1
|
Bosch M, Kallin N, Donakonda S, Zhang JD, Wintersteller H, Hegenbarth S, Heim K, Ramirez C, Fürst A, Lattouf EI, Feuerherd M, Chattopadhyay S, Kumpesa N, Griesser V, Hoflack JC, Siebourg-Polster J, Mogler C, Swadling L, Pallett LJ, Meiser P, Manske K, de Almeida GP, Kosinska AD, Sandu I, Schneider A, Steinbacher V, Teng Y, Schnabel J, Theis F, Gehring AJ, Boonstra A, Janssen HLA, Vandenbosch M, Cuypers E, Öllinger R, Engleitner T, Rad R, Steiger K, Oxenius A, Lo WL, Klepsch V, Baier G, Holzmann B, Maini MK, Heeren R, Murray PJ, Thimme R, Herrmann C, Protzer U, Böttcher JP, Zehn D, Wohlleber D, Lauer GM, Hofmann M, Luangsay S, Knolle PA. A liver immune rheostat regulates CD8 T cell immunity in chronic HBV infection. Nature 2024; 631:867-875. [PMID: 38987588 PMCID: PMC11269190 DOI: 10.1038/s41586-024-07630-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 05/30/2024] [Indexed: 07/12/2024]
Abstract
Chronic hepatitis B virus (HBV) infection affects 300 million patients worldwide1,2, in whom virus-specific CD8 T cells by still ill-defined mechanisms lose their function and cannot eliminate HBV-infected hepatocytes3-7. Here we demonstrate that a liver immune rheostat renders virus-specific CD8 T cells refractory to activation and leads to their loss of effector functions. In preclinical models of persistent infection with hepatotropic viruses such as HBV, dysfunctional virus-specific CXCR6+ CD8 T cells accumulated in the liver and, as a characteristic hallmark, showed enhanced transcriptional activity of cAMP-responsive element modulator (CREM) distinct from T cell exhaustion. In patients with chronic hepatitis B, circulating and intrahepatic HBV-specific CXCR6+ CD8 T cells with enhanced CREM expression and transcriptional activity were detected at a frequency of 12-22% of HBV-specific CD8 T cells. Knocking out the inhibitory CREM/ICER isoform in T cells, however, failed to rescue T cell immunity. This indicates that CREM activity was a consequence, rather than the cause, of loss in T cell function, further supported by the observation of enhanced phosphorylation of protein kinase A (PKA) which is upstream of CREM. Indeed, we found that enhanced cAMP-PKA-signalling from increased T cell adenylyl cyclase activity augmented CREM activity and curbed T cell activation and effector function in persistent hepatic infection. Mechanistically, CD8 T cells recognizing their antigen on hepatocytes established close and extensive contact with liver sinusoidal endothelial cells, thereby enhancing adenylyl cyclase-cAMP-PKA signalling in T cells. In these hepatic CD8 T cells, which recognize their antigen on hepatocytes, phosphorylation of key signalling kinases of the T cell receptor signalling pathway was impaired, which rendered them refractory to activation. Thus, close contact with liver sinusoidal endothelial cells curbs the activation and effector function of HBV-specific CD8 T cells that target hepatocytes expressing viral antigens by means of the adenylyl cyclase-cAMP-PKA axis in an immune rheostat-like fashion.
Collapse
Affiliation(s)
- Miriam Bosch
- Institute of Molecular Immunology, School of Medicine and Health, Technical University of Munich (TUM), Munich, Germany
| | - Nina Kallin
- Institute of Molecular Immunology, School of Medicine and Health, Technical University of Munich (TUM), Munich, Germany
| | - Sainitin Donakonda
- Institute of Molecular Immunology, School of Medicine and Health, Technical University of Munich (TUM), Munich, Germany
| | - Jitao David Zhang
- Roche Pharmaceutical Research and Early Development (pRED), Roche Innovation Center Basel, Basel, Switzerland
| | - Hannah Wintersteller
- Institute of Molecular Immunology, School of Medicine and Health, Technical University of Munich (TUM), Munich, Germany
| | - Silke Hegenbarth
- Institute of Molecular Immunology, School of Medicine and Health, Technical University of Munich (TUM), Munich, Germany
| | - Kathrin Heim
- Third Department of Medicine, University Hospital Freiburg, Freiburg, Germany
| | - Carlos Ramirez
- Health Data Science Unit, Biomedical Genomics Group, Bioquant, Faculty of Medicine Heidelberg, Heidelberg, Germany
| | - Anna Fürst
- Institute of Molecular Immunology, School of Medicine and Health, Technical University of Munich (TUM), Munich, Germany
| | - Elias Isaac Lattouf
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Martin Feuerherd
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Sutirtha Chattopadhyay
- Institute of Molecular Immunology, School of Medicine and Health, Technical University of Munich (TUM), Munich, Germany
| | - Nadine Kumpesa
- Roche Pharmaceutical Research and Early Development (pRED), Roche Innovation Center Basel, Basel, Switzerland
| | - Vera Griesser
- Roche Pharmaceutical Research and Early Development (pRED), Roche Innovation Center Basel, Basel, Switzerland
| | - Jean-Christophe Hoflack
- Roche Pharmaceutical Research and Early Development (pRED), Roche Innovation Center Basel, Basel, Switzerland
| | - Juliane Siebourg-Polster
- Roche Pharmaceutical Research and Early Development (pRED), Roche Innovation Center Basel, Basel, Switzerland
| | - Carolin Mogler
- Institute of Pathology, School of Medicine and Health, TUM, Munich, Germany
| | - Leo Swadling
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, London, UK
| | - Laura J Pallett
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, London, UK
| | - Philippa Meiser
- Institute of Molecular Immunology, School of Medicine and Health, Technical University of Munich (TUM), Munich, Germany
| | - Katrin Manske
- Institute of Molecular Immunology, School of Medicine and Health, Technical University of Munich (TUM), Munich, Germany
| | - Gustavo P de Almeida
- Institute of Immunology and Animal Physiology, School of Life Science, TUM, Munich, Germany
| | - Anna D Kosinska
- Institute of Virology, School of Medicine and Health, TUM, Munich, Germany
- Helmholtz Zentrum München, Munich, Germany
- German Center for Infection Research, Munich site, Munich, Germany
| | - Ioana Sandu
- Institute of Microbiology, ETH Zürich, Zürich, Switzerland
| | - Annika Schneider
- Institute of Molecular Immunology, School of Medicine and Health, Technical University of Munich (TUM), Munich, Germany
| | - Vincent Steinbacher
- Institute of Molecular Immunology, School of Medicine and Health, Technical University of Munich (TUM), Munich, Germany
| | - Yan Teng
- Institute of Virology, School of Medicine and Health, TUM, Munich, Germany
| | - Julia Schnabel
- Institute of Machine Learning and Biomedical Imaging, Helmholtz Zentrum Munich, Munich, Germany
| | - Fabian Theis
- Institute of Computational Biology, TUM, Munich, Germany
| | - Adam J Gehring
- Toronto Centre for Liver Disease and Toronto General Hospital Research Institute, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Andre Boonstra
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Harry L A Janssen
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Toronto General Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Michiel Vandenbosch
- Institute of Multimodal Imaging, University of Maastricht, Maastricht, The Netherlands
| | - Eva Cuypers
- Institute of Multimodal Imaging, University of Maastricht, Maastricht, The Netherlands
| | - Rupert Öllinger
- Institute of Molecular Oncology and Functional Genomics, School of Medicine and Health, TUM, Munich, Germany
| | - Thomas Engleitner
- Institute of Molecular Oncology and Functional Genomics, School of Medicine and Health, TUM, Munich, Germany
| | - Roland Rad
- Institute of Molecular Oncology and Functional Genomics, School of Medicine and Health, TUM, Munich, Germany
| | - Katja Steiger
- Comparative Experimental Pathology, School of Medicine and Health, TUM, Munich, Germany
| | | | - Wan-Lin Lo
- Department of Pathology, University of Utah, Salt Lake City, UT, USA
| | - Victoria Klepsch
- Institute of Cell Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Gottfried Baier
- Institute of Cell Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Bernhard Holzmann
- Department of Surgery, School of Medicine and Health, TUM, Munich, Germany
| | - Mala K Maini
- Institute of Pathology, School of Medicine and Health, TUM, Munich, Germany
| | - Ron Heeren
- Institute of Multimodal Imaging, University of Maastricht, Maastricht, The Netherlands
| | - Peter J Murray
- Max Planck Institute of Biochemistry, Martinsried, Munich, Germany
| | - Robert Thimme
- Third Department of Medicine, University Hospital Freiburg, Freiburg, Germany
| | - Carl Herrmann
- Health Data Science Unit, Biomedical Genomics Group, Bioquant, Faculty of Medicine Heidelberg, Heidelberg, Germany
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Ulrike Protzer
- Institute of Immunology and Animal Physiology, School of Life Science, TUM, Munich, Germany
- Institute of Virology, School of Medicine and Health, TUM, Munich, Germany
- Helmholtz Zentrum München, Munich, Germany
| | - Jan P Böttcher
- Institute of Molecular Immunology, School of Medicine and Health, Technical University of Munich (TUM), Munich, Germany
| | - Dietmar Zehn
- Institute of Immunology and Animal Physiology, School of Life Science, TUM, Munich, Germany
| | - Dirk Wohlleber
- Institute of Molecular Immunology, School of Medicine and Health, Technical University of Munich (TUM), Munich, Germany
| | - Georg M Lauer
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Maike Hofmann
- Third Department of Medicine, University Hospital Freiburg, Freiburg, Germany
| | - Souphalone Luangsay
- Roche Pharmaceutical Research and Early Development (pRED), Roche Innovation Center Basel, Basel, Switzerland
| | - Percy A Knolle
- Institute of Molecular Immunology, School of Medicine and Health, Technical University of Munich (TUM), Munich, Germany.
- German Center for Infection Research, Munich site, Munich, Germany.
- Institute of Molecular Immunology, School of Life Science, TUM, Munich, Germany.
| |
Collapse
|
2
|
Marchais M, Simula L, Phayanouvong M, Mami-Chouaib F, Bismuth G, Decroocq J, Bouscary D, Dutrieux J, Mangeney M. FOXO1 Inhibition Generates Potent Nonactivated CAR T Cells against Solid Tumors. Cancer Immunol Res 2023; 11:1508-1523. [PMID: 37649096 DOI: 10.1158/2326-6066.cir-22-0533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 01/09/2023] [Accepted: 08/23/2023] [Indexed: 09/01/2023]
Abstract
Chimeric antigen receptor (CAR) T cells have shown promising results in the treatment of B-cell malignancies. Despite the successes, challenges remain. One of them directly involves the CAR T-cell manufacturing process and especially the ex vivo activation phase. While this is required to allow infection and expansion, ex vivo activation dampens the antitumor potential of CAR T cells. Optimizing the nature of the T cells harboring the CAR is a strategy to address this obstacle and has the potential to improve CAR T-cell therapy, including for solid tumors. Here, we describe a protocol to create CAR T cells without ex vivo preactivation by inhibiting the transcription factor FOXO1 (CAR TAS cells). This approach made T cells directly permissive to lentiviral infection, allowing CAR expression, with enhanced antitumor functions. FOXO1 inhibition in primary T cells (TAS cells) correlated with acquisition of a stem cell memory phenotype, high levels of granzyme B, and increased production of TNFα. TAS cells displayed enhanced proliferative and cytotoxic capacities as well as improved migratory properties. In vivo experiments showed that CAR TAS cells were more efficient at controlling solid tumor growth than classical CAR T cells. The production of CAR TAS from patients' cells confirmed the feasibility of the protocol in clinic.
Collapse
Affiliation(s)
- Maude Marchais
- CNRS UMR9196, Physiologie et Pathologie Moléculaires des Rétrovirus Endogènes et Infectieux, Gustave Roussy, Faculté de Médecine, Université Paris-Sud, Université Paris-Saclay, Villejuif, France
- Université de Paris, Institut Cochin, CNRS UMR8104, INSERM U1016, Paris, France
| | - Luca Simula
- Université de Paris, Institut Cochin, CNRS UMR8104, INSERM U1016, Paris, France
| | - Mélanie Phayanouvong
- INSERM UMR 1186, Integrative Tumor Immunology and Immunotherapy, Gustave Roussy, Faculté de Médecine, Université Paris-Sud, Université Paris-Saclay, Villejuif, France
| | - Fathia Mami-Chouaib
- INSERM UMR 1186, Integrative Tumor Immunology and Immunotherapy, Gustave Roussy, Faculté de Médecine, Université Paris-Sud, Université Paris-Saclay, Villejuif, France
| | - Georges Bismuth
- Université de Paris, Institut Cochin, CNRS UMR8104, INSERM U1016, Paris, France
| | - Justine Decroocq
- Assistance Publique-Hôpitaux de Paris, Centre-Université de Paris, Service d'Hématologie Clinique, Hôpital Cochin, Paris, France
| | - Didier Bouscary
- Université de Paris, Institut Cochin, CNRS UMR8104, INSERM U1016, Paris, France
- Assistance Publique-Hôpitaux de Paris, Centre-Université de Paris, Service d'Hématologie Clinique, Hôpital Cochin, Paris, France
| | - Jacques Dutrieux
- Université de Paris, Institut Cochin, CNRS UMR8104, INSERM U1016, Paris, France
- Viral DNA Integration and Chromatin Dynamics Network (DyNAVir), Paris, France
| | - Marianne Mangeney
- CNRS UMR9196, Physiologie et Pathologie Moléculaires des Rétrovirus Endogènes et Infectieux, Gustave Roussy, Faculté de Médecine, Université Paris-Sud, Université Paris-Saclay, Villejuif, France
- Université de Paris, Institut Cochin, CNRS UMR8104, INSERM U1016, Paris, France
| |
Collapse
|
3
|
Mao P, Feng W, Zhang Z, Huang C, Zhou S, Zhao Z, Mu Y, Zhao AY, Wang L, Li F, Zhao AZ. Cyclic adenosine monophosphate potentiates immune checkpoint blockade therapy in acute myeloid leukemia. Clin Transl Med 2023; 13:e1489. [PMID: 37997561 PMCID: PMC10667622 DOI: 10.1002/ctm2.1489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/06/2023] [Accepted: 11/12/2023] [Indexed: 11/25/2023] Open
Affiliation(s)
- Ping Mao
- Department of Biomedical and Pharmaceutical SciencesGuangdong University of TechnologyGuangdongChina
| | - Wenbin Feng
- Department of Biomedical and Pharmaceutical SciencesGuangdong University of TechnologyGuangdongChina
| | - Zongmeng Zhang
- Department of Biomedical and Pharmaceutical SciencesGuangdong University of TechnologyGuangdongChina
| | - Changhao Huang
- Department of Biomedical and Pharmaceutical SciencesGuangdong University of TechnologyGuangdongChina
| | - Sujin Zhou
- Department of Biomedical and Pharmaceutical SciencesGuangdong University of TechnologyGuangdongChina
| | - Zhenggang Zhao
- Department of Biomedical and Pharmaceutical SciencesGuangdong University of TechnologyGuangdongChina
| | - Yunping Mu
- Department of Biomedical and Pharmaceutical SciencesGuangdong University of TechnologyGuangdongChina
| | - April Yuanyi Zhao
- Department of Biomedical and Pharmaceutical SciencesGuangdong University of TechnologyGuangdongChina
| | - Lina Wang
- Department of Biomedical and Pharmaceutical SciencesGuangdong University of TechnologyGuangdongChina
| | - Fanghong Li
- Department of Biomedical and Pharmaceutical SciencesGuangdong University of TechnologyGuangdongChina
| | - Allan Z. Zhao
- Department of Biomedical and Pharmaceutical SciencesGuangdong University of TechnologyGuangdongChina
| |
Collapse
|
4
|
Shiraki H, Tanaka S, Guo Y, Harada K, Hide I, Yasuda T, Sakai N. Potential role of inducible GPR3 expression under stimulated T cell conditions. J Pharmacol Sci 2022; 148:307-314. [PMID: 35177210 DOI: 10.1016/j.jphs.2022.01.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/01/2022] [Accepted: 01/11/2022] [Indexed: 02/06/2023] Open
Abstract
G protein-coupled receptor 3 (GPR3) constitutively activates Gαs proteins without any ligands and is predominantly expressed in neurons. Since the expression and physiological role of GPR3 in immune cells is still unknown, we examined the possible role of GPR3 in T lymphocytes. The expression of GPR3 was upregulated 2 h after phorbol 12-myristate 13-acetate (PMA)/ionomycin stimulation and was sustained in Jurkat cells, a human T lymphocyte cell line. In addition, the expression of nuclear receptor 4 group A member 2 (NR4A2) was highly modulated by GPR3 expression. Additionally, GPR3 expression was linked with the transcriptional promoter activity of NR4A in Jurkat cells. In mouse CD4+ T cells, transient GPR3 expression was induced immediately after the antigen receptor stimulation. However, the expression of NR4A2 was not modulated in CD4+ T cells from GPR3-knockout mice after stimulation, and the population of Treg cells in thymocytes and splenocytes was not affected by GPR3 knockout. By contrast, spontaneous effector activation in both CD4+ T cells and CD8+ T cells was observed in GPR3-knockout mice. In summary, GPR3 is immediately induced by T cell stimulation and play an important role in the suppression of effector T cell activation.
Collapse
Affiliation(s)
- Hiroko Shiraki
- Department of Molecular and Pharmacological Neuroscience, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | - Shigeru Tanaka
- Department of Molecular and Pharmacological Neuroscience, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan.
| | - Yun Guo
- Department of Immunology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | - Kana Harada
- Department of Molecular and Pharmacological Neuroscience, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | - Izumi Hide
- Department of Molecular and Pharmacological Neuroscience, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | - Tomoharu Yasuda
- Department of Immunology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | - Norio Sakai
- Department of Molecular and Pharmacological Neuroscience, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| |
Collapse
|
5
|
Controlling Cell Trafficking: Addressing Failures in CAR T and NK Cell Therapy of Solid Tumours. Cancers (Basel) 2022; 14:cancers14040978. [PMID: 35205725 PMCID: PMC8870056 DOI: 10.3390/cancers14040978] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/09/2022] [Accepted: 02/11/2022] [Indexed: 02/04/2023] Open
Abstract
The precision guiding of endogenous or adoptively transferred lymphocytes to the solid tumour mass is obligatory for optimal anti-tumour effects and will improve patient safety. The recognition and elimination of the tumour is best achieved when anti-tumour lymphocytes are proximal to the malignant cells. For example, the regional secretion of soluble factors, cytotoxic granules, and cell-surface molecule interactions are required for the death of tumour cells and the suppression of neovasculature formation, tumour-associated suppressor, or stromal cells. The resistance of individual tumour cell clones to cellular therapy and the hostile environment of the solid tumours is a major challenge to adoptive cell therapy. We review the strategies that could be useful to overcoming insufficient immune cell migration to the tumour cell mass. We argue that existing 'competitive' approaches should now be revisited as complementary approaches to improve CAR T and NK cell therapy.
Collapse
|
6
|
Wan Z, Sun R, Liu YW, Li S, Sun J, Li J, Zhu J, Moharil P, Zhang B, Ren P, Ren G, Zhang M, Ma X, Dai S, Yang D, Lu B, Li S. Targeting metabotropic glutamate receptor 4 for cancer immunotherapy. SCIENCE ADVANCES 2021; 7:eabj4226. [PMID: 34890233 PMCID: PMC8664261 DOI: 10.1126/sciadv.abj4226] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 10/23/2021] [Indexed: 05/30/2023]
Abstract
In this study, we report a novel role of metabotropic glutamate receptor 4 (GRM4) in suppressing antitumor immunity. We revealed in three murine syngeneic tumor models (B16, MC38, and 3LL) that either genetic knockout (Grm4−/−) or pharmacological inhibition led to significant delay in tumor growth. Mechanistically, perturbation of GRM4 resulted in a strong antitumor immunity by promoting natural killer (NK), CD4+, and CD8+ T cells toward an activated, proliferative, and functional phenotype. Single-cell RNA sequencing and T cell receptor profiling further defined the clonal expansion and immune landscape changes in CD8+ T cells. We further showed that Grm4−/− intrinsically activated interferon-γ production in CD8+ T cells through cyclic adenosine 3′,5′-monophosphate (cAMP)/cAMP response element binding protein–mediated pathway. Our study appears to be of clinical significance as a signature of NKhigh-GRM4low and CD8high-GRM4low correlated with improved survival in patients with melanoma. Targeting GRM4 represents a new approach for cancer immunotherapy.
Collapse
Affiliation(s)
- Zhuoya Wan
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Runzi Sun
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Yang-Wuyue Liu
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Sihan Li
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Jingjing Sun
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Jiang Li
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Junjie Zhu
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Pearl Moharil
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Bei Zhang
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Pengfei Ren
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Guolian Ren
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Min Zhang
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Xiaochao Ma
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Shuangshuang Dai
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Da Yang
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
- University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Binfeng Lu
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
- University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Song Li
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
- University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
7
|
Simao M, Régnier F, Taheraly S, Fraisse A, Tacine R, Fraudeau M, Benabid A, Feuillet V, Lambert M, Delon J, Randriamampita C. cAMP Bursts Control T Cell Directionality by Actomyosin Cytoskeleton Remodeling. Front Cell Dev Biol 2021; 9:633099. [PMID: 34095108 PMCID: PMC8173256 DOI: 10.3389/fcell.2021.633099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 04/22/2021] [Indexed: 01/23/2023] Open
Abstract
T lymphocyte migration is an essential step to mounting an efficient immune response. The rapid and random motility of these cells which favors their sentinel role is conditioned by chemokines as well as by the physical environment. Morphological changes, underlaid by dynamic actin cytoskeleton remodeling, are observed throughout migration but especially when the cell modifies its trajectory. However, the signaling cascade regulating the directional changes remains largely unknown. Using dynamic cell imaging, we investigated in this paper the signaling pathways involved in T cell directionality. We monitored cyclic adenosine 3′-5′ monosphosphate (cAMP) variation concomitantly with actomyosin distribution upon T lymphocyte migration and highlighted the fact that spontaneous bursts in cAMP starting from the leading edge, are sufficient to promote actomyosin redistribution triggering trajectory modification. Although cAMP is commonly considered as an immunosuppressive factor, our results suggest that, when transient, it rather favors the exploratory behavior of T cells.
Collapse
Affiliation(s)
- Morgane Simao
- Université de Paris, Institut Cochin, INSERM, CNRS, Paris, France
| | - Fabienne Régnier
- Université de Paris, Institut Cochin, INSERM, CNRS, Paris, France
| | - Sarah Taheraly
- Université de Paris, Institut Cochin, INSERM, CNRS, Paris, France
| | - Achille Fraisse
- Université de Paris, Institut Cochin, INSERM, CNRS, Paris, France.,Master de Biologie, École Normale Supérieure de Lyon, Université Claude Bernard Lyon I, Université de Lyon, Lyon, France
| | - Rachida Tacine
- Université de Paris, Institut Cochin, INSERM, CNRS, Paris, France
| | - Marie Fraudeau
- Université de Paris, Institut Cochin, INSERM, CNRS, Paris, France
| | - Adam Benabid
- Université de Paris, Institut Cochin, INSERM, CNRS, Paris, France
| | - Vincent Feuillet
- Université de Paris, Institut Cochin, INSERM, CNRS, Paris, France
| | - Mireille Lambert
- Université de Paris, Institut Cochin, INSERM, CNRS, Paris, France
| | - Jérôme Delon
- Université de Paris, Institut Cochin, INSERM, CNRS, Paris, France
| | | |
Collapse
|
8
|
Xu L, Tudor D, Bomsel M. The Protective HIV-1 Envelope gp41 Antigen P1 Acts as a Mucosal Adjuvant Stimulating the Innate Immunity. Front Immunol 2021; 11:599278. [PMID: 33613520 PMCID: PMC7886812 DOI: 10.3389/fimmu.2020.599278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/01/2020] [Indexed: 11/15/2022] Open
Abstract
Mucosal nasal vaccine development, although ideal to protect from pathogens invading mucosally, is limited by the lack of specific adjuvant. We recently used P1, a conserved region of HIV-1 gp41-envelope glycoprotein, as efficient antigen in a prophylactic HIV-1 mucosal vaccine applied nasally. Herein, P1 immunomodulation properties were assessed on human nasal mucosal models by measuring induction of cytokine and chemokine production, intracellular signaling pathways, mucosal dendritic cell (DC) activation, and T cell proliferation. P1 adjuvant properties were evaluated by quantification of antigen-specific B cell responses against a model antigen in an in vitro immunization model. We now demonstrated that P1 has additional immunological properties. P1 initiates immune responses by inducing nasal epithelial cells to secrete the Th2-cytokine thymic stromal lymphopoietin (TSLP), a described mucosal adjuvant. Secreted TSLP activates, in turn, intracellular calcium flux and PAR-2-associated NFAT signaling pathway regulated by microRNA-4485. Thereafter, P1 induces mucosal dendritic cell maturation, secretion of TSLP in a TSLP-receptor (R)-dependent autocrine loop, but also IL-6, IL-10, IL-8, CCL20, CCL22, and MMP-9, and proliferation of CD4+ T cells. Finally, P1 acts as an adjuvant to stimulate antigen-specific B cell responses in vitro. Overall, P1 is a multi-functional domain with various immuno-modulatory properties. In addition to being a protective vaccine antigen for HIV prevention, P1 acts as adjuvant for other mucosal vaccines able to stimulate humoral and cellular antigen-specific responses.
Collapse
Affiliation(s)
- Lin Xu
- Laboratory of Mucosal Entry of HIV-1 and Mucosal Immunity, Department of Infection, Immunity and Inflammation, Cochin Institute, CNRS UMR 8104, Paris, France.,INSERM U1016, Paris, France.,Université de Paris, Paris, France
| | - Daniela Tudor
- Laboratory of Mucosal Entry of HIV-1 and Mucosal Immunity, Department of Infection, Immunity and Inflammation, Cochin Institute, CNRS UMR 8104, Paris, France.,INSERM U1016, Paris, France.,Université de Paris, Paris, France
| | - Morgane Bomsel
- Laboratory of Mucosal Entry of HIV-1 and Mucosal Immunity, Department of Infection, Immunity and Inflammation, Cochin Institute, CNRS UMR 8104, Paris, France.,INSERM U1016, Paris, France.,Université de Paris, Paris, France
| |
Collapse
|
9
|
Postler TS. A most versatile kinase: The catalytic subunit of PKA in T-cell biology. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021; 361:301-318. [PMID: 34074497 DOI: 10.1016/bs.ircmb.2021.01.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The cAMP-dependent protein kinase, more commonly referred to as protein kinase A (PKA), is one of the most-studied enzymes in biology. PKA is ubiquitously expressed in mammalian cells, can be activated in response to a plethora of biological stimuli, and phosphorylates more than 250 known substrates. Indeed, PKA is of central importance to a wide range of organismal processes, including energy homeostasis, memory formation and immunity. It serves as the primary effector of the second-messenger molecule 3',5'-cyclic adenosine monophosphate (cAMP), which is believed to have mostly inhibitory effects on the adaptive immune response. In particular, elevated levels of intracellular cAMP inhibit the activation of conventional T cells by limiting signal transduction through the T-cell receptor and altering gene expression, primarily in a PKA-dependent manner. Regulatory T cells have been shown to increase the cAMP levels in adjacent T cells by direct and indirect means, but the role of cAMP within regulatory T cells themselves remains incompletely understood. Paradoxically, cAMP has been implicated in promoting T-cell activation as well, adding another functional dimension beyond its established immunosuppressive effects. Furthermore, PKA can phosphorylate the NF-κB subunit p65, a transcription factor that is essential for T-cell activation, independently of cAMP. This phosphorylation of p65 drastically enhances NF-κB-dependent transcription and thus is likely to facilitate immune activation. How these immunosuppressive and immune-activating properties of PKA balance in vivo remains to be elucidated. This review provides a brief overview of PKA regulation, its ability to affect NF-κB activation, and its diverse functions in T-cell biology.
Collapse
Affiliation(s)
- Thomas S Postler
- Department of Microbiology & Immunology, Vagelos College of Physicians & Surgeons, Columbia University Irving Medical Center, New York, NY, United States.
| |
Collapse
|
10
|
Role of Phosphodiesterase 7 (PDE7) in T Cell Activity. Effects of Selective PDE7 Inhibitors and Dual PDE4/7 Inhibitors on T Cell Functions. Int J Mol Sci 2020; 21:ijms21176118. [PMID: 32854348 PMCID: PMC7504236 DOI: 10.3390/ijms21176118] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 08/21/2020] [Accepted: 08/22/2020] [Indexed: 02/07/2023] Open
Abstract
Phosphodiesterase 7 (PDE7), a cAMP-specific PDE family, insensitive to rolipram, is present in many immune cells, including T lymphocytes. Two genes of PDE7 have been identified: PDE7A and PDE7B with three or four splice variants, respectively. Both PDE7A and PDE7B are expressed in T cells, and the predominant splice variant in these cells is PDE7A1. PDE7 is one of several PDE families that terminates biological functions of cAMP—a major regulating intracellular factor. However, the precise role of PDE7 in T cell activation and function is still ambiguous. Some authors reported its crucial role in T cell activation, while according to other studies PDE7 activity was not pivotal to T cells. Several studies showed that inhibition of PDE7 by its selective or dual PDE4/7 inhibitors suppresses T cell activity, and consequently T-mediated immune response. Taken together, it seems quite likely that simultaneous inhibition of PDE4 and PDE7 by dual PDE4/7 inhibitors or a combination of selective PDE4 and PDE7 remains the most interesting therapeutic target for the treatment of some immune-related disorders, such as autoimmune diseases, or selected respiratory diseases. An interesting direction of future studies could also be using a combination of selective PDE7 and PDE3 inhibitors.
Collapse
|
11
|
Chabaud M, Paillon N, Gaus K, Hivroz C. Mechanobiology of antigen‐induced T cell arrest. Biol Cell 2020; 112:196-212. [DOI: 10.1111/boc.201900093] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 03/19/2020] [Accepted: 03/29/2020] [Indexed: 12/21/2022]
Affiliation(s)
- Mélanie Chabaud
- Institut Curie‐PSL Research University INSERM U932 Paris France
- EMBL Australia Node in Single Molecule Science, School of Medical SciencesUniversity of New South Wales Sydney NSW Australia
- ARC Centre of Excellence in Advanced Molecular ImagingUniversity of New South Wales Sydney NSW Australia
| | - Noémie Paillon
- Institut Curie‐PSL Research University INSERM U932 Paris France
| | - Katharina Gaus
- EMBL Australia Node in Single Molecule Science, School of Medical SciencesUniversity of New South Wales Sydney NSW Australia
- ARC Centre of Excellence in Advanced Molecular ImagingUniversity of New South Wales Sydney NSW Australia
| | - Claire Hivroz
- Institut Curie‐PSL Research University INSERM U932 Paris France
| |
Collapse
|
12
|
Gröper J, König GM, Kostenis E, Gerke V, Raabe CA, Rescher U. Exploring Biased Agonism at FPR1 as a Means to Encode Danger Sensing. Cells 2020; 9:cells9041054. [PMID: 32340221 PMCID: PMC7226602 DOI: 10.3390/cells9041054] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/15/2020] [Accepted: 04/21/2020] [Indexed: 12/28/2022] Open
Abstract
Ligand-based selectivity in signal transduction (biased signaling) is an emerging field of G protein-coupled receptor (GPCR) research and might allow the development of drugs with targeted activation profiles. Human formyl peptide receptor 1 (FPR1) is a GPCR that detects potentially hazardous states characterized by the appearance of N-formylated peptides that originate from either bacteria or mitochondria during tissue destruction; however, the receptor also responds to several non-formylated agonists from various sources. We hypothesized that an additional layer of FPR signaling is encoded by biased agonism, thus allowing the discrimination of the source of threat. We resorted to the comparative analysis of FPR1 agonist-evoked responses across three prototypical GPCR signaling pathways, i.e., the inhibition of cAMP formation, receptor internalization, and ERK activation, and analyzed cellular responses elicited by several bacteria- and mitochondria-derived ligands. We also included the anti-inflammatory annexinA1 peptide Ac2-26 and two synthetic ligands, the W-peptide and the small molecule FPRA14. Compared to the endogenous agonists, the bacterial agonists displayed significantly higher potencies and efficacies. Selective pathway activation was not observed, as both groups were similarly biased towards the inhibition of cAMP formation. The general agonist bias in FPR1 signaling suggests a source-independent pathway selectivity for transmission of pro-inflammatory danger signaling.
Collapse
Affiliation(s)
- Jieny Gröper
- Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation, University of Muenster, Von-Esmarch-Str. 56, D-48149 Muenster, Germany; (J.G.); (V.G.)
- Cells in Motion” Interfaculty Centre, University of Muenster, 48149 Muenster, Germany
| | - Gabriele M. König
- Institute for Pharmaceutical Biology, University of Bonn, Nussallee 6, 53115 Bonn, Germany; (G.M.K.); (E.K.)
| | - Evi Kostenis
- Institute for Pharmaceutical Biology, University of Bonn, Nussallee 6, 53115 Bonn, Germany; (G.M.K.); (E.K.)
| | - Volker Gerke
- Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation, University of Muenster, Von-Esmarch-Str. 56, D-48149 Muenster, Germany; (J.G.); (V.G.)
- Cells in Motion” Interfaculty Centre, University of Muenster, 48149 Muenster, Germany
| | - Carsten A. Raabe
- Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation, University of Muenster, Von-Esmarch-Str. 56, D-48149 Muenster, Germany; (J.G.); (V.G.)
- Institute of Experimental Pathology, Center for Molecular Biology of Inflammation, University of Muenster, Von-Esmarch-Str. 56, D-48149 Muenster, Germany
- Correspondence: (C.A.R.); (U.R.); Tel.: +49-(0)251-835-2132 (C.A.R.); +49-(0)251-835-2121(U.R.)
| | - Ursula Rescher
- Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation, University of Muenster, Von-Esmarch-Str. 56, D-48149 Muenster, Germany; (J.G.); (V.G.)
- Cells in Motion” Interfaculty Centre, University of Muenster, 48149 Muenster, Germany
- Correspondence: (C.A.R.); (U.R.); Tel.: +49-(0)251-835-2132 (C.A.R.); +49-(0)251-835-2121(U.R.)
| |
Collapse
|
13
|
Yocum GT, Hwang JJ, Mikami M, Danielsson J, Kuforiji AS, Emala CW. Ginger and its bioactive component 6-shogaol mitigate lung inflammation in a murine asthma model. Am J Physiol Lung Cell Mol Physiol 2020; 318:L296-L303. [PMID: 31800263 PMCID: PMC7052664 DOI: 10.1152/ajplung.00249.2019] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 11/13/2019] [Accepted: 11/25/2019] [Indexed: 01/13/2023] Open
Abstract
Asthma, a common disorder associated with airway inflammation and hyperresponsiveness, remains a significant clinical burden in need of novel therapeutic strategies. Patients are increasingly seeking complementary and alternative medicine approaches to control their symptoms, including the use of natural products. Ginger, a natural product that we previously demonstrated acutely relaxes airway smooth muscle (ASM), has long been reported to possess anti-inflammatory properties, although a precise mechanistic understanding is lacking. In these studies, we demonstrate that chronic administration of whole ginger extract or 6-shogaol, a bioactive component of ginger, mitigates in vivo house dust mite antigen-mediated lung inflammation in mice. We further show that this decrease in inflammation is associated with reduced in vivo airway responsiveness. Utilizing in vitro studies, we demonstrate that 6-shogaol augments cAMP concentrations in CD4 cells, consistent with phosphodiesterase inhibition, and limits the induction of nuclear factor-κB signaling and the production of proinflammatory cytokines in activated CD4 cells. Sustained elevations in cAMP concentration are well known to inhibit effector T cell function. Interestingly, regulatory T cells (Tregs) utilize cAMP as a mediator of their immunosuppressive effects, and we demonstrate here that 6-shogaol augments the Treg polarization of naïve CD4 cells in vitro. Taken together with previous reports, these studies suggest that ginger and 6-shogaol have the potential to combat asthma via two mechanisms: acute ASM relaxation and chronic inhibition of inflammation.
Collapse
Affiliation(s)
- Gene T Yocum
- Department of Anesthesiology, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York
| | - Julie J Hwang
- Department of Anesthesiology, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York
| | - Maya Mikami
- Department of Anesthesiology, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York
| | - Jennifer Danielsson
- Department of Anesthesiology, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York
| | - Aisha S Kuforiji
- Department of Anesthesiology, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York
| | - Charles W Emala
- Department of Anesthesiology, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York
| |
Collapse
|
14
|
Villanueva-Romero R, Gutiérrez-Cañas I, Carrión M, González-Álvaro I, Rodríguez-Frade JM, Mellado M, Martínez C, Gomariz RP, Juarranz Y. Activation of Th lymphocytes alters pattern expression and cellular location of VIP receptors in healthy donors and early arthritis patients. Sci Rep 2019; 9:7383. [PMID: 31089161 PMCID: PMC6517580 DOI: 10.1038/s41598-019-43717-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 04/29/2019] [Indexed: 12/15/2022] Open
Abstract
Vasoactive Intestinal Peptide (VIP) is an important immunomodulator of CD4+ cells in normal and pathological conditions, which exerts its anti-inflammatory and immunomodulatory actions through VPAC receptors, VPAC1 and VPAC2. Only a decrease in the expression of VPAC1 mRNA on Th cells upon activation has been reported. Thus, the deepening in the knowledge of the behavior of these receptors may contribute to the design of new therapies based on their activation and/or blockade. In this study, we describe the expression pattern, cellular location and functional role of VIP receptors during the activation of human Th cells in healthy conditions and in early arthritis (EA). The protein expression pattern of VPAC1 did not change with the activation of Th lymphocytes, whereas VPAC2 was up-regulated. In resting cells, VPAC1 was located on the plasma membrane and nucleus, whereas it only appeared in the nucleus in activated cells. VPAC2 was always found in plasma membrane location. VIP receptors signaled through a PKA-dependent pathway in both conditions, and also by a PKA-independent pathway in activated cells. Both receptors exhibit a potent immunomodulatory capacity by controlling the pathogenic profile and the activation markers of Th cells. These results highlight a novel translational view in inflammatory/autoimmune diseases.
Collapse
Affiliation(s)
- R Villanueva-Romero
- Departamento de Biología Celular, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - I Gutiérrez-Cañas
- Departamento de Biología Celular, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - M Carrión
- Departamento de Biología Celular, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - I González-Álvaro
- Servicio de Reumatología, Instituto de Investigación Sanitaria Hospital La Princesa (IIS-IP), Madrid, Spain
| | - J M Rodríguez-Frade
- Departamento de Inmunología y Oncología, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - M Mellado
- Departamento de Inmunología y Oncología, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - C Martínez
- Departamento de Biología Celular, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - R P Gomariz
- Departamento de Biología Celular, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Y Juarranz
- Departamento de Biología Celular, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain.
| |
Collapse
|
15
|
Adenine nucleotides as paracrine mediators and intracellular second messengers in immunity and inflammation. Biochem Soc Trans 2019; 47:329-337. [PMID: 30674608 DOI: 10.1042/bst20180419] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/19/2018] [Accepted: 12/20/2018] [Indexed: 02/06/2023]
Abstract
Adenine nucleotides (AdNs) play important roles in immunity and inflammation. Extracellular AdNs, such as adenosine triphosphate (ATP) or nicotinamide adenine dinucleotide (NAD) and their metabolites, act as paracrine messengers by fine-tuning both pro- and anti-inflammatory processes. Moreover, intracellular AdNs derived from ATP or NAD play important roles in many cells of the immune system, including T lymphocytes, macrophages, neutrophils and others. These intracellular AdNs are signaling molecules that transduce incoming signals into meaningful cellular responses, e.g. activation of immune responses against pathogens.
Collapse
|
16
|
Trautmann A. From kinetics and cellular cooperations to cancer immunotherapies. Oncotarget 2018; 7:44779-44789. [PMID: 27014912 PMCID: PMC5190134 DOI: 10.18632/oncotarget.8242] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 03/04/2016] [Indexed: 12/26/2022] Open
Abstract
In this review will be underlined two simple ideas of potential interest for the design of cancer immunotherapies. One concerns the importance of kinetics, with the key notion that a single cause may trigger two opposite effects with different kinetics. The importance of this phenomenon will be underlined in neurobiology, transcription networks and the immune system. The second idea is that efficient immune responses have been selected against pathogens, throughout evolution. They are never due to a single cell type, but always require multiple, complex cellular cooperations. One cannot recognize this fact and persist in the presently dominant T-cell centered view of cancer immunotherapies. Suggestions will be made to incorporate these simple ideas for improving these therapies.
Collapse
Affiliation(s)
- Alain Trautmann
- INSERM, U1016, Institut Cochin, Paris, France.,CNRS, UMR8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Equipe Labellisée "Ligue contre le Cancer", Paris, France
| |
Collapse
|
17
|
Analyses of PDE-regulated phosphoproteomes reveal unique and specific cAMP-signaling modules in T cells. Proc Natl Acad Sci U S A 2017. [PMID: 28634298 DOI: 10.1073/pnas.1703939114] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Specific functions for different cyclic nucleotide phosphodiesterases (PDEs) have not yet been identified in most cell types. Conventional approaches to study PDE function typically rely on measurements of global cAMP, general increases in cAMP-dependent protein kinase (PKA), or the activity of exchange protein activated by cAMP (EPAC). Although newer approaches using subcellularly targeted FRET reporter sensors have helped define more compartmentalized regulation of cAMP, PKA, and EPAC, they have limited ability to link this regulation to downstream effector molecules and biological functions. To address this problem, we have begun to use an unbiased mass spectrometry-based approach coupled with treatment using PDE isozyme-selective inhibitors to characterize the phosphoproteomes of the functional pools of cAMP/PKA/EPAC that are regulated by specific cAMP-PDEs (the PDE-regulated phosphoproteomes). In Jurkat cells we find multiple, distinct PDE-regulated phosphoproteomes that can be defined by their responses to different PDE inhibitors. We also find that little phosphorylation occurs unless at least two different PDEs are concurrently inhibited in these cells. Moreover, bioinformatics analyses of these phosphoproteomes provide insight into the unique functional roles, mechanisms of action, and synergistic relationships among the different PDEs that coordinate cAMP-signaling cascades in these cells. The data strongly suggest that the phosphorylation of many different substrates contributes to cAMP-dependent regulation of these cells. The findings further suggest that the approach of using selective, inhibitor-dependent phosphoproteome analysis can provide a generalized methodology for understanding the roles of different PDEs in the regulation of cyclic nucleotide signaling.
Collapse
|
18
|
A threshold level of NFATc1 activity facilitates thymocyte differentiation and opposes notch-driven leukaemia development. Nat Commun 2016; 7:11841. [PMID: 27312418 PMCID: PMC4915031 DOI: 10.1038/ncomms11841] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 05/04/2016] [Indexed: 12/22/2022] Open
Abstract
NFATc1 plays a critical role in double-negative thymocyte survival and differentiation. However, the signals that regulate Nfatc1 expression are incompletely characterized. Here we show a developmental stage-specific differential expression pattern of Nfatc1 driven by the distal (P1) or proximal (P2) promoters in thymocytes. Whereas, preTCR-negative thymocytes exhibit only P2 promoter-derived Nfatc1β expression, preTCR-positive thymocytes express both Nfatc1β and P1 promoter-derived Nfatc1α transcripts. Inducing NFATc1α activity from P1 promoter in preTCR-negative thymocytes, in addition to the NFATc1β from P2 promoter impairs thymocyte development resulting in severe T-cell lymphopenia. In addition, we show that NFATc1 activity suppresses the B-lineage potential of immature thymocytes, and consolidates their differentiation to T cells. Further, in the pTCR-positive DN3 cells, a threshold level of NFATc1 activity is vital in facilitating T-cell differentiation and to prevent Notch3-induced T-acute lymphoblastic leukaemia. Altogether, our results show NFATc1 activity is crucial in determining the T-cell fate of thymocytes. NFATc1 orchestrates thymocyte development. Here the authors show that NFATc1 expression is regulated by distinct promoters during thymocyte differentiation, and by conditional deletion of individual promoters in mice they define their specific roles in the control of T-cell development by NFATc1.
Collapse
|
19
|
Guedj C, Abraham N, Jullié D, Randriamampita C. T cell adhesion triggers an early signaling pole distal to the immune synapse. J Cell Sci 2016; 129:2526-37. [PMID: 27185862 DOI: 10.1242/jcs.182311] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 05/09/2016] [Indexed: 01/09/2023] Open
Abstract
The immunological synapse forms at the interface between a T cell and an antigen-presenting cell after foreign antigen recognition. The immunological synapse is considered to be the site where the signaling cascade leading to T lymphocyte activation is triggered. Here, we show that another signaling region can be detected before formation of the synapse at the opposite pole of the T cell. This structure appears during the first minute after the contact forms, is transient and contains all the classic components that have been previously described at the immunological synapse. Its formation is independent of antigen recognition but is driven by adhesion itself. It constitutes a reservoir of signaling molecules that are potentially ready to be sent to the immunological synapse through a microtubule-dependent pathway. The antisynapse can thus be considered as a pre-synapse that is triggered independently of antigen recognition.
Collapse
Affiliation(s)
- Chloé Guedj
- INSERM, U1016, Institut Cochin, Infection, Immunity and Inflammation Department, 22 rue Méćhain, Paris 75014, France CNRS, UMR8104, Paris 75014, France Université Paris Descartes, Sorbonne Paris Cité, Paris 75014, France
| | - Nicolas Abraham
- INSERM, U1016, Institut Cochin, Infection, Immunity and Inflammation Department, 22 rue Méćhain, Paris 75014, France CNRS, UMR8104, Paris 75014, France Université Paris Descartes, Sorbonne Paris Cité, Paris 75014, France
| | - Damien Jullié
- INSERM, U1016, Institut Cochin, Infection, Immunity and Inflammation Department, 22 rue Méćhain, Paris 75014, France CNRS, UMR8104, Paris 75014, France Université Paris Descartes, Sorbonne Paris Cité, Paris 75014, France
| | - Clotilde Randriamampita
- INSERM, U1016, Institut Cochin, Infection, Immunity and Inflammation Department, 22 rue Méćhain, Paris 75014, France CNRS, UMR8104, Paris 75014, France Université Paris Descartes, Sorbonne Paris Cité, Paris 75014, France
| |
Collapse
|
20
|
Finley J. Oocyte activation and latent HIV-1 reactivation: AMPK as a common mechanism of action linking the beginnings of life and the potential eradication of HIV-1. Med Hypotheses 2016; 93:34-47. [PMID: 27372854 DOI: 10.1016/j.mehy.2016.05.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 05/12/2016] [Indexed: 01/22/2023]
Abstract
In all mammalian species studied to date, the initiation of oocyte activation is orchestrated through alterations in intracellular calcium (Ca(2+)) signaling. Upon sperm binding to the oocyte plasma membrane, a sperm-associated phospholipase C (PLC) isoform, PLC zeta (PLCζ), is released into the oocyte cytoplasm. PLCζ hydrolyzes phosphatidylinositol 4,5-bisphosphate (PIP2) to produce diacylglycerol (DAG), which activates protein kinase C (PKC), and inositol 1,4,5-trisphosphate (IP3), which induces the release of Ca(2+) from endoplasmic reticulum (ER) Ca(2+) stores. Subsequent Ca(2+) oscillations are generated that drive oocyte activation to completion. Ca(2+) ionophores such as ionomycin have been successfully used to induce artificial human oocyte activation, facilitating fertilization during intra-cytoplasmic sperm injection (ICSI) procedures. Early studies have also demonstrated that the PKC activator phorbol 12-myristate 13-acetate (PMA) acts synergistically with Ca(2+) ionophores to induce parthenogenetic activation of mouse oocytes. Interestingly, the Ca(2+)-induced signaling cascade characterizing sperm or chemically-induced oocyte activation, i.e. the "shock and live" approach, bears a striking resemblance to the reactivation of latently infected HIV-1 viral reservoirs via the so called "shock and kill" approach, a method currently being pursued to eradicate HIV-1 from infected individuals. PMA and ionomycin combined, used as positive controls in HIV-1 latency reversal studies, have been shown to be extremely efficient in reactivating latent HIV-1 in CD4(+) memory T cells by inducing T cell activation. Similar to oocyte activation, T cell activation by PMA and ionomycin induces an increase in intracellular Ca(2+) concentrations and activation of DAG, PKC, and downstream Ca(2+)-dependent signaling pathways necessary for proviral transcription. Interestingly, AMPK, a master regulator of cell metabolism that is activated thorough the induction of cellular stress (e.g. increase in Ca(2+) concentration, reactive oxygen species generation, increase in AMP/ATP ratio) is essential for oocyte maturation, T cell activation, and mitochondrial function. In addition to the AMPK kinase LKB1, CaMKK2, a Ca(2+)/calmodulin-dependent kinase that also activates AMPK, is present in and activated on T cell activation and is also present in mouse oocytes and persists until the zygote and two-cell stages. It is our hypothesis that AMPK activation represents a central node linking T cell activation-induced latent HIV-1 reactivation and both physiological and artificial oocyte activation. We further propose the novel observation that various compounds that have been shown to reactivate latent HIV-1 (e.g. PMA, ionomycin, metformin, bryostatin, resveratrol, etc.) or activate oocytes (PMA, ionomycin, ethanol, puromycin, etc.) either alone or in combination likely do so via stress-induced activation of AMPK.
Collapse
|
21
|
Talme T, Bergdahl E, Sundqvist KG. Methotrexate and its therapeutic antagonists caffeine and theophylline, target a motogenic T-cell mechanism driven by thrombospondin-1 (TSP-1). Eur J Immunol 2016; 46:1279-90. [DOI: 10.1002/eji.201546122] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 12/17/2015] [Accepted: 02/19/2016] [Indexed: 12/27/2022]
Affiliation(s)
- Toomas Talme
- Department of Medicine; Division of Dermatology; Karolinska Institute at Karolinska University Hospital; Stockholm Sweden
| | - Eva Bergdahl
- Department of Laboratory Medicine; Division of Clinical Immunology; Karolinska Institute at Karolinska University Hospital; Stockholm Sweden
| | - Karl-Gösta Sundqvist
- Department of Laboratory Medicine; Division of Clinical Immunology; Karolinska Institute at Karolinska University Hospital; Stockholm Sweden
- Department of Laboratory Medicine; Division of Therapeutic Immunology; Karolinska Institute at Karolinska University Hospital; Stockholm Sweden
| |
Collapse
|
22
|
High-density preculture of PBMCs restores defective sensitivity of circulating CD8 T cells to virus- and tumor-derived antigens. Blood 2015; 126:185-94. [DOI: 10.1182/blood-2015-01-622704] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 05/27/2015] [Indexed: 01/13/2023] Open
Abstract
Key Points
CD8 memory T cells in PBMCs are antigen-hyporesponsive due to loss of priming by tissue-dependent interactions. Preculture at high cell density allows the detection of antiviral and antitumor responses that may be overlooked without this step.
Collapse
|
23
|
Abstract
BACKGROUND The role of cAMP in regulating T cell activation and function has been controversial. cAMP is generally known as an immunosuppressant, but it is also required for generating optimal immune responses. As the effect of cAMP is likely to depend on its cellular context, the current study investigated whether the mechanism of activation of Gαs and adenylyl cyclase influences their effect on T cell receptor (TCR)-stimulated interleukin-2 (IL-2) mRNA levels. METHODS The effect of blocking Gs-coupled receptor (GsPCR)-mediated Gs activation on TCR-stimulated IL-2 mRNA levels in CD4(+) T cells was compared with that of knocking down Gαs expression or inhibiting adenylyl cyclase activity. The effect of knocking down Gαs expression on TCR-stimulated cAMP accumulation was compared with that of blocking GsPCR signaling. RESULTS ZM-241385, an antagonist to the Gs-coupled A2A adenosine receptor (A2AR), enhanced TCR-stimulated IL-2 mRNA levels in primary human CD4(+) T helper cells and in Jurkat T cells. A dominant negative Gαs construct, GαsDN3, also enhanced TCR-stimulated IL-2 mRNA levels. Similar to GsPCR antagonists, GαsDN3 blocked GsPCR-dependent activation of both Gαs and Gβγ. In contrast, Gαs siRNA and 2',5'-dideoxyadenosine (ddA), an adenylyl cyclase inhibitor, decreased TCR-stimulated IL-2 mRNA levels. Gαs siRNA, but not GαsDN3, decreased TCR-stimulated cAMP synthesis. Potentiation of IL-2 mRNA levels by ZM-241385 required at least two days of TCR stimulation, and addition of ddA after three days of TCR stimulation enhanced IL-2 mRNA levels. CONCLUSIONS GsPCRs play an inhibitory role in the regulation of TCR-stimulated IL-2 mRNA levels whereas Gαs and cAMP can play a stimulatory one. Additionally, TCR-dependent activation of Gαs does not appear to involve GsPCRs. These results suggest that the context of Gαs/cAMP activation and the stage of T cell activation and differentiation determine the effect on TCR-stimulated IL-2 mRNA levels.
Collapse
|
24
|
Cascio G, Martín-Cófreces NB, Rodríguez-Frade JM, López-Cotarelo P, Criado G, Pablos JL, Rodríguez-Fernández JL, Sánchez-Madrid F, Mellado M. CXCL12 Regulates through JAK1 and JAK2 Formation of Productive Immunological Synapses. THE JOURNAL OF IMMUNOLOGY 2015; 194:5509-19. [PMID: 25917087 DOI: 10.4049/jimmunol.1402419] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 03/23/2015] [Indexed: 11/19/2022]
Abstract
The adaptive immune response requires interaction between T cells and APC to form a specialized structure termed the immune synapse (IS). Although the TCR is essential for IS organization, other factors such as chemokines participate in this process. In this study, we show that the chemokine CXCL12-mediated signaling contributes to correct IS organization and therefore influences T cell activation. CXCR4 downregulation or blockade on T cells caused defective actin polymerization at the contact site with APC, altered microtubule-organizing center polarization and the IS structure, and reduced T cell/APC contact duration. T cell activation was thus inhibited, as shown by reduced expression of CD25 and CD69 markers and of IL-2 mRNA levels. The results indicate that, through Gi and JAK1 and 2 kinases activation, CXCL12 signaling cooperates to build the IS and to maintain adhesive contacts between APC and T cells, required for continuous TCR signaling.
Collapse
Affiliation(s)
- Graciela Cascio
- Departamento de Inmunología y Oncología, Centro Nacional de Biotecnología/Consejo Superior de Investigaciones Cientificas, E-28049 Madrid, Spain
| | - Noa B Martín-Cófreces
- Servicio de Inmunología, Instituto de Investigación Sanitaria Hospital Universitario de la Princesa, Universidad Autónoma de Madrid, E-28006 Madrid, Spain
| | - José Miguel Rodríguez-Frade
- Departamento de Inmunología y Oncología, Centro Nacional de Biotecnología/Consejo Superior de Investigaciones Cientificas, E-28049 Madrid, Spain
| | - Pilar López-Cotarelo
- Departamento de Biología Vascular e Inflamación, Fundación Centro Nacional de Investigaciones Cardiovasculares-Carlos III, E-28029 Madrid, Spain; Centro de Investigaciones Biológicas/Consejo Superior de Investigaciones Cientificas, E-28040 Madrid, Spain; and
| | - Gabriel Criado
- Grupo de Enfermedades Inflamatorias y Autoinmunes, Instituto de Investigación Sanitaria Hospital 12 de Octubre, E-28041 Madrid, Spain
| | - José L Pablos
- Grupo de Enfermedades Inflamatorias y Autoinmunes, Instituto de Investigación Sanitaria Hospital 12 de Octubre, E-28041 Madrid, Spain
| | - José Luis Rodríguez-Fernández
- Departamento de Biología Vascular e Inflamación, Fundación Centro Nacional de Investigaciones Cardiovasculares-Carlos III, E-28029 Madrid, Spain; Centro de Investigaciones Biológicas/Consejo Superior de Investigaciones Cientificas, E-28040 Madrid, Spain; and
| | - Francisco Sánchez-Madrid
- Servicio de Inmunología, Instituto de Investigación Sanitaria Hospital Universitario de la Princesa, Universidad Autónoma de Madrid, E-28006 Madrid, Spain
| | - Mario Mellado
- Departamento de Inmunología y Oncología, Centro Nacional de Biotecnología/Consejo Superior de Investigaciones Cientificas, E-28049 Madrid, Spain;
| |
Collapse
|
25
|
Cadra S, Gucciardi A, Valignat MP, Theodoly O, Vacaflores A, Houtman JC, Lellouch AC. ROZA-XL, an improved FRET based biosensor with an increased dynamic range for visualizing Zeta Associated Protein 70 kD (ZAP-70) tyrosine kinase activity in live T cells. Biochem Biophys Res Commun 2015; 459:405-10. [DOI: 10.1016/j.bbrc.2015.02.117] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 02/21/2015] [Indexed: 11/24/2022]
|
26
|
Cekic C, Linden J. Adenosine A2A receptors intrinsically regulate CD8+ T cells in the tumor microenvironment. Cancer Res 2014; 74:7239-49. [PMID: 25341542 DOI: 10.1158/0008-5472.can-13-3581] [Citation(s) in RCA: 134] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Adenosine A(2A) receptor (A(2A)R) blockade enhances innate and adaptive immune responses. However, mouse genetic studies have shown that A(2A)R deletion does not inhibit the growth of all tumor types. In the current study, we showed that growth rates for ectopic melanoma and bladder tumors are increased in Adora2a(-/-) mice within 2 weeks of tumor inoculation. A(2A)R deletion in the host reduced numbers of CD8(+) T cells and effector-memory differentiation of all T cells. To examine intrinsic functions in T cells, we generated mice harboring a T-cell-specific deletion of A(2A)R. In this host strain, tumor-bearing mice displayed increased growth of ectopic melanomas, decreased numbers of tumor-associated T cells, reduced effector-memory differentiation, and reduced antiapoptotic IL7Rα (CD127) expression on antigen-experienced cells. Intratumoral pharmacologic blockade similarly reduced CD8(+) T-cell density within tumors in wild-type hosts. We found that A(2A)R-proficient CD8(+) T cells specific for melanoma cells displayed a relative survival advantage in tumors. Thus, abrogating A(2A)R signaling appeared to reduce IL7R expression, survival, and differentiation of T cells in the tumor microenvironment. One implication of these results is that the antitumor effects of A(2A)R blockade that can be mediated by activation of cytotoxic T cells may be overcome in some tumor microenvironments as a result of impaired T-cell maintenance and effector-memory differentiation. Thus, our findings imply that the efficacious application of A(2A)R inhibitors for cancer immunotherapy may require careful dose optimization to prevent activation-induced T-cell death in tumors.
Collapse
Affiliation(s)
- Caglar Cekic
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California. Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
| | - Joel Linden
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California.
| |
Collapse
|
27
|
Jin J, Colin P, Staropoli I, Lima-Fernandes E, Ferret C, Demir A, Rogée S, Hartley O, Randriamampita C, Scott MGH, Marullo S, Sauvonnet N, Arenzana-Seisdedos F, Lagane B, Brelot A. Targeting spare CC chemokine receptor 5 (CCR5) as a principle to inhibit HIV-1 entry. J Biol Chem 2014; 289:19042-52. [PMID: 24855645 DOI: 10.1074/jbc.m114.559831] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
CCR5 binds the chemokines CCL3, CCL4, and CCL5 and is the major coreceptor for HIV-1 entry into target cells. Chemokines are supposed to form a natural barrier against human immunodeficiency virus, type 1 (HIV-1) infection. However, we showed that their antiviral activity is limited by CCR5 adopting low-chemokine affinity conformations at the cell surface. Here, we investigated whether a pool of CCR5 that is not stabilized by chemokines could represent a target for inhibiting HIV infection. We exploited the characteristics of the chemokine analog PSC-RANTES (N-α-(n-nonanoyl)-des-Ser(1)-[l-thioprolyl(2), l-cyclohexylglycyl(3)]-RANTES(4-68)), which displays potent anti-HIV-1 activity. We show that native chemokines fail to prevent high-affinity binding of PSC-RANTES, analog-mediated calcium release (in desensitization assays), and analog-mediated CCR5 internalization. These results indicate that a pool of spare CCR5 may bind PSC-RANTES but not native chemokines. Improved recognition of CCR5 by PSC-RANTES may explain why the analog promotes higher amounts of β-arrestin 2·CCR5 complexes, thereby increasing CCR5 down-regulation and HIV-1 inhibition. Together, these results highlight that spare CCR5, which might permit HIV-1 to escape from chemokines, should be targeted for efficient viral blockade.
Collapse
Affiliation(s)
- Jun Jin
- From the INSERM U1108, Viral Pathogenesis Unit, Department of Virology, Institut Pasteur, 75015 Paris, France
| | - Philippe Colin
- From the INSERM U1108, Viral Pathogenesis Unit, Department of Virology, Institut Pasteur, 75015 Paris, France, the Université Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur, rue du Docteur Roux, 75015 Paris, France
| | - Isabelle Staropoli
- From the INSERM U1108, Viral Pathogenesis Unit, Department of Virology, Institut Pasteur, 75015 Paris, France
| | - Evelyne Lima-Fernandes
- the Institut Cochin, Université Paris Descartes, CNRS UMR 8104, INSERM U1016, 75014 Paris, France
| | - Cécile Ferret
- From the INSERM U1108, Viral Pathogenesis Unit, Department of Virology, Institut Pasteur, 75015 Paris, France
| | - Arzu Demir
- From the INSERM U1108, Viral Pathogenesis Unit, Department of Virology, Institut Pasteur, 75015 Paris, France
| | - Sophie Rogée
- the Institut Cochin, Université Paris Descartes, CNRS UMR 8104, INSERM U1016, 75014 Paris, France
| | - Oliver Hartley
- the Department of Pathology and Immunology, University of Geneva, 1211 Geneva 4, Switzerland, and
| | - Clotilde Randriamampita
- the Institut Cochin, Université Paris Descartes, CNRS UMR 8104, INSERM U1016, 75014 Paris, France
| | - Mark G H Scott
- the Institut Cochin, Université Paris Descartes, CNRS UMR 8104, INSERM U1016, 75014 Paris, France
| | - Stefano Marullo
- the Institut Cochin, Université Paris Descartes, CNRS UMR 8104, INSERM U1016, 75014 Paris, France
| | - Nathalie Sauvonnet
- the Unité de Biologie des Interactions Cellulaires, Institut Pasteur, 75015 Paris, France
| | - Fernando Arenzana-Seisdedos
- From the INSERM U1108, Viral Pathogenesis Unit, Department of Virology, Institut Pasteur, 75015 Paris, France
| | - Bernard Lagane
- From the INSERM U1108, Viral Pathogenesis Unit, Department of Virology, Institut Pasteur, 75015 Paris, France
| | - Anne Brelot
- From the INSERM U1108, Viral Pathogenesis Unit, Department of Virology, Institut Pasteur, 75015 Paris, France,
| |
Collapse
|
28
|
Randriamampita C, Lellouch AC. Imaging early signaling events in T lymphocytes with fluorescent biosensors. Biotechnol J 2013; 9:203-12. [PMID: 24166755 DOI: 10.1002/biot.201300195] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 09/09/2013] [Accepted: 10/07/2013] [Indexed: 11/10/2022]
Abstract
Many recent advances in our understanding of T lymphocyte functions in adaptive immunity are derived from sophisticated imaging techniques used to visualize T lymphocyte behavior in vitro and in vivo. A current challenge is to couple such imaging techniques with methods that will allow researchers to visualize signaling phenomenon at the single-cell level. Fluorescent biosensors, either synthetic or genetically encoded, are emerging as important tools for revealing the spatio-temporal regulation of intracellular biochemical events, such as specific enzyme activities or fluctuations in metabolites. In this review, we revisit the development of fluorescent Ca(2+) sensors with which the first experiments visualizing T lymphocyte activation at the single-cell were performed, and which have since become routine tools in immunology. We then examine a number of examples of how fluorescence resonance energy transfer (FRET)-based biosensors have been developed and applied to T lymphocyte migration, adhesion and T-cell receptor (TCR)-mediated signal transduction. These include the study of small GTPases such as RhoA, Rac and Rap1, the tyrosine kinases Lck and ZAP-70, and metabolites such as cAMP and Ca(2+) . Future development and use of biosensors should allow immunologists to reconcile the vast wealth of existing biochemical data concerning T-cell functions with the power of dynamic live-cell imaging.
Collapse
Affiliation(s)
- Clotilde Randriamampita
- CNRS UMR8104, Institut Cochin, Paris, France; INSERM U567, Institut Cochin, Paris, France; Paris Descartes University, Institut Cochin, Paris, France.
| | | |
Collapse
|
29
|
Byrum JN, Van Komen JS, Rodgers W. CD28 sensitizes TCR Ca²⁺ signaling during Ag-independent polarization of plasma membrane rafts. THE JOURNAL OF IMMUNOLOGY 2013; 191:3073-81. [PMID: 23966623 DOI: 10.4049/jimmunol.1300485] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
T cells become polarized during initial interactions with an APC to form an Ag-independent synapse (AIS) composed of membrane rafts, TCR, and TCR-proximal signaling molecules. AISs occur temporally before TCR triggering, but their role in downstream TCR signaling is not understood. Using both human and murine model systems, we studied the signals that activate AIS formation and the effect of these signals on TCR-dependent responses. We show that CD28 produces AISs detectable by spinning disc confocal microscopy seconds following initial interactions between the T cell and APC. AIS formation by CD28 coincided with costimulatory signaling, evidenced by a cholesterol-sensitive activation of the MAPK ERK that potentiated Ca²⁺ signaling in response to CD3 cross-linking. CD45 also enriched in AISs but to modulate Src kinase activity, because localization of CD45 at the cell interface reduced the activation of proximal Lck. In summary, we show that signaling by CD28 during first encounters between the T cell and APC both sensitizes TCR Ca²⁺ signaling by an Erk-dependent mechanism and drives formation of an AIS that modulates the early signaling until TCR triggering occurs. Thus, early Ag-independent encounters are an important window for optimizing T cell responses to Ag by CD28.
Collapse
Affiliation(s)
- Jennifer N Byrum
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | | | | |
Collapse
|
30
|
Bozrova SV, Levitsky VA, Nedospasov SA, Drutskaya MS. Imiquimod: The biochemical mechanisms of immunomodulatory and anti-inflammatory activity. BIOCHEMISTRY MOSCOW-SUPPLEMENT SERIES B-BIOMEDICAL CHEMISTRY 2013. [DOI: 10.1134/s1990750813020042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
31
|
Bozrova S, Levitsky V, Nedospasov S, Drutskaya M. Imiquimod: the biochemical mechanisms of immunomodulatory and anti-inflammatory activity. ACTA ACUST UNITED AC 2013; 59:249-66. [DOI: 10.18097/pbmc20135903249] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Imidazoquinolins represent a new group of compounds that recently entered into clinical practice as anti-tumor and anti-viral immune modulators. They are low molecular weight synthetic guanosine-like molecules. Although imiquimod, the most widely used imidazoquinolin, is recommended for the treatment of several forms of skin cancer and papillomas, the molecular mechanisms of its action are not fully understood. In particular, imiquimod has been characterized as a specific agonist of Toll-like receptor 7 (TLR7) and is widely used in this capacity in a large number of experimental studies and clinical trials. However, detailed analysis of the published data with the use of imiquimod, suggests that its biological activity can not be explained only by interaction with TLR7. There are indications of a direct interaction of imiquimod with adenosine receptors and other molecules that regulate the synthesis of cyclic adenosine monophosphate. A detailed understanding of the biochemical basis of imiquimod immunomodulating and antitumor effect will increase its clinical effectiveness and accelerate the development of new drugs with similar but improved medical properties. This review summarizes the published data concerning the effects of imiquimod on a variety of intracellular biochemical processes and signaling pathways.
Collapse
Affiliation(s)
- S.V. Bozrova
- Engelhardt Institute of Molecular Biology RAS; Department of Immunology, Biological Faculty, Lomonosov Moscow State University
| | - V.A. Levitsky
- Engelhardt Institute of Molecular Biology RAS; Oncology Department Johns Hopkins University School of Medicine
| | - S.A. Nedospasov
- Engelhardt Institute of Molecular Biology RAS; Department of Immunology, Biological Faculty, Lomonosov Moscow State University
| | - M.S. Drutskaya
- Engelhardt Institute of Molecular Biology RAS; Department of Immunology, Biological Faculty, Lomonosov Moscow State University
| |
Collapse
|
32
|
Hauck F, Randriamampita C, Martin E, Gerart S, Lambert N, Lim A, Soulier J, Maciorowski Z, Touzot F, Moshous D, Quartier P, Heritier S, Blanche S, Rieux-Laucat F, Brousse N, Callebaut I, Veillette A, Hivroz C, Fischer A, Latour S, Picard C. Primary T-cell immunodeficiency with immunodysregulation caused by autosomal recessive LCK deficiency. J Allergy Clin Immunol 2012; 130:1144-1152.e11. [PMID: 22985903 DOI: 10.1016/j.jaci.2012.07.029] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Revised: 07/19/2012] [Accepted: 07/19/2012] [Indexed: 12/12/2022]
Abstract
BACKGROUND Signals emanating from the antigen T-cell receptor (TCR) are required for T-cell development and function. The T lymphocyte-specific protein tyrosine kinase (Lck) is a key component of the TCR signaling machinery. On the basis of its function, we considered LCK a candidate gene in patients with combined immunodeficiency. OBJECTIVE We identify and describe a child with a T-cell immunodeficiency caused by a homozygous missense mutation of the LCK gene (c.1022T>C) resulting from uniparental disomy. METHODS Genetic, molecular, and functional analyses were performed to characterize the Lck deficiency, and the associated clinical and immunologic phenotypes are reported. RESULTS The mutant LCK protein (p.L341P) was weakly expressed with no kinase activity and failed to reconstitute TCR signaling in LCK-deficient T cells. The patient presented with recurrent respiratory tract infections together with predominant early-onset inflammatory and autoimmune manifestations. The patient displayed CD4(+) T-cell lymphopenia and low levels of CD4 and CD8 expression on the T-cell surface. The residual T lymphocytes had an oligoclonal T-cell repertoire and exhibited a profound TCR signaling defect, with only weak tyrosine phosphorylation signals and no Ca(2+) mobilization in response to TCR stimulation. CONCLUSION We report a new form of T-cell immunodeficiency caused by a LCK gene defect, highlighting the essential role of Lck in human T-cell development and responses. Our results also point out that defects in the TCR signaling cascade often result in abnormal T-cell differentiation and functions, leading to an important risk factor for inflammation and autoimmunity.
Collapse
Affiliation(s)
- Fabian Hauck
- INSERM 768, Laboratoire du Développement Normal et Pathologique du Système Immunitaire, Hôpital Necker-Enfants Malades, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Bodor J, Bopp T, Vaeth M, Klein M, Serfling E, Hünig T, Becker C, Schild H, Schmitt E. Cyclic AMP underpins suppression by regulatory T cells. Eur J Immunol 2012; 42:1375-84. [PMID: 22678893 DOI: 10.1002/eji.201141578] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Elevated levels of intracellular cyclic adenosine monophosphate (cAMP) in naturally occurring T regulatory (nTreg) cells play a key role in nTreg-cell-mediated suppression. Upon contact with nTreg cells, cAMP is transferred from nTreg cells into activated target CD4(+) T cells and/or antigen-presenting cells (APCs) via gap junctions to suppress CD4(+) T-cell function. cAMP facilitates the expression and nuclear function of a potent transcriptional inhibitor, inducible cAMP early repressor (ICER), resulting in ICER-mediated suppression of interleukin-2 (IL-2). Furthermore, ICER inhibits transcription of nuclear factor of activated T cell c1/α (NFATc1/α) and forms inhibitory complexes with preexisting NFATc1/c2, thereby inhibiting NFAT-driven transcription, including that of IL-2. In addition to its suppressive effects mediated via ICER, cAMP can also modulate the levels of surface-expressed cytotoxic T lymphocyte antigen-4 (CTLA-4) and its cognate B7 ligands on conventional CD4(+) T cells and/or APCs, fine-tuning suppression. These cAMP-driven nTreg-cell suppression mechanisms are the focus of this review.
Collapse
Affiliation(s)
- Josef Bodor
- Department of Molecular Pathology, Institute of Pathology, University of Würzburg, Würzburg, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Martin-Loeches I, Papiol E, Almansa R, López-Campos G, Bermejo-Martin J, Rello J. Intubated patients developing tracheobronchitis or pneumonia have distinctive complement system gene expression signatures in the pre-infection period: A pilot study. Med Intensiva 2012; 36:257-63. [DOI: 10.1016/j.medin.2011.10.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Revised: 10/02/2011] [Accepted: 10/15/2011] [Indexed: 10/14/2022]
|
35
|
Li X, Murray F, Koide N, Goldstone J, Dann SM, Chen J, Bertin S, Fu G, Weinstein LS, Chen M, Corr M, Eckmann L, Insel PA, Raz E. Divergent requirement for Gαs and cAMP in the differentiation and inflammatory profile of distinct mouse Th subsets. J Clin Invest 2012; 122:963-73. [PMID: 22326954 DOI: 10.1172/jci59097] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Accepted: 01/04/2012] [Indexed: 12/26/2022] Open
Abstract
cAMP, the intracellular signaling molecule produced in response to GPCR signaling, has long been recognized as an immunosuppressive agent that inhibits T cell receptor activation and T cell function. However, recent studies show that cAMP also promotes T cell-mediated immunity. Central to cAMP production downstream of GPCR activation is the trimeric G protein Gs. In order to reconcile the reports of divergent effects of cAMP in T cells and to define the direct effect of cAMP in T cells, we engineered mice in which the stimulatory Gα subunit of Gs (Gαs) could be deleted in T cells using CD4-Cre (Gnas(ΔCD4)). Gnas(ΔCD4) CD4(+) T cells had reduced cAMP accumulation and Ca2(+) influx. In vitro and in vivo, Gnas(ΔCD4) CD4(+) T cells displayed impaired differentiation to specific Th subsets: Th17 and Th1 cells were reduced or absent, but Th2 and regulatory T cells were unaffected. Furthermore, Gnas(ΔCD4) CD4(+) T cells failed to provoke colitis in an adoptive transfer model, indicating reduced inflammatory function. Restoration of cAMP levels rescued the impaired phenotype of Gnas(ΔCD4) CD4(+) T cells, reinstated the PKA-dependent influx of Ca2(+), and enhanced the ability of these cells to induce colitis. Our findings thus define an important role for cAMP in the differentiation of Th subsets and their subsequent inflammatory responses, and provide evidence that altering cAMP levels in CD4(+) T cells could provide an immunomodulatory approach targeting specific Th subsets.
Collapse
Affiliation(s)
- Xiangli Li
- Department of Medicine, UCSD, La Jolla, California 92093-0663, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Contento RL, Campello S, Trovato AE, Magrini E, Anselmi F, Viola A. Adhesion shapes T cells for prompt and sustained T-cell receptor signalling. EMBO J 2010; 29:4035-47. [PMID: 20953162 DOI: 10.1038/emboj.2010.258] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Accepted: 09/24/2010] [Indexed: 11/09/2022] Open
Abstract
During T-cell migration, cell polarity is orchestrated by chemokine receptors and adhesion molecules and involves the functional redistribution of molecules and organelles towards specific cell compartments. In contrast, it is generally believed that the cell polarity established when T cells meet antigen-presenting cells (APCs) is controlled by the triggered T-cell receptor (TCR). Here, we show that, during activation of human T lymphocytes by APCs, chemokines and LFA-1 establish cell polarity independently of TCR triggering. Chemokine-induced LFA-1 activation results in fast recruitment of MTOC and mitochondria towards the potential APC, a process required to amplify TCR Ca(2+) signalling at the upcoming immunological synapse, to promote nuclear translocation of transcriptional factor NFATc2 and boost CD25 expression. Our data show that the initial adhesive signals delivered by chemokines and LFA-1 shape and prepare T cells for antigen recognition.
Collapse
Affiliation(s)
- Rita Lucia Contento
- Department of Translational Medicine, Istituto Clinico Humanitas IRCCS, Rozzano, Milan, Italy.
| | | | | | | | | | | |
Collapse
|
37
|
Garbi N, Hämmerling GJ, Probst HC, van den Broek M. Tonic T cell signalling and T cell tolerance as opposite effects of self-recognition on dendritic cells. Curr Opin Immunol 2010; 22:601-8. [PMID: 20880686 DOI: 10.1016/j.coi.2010.08.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Accepted: 08/12/2010] [Indexed: 12/21/2022]
Abstract
Naive T cells spend most of their time scanning the surface of dendritic cells (DCs), indicating that self-MHC/T cell receptor (TCR) interactions between these immune cells occur routinely in peripheral organs during the steady state. Peripheral self-MHC recognition on DCs drives seemingly opposing effects in the absence of inflammatory stimuli such as deletion of certain self-reactive T cells as well as maintenance of the T cell responsiveness to antigen, both of which shape the T cell repertoire and regulate T cell responses. Here we review recent data on the role of self-MHC recognition on steady-state DCs in the periphery and propose that interactions between T cells and steady-state DCs display an analogy with selection processes that occur in the thymus: high affinity TCR/self-MHC interactions in the periphery result in T cell deletion, while low/intermediate affinity interactions result in tonic TCR signalling that is required to keep T cells responsive to antigen.
Collapse
Affiliation(s)
- Natalio Garbi
- Division of Molecular Immunology, German Cancer Research Center DKFZ, Heidelberg, Germany.
| | | | | | | |
Collapse
|
38
|
Duan B, Davis R, Sadat EL, Collins J, Sternweis PC, Yuan D, Jiang LI. Distinct roles of adenylyl cyclase VII in regulating the immune responses in mice. THE JOURNAL OF IMMUNOLOGY 2010; 185:335-44. [PMID: 20505140 DOI: 10.4049/jimmunol.0903474] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The second messenger cAMP plays a critical role in regulating immune responses. Although well known for its immunosuppressive effect, cAMP is also required for the development of optimal immune responses. Thus, the regulation of this second messenger needs to be finely tuned and well balanced in a context dependent manner. To further understand the role of cAMP synthesis in the functions of the immune system, we focus on a specific adenylyl cyclase (AC) isoform, AC VII (AC7), which is highly expressed in the immune system. We show that mice deficient of AC7 are hypersensitive to LPS-induced endotoxic shock. Macrophages from AC7-deficient mice produce more of the proinflammatory cytokine, TNF-alpha, in response to LPS. The inability to generate intracellular cAMP response to serum factors, such as lysophosphatidic acid, is a potential cause for this phenotype. Thus, AC7 functions to control the extent of immune responses toward bacterial infection. However, it is also required for the optimal functions of B and T cells during adaptive immune responses. AC7 is the major isoform that regulates cAMP synthesis in both B and T cells. AC7-deficient mice display compromised Ab responses toward both T cell-independent and T cell-dependent Ags. The generation of memory T cells is also reduced. These results are the first to ascribe specific functions to an AC isoform in the immune system and emphasize the importance of cAMP synthesis by this isoform in shaping the immune responses.
Collapse
Affiliation(s)
- Biyan Duan
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Hochweller K, Wabnitz GH, Samstag Y, Suffner J, Hämmerling GJ, Garbi N. Dendritic cells control T cell tonic signaling required for responsiveness to foreign antigen. Proc Natl Acad Sci U S A 2010; 107:5931-6. [PMID: 20231464 PMCID: PMC2851879 DOI: 10.1073/pnas.0911877107] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Dendritic cells (DCs) are key components of the adaptive immune system contributing to initiation and regulation of T cell responses. T cells continuously scan DCs in lymphoid organs for the presence of foreign antigen. However, little is known about the functional consequences of these frequent T cell-DC interactions without cognate antigen. Here we demonstrate that these contacts in the absence of foreign antigen serve an important function, namely, induction of a basal activation level in T cells required for responsiveness to subsequent encounters with foreign antigens. This basal activation is provided by self-recognition of MHC molecules on DCs. Following DC depletion in mice, T cells became impaired in TCR signaling and immune synapse formation, and consequently were hyporesponsive to antigen. This process was reversible, as T cells quickly recovered when the number of DCs returned to a normal level. The extent of T cell reactivity correlated with the degree of DC depletion in lymphoid organs, suggesting that a full DC compartment guarantees optimal T cell responsiveness. These findings indicate that DCs are specialized cells that not only present foreign antigen, but also promote a "tonic" state in T cells for antigen responsiveness.
Collapse
Affiliation(s)
- Kristin Hochweller
- Division of Molecular Immunology, German Cancer Research Center, 69120 Heidelberg, Germany; and
| | - Guido H. Wabnitz
- Institute for Immunology, University of Heidelberg, 69129 Heidelberg, Germany
| | - Yvonne Samstag
- Institute for Immunology, University of Heidelberg, 69129 Heidelberg, Germany
| | - Janine Suffner
- Division of Molecular Immunology, German Cancer Research Center, 69120 Heidelberg, Germany; and
| | - Günter J. Hämmerling
- Division of Molecular Immunology, German Cancer Research Center, 69120 Heidelberg, Germany; and
| | - Natalio Garbi
- Division of Molecular Immunology, German Cancer Research Center, 69120 Heidelberg, Germany; and
| |
Collapse
|
40
|
Cross talk between phosphatidylinositol 3-kinase and cyclic AMP (cAMP)-protein kinase a signaling pathways at the level of a protein kinase B/beta-arrestin/cAMP phosphodiesterase 4 complex. Mol Cell Biol 2010; 30:1660-72. [PMID: 20086095 DOI: 10.1128/mcb.00696-09] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Engagement of the T-cell receptor (TCR) in human primary T cells activates a cyclic AMP (cAMP)-protein kinase A (PKA)-Csk inhibitory pathway that prevents full T-cell activation in the absence of a coreceptor stimulus. Here, we demonstrate that stimulation of CD28 leads to recruitment to lipid rafts of a beta-arrestin/phosphodiesterase 4 (PDE4) complex that serves to degrade cAMP locally. Redistribution of the complex from the cytosol depends on Lck and phosphatidylinositol 3-kinase (PI3K) activity. Protein kinase B (PKB) interacts directly with beta-arrestin to form part of the supramolecular complex together with sequestered PDE4. Translocation is mediated by the PKB plextrin homology (PH) domain, thus revealing a new role for PKB as an adaptor coupling PI3K and cAMP signaling. Functionally, PI3K activation and phosphatidylinositol-(3,4,5)-triphosphate (PIP3) production, leading to recruitment of the supramolecular PKB/beta-arrestin/PDE4 complex to the membrane via the PKB PH domain, results in degradation of the TCR-induced cAMP pool located in lipid rafts, thereby allowing full T-cell activation to proceed.
Collapse
|
41
|
Gascoigne NRJ, Zal T, Yachi PP, Hoerter JAH. Co-receptors and recognition of self at the immunological synapse. Curr Top Microbiol Immunol 2010; 340:171-89. [PMID: 19960314 PMCID: PMC5788015 DOI: 10.1007/978-3-642-03858-7_9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The co-receptors CD4 and CD8 are important in the activation of T cells primarily because of their ability to interact with the proteins of the MHC enhancing recognition of the MHC-peptide complex by the T cell receptor (TCR). An antigen-presenting cell presents a small number of antigenic peptides on its MHC molecules, in the presence of a much larger number of endogenous, mostly nonstimulatory, peptides. Recent work has demonstrated that these endogenous MHC-peptide complexes have an important role in modulating the sensitivity of the TCR. But the role of the endogenous nonstimulatory MHC-peptide complexes differs in MHC class I and class II-restricted T cells. This chapter discusses the data on the role of CD4 or CD8 co-receptors in T cell activation at the immunological synapse, and the role of non stimulatory MHC-peptide complexes in aiding antigen recognition.
Collapse
Affiliation(s)
- Nicholas R J Gascoigne
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | | | | | | |
Collapse
|
42
|
Abstract
CD4(+) T cells use the chemokine receptor CCR7 to home to and migrate within lymphoid tissue, where T-cell activation takes place. Using primary T-cell receptor (TCR)-transgenic (tg) CD4(+) T cells, we explored the effect of CCR7 ligands, in particular CCL21, on T-cell activation. We found that the presence of CCL21 during early time points strongly increased in vitro T-cell proliferation after TCR stimulation, correlating with increased expression of early activation markers. CCL21 costimulation resulted in increased Ras- and Rac-GTP formation and enhanced phosphorylation of Akt, MEK, and ERK but not p38 or JNK. Kinase-dead PI3Kdelta(D910A/D910A) or PI3Kgamma-deficient TCR-tg CD4(+) T cells showed similar responsiveness to CCL21 costimulation as control CD4(+) T cells. Conversely, deficiency in the Rac guanine exchange factor DOCK2 significantly impaired CCL21-mediated costimulation in TCR-tg CD4(+) T cells, concomitant with impaired Rac- but not Ras-GTP formation. Using lymph node slices for live monitoring of T-cell behavior and activation, we found that G protein-coupled receptor signaling was required for early CD69 expression but not for Ca(2+) signaling. Our data suggest that the presence of CCL21 during early TCR signaling lowers the activation threshold through Ras- and Rac-dependent pathways leading to increased ERK phosphorylation.
Collapse
|
43
|
Research Highlights. Nat Immunol 2009. [DOI: 10.1038/ni0309-239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
44
|
Abstract
In this issue of Immunity, Conche et al. (2009) define an antigen-independent signaling pathway that is dependent on cyclic adenosine monophosphate and extracellular signal-regulated kinase and T cells for subsequent T cell antigen receptor signaling.
Collapse
Affiliation(s)
- Robert L Kortum
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | |
Collapse
|