes Center, University of California San Francisco
| | | | | | - Fang Xie
- Diabetes Center, University of California San Francisco
- Department of Surgery, University of California San Francisco
| | - Vasilis Ntranos
- Diabetes Center, University of California San Francisco
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA; Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Ansuman T. Satpathy
- Department of Pathology, Stanford University, Stanford, CA, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | - Mark S. Anderson
- Diabetes Center, University of California San Francisco
- Department of Medicine, University of California San Francisco
| | - James M. Gardner
- Diabetes Center, University of California San Francisco
- Department of Surgery, University of California San Francisco
| |
Collapse
|
19
|
Gut microbiota-mediated secondary bile acids regulate dendritic cells to attenuate autoimmune uveitis through TGR5 signaling. Cell Rep 2021; 36:109726. [PMID: 34551302 DOI: 10.1016/j.celrep.2021.109726] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 08/10/2021] [Accepted: 08/24/2021] [Indexed: 12/12/2022] Open
Abstract
Gut microbiota-mediated secondary bile acids (BAs) play an important role in energy balance and host metabolism via G protein-coupled receptors and/or nuclear receptors. Emerging evidence suggests that BAs are important for maintaining innate immune responses via these receptors. However, the effect of BAs on autoimmune uveitis is still unknown. Here, we demonstrate decreased microbiota-related secondary BA concentration in feces and serum of animals with experimental autoimmune uveitis (EAU). Restoration of the gut BAs pool attenuates severity of EAU in association with inhibition of nuclear factor κB (NF-κB)-related pro-inflammatory cytokines in dendritic cells (DCs). TGR5 deficiency partially reverses the inhibitory effect of deoxycholic acid (DCA) on DCs. TGR5 signaling also inhibits NF-κB activation via the cyclic AMP (cAMP)-protein kinase A (PKA) pathway in DCs. Additionally, both DCA and TGR5 agonists inhibit human monocyte-derived DC activation. Taken together, our results suggest that BA metabolism plays an important role in adaptive immune responses and might be a therapeutic target in autoimmune uveitis.
Collapse
|
20
|
Ibarra-Moreno CD, Ilhuicatzi-Alvarado D, Moreno-Fierros L. Differential capability of Bacillus thuringiensis Cry1Ac protoxin and toxin to induce in vivo activation of dendritic cells and B lymphocytes. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 121:104071. [PMID: 33766585 DOI: 10.1016/j.dci.2021.104071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 06/12/2023]
Abstract
The insecticidal Bacillus thuringiensis protein Cry1Ac is produced as a protoxin and becomes activated to a toxin when ingested by larvae. Both proteins are immunogenic and able to activate macrophages. The proposed mechanism of immunostimulation by Cry1Ac protoxin has been related to its capacity to activate antigen-presenting cells (APC), but its ability to activate dendritic cells (DC) has not been explored. Here we evaluated, in the popliteal lymph nodes (PLN), spleen and peritoneum, the activation of DC CD11c+ MHC-II+ following injection with single doses (50 μg) of Cry1Ac toxin or protoxin via the intradermal (i.d.) and intraperitoneal (i.p.) routes in C57BL/6 mice. In vivo stimulation with both Cry1Ac proteins induced activation of DC via upregulation of CD86, primarily in PLN 24 h after i. d. injection. Moreover, this activation was detected in DC, displaying CD103+, a typical marker of migratory DC, while upregulation of CD80 was uniquely induced by toxin. Tracking experiments showed that Cy5-labeled Cry1Ac proteins could rapidly reach the PLN and localize near DC, but some label remained in the footpad. When the capacity of Cry1Ac-activated DC to induce antigen presentation was examined, significant proliferation of naïve T lymphocytes was induced exclusively by the protoxin. The protoxin elicited a Th17-biased cytokine profile. Moreover, only the Cry1Ac toxin induced a pronounced proliferation of B cells from both untreated and Cry1Ac-injected mice, suggesting that it acts as a polyclonal activator. In conclusion, Cry1Ac protoxin and toxin show a distinctive capacity to activate APCs.
Collapse
Affiliation(s)
- Cynthia Daniela Ibarra-Moreno
- Laboratorio de Inmunidad en Mucosas, Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Avenida de los Barrios 1, Los Reyes, Iztacala, Tlalnepantla, 54090, Estado de México, Mexico
| | - Damaris Ilhuicatzi-Alvarado
- Laboratorio de Inmunidad en Mucosas, Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Avenida de los Barrios 1, Los Reyes, Iztacala, Tlalnepantla, 54090, Estado de México, Mexico
| | - Leticia Moreno-Fierros
- Laboratorio de Inmunidad en Mucosas, Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Avenida de los Barrios 1, Los Reyes, Iztacala, Tlalnepantla, 54090, Estado de México, Mexico.
| |
Collapse
|
21
|
Poholek AC. Tissue-Specific Contributions to Control of T Cell Immunity. Immunohorizons 2021; 5:410-423. [PMID: 34103371 PMCID: PMC10876086 DOI: 10.4049/immunohorizons.2000103] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 05/17/2021] [Indexed: 11/19/2022] Open
Abstract
T cells are critical for orchestrating appropriate adaptive immune responses and maintaining homeostasis in the face of persistent nonpathogenic Ags. T cell function is controlled in part by environmental signals received upon activation and derived from the tissue environment in which Ag is encountered. Indeed, tissue-specific environments play important roles in controlling the T cell response to Ag, and recent evidence suggests that tissue draining lymph nodes can mirror those local differences. Thus, tissue-specific immunity may begin at priming in secondary lymph nodes, where local signals have an important role in T cell fate. In this study, we discuss the tissue-specific signals that may impact T cell differentiation and function, including the microbiome, metabolism, and tissue-specific innate cell imprinting. We argue that these individual contributions create tissue-specific niches that likely play important roles in T cell differentiation and function controlling the outcome of the response to Ags.
Collapse
Affiliation(s)
- Amanda C Poholek
- Division of Pediatric Rheumatology, Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA; and Department of Immunology, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
22
|
Li Z, Cao Y, Li Y, Zhao Y, Chen X. Vaccine delivery alerts innate immune systems for more immunogenic vaccination. JCI Insight 2021; 6:144627. [PMID: 33690222 PMCID: PMC8119203 DOI: 10.1172/jci.insight.144627] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 03/03/2021] [Indexed: 12/24/2022] Open
Abstract
Vaccine delivery technologies are mainly designed to minimally invasively deliver vaccines to target tissues with little or no adjuvant effects. This study presents a prototype laser-based powder delivery (LPD) with inherent adjuvant effects for more immunogenic vaccination without incorporation of external adjuvants. LPD takes advantage of aesthetic ablative fractional laser to generate skin microchannels to support high-efficient vaccine delivery and at the same time creates photothermal stress in microchannel-surrounding tissues to boost vaccination. LPD could significantly enhance pandemic influenza 2009 H1N1 vaccine immunogenicity and protective efficacy as compared with needle-based intradermal delivery in murine models. The ablative fractional laser was found to induce host DNA release, activate NLR family pyrin domain containing 3 inflammasome, and stimulate IL-1β release despite their dispensability for laser adjuvant effects. Instead, the ablative fractional laser activated MyD88 to mediate its adjuvant effects by potentiation of antigen uptake, maturation, and migration of dendritic cells. LPD also induced minimal local or systemic adverse reactions due to the microfractional and sustained vaccine delivery. Our data support the development of self-adjuvanted vaccine delivery technologies by intentional induction of well-controlled tissue stress to alert innate immune systems for more immunogenic vaccination.
Collapse
|
23
|
Djuretić J, Dimitrijević M, Stojanović M, Stevuljević JK, Hamblin MR, Micov A, Stepanović-Petrović R, Leposavić G. Infrared radiation from cage bedding moderates rat inflammatory and autoimmune responses in collagen-induced arthritis. Sci Rep 2021; 11:2882. [PMID: 33536461 PMCID: PMC7858598 DOI: 10.1038/s41598-021-81999-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 01/04/2021] [Indexed: 11/08/2022] Open
Abstract
The development of collagen type II (CII)-induced arthritis (CIA), a model of rheumatoid arthritis, in rats housed in cages with bedding composed of Celliant fibres containing ceramic particles, which absorb body heat and re-emit the energy back to the body in the form of infrared radiation (+IRF rats), and those housed in cages with standard wooden shaving bedding (-IRF control rats) was examined. The appearance of the first signs of CIA was postponed, while the disease was milder (judging by the arthritic score, paw volume, and burrowing behaviour) in +IRF compared with -IRF rats. This correlated with a lower magnitude of serum anti-CII IgG antibody levels in +IRF rats, and lower production level of IL-17, the Th17 signature cytokine, in cultures of their paws. This could be partly ascribed to impaired migration of antigen-loaded CD11b + dendritic cells and their positioning within lymph nodes in +IRF rats reflecting diminished lymph node expression of CCL19 /CCL21. Additionally, as confirmed in rats with carrageenan-induced paw inflammation (CIPI), the infrared radiation from Celliant fibres, independently from immunomodulatory effects, exerted anti-inflammatory effects (judging by a shift in pro-inflammatory mediator to anti-inflammatory/immunoregulatory mediator ratio towards the latter in paw cultures) and ameliorated burrowing behaviour in CIA rats.
Collapse
Affiliation(s)
- Jasmina Djuretić
- Department of Pathobiology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, Belgrade, Serbia
| | - Mirjana Dimitrijević
- Department of Immunology, Institute for Biological Research "Siniša Stanković"-National Institute of Republic Serbia, University of Belgrade, Bulevar despota Stefana 142, Belgrade, Serbia
| | - Marija Stojanović
- Department of Pathobiology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, Belgrade, Serbia
| | - Jelena Kotur Stevuljević
- Department of Biochemistry, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, Belgrade, Serbia
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028, South Africa
| | - Ana Micov
- Department of Pharmacology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, Belgrade, Serbia
| | - Radica Stepanović-Petrović
- Department of Pharmacology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, Belgrade, Serbia
| | - Gordana Leposavić
- Department of Pathobiology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, Belgrade, Serbia.
| |
Collapse
|
24
|
Immunogenicity Challenges Associated with Subcutaneous Delivery of Therapeutic Proteins. BioDrugs 2021; 35:125-146. [PMID: 33523413 PMCID: PMC7848667 DOI: 10.1007/s40259-020-00465-4] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2020] [Indexed: 12/12/2022]
Abstract
The subcutaneous route of administration has provided convenient and non-inferior delivery of therapeutic proteins compared to intravenous infusion, but there is potential for enhanced immunogenicity toward subcutaneously administered proteins in a subset of patients. Unwanted anti-drug antibody response toward proteins or monoclonal antibodies upon repeated administration is shown to impact the pharmacokinetics and efficacy of multiple biologics. Unique immunogenicity challenges of the subcutaneous route have been realized through various preclinical and clinical examples, although subcutaneous delivery has often demonstrated comparable immunogenicity to intravenous administration. Beyond route of administration as a treatment-related factor of immunogenicity, certain product-related risk factors are particularly relevant to subcutaneously administered proteins. This review attempts to provide an overview of the mechanism of immune response toward proteins administered subcutaneously (subcutaneous proteins) and comments on product-related risk factors related to protein structure and stability, dosage form, and aggregation. A two-wave mechanism of antigen presentation in the immune response toward subcutaneous proteins is described, and interaction with dynamic antigen-presenting cells possessing high antigen processing efficiency and migratory activity may drive immunogenicity. Mitigation strategies for immunogenicity are discussed, including those in general use clinically and those currently in development. Mechanistic insights along with consideration of risk factors involved inspire theoretical strategies to provide antigen-specific, long-lasting effects for maintaining the safety and efficacy of therapeutic proteins.
Collapse
|
25
|
Cabeza-Cabrerizo M, Cardoso A, Minutti CM, Pereira da Costa M, Reis E Sousa C. Dendritic Cells Revisited. Annu Rev Immunol 2021; 39:131-166. [PMID: 33481643 DOI: 10.1146/annurev-immunol-061020-053707] [Citation(s) in RCA: 387] [Impact Index Per Article: 96.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Dendritic cells (DCs) possess the ability to integrate information about their environment and communicate it to other leukocytes, shaping adaptive and innate immunity. Over the years, a variety of cell types have been called DCs on the basis of phenotypic and functional attributes. Here, we refocus attention on conventional DCs (cDCs), a discrete cell lineage by ontogenetic and gene expression criteria that best corresponds to the cells originally described in the 1970s. We summarize current knowledge of mouse and human cDC subsets and describe their hematopoietic development and their phenotypic and functional attributes. We hope that our effort to review the basic features of cDC biology and distinguish cDCs from related cell types brings to the fore the remarkable properties of this cell type while shedding some light on the seemingly inordinate complexity of the DC field.
Collapse
Affiliation(s)
- Mar Cabeza-Cabrerizo
- Immunobiology Laboratory, The Francis Crick Institute, London NW1 1AT, United Kingdom;
| | - Ana Cardoso
- Immunobiology Laboratory, The Francis Crick Institute, London NW1 1AT, United Kingdom;
| | - Carlos M Minutti
- Immunobiology Laboratory, The Francis Crick Institute, London NW1 1AT, United Kingdom;
| | | | - Caetano Reis E Sousa
- Immunobiology Laboratory, The Francis Crick Institute, London NW1 1AT, United Kingdom;
| |
Collapse
|
26
|
Hernandez-Franco JF, Mosley YYC, Franco J, Ragland D, Yao Y, HogenEsch H. Effective and Safe Stimulation of Humoral and Cell-Mediated Immunity by Intradermal Immunization with a Cyclic Dinucleotide/Nanoparticle Combination Adjuvant. THE JOURNAL OF IMMUNOLOGY 2020; 206:700-711. [PMID: 33380496 DOI: 10.4049/jimmunol.2000703] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 12/03/2020] [Indexed: 01/01/2023]
Abstract
Intradermal (ID) immunization is an attractive route of vaccination because it targets tissue rich in dendritic cells, has dose-sparing potential, and allows needle-free delivery. However, few adjuvants are effective, nonreactogenic, and compatible with needle-free delivery devices. In this study, we demonstrate that a combination adjuvant composed of cyclic-di-AMP (cdAMP) and the plant-derived nanoparticle adjuvant Nano-11 significantly enhanced the immune response to ID-injected vaccines in mice and pigs with minimal local reaction at the injection site. The cdAMP/Nano-11 combination adjuvant increased Ag uptake by lymph node-resident and migratory skin dendritic cell subpopulations, including Langerhans cells. ID immunization with cdAMP/Nano-11 expanded the population of germinal center B cells and follicular helper T cells in the draining lymph node and Ag-specific Th1 and Th17 cells in the spleen. It elicited an enhanced immune response with a significant increase of IgG1 and IgG2a responses in mice at a reduced dose compared with i.m. immunization. An increased IgG response was observed following needle-free ID immunization of pigs. Nano-11 and cdAMP demonstrated a strong synergistic interaction, as shown in the activation of mouse, human, and porcine APC, with increased expression of costimulatory molecules and secretion of TNF and IL-1β. The combination adjuvant induced robust activation of both NF-κB and IFN regulatory factor signaling pathways and the NLRP3 inflammasome. We conclude that the combination of Nano-11 and cdAMP is a promising adjuvant for ID delivery of vaccines that supports a balanced immune response.
Collapse
Affiliation(s)
| | - Yung-Yi C Mosley
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907
| | - Jackeline Franco
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907
| | - Darryl Ragland
- Department of Veterinary Clinical Sciences, Purdue University, West Lafayette, IN 47907
| | - Yuan Yao
- Department of Food Science, Purdue University, West Lafayette, IN 47907; and
| | - Harm HogenEsch
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907; .,Purdue Institute for Immunology, Inflammation and Infectious Diseases (PI4D), West Lafayette, IN 47907
| |
Collapse
|
27
|
Pektor S, Lawaczeck L, Tenzer S, Bausbacher N, Hoffmann MA, Schreckenberger M, Miederer M. Characterization of activation induced [18]F-FDG uptake in Dendritic Cells. Nuklearmedizin 2020; 60:90-98. [PMID: 33327008 DOI: 10.1055/a-1308-0589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
AIM Activation of immune cells leads to enhanced glucose uptake that can be visualized by [18]F-Fluorodeoxyglucose ([18]F-FDG) positron emission tomography/computed tomography (PET/CT). Dendritic cells (DC) are essential for the function of the adaptive immune system. In contrast to other immune cells metabolic changes leading to an increase of [18]F-FDG uptake are poorly investigated. Here, we analysed the impact of different DC activation pathways on their [18]F-FDG uptake. This effect was then used to radiolabel DC with [18]F-FDG and track their migration in vivo. METHODS DC were generated from bone marrow progenitors (BMDC) or isolated from spleens (SPDC) of C57BL/6 mice. After stimulation with the TLR ligands LPS and CpG or anti-CD40 antibody for up to 72 hours activation markers and glucose transporters (GLUTs) were measured by flow cytometry. Uptake of [18]F-FDG was measured by gamma-counting. DC lysates were analysed for expression of glycolysis relevant proteins by mass spectrometry (MS). [18]F-FDG-labeled DC were injected into footpads of mice to image DC migration. RESULTS BMDC and SPDC showed strong upregulation of activation markers predominantly 24 hours after TLR stimulation followed by higher uptake of [18]F-FDG. In line with this, the expression of GLUTs was upregulated during the course of activation. Furthermore, MS analyses of DC lysates revealed differential regulation of glycolysis relevant proteins according to the stimulatory pathway. As a proof of principle, DC were labeled with [18]F-FDG upon activation to follow their migration in vivo via PET/MRI. CONCLUSION Immune stimulation of DC leads to enhanced [18]F-FDG uptake into DC, representing the typical shift to aerobic glycolysis in immune cells after activation.
Collapse
Affiliation(s)
- Stefanie Pektor
- Department of Nuclear Medicine, University Medical Center Mainz, Germany
| | - Laura Lawaczeck
- Department of Nuclear Medicine, University Medical Center Mainz, Germany
| | - Stephan Tenzer
- Institute for Immunology, University Medical Center Mainz, Germany
| | - Nicole Bausbacher
- Department of Nuclear Medicine, University Medical Center Mainz, Germany
| | - Manuela Andrea Hoffmann
- Department of Nuclear Medicine, University Medical Center Mainz, Germany.,Federal Ministry of Defense, Department of Occupational Health & Safety, Bonn, Germany
| | | | - Matthias Miederer
- Department of Nuclear Medicine, University Medical Center Mainz, Germany
| |
Collapse
|
28
|
Wei R, Lai N, Zhao L, Zhang Z, Zhu X, Guo Q, Chu C, Fu X, Li X. Dendritic cells in pregnancy and pregnancy-associated diseases. Biomed Pharmacother 2020; 133:110921. [PMID: 33378991 DOI: 10.1016/j.biopha.2020.110921] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 10/18/2020] [Accepted: 10/20/2020] [Indexed: 12/20/2022] Open
Abstract
Dendritic cells (DCs) play a critical immuno-modulating role in pregnancy, which requires the maternal immune system to tolerate semiallogeneic fetus and at the same time to maintain adequate defense against pathogens. DCs interact closely with other immune components such as T cells, natural killer cells and macrophages, as well as the endocrine system to keep a pregnancy-friendly environment. Aberrant DC activities have been related to various pregnancy-associated diseases such as recurrent spontaneous abortion, preterm birth, pre-eclampsia, peripartum cardiomyopathy and infectious pregnancy complications. These findings make DCs an attractive candidate for prevention or therapy on the pregnancy-associated diseases. Here, we review recent findings that provide new insights into the roles of DCs in pregnancy and the related diseases. We also discuss the medical potentials to manipulate DCs in clinics. Whereas this is an emerging area with much work remaining, we anticipate that a better understanding of the role of DCs in maternal-fetal immunotolerance and a therapeutic manipulation of DCs will help women suffering from the pregnancy-associated diseases.
Collapse
Affiliation(s)
- Ran Wei
- Laboratory for Molecular Immunology, Institute of Basic Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, PR China
| | - Nannan Lai
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, PR China
| | - Lin Zhao
- Laboratory for Molecular Immunology, Institute of Basic Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, PR China
| | - Zhen Zhang
- Laboratory for Molecular Immunology, Institute of Basic Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, PR China
| | - Xiaoxiao Zhu
- Laboratory for Molecular Immunology, Institute of Basic Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, PR China
| | - Qiang Guo
- Laboratory for Molecular Immunology, Institute of Basic Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, PR China
| | - Chu Chu
- Laboratory for Molecular Immunology, Institute of Basic Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, PR China
| | - Xiaoxiao Fu
- Laboratory for Molecular Immunology, Institute of Basic Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, PR China
| | - Xia Li
- Laboratory for Molecular Immunology, Institute of Basic Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, PR China.
| |
Collapse
|
29
|
Park J, Frizzell H, Zhang H, Cao S, Hughes SM, Hladik F, Koelle DM, Woodrow KA. Flt3-L enhances trans-epithelial migration and antigen presentation of dendritic cells adoptively transferred to genital mucosa. J Control Release 2020; 329:782-793. [PMID: 33035616 DOI: 10.1016/j.jconrel.2020.10.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 10/01/2020] [Accepted: 10/05/2020] [Indexed: 10/23/2022]
Abstract
Dendritic cells (DCs) play a critical role in shaping adaptive immunity. Systemic transfer of DCs by intravenous injection has been widely investigated to inform the development of immunogenic DCs for use as cellular therapies. Adoptive transfer of DCs to mucosal sites has been limited but serves as a valuable tool to understand the role of the microenvironment on mucosal DC activation, maturation and antigen presentation. Here, we show that chitosan facilitates transmigration of DCs across the vaginal epithelium in the mouse female reproductive tract (FRT). In addition, ex vivo programming of DCs with fms-related tyrosine kinase 3 ligand (Flt3-L) was found to enhance translocation of intravaginally administered DCs to draining lymph nodes (dLNs) and stimulate in vivo proliferation of both antigen-specific CD4+ and CD8+ T cells (cross-presentation). Mucosal priming with chitosan and DC programming may hold great promise to enhance efficacy of DC-based vaccination to the female genital mucosa.
Collapse
Affiliation(s)
- Jaehyung Park
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Hannah Frizzell
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Hangyu Zhang
- Department of Bioengineering, University of Washington, Seattle, WA, USA; School of Biomedical Engineering, Key Laboratory of Integrated Circuit and Biomedical Electronic System, Dalian University of Technology, Dalian, Liaoning Province, China
| | - Shijie Cao
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Sean M Hughes
- Departments of Obstetrics and Gynecology, University of Washington, Seattle, WA, USA
| | - Florian Hladik
- Departments of Obstetrics and Gynecology, University of Washington, Seattle, WA, USA; Department of Medicine, University of Washington, Seattle, WA, USA; Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - David M Koelle
- Departments of Laboratory Medicine, and Global Health, University of Washington, Seattle, WA, USA; Department of Medicine, University of Washington, Seattle, WA, USA; Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA; Translational Research Program, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
| | - Kim A Woodrow
- Department of Bioengineering, University of Washington, Seattle, WA, USA.
| |
Collapse
|
30
|
Abstract
PURPOSE OF REVIEW During the last decades, the field of regenerative medicine has been rapidly evolving. Major progress has been made in the development of biological substitutes applying the principles of cell transplantation, material science, and bioengineering. RECENT FINDINGS Among other sources, amniotic-derived products have been used for decades in various fields of medicine as a biomaterial for the wound care and tissue replacement. Moreover, human amniotic epithelial and mesenchymal cells have been intensively studied for their immunomodulatory capacities. Amniotic cells possess two major characteristics that have already been widely exploited. The first is their ability to modulate and suppress the innate and adaptive immunities, making them a true asset for chronic inflammatory disorders and for the induction of tolerance in transplantation models. The second is their multilineage differentiation capacity, offering a source of cells for tissue engineering. The latter combined with the use of amniotic membrane as a scaffold offers all components necessary to create an optimal environment for cell and tissue regeneration. This review summarizes beneficial properties of hAM and its derivatives and discusses their potential in regenerative medicine.
Collapse
Affiliation(s)
- Charles-Henri Wassmer
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
- Faculty Diabetes Center, University of Geneva Medical Center, Geneva, Switzerland
| | - Ekaterine Berishvili
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
- Faculty Diabetes Center, University of Geneva Medical Center, Geneva, Switzerland
- Institute of Medical Research, Ilia State University, Tbilisi, Georgia
| |
Collapse
|
31
|
Natural killer cells as participants in pathogenesis of rat experimental autoimmune encephalomyelitis (EAE): lessons from research on rats with distinct age and strain. Cent Eur J Immunol 2020; 44:337-356. [PMID: 32140045 PMCID: PMC7050050 DOI: 10.5114/ceji.2019.92777] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 11/12/2018] [Indexed: 01/08/2023] Open
Abstract
Natural killer (NK) cells, influencing dendritic cell (DC)-mediated CD4+ lymphocyte priming in draining lymph nodes (dLNs) and controlling spinal cord (SC) infiltration with encephalitogenic CD4+T lymphocytes, modulate EAE (multiple sclerosis model). This study examined their putative contribution to age-related differences in EAE development in Dark Agouti (DA) (exhibiting age-related decrease in EAE susceptibility) and Albino Oxford (AO) (becoming susceptible to EAE with aging) rats. Aging increased NK cell number in dLNs from rats of both strains. In AO rats, but not in DA ones, it also increased the numbers of IFN-γ-producing NK cells (important for DC activation) and activated/matured DCs, thereby increasing activated/matured DC/conventional Foxp3-CD4+ cell ratio and activated CD25+Foxp3-CD4+ cell number. Aging in DA rats diminished activated/matured DC/conventional Foxp3-CD4+ cell ratio and activated Foxp3-CD4+ cell number. However, MBP-stimulated CD4+ cell proliferation did not differ in dLN cell cultures from young and aged AO rats (as more favorable activated/matured DC/Foxp3-CD4+ cell ratio was abrogated by lower intrinsic CD4+ cell proliferative capacity and a greater regulatory CD25+Foxp3+CD4+ lymphocyte frequency), but was lower in those from aged compared with young DA rats. At SC level, aging shifted Foxp3-CD4+/cytotoxic CX3CR1+ NK cell ratio towards the former in AO rats, so it was less favorable in aged AO rats exhibiting prolonged neurological deficit compared with their DA counterparts. The study showed strain and age differences in number of IFN-γ-producing NK cells in EAE rat dLNs, and suggested that their pathogenetic relevance depends on frequency and/or activity of other cells involved in CD4+ T cell (auto)immune response.
Collapse
|
32
|
Kozlovski S, Atrakchi O, Feigelson SW, Shulman Z, Alon R. Stable contacts of naïve CD4 T cells with migratory dendritic cells are ICAM-1-dependent but dispensable for proliferation in vivo. Cell Adh Migr 2019; 13:315-321. [PMID: 31328672 PMCID: PMC6682365 DOI: 10.1080/19336918.2019.1644857] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 07/04/2019] [Accepted: 07/11/2019] [Indexed: 12/02/2022] Open
Abstract
It is unclear if naïve T cells require dendritic cell ICAMs to proliferate inside lymph nodes. To check if and when CD4 lymphocytes use ICAMs on migratory DCs, wild-type and ICAM-1 and 2 double knock out bone marrow-derived DCs pulsed with saturating levels of an OT-II transgene-specific ovalbumin-derived peptide were co-transferred into skin-draining lymph nodes. Intravital imaging of OT-II lymphocytes entering these lymph nodes revealed that ICAM-1 and -2 deficient migratory DCs formed fewer stable conjugates with OT-II lymphocytes but promoted normal T cell proliferation. DC ICAMs were also not required for unstable TCR-dependent lymphocyte arrests on antigen presenting migratory DCs. Thus, rare antigen-stimulated ICAM-stabilized T-DC conjugates are dispensable for CD4 lymphocyte proliferation inside lymph nodes.
Collapse
Affiliation(s)
- Stav Kozlovski
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Ofir Atrakchi
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Sara W Feigelson
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Ziv Shulman
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Ronen Alon
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
33
|
Mayer JU. Commentary: Spatiotemporal Modeling of the Key Migratory Events During the Initiation of Adaptive Immunity. Front Immunol 2019; 10:2311. [PMID: 31681263 PMCID: PMC6798060 DOI: 10.3389/fimmu.2019.02311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 09/12/2019] [Indexed: 11/13/2022] Open
|
34
|
Li H, Burgueño-Bucio E, Xu S, Das S, Olguin-Alor R, Elmets CA, Athar M, Raman C, Soldevila G, Xu H. CD5 on dendritic cells regulates CD4+ and CD8+ T cell activation and induction of immune responses. PLoS One 2019; 14:e0222301. [PMID: 31491023 PMCID: PMC6730919 DOI: 10.1371/journal.pone.0222301] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 08/26/2019] [Indexed: 12/20/2022] Open
Abstract
The role of CD5 as a regulator of T cell signaling and tolerance is well recognized. Recent data show expression of CD5 on different subtypes of human dendritic cells, however its functional relevance in modulating DC mediated responses remains poorly understood. In this study, we show CD5 is expressed on CD11c+ DC from murine thymus, lymph node, spleen, skin and lung. Although the development of DC subpopulations in CD5-/- mice was normal, CD5-deficient DC produced significantly higher levels of IL-12 than wild type DC in response to LPS. CD5-/- DC, in comparison to CD5+/+ DC, enhanced the activation of CD4+ and CD8+ T cells in vitro and in vivo and induced significantly higher production of IL-2 and IFN-gamma by T cells. Consequently, CD5-/- DC were significantly more potent than wild type DC in the induction of anti-tumor immunity and contact hypersensitivity responses in mice. Restoration of CD5 expression in CD5-/- DC reduced IL-12 production and inhibited their capacity to stimulate T cells. Collectively, these data demonstrate that the specific expression of CD5 on DC inhibits the production of inflammatory cytokines and has a regulatory effect on their activity to stimulate T cells and induce immune responses. This study reveals a previously unrecognized regulatory role for CD5 on DC and provides novel insights into mechanisms for DC biology in immune responses.
Collapse
Affiliation(s)
- Hui Li
- Department of Dermatology, University of Alabama at Birmingham. Birmingham, Alabama, United States of America
| | - Erica Burgueño-Bucio
- Department of Immunology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Shin Xu
- Department of Dermatology, University of Alabama at Birmingham. Birmingham, Alabama, United States of America
| | - Shaonli Das
- Department of Dermatology, University of Alabama at Birmingham. Birmingham, Alabama, United States of America
| | - Roxana Olguin-Alor
- Department of Immunology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Craig A. Elmets
- Department of Dermatology, University of Alabama at Birmingham. Birmingham, Alabama, United States of America
| | - Mohammad Athar
- Department of Dermatology, University of Alabama at Birmingham. Birmingham, Alabama, United States of America
| | - Chander Raman
- Department of Medicine, University of Alabama at Birmingham. Birmingham, Alabama, United States of America
| | - Gloria Soldevila
- Department of Immunology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Hui Xu
- Department of Dermatology, University of Alabama at Birmingham. Birmingham, Alabama, United States of America
| |
Collapse
|
35
|
Darkwah S, Nago N, Appiah MG, Myint PK, Kawamoto E, Shimaoka M, Park EJ. Differential Roles of Dendritic Cells in Expanding CD4 T Cells in Sepsis. Biomedicines 2019; 7:biomedicines7030052. [PMID: 31323786 PMCID: PMC6783955 DOI: 10.3390/biomedicines7030052] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/12/2019] [Accepted: 07/15/2019] [Indexed: 01/01/2023] Open
Abstract
Sepsis is a systemically dysregulated inflammatory syndrome, in which dendritic cells (DCs) play a critical role in coordinating aberrant immunity. The aim of this study is to shed light on the differential roles played by systemic versus mucosal DCs in regulating immune responses in sepsis. We identified a differential impact of the systemic and mucosal DCs on proliferating allogenic CD4 T cells in a mouse model of sepsis. Despite the fact that the frequency of CD4 T cells was reduced in septic mice, septic mesenteric lymph node (MLN) DCs proved superior to septic spleen (SP) DCs in expanding allogeneic CD4 T cells. Moreover, septic MLN DCs markedly augmented the surface expression of MHC class II and CD40, as well as the messaging of interleukin-1β (IL-1β). Interestingly, IL-1β-treated CD4 T cells expanded in a dose-dependent manner, suggesting that this cytokine acts as a key mediator of MLN DCs in promoting septic inflammation. Thus, mucosal and systemic DCs were found to be functionally different in the way CD4 T cells respond during sepsis. Our study provides a molecular basis for DC activity, which can be differential in nature depending on location, whereby it induces septic inflammation or immune-paralysis.
Collapse
Affiliation(s)
- Samuel Darkwah
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Nodoka Nago
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
- Department of Clinical Nutrition, Suzuka University of Medical Science, Suzuka, Mie 510-0293, Japan
| | - Michael G Appiah
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Phyoe Kyawe Myint
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Eiji Kawamoto
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
- Department of Emergency and Disaster Medicine, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Motomu Shimaoka
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Eun Jeong Park
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan.
| |
Collapse
|
36
|
Ugur M, Mueller SN. T cell and dendritic cell interactions in lymphoid organs: More than just being in the right place at the right time. Immunol Rev 2019; 289:115-128. [DOI: 10.1111/imr.12753] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 01/31/2019] [Accepted: 02/03/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Milas Ugur
- Department of Microbiology and Immunology The University of Melbourne, The Peter Doherty Institute for Infection and Immunity Melbourne Victoria Australia
| | - Scott N. Mueller
- Department of Microbiology and Immunology The University of Melbourne, The Peter Doherty Institute for Infection and Immunity Melbourne Victoria Australia
- The Australian Research Council Centre of Excellence in Advanced Molecular Imaging, The University of Melbourne Melbourne Victoria Australia
| |
Collapse
|
37
|
IL-36 Cytokines: Regulators of Inflammatory Responses and Their Emerging Role in Immunology of Reproduction. Int J Mol Sci 2019; 20:ijms20071649. [PMID: 30987081 PMCID: PMC6479377 DOI: 10.3390/ijms20071649] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 03/28/2019] [Accepted: 03/28/2019] [Indexed: 01/01/2023] Open
Abstract
The IL-36 subfamily of cytokines has been recently described as part of the IL-1 superfamily. It comprises three pro-inflammatory agonists (IL-36α, IL-36β, and IL-36γ), their receptor (IL-36R), and one antagonist (IL-36Ra). Although expressed in a variety of cells, the biological relevance of IL-36 cytokines is most evident in the communication between epithelial cells, dendritic cells, and neutrophils, which constitute the common triad responsible for the initiation, maintenance, and expansion of inflammation. The immunological role of IL-36 cytokines was initially described in studies of psoriasis, but novel evidence demonstrates their involvement in further immune and inflammatory processes in physiological and pathological situations. Preliminary studies have reported a dynamic expression of IL-36 cytokines in the female reproductive tract throughout the menstrual cycle, as well as their association with the production of immune mediators and cellular recruitment in the vaginal microenvironment contributing to host defense. In pregnancy, alteration of the placental IL-36 axis has been reported upon infection and pre-eclampsia suggesting its pivotal role in the regulation of maternal immune responses. In this review, we summarize current knowledge regarding the regulatory mechanisms and biological actions of IL-36 cytokines, their participation in different inflammatory conditions, and the emerging data on their potential role in normal and complicated pregnancies.
Collapse
|
38
|
Abstract
Dendritic cells (DCs) can be viewed as translators between innate and adaptive immunity. They integrate signals derived from tissue infection or damage and present processed antigen from these sites to naive T cells in secondary lymphoid organs while also providing multiple soluble and surface-bound signals that help to guide T cell differentiation. DC-mediated tailoring of the appropriate T cell programme ensures a proper cascade of immune responses that adequately targets the insult. Recent advances in our understanding of the different types of DC subsets along with the cellular organization and orchestration of DC and lymphocyte positioning in secondary lymphoid organs over time has led to a clearer understanding of how the nature of the T cell response is shaped. This Review discusses how geographical organization and ordered sequences of cellular interactions in lymph nodes and the spleen regulate immunity.
Collapse
Affiliation(s)
- S C Eisenbarth
- Department of Laboratory Medicine, Immunobiology, Section of Allergy & Immunology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
39
|
Pilipović I, Stojić-Vukanić Z, Prijić I, Leposavić G. Role of the End-Point Mediators of Sympathoadrenal and Sympathoneural Stress Axes in the Pathogenesis of Experimental Autoimmune Encephalomyelitis and Multiple Sclerosis. Front Endocrinol (Lausanne) 2019; 10:921. [PMID: 31993021 PMCID: PMC6970942 DOI: 10.3389/fendo.2019.00921] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 12/17/2019] [Indexed: 12/12/2022] Open
Abstract
The role of stress effector systems in the initiation and progression of multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE), the most commonly used experimental model of MS, has strongly been suggested. To corroborate this notion, alterations in activity of the sympathoadrenal and sympathoneural axes of sympathoadrenal system (a major communication pathway between the central nervous system and the immune system), mirrored in altered release of their end-point mediators (adrenaline and noradrenaline, respectively), are shown to precede (in MS) and/or occur during development of MS and EAE in response to immune cell activation (in early phase of disease) and disease-related damage of sympathoadrenal system neurons and their projections (in late phase of disease). To add to the complexity, innate immunity cells and T-lymphocytes synthesize noradrenaline that may be implicated in a local autocrine/paracrine self-amplifying feed-forward loop to enhance myeloid-cell synthesis of proinflammatory cytokines and inflammatory injury. Furthermore, experimental manipulations targeting noradrenaline/adrenaline action are shown to influence clinical outcome of EAE, in a disease phase-specific manner. This is partly related to the fact that virtually all types of cells involved in the instigation and progression of autoimmune inflammation and target tissue damage in EAE/MS express functional adrenoceptors. Although catecholamines exert majority of immunomodulatory effects through β2-adrenoceptor, a role for α-adrenoceptors in EAE pathogenesis has also been indicated. In this review, we summarize all aforementioned aspects of immunopathogenetic action of catecholamines in EAE/MS as possibly important for designing new strategies targeting their action to prevent/mitigate autoimmune neuroinflammation and tissue damage.
Collapse
Affiliation(s)
- Ivan Pilipović
- Branislav Jankovic Immunology Research Centre, Institute of Virology, Torlak Vaccines and Sera, Belgrade, Serbia
| | - Zorica Stojić-Vukanić
- Department of Microbiology and Immunology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Ivana Prijić
- Branislav Jankovic Immunology Research Centre, Institute of Virology, Torlak Vaccines and Sera, Belgrade, Serbia
| | - Gordana Leposavić
- Department of Pathobiology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
- *Correspondence: Gordana Leposavić
| |
Collapse
|
40
|
Pilipović I, Vujnović I, Petrović R, Stojić-Vukanić Z, Leposavić G. Propranolol Impairs Primary Immune Responses in Rat Experimental Autoimmune Encephalomyelitis. Neuroimmunomodulation 2019; 26:129-138. [PMID: 31132768 DOI: 10.1159/000500094] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 03/30/2019] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE We examined the effect of β-adrenoceptor (AR) blockade in the preclinical phase of experimental autoimmune encephalomyelitis (EAE), the most commonly used model of multiple sclerosis, on the development of primary CD4+ T-cell responses in draining lymph nodes (dLNs). METHODS CD11b+ cell migration to dLNs, CD4+ T-cell activation/proliferation, and IL-17+ CD4+ (Th17) cell numbers in dLN and spinal cord (SC) were examined in male and female Dark Agouti rats using flow cytometry analysis. RESULTS Irrespective of sex, in propranolol-treated (PT) rats, migration of CD11b+ antigen-presenting cells from the site of immunization to dLNs was impaired compared with saline-treated controls and consequently the frequency of all CD11b+ cells in dLNs and activated cells among them, too. This correlated with decreased expression of CCL19/21 transcripts in dLNs. Consistently, the frequency of activated/proliferating cells among dLN CD4+ T cells was reduced in PT rats. Additionally, propranolol reduced the number of Th17 cells in dLNs and SC. Consistently, male and female PT rats exhibited a decreased incidence of EAE and prolonged duration of the asymptomatic disease phase. CONCLUSION This study suggests that sympathetic dysregulation is involved in the outbreak of clinical EAE.
Collapse
Affiliation(s)
- Ivan Pilipović
- Immunology Research Center "Branislav Janković," Institute of Virology, Vaccines, and Sera "Torlak", Belgrade, Serbia
| | - Ivana Vujnović
- Immunology Research Center "Branislav Janković," Institute of Virology, Vaccines, and Sera "Torlak", Belgrade, Serbia
| | - Raisa Petrović
- Immunology Research Center "Branislav Janković," Institute of Virology, Vaccines, and Sera "Torlak", Belgrade, Serbia
| | - Zorica Stojić-Vukanić
- Department of Microbiology and Immunology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Gordana Leposavić
- Department of Pathobiology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia,
| |
Collapse
|
41
|
Harpur CM, Kato Y, Dewi ST, Stankovic S, Johnson DN, Bedoui S, Whitney PG, Lahoud MH, Caminschi I, Heath WR, Brooks AG, Gebhardt T. Classical Type 1 Dendritic Cells Dominate Priming of Th1 Responses to Herpes Simplex Virus Type 1 Skin Infection. THE JOURNAL OF IMMUNOLOGY 2018; 202:653-663. [PMID: 30598513 DOI: 10.4049/jimmunol.1800218] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 11/16/2018] [Indexed: 12/21/2022]
Abstract
CD4+ T cell responses are crucial for the control of many intracellular pathogens, yet the requirements for their induction are not fully understood. To better understand the role that various dendritic cell (DC) subtypes play in CD4+ T cell priming, we compared in vivo T cell responses to skin inoculation of mice with infectious or UV-inactivated HSV type 1. Localized infection elicited a Th1 response that was primed in skin-draining lymph nodes involving Ag presentation by migratory dermal and lymph node-resident DC. However, expansion and Th1 differentiation was impaired in response to UV-inactivated virus (UV-HSV), and this defect correlated with a restriction of Ag presentation to migratory CD103- dermal DC. A similar differentiation defect was seen in infected mice lacking CD8α+ and CD103+ classical type 1 DC (cDC1). Finally, Th1 differentiation after UV-HSV inoculation was rescued by targeted Ag delivery to CD8α+ and CD103+ cDC1 using an anti-Clec9A Ab construct. This suggests that Ag presentation by cDC1 is crucial for optimal Th1 immunity to HSV type 1 infection and potentially other pathogens of the skin.
Collapse
Affiliation(s)
- Christopher M Harpur
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Yu Kato
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Shinta T Dewi
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Sanda Stankovic
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Darryl N Johnson
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Sammy Bedoui
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Paul G Whitney
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Mireille H Lahoud
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia; and
| | - Irina Caminschi
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia.,Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia; and
| | - William R Heath
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia.,The Australian Research Council Centre of Excellence in Advanced Molecular Imaging, The University of Melbourne, Melbourne, Victoria 3000, Australia
| | - Andrew G Brooks
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Thomas Gebhardt
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia;
| |
Collapse
|
42
|
Schuijs MJ, Hammad H, Lambrecht BN. Professional and 'Amateur' Antigen-Presenting Cells In Type 2 Immunity. Trends Immunol 2018; 40:22-34. [PMID: 30502024 DOI: 10.1016/j.it.2018.11.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 10/19/2018] [Accepted: 11/03/2018] [Indexed: 01/21/2023]
Abstract
Dendritic cells (DCs) are critical for the activation of naïve CD4+ T cells and are considered professional antigen-presenting cells (APCs), as are macrophages and B cells. Recently, several innate type 2 immune cells, such as basophils, mast cells (MCs), eosinophils, and innate type 2 lymphocytes (ILC2), have also emerged as harboring APC behavior. Through surface expression or transfer of peptide-loaded MHCII, expression of costimulatory and co-inhibitory molecules, as well as the secretion of polarizing cytokines, these innate cells can extensively communicate with effector and regulatory CD4+ T cells. An exciting new concept is that the complementary tasks of these 'amateur' APCs contribute to shaping and regulating adaptive immunity to allergens and helminths, often in collaboration with professional APCs.
Collapse
Affiliation(s)
- Martijn J Schuijs
- Laboratory for Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, Ghent, Belgium; Department of Respiratory Medicine, Ghent University, Ghent, Belgium
| | - Hamida Hammad
- Laboratory for Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, Ghent, Belgium; Department of Respiratory Medicine, Ghent University, Ghent, Belgium
| | - Bart N Lambrecht
- Laboratory for Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, Ghent, Belgium; Department of Respiratory Medicine, Ghent University, Ghent, Belgium; Department of Pulmonary Medicine, Erasmus MC, Rotterdam, The Netherlands.
| |
Collapse
|
43
|
Gornati L, Zanoni I, Granucci F. Dendritic Cells in the Cross Hair for the Generation of Tailored Vaccines. Front Immunol 2018; 9:1484. [PMID: 29997628 PMCID: PMC6030256 DOI: 10.3389/fimmu.2018.01484] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 06/14/2018] [Indexed: 12/14/2022] Open
Abstract
Vaccines represent the discovery of utmost importance for global health, due to both prophylactic action to prevent infections and therapeutic intervention in neoplastic diseases. Despite this, current vaccination strategies need to be refined to successfully generate robust protective antigen-specific memory immune responses. To address this issue, one possibility is to exploit the high efficiency of dendritic cells (DCs) as antigen-presenting cells for T cell priming. DCs functional plasticity allows shaping the outcome of immune responses to achieve the required type of immunity. Therefore, the choice of adjuvants to guide and sustain DCs maturation, the design of multifaceted vehicles, and the choice of surface molecules to specifically target DCs represent the key issues currently explored in both preclinical and clinical settings. Here, we review advances in DCs-based vaccination approaches, which exploit direct in vivo DCs targeting and activation options. We also discuss the recent findings for efficient antitumor DCs-based vaccinations and combination strategies to reduce the immune tolerance promoted by the tumor microenvironment.
Collapse
Affiliation(s)
- Laura Gornati
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Ivan Zanoni
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy.,Division of Gastroenterology, Harvard Medical School, Boston Children's Hospital, Boston, MA, United States
| | - Francesca Granucci
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| |
Collapse
|
44
|
Feigelson SW, Solomon A, Biram A, Hatzav M, Lichtenstein M, Regev O, Kozlovski S, Varol D, Curato C, Leshkowitz D, Jung S, Shulman Z, Alon R. ICAMs Are Not Obligatory for Functional Immune Synapses between Naive CD4 T Cells and Lymph Node DCs. Cell Rep 2018; 22:849-859. [DOI: 10.1016/j.celrep.2017.12.103] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 11/12/2017] [Accepted: 12/27/2017] [Indexed: 12/31/2022] Open
|
45
|
Critical Role for Skin-Derived Migratory DCs and Langerhans Cells in TFH and GC Responses after Intradermal Immunization. J Invest Dermatol 2017; 137:1905-1913. [DOI: 10.1016/j.jid.2017.04.016] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 04/03/2017] [Accepted: 04/05/2017] [Indexed: 11/20/2022]
|
46
|
Gerner MY, Casey KA, Kastenmuller W, Germain RN. Dendritic cell and antigen dispersal landscapes regulate T cell immunity. J Exp Med 2017; 214:3105-3122. [PMID: 28847868 PMCID: PMC5626399 DOI: 10.1084/jem.20170335] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 06/16/2017] [Accepted: 08/01/2017] [Indexed: 01/01/2023] Open
Abstract
Gerner et al. show that spatial compartmentalization in lymph nodes of DCs specialized for MHC I versus MHC II presentation determines the amount of antigen these cells capture after immunization and regulates the relative generation of CD4+ versus CD8+ T cell responses. Dendritic cell (DC) subsets with biased capacity for CD4+ and CD8+ T cell activation are asymmetrically distributed in lymph nodes (LNs), but how this affects adaptive responses has not been extensively studied. Here we used quantitative imaging to examine the relationships among antigen dispersal, DC positioning, and T cell activation after protein immunization. Antigens rapidly drained into LNs and formed gradients extending from the lymphatic sinuses, with reduced abundance in the deep LN paracortex. Differential localization of DCs specialized for major histocompatibility complex I (MHC I) and MHC II presentation resulted in preferential activation of CD8+ and CD4+ T cells within distinct LN regions. Because MHC I–specialized DCs are positioned in regions with limited antigen delivery, modest reductions in antigen dose led to a substantially greater decline in CD8+ compared with CD4+ T cell activation, expansion, and clonal diversity. Thus, the collective action of antigen dispersal and DC positioning regulates the extent and quality of T cell immunity, with important implications for vaccine design.
Collapse
Affiliation(s)
| | - Kerry A Casey
- Department of Respiratory, Inflammation and Autoimmunity, MedImmune, LLC, Gaithersburg, MD
| | | | - Ronald N Germain
- Lymphocyte Biology Section, Laboratory of Systems Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| |
Collapse
|
47
|
Inflammatory monocytes regulate Th1 oriented immunity to CpG adjuvanted protein vaccines through production of IL-12. Sci Rep 2017; 7:5986. [PMID: 28729715 PMCID: PMC5519561 DOI: 10.1038/s41598-017-06236-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 06/12/2017] [Indexed: 01/26/2023] Open
Abstract
Due to their capacity to skew T cell responses towards Th1 oriented immunity, oligonucleotides containing unmethylated CpG motifs (CpG) have emerged as interesting adjuvants for vaccination. Whereas the signalling pathways in response to CpG mediated TLR9 activation have been extensively documented at the level of the individual cell, little is however known on the precise identity of the innate immune cells that govern T cell priming and polarisation to CpG adjuvanted protein antigens in vivo. In this study, we demonstrate that optimal induction of Th1 oriented immunity to CpG adjuvanted protein vaccines requires the coordinated actions of conventional DCs and of monocytes. Whilst conventional DCs were required for antigen presentation and initial T cell priming, monocytes constitute the main source of the Th1 polarising cytokine IL-12.
Collapse
|
48
|
Pulmonary immunity to viruses. Clin Sci (Lond) 2017; 131:1737-1762. [PMID: 28667071 DOI: 10.1042/cs20160259] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 03/31/2017] [Accepted: 04/06/2017] [Indexed: 12/28/2022]
Abstract
Mucosal surfaces, such as the respiratory epithelium, are directly exposed to the external environment and therefore, are highly susceptible to viral infection. As a result, the respiratory tract has evolved a variety of innate and adaptive immune defenses in order to prevent viral infection or promote the rapid destruction of infected cells and facilitate the clearance of the infecting virus. Successful adaptive immune responses often lead to a functional state of immune memory, in which memory lymphocytes and circulating antibodies entirely prevent or lessen the severity of subsequent infections with the same virus. This is also the goal of vaccination, although it is difficult to vaccinate in a way that mimics respiratory infection. Consequently, some vaccines lead to robust systemic immune responses, but relatively poor mucosal immune responses that protect the respiratory tract. In addition, adaptive immunity is not without its drawbacks, as overly robust inflammatory responses may lead to lung damage and impair gas exchange or exacerbate other conditions, such as asthma or chronic obstructive pulmonary disease (COPD). Thus, immune responses to respiratory viral infections must be strong enough to eliminate infection, but also have mechanisms to limit damage and promote tissue repair in order to maintain pulmonary homeostasis. Here, we will discuss the components of the adaptive immune system that defend the host against respiratory viral infections.
Collapse
|
49
|
Rincon-Restrepo M, Mayer A, Hauert S, Bonner DK, Phelps EA, Hubbell JA, Swartz MA, Hirosue S. Vaccine nanocarriers: Coupling intracellular pathways and cellular biodistribution to control CD4 vs CD8 T cell responses. Biomaterials 2017; 132:48-58. [PMID: 28407494 DOI: 10.1016/j.biomaterials.2017.03.047] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 03/25/2017] [Accepted: 03/27/2017] [Indexed: 10/19/2022]
Abstract
Nanoparticle delivery systems are known to enhance the immune response to soluble antigens (Ags) and are thus a promising tool for the development of new vaccines. Our laboratory has engineered two different nanoparticulate systems in which Ag is either encapsulated within the core of polymersomes (PSs) or decorated onto the surface of nanoparticles (NPs). Previous studies showed that PSs are better at enhancing CD4 T cells and antibody titers, while NPs preferentially augment cytotoxic CD8 T cells. Herein, we demonstrate that the differential activation of T cell immunity reflects differences in the modes of intracellular trafficking and distinct biodistribution of the Ag in lymphoid organs, which are both driven by the properties of each nanocarrier. Furthermore, we found that Ags within PSs promoted better CD4 T cell activation and induced a higher frequency of CD4 T follicular helper (Tfh) cells. These differences correlated with changes in the frequency of germinal center B cells and plasma cell formation, which reflects the previously observed antibody titers. Our results show that PSs are a promising vector for the delivery of Ags for B cell vaccine development. This study demonstrates that nanocarrier design has a large impact on the quality of the induced adaptive immune response.
Collapse
Affiliation(s)
- Marcela Rincon-Restrepo
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Aaron Mayer
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Sylvie Hauert
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Daniel K Bonner
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Edward A Phelps
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Jeffrey A Hubbell
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland; Institute for Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Melody A Swartz
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland; Institute for Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Sachiko Hirosue
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| |
Collapse
|
50
|
Gasteiger G, Ataide M, Kastenmüller W. Lymph node - an organ for T-cell activation and pathogen defense. Immunol Rev 2016; 271:200-20. [PMID: 27088916 DOI: 10.1111/imr.12399] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The immune system is a multicentered organ that is characterized by intimate interactions between its cellular components to efficiently ward off invading pathogens. A key constituent of this organ system is the distinct migratory activity of its cellular elements. The lymph node represents a pivotal meeting point of immune cells where adaptive immunity is induced and regulated. Additionally, besides barrier tissues, the lymph node is a critical organ where invading pathogens need to be eliminated in order to prevent systemic distribution of virulent microbes. Here, we explain how the lymph node is structurally and functionally organized to fulfill these two critical functions - pathogen defense and orchestration of adaptive immunity. We will discuss spatio-temporal aspects of cellular immune responses focusing on CD8 T cells and review how and where these cells are activated in the context of viral infections, as well as how viral antigen expression kinetics and different antigen presentation pathways are involved. Finally, we will describe how such responses are regulated and 'helped', and discuss how this relates to intranodal positioning and cellular migration of the various cellular components that are involved in these processes.
Collapse
Affiliation(s)
- Georg Gasteiger
- Institute of Medical Microbiology and Hygiene & FZI Research Center for Immunotherapy, University of Mainz Medical Center, Mainz, Germany
| | - Marco Ataide
- Institute of Experimental Immunology, University of Bonn, Bonn, Germany
| | | |
Collapse
|