1
|
Schelker RC, Fioravanti J, Mastrogiovanni F, Baldwin JG, Rana N, Li P, Chen P, Vadász T, Spolski R, Heuser-Loy C, Slavkovic-Lukic D, Noronha P, Damiano G, Raccosta L, Maggioni D, Pullugula S, Lin JX, Oh J, Grandinetti P, Lecce M, Hesse L, Kocks E, Martín-Santos A, Gebhard C, Telford WG, Ji Y, Restifo NP, Russo V, Rehli M, Herr W, Leonard WJ, Gattinoni L. LIM-domain-only 4 (LMO4) enhances CD8 + T-cell stemness and tumor rejection by boosting IL-21-STAT3 signaling. Signal Transduct Target Ther 2024; 9:199. [PMID: 39117617 PMCID: PMC11310520 DOI: 10.1038/s41392-024-01915-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 06/13/2024] [Accepted: 07/04/2024] [Indexed: 08/10/2024] Open
Abstract
High frequencies of stem-like memory T cells in infusion products correlate with superior patient outcomes across multiple T cell therapy trials. Herein, we analyzed a published CRISPR activation screening to identify transcriptional regulators that could be harnessed to augment stem-like behavior in CD8+ T cells. Using IFN-γ production as a proxy for CD8+ T cell terminal differentiation, LMO4 emerged among the top hits inhibiting the development of effectors cells. Consistently, we found that Lmo4 was downregulated upon CD8+ T cell activation but maintained under culture conditions facilitating the formation of stem-like T cells. By employing a synthetic biology approach to ectopically express LMO4 in antitumor CD8+ T cells, we enabled selective expansion and enhanced persistence of transduced cells, while limiting their terminal differentiation and senescence. LMO4 overexpression promoted transcriptional programs regulating stemness, increasing the numbers of stem-like CD8+ memory T cells and enhancing their polyfunctionality and recall capacity. When tested in syngeneic and xenograft tumor models, LMO4 overexpression boosted CD8+ T cell antitumor immunity, resulting in enhanced tumor regression. Rather than directly modulating gene transcription, LMO4 bound to JAK1 and potentiated STAT3 signaling in response to IL-21, inducing the expression of target genes (Tcf7, Socs3, Junb, and Zfp36) crucial for memory responses. CRISPR/Cas9-deletion of Stat3 nullified the enhanced memory signature conferred by LMO4, thereby abrogating the therapeutic benefit of LMO4 overexpression. These results establish LMO4 overexpression as an effective strategy to boost CD8+ T cell stemness, providing a new synthetic biology tool to bolster the efficacy of T cell-based immunotherapies.
Collapse
Affiliation(s)
- Roland C Schelker
- Division of Functional Immune Cell Modulation, Leibniz Institute for Immunotherapy, Regensburg, Germany.
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany.
| | - Jessica Fioravanti
- Division of Functional Immune Cell Modulation, Leibniz Institute for Immunotherapy, Regensburg, Germany
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Fabio Mastrogiovanni
- Division of Functional Immune Cell Modulation, Leibniz Institute for Immunotherapy, Regensburg, Germany
| | - Jeremy G Baldwin
- Division of Functional Immune Cell Modulation, Leibniz Institute for Immunotherapy, Regensburg, Germany
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Nisha Rana
- Division of Functional Immune Cell Modulation, Leibniz Institute for Immunotherapy, Regensburg, Germany
- Next Generation Sequencing Core, Leibniz Institute for Immunotherapy, Regensburg, Germany
| | - Peng Li
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ping Chen
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Timea Vadász
- Division of Functional Immune Cell Modulation, Leibniz Institute for Immunotherapy, Regensburg, Germany
| | - Rosanne Spolski
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Christoph Heuser-Loy
- Division of Functional Immune Cell Modulation, Leibniz Institute for Immunotherapy, Regensburg, Germany
| | - Dragana Slavkovic-Lukic
- Division of Functional Immune Cell Modulation, Leibniz Institute for Immunotherapy, Regensburg, Germany
| | - Pedro Noronha
- Division of Functional Immune Cell Modulation, Leibniz Institute for Immunotherapy, Regensburg, Germany
| | - Giuseppe Damiano
- Immuno-Biotherapy of Melanoma and Solid Tumors Unit, Division of Experimental Oncology, IRCCS Scientific Institute San Raffaele, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Laura Raccosta
- Immuno-Biotherapy of Melanoma and Solid Tumors Unit, Division of Experimental Oncology, IRCCS Scientific Institute San Raffaele, Milan, Italy
| | - Daniela Maggioni
- Immuno-Biotherapy of Melanoma and Solid Tumors Unit, Division of Experimental Oncology, IRCCS Scientific Institute San Raffaele, Milan, Italy
| | - Sree Pullugula
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jian-Xin Lin
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jangsuk Oh
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Patrick Grandinetti
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Mario Lecce
- Division of Functional Immune Cell Modulation, Leibniz Institute for Immunotherapy, Regensburg, Germany
| | - Leo Hesse
- Division of Functional Immune Cell Modulation, Leibniz Institute for Immunotherapy, Regensburg, Germany
- University of Regensburg, Regensburg, Germany
| | - Emilia Kocks
- Division of Functional Immune Cell Modulation, Leibniz Institute for Immunotherapy, Regensburg, Germany
- University of Regensburg, Regensburg, Germany
| | - Azucena Martín-Santos
- Division of Functional Immune Cell Modulation, Leibniz Institute for Immunotherapy, Regensburg, Germany
| | - Claudia Gebhard
- Next Generation Sequencing Core, Leibniz Institute for Immunotherapy, Regensburg, Germany
| | - William G Telford
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yun Ji
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Nicholas P Restifo
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Vincenzo Russo
- Immuno-Biotherapy of Melanoma and Solid Tumors Unit, Division of Experimental Oncology, IRCCS Scientific Institute San Raffaele, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Michael Rehli
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
- Next Generation Sequencing Core, Leibniz Institute for Immunotherapy, Regensburg, Germany
| | - Wolfgang Herr
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
- National Center for Tumor Diseases, WERA Site, Würzburg-Erlangen-Regensburg-Augsburg, Germany
- Center for Immunomedicine in Transplantation and Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Warren J Leonard
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Luca Gattinoni
- Division of Functional Immune Cell Modulation, Leibniz Institute for Immunotherapy, Regensburg, Germany.
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
- University of Regensburg, Regensburg, Germany.
- Center for Immunomedicine in Transplantation and Oncology, University Hospital Regensburg, Regensburg, Germany.
| |
Collapse
|
2
|
Stai S, Lioulios G, Xochelli A, Papadopoulou A, Yannaki E, Kasimatis E, Christodoulou M, Moysidou E, Samali M, Testa T, Iosifidou AM, Iosifidou MA, Tsoulfas G, Stangou M, Fylaktou A. Vaccination with Tozimameran Induces T-Cell Activation, but Not Senescent or Exhaustive Alterations, in Kidney Transplant Recipients. Vaccines (Basel) 2024; 12:877. [PMID: 39204004 PMCID: PMC11360383 DOI: 10.3390/vaccines12080877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/17/2024] [Accepted: 07/19/2024] [Indexed: 09/03/2024] Open
Abstract
BACKGROUND Multiple vaccinations have potential inimical effects on the immune system aging process. We examined whether response to SARS-CoV-2 vaccination with Tozinameran is associated with immunosenescence and immunoexhaustion in kidney transplant recipients (KTRs). METHODS In this prospective observational study, we observed 39 adult kidney transplant recipients (KTRs) who had no pre-existing anti-SARS-CoV-2 antibodies and were on stable immunosuppression. CD4+ and CD8+ T-cell subpopulations [comprising CD45RA+CCR7+ (naïve), CD45RA-CCR7+ (T-central memory, TCM), CD45RA-CCR7- (T-effector memory, TEM) and CD45RA+CCR7- (T-effector memory re-expressing CD45RA, TEMRA, senescent), CD28- (senescent) and PD1+ (exhausted)] were evaluated at 2 time points: T1 (48 h prior to the 3rd), and T2 (3 weeks following the 3rd Tozinameran dose administration). At each time point, patients were separated into Humoral and/or Cellular Responders and Non-Responders. RESULTS From T1 to T2, CD4+TCM and CD8+TEM were increased, while naïve CD4+ and CD8+ proportions were reduced in the whole cohort of patients, more prominently among responders. At T2, responders compared to non-responders had higher CD8+CD28+ [227.15 (166) vs. 131.44 (121) cells/µL, p: 0.036], lower CD4+CD28- T-lymphocyte numbers [59.65 (66) cells/µL vs. 161.19 (92) cells/µL, p: 0.026] and percentages [6.1 (5.5)% vs. 20.7 (25)%, p: 0.04]. CONCLUSION In KTRs, response to vaccination is not associated with an expansion of senescent and exhausted T-cell concentrations, but rather with a switch from naïve to differentiated-activated T-cell forms.
Collapse
Affiliation(s)
- Stamatia Stai
- School of Medicine, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (S.S.); (G.L.); (M.C.); (E.M.); (A.M.I.); (M.A.I.)
- 1st Department of Nephrology, Hippokration General Hospital, 54642 Thessaloniki, Greece;
| | - Georgios Lioulios
- School of Medicine, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (S.S.); (G.L.); (M.C.); (E.M.); (A.M.I.); (M.A.I.)
- 1st Department of Nephrology, Hippokration General Hospital, 54642 Thessaloniki, Greece;
| | - Aliki Xochelli
- Department of Immunology, National Histocompatibility Center, Hippokration General Hospital, 54642 Thessaloniki, Greece; (A.X.); (M.S.); (A.F.)
| | - Anastasia Papadopoulou
- Department of Immunology, National Histocompatibility Center, Hippokration General Hospital, 54642 Thessaloniki, Greece; (A.X.); (M.S.); (A.F.)
| | - Evangelia Yannaki
- Hematology Department, Hematopoietic Cell Transplantation Unit, Gene and Cell Therapy Center, George Papanikolaou Hospital, 57010 Thessaloniki, Greece;
| | - Efstratios Kasimatis
- 1st Department of Nephrology, Hippokration General Hospital, 54642 Thessaloniki, Greece;
| | - Michalis Christodoulou
- School of Medicine, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (S.S.); (G.L.); (M.C.); (E.M.); (A.M.I.); (M.A.I.)
- 1st Department of Nephrology, Hippokration General Hospital, 54642 Thessaloniki, Greece;
| | - Eleni Moysidou
- School of Medicine, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (S.S.); (G.L.); (M.C.); (E.M.); (A.M.I.); (M.A.I.)
- 1st Department of Nephrology, Hippokration General Hospital, 54642 Thessaloniki, Greece;
| | - Margarita Samali
- Department of Immunology, National Histocompatibility Center, Hippokration General Hospital, 54642 Thessaloniki, Greece; (A.X.); (M.S.); (A.F.)
| | - Theodolinda Testa
- Department of Immunology, National Histocompatibility Center, Hippokration General Hospital, 54642 Thessaloniki, Greece; (A.X.); (M.S.); (A.F.)
| | - Artemis Maria Iosifidou
- School of Medicine, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (S.S.); (G.L.); (M.C.); (E.M.); (A.M.I.); (M.A.I.)
| | - Myrto Aikaterini Iosifidou
- School of Medicine, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (S.S.); (G.L.); (M.C.); (E.M.); (A.M.I.); (M.A.I.)
| | - Georgios Tsoulfas
- Department of Transplant Surgery, Hippokration General Hospital, 54642 Thessaloniki, Greece;
| | - Maria Stangou
- School of Medicine, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (S.S.); (G.L.); (M.C.); (E.M.); (A.M.I.); (M.A.I.)
- 1st Department of Nephrology, Hippokration General Hospital, 54642 Thessaloniki, Greece;
| | - Asimina Fylaktou
- Department of Immunology, National Histocompatibility Center, Hippokration General Hospital, 54642 Thessaloniki, Greece; (A.X.); (M.S.); (A.F.)
| |
Collapse
|
3
|
Li Y, Xiao J, Li C, Yang M. Memory inflation: Beyond the acute phase of viral infection. Cell Prolif 2024:e13705. [PMID: 38992867 DOI: 10.1111/cpr.13705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/09/2024] [Accepted: 06/14/2024] [Indexed: 07/13/2024] Open
Abstract
Memory inflation is confirmed as the most commonly dysregulation of host immunity with antigen-independent manner in mammals after viral infection. By generating large numbers of effector/memory and terminal differentiated effector memory CD8+ T cells with diminished naïve subsets, memory inflation is believed to play critical roles in connecting the viral infection and the onset of multiple diseases. Here, we reviewed the current understanding of memory inflated CD8+ T cells in their distinct phenotypic features that different from exhausted subsets; the intrinsic and extrinsic roles in regulating the formation of memory inflation; and the key proteins in maintaining the expansion and proliferation of inflationary populations. More importantly, based on the evidences from both clinic and animal models, we summarized the potential mechanisms of memory inflation to trigger autoimmune neuropathies, such as Guillain-Barré syndrome and multiple sclerosis; the correlations of memory inflation between tumorigenesis and resistance of tumour immunotherapies; as well as the effects of memory inflation to facilitate vascular disease progression. To sum up, better understanding of memory inflation could provide us an opportunity to beyond the acute phase of viral infection, and shed a light on the long-term influences of CD8+ T cell heterogeneity in dampen host immune homeostasis.
Collapse
Affiliation(s)
- Yanfei Li
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jie Xiao
- Centre for Translational Research in Cancer, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Chen Li
- Centre for Translational Research in Cancer, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Mu Yang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Centre for Translational Research in Cancer, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
4
|
Yared N, Papadopoulou M, Barennes P, Pham HP, Quiniou V, Netzer S, Kaminski H, Burguet L, Demeste A, Colas P, Mora-Charrot L, Rousseau B, Izotte J, Zouine A, Gauthereau X, Vermijlen D, Déchanet-Merville J, Capone M. Long-lived central memory γδ T cells confer protection against murine cytomegalovirus reinfection. PLoS Pathog 2024; 20:e1010785. [PMID: 38976755 PMCID: PMC11257398 DOI: 10.1371/journal.ppat.1010785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 07/18/2024] [Accepted: 06/12/2024] [Indexed: 07/10/2024] Open
Abstract
The involvement of γδ TCR-bearing lymphocytes in immunological memory has gained increasing interest due to their functional duality between adaptive and innate immunity. γδ T effector memory (TEM) and central memory (TCM) subsets have been identified, but their respective roles in memory responses are poorly understood. In the present study, we used subsequent mouse cytomegalovirus (MCMV) infections of αβ T cell deficient mice in order to analyze the memory potential of γδ T cells. As for CMV-specific αβ T cells, MCMV induced the accumulation of cytolytic, KLRG1+CX3CR1+ γδ TEM that principally localized in infected organ vasculature. Typifying T cell memory, γδ T cell expansion in organs and blood was higher after secondary viral challenge than after primary infection. Viral control upon MCMV reinfection was prevented when masking γδ T-cell receptor, and was associated with a preferential amplification of private and unfocused TCR δ chain repertoire composed of a combination of clonotypes expanded post-primary infection and, more unexpectedly, of novel expanded clonotypes. Finally, long-term-primed γδ TCM cells, but not γδ TEM cells, protected T cell-deficient hosts against MCMV-induced death upon adoptive transfer, probably through their ability to survive and to generate TEM in the recipient host. This better survival potential of TCM cells was confirmed by a detailed scRNASeq analysis of the two γδ T cell memory subsets which also revealed their similarity to classically adaptive αβ CD8 T cells. Overall, our study uncovered memory properties of long-lived TCM γδ T cells that confer protection in a chronic infection, highlighting the interest of this T cell subset in vaccination approaches.
Collapse
Affiliation(s)
- Nathalie Yared
- Bordeaux University, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, ImmunoConcEpt, UMR 5164, ERL 1303, ImmunoConcEpt, Bordeaux, France
| | - Maria Papadopoulou
- Department of Pharmacotherapy and Pharmaceutics, Université Libre de Bruxelles (ULB), Brussels, Belgium
- Institute for Medical Immunology, Université Libre de Bruxelles (ULB), Gosselies, Belgium
- Université Libre de Bruxelles Center for Research in Immunology, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | | | | | | | - Sonia Netzer
- Bordeaux University, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, ImmunoConcEpt, UMR 5164, ERL 1303, ImmunoConcEpt, Bordeaux, France
| | - Hanna Kaminski
- Bordeaux University, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, ImmunoConcEpt, UMR 5164, ERL 1303, ImmunoConcEpt, Bordeaux, France
| | - Laure Burguet
- Bordeaux University, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, ImmunoConcEpt, UMR 5164, ERL 1303, ImmunoConcEpt, Bordeaux, France
| | - Amandine Demeste
- Bordeaux University, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, ImmunoConcEpt, UMR 5164, ERL 1303, ImmunoConcEpt, Bordeaux, France
| | - Pacôme Colas
- Bordeaux University, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, ImmunoConcEpt, UMR 5164, ERL 1303, ImmunoConcEpt, Bordeaux, France
| | - Lea Mora-Charrot
- Bordeaux University, Service Commun des Animaleries, Bordeaux, France
| | - Benoit Rousseau
- Bordeaux University, Service Commun des Animaleries, Bordeaux, France
| | - Julien Izotte
- Bordeaux University, Service Commun des Animaleries, Bordeaux, France
| | - Atika Zouine
- Bordeaux University, Centre National de la Recherche Scientifique, Institut national de la santé et de la recherche médicale, FACSility, TBM Core, Bordeaux, France
| | - Xavier Gauthereau
- Bordeaux University, Centre National de la Recherche Scientifique, Institut national de la santé et de la recherche médicale, OneCell, RT-PCR and Single Cell Libraries, TBM Core, Bordeaux, France
| | - David Vermijlen
- Department of Pharmacotherapy and Pharmaceutics, Université Libre de Bruxelles (ULB), Brussels, Belgium
- Institute for Medical Immunology, Université Libre de Bruxelles (ULB), Gosselies, Belgium
- Université Libre de Bruxelles Center for Research in Immunology, Université Libre de Bruxelles (ULB), Brussels, Belgium
- WELBIO department, Walloon ExceLlence Research Institute, Wavre, Belgium
| | - Julie Déchanet-Merville
- Bordeaux University, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, ImmunoConcEpt, UMR 5164, ERL 1303, ImmunoConcEpt, Bordeaux, France
| | - Myriam Capone
- Bordeaux University, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, ImmunoConcEpt, UMR 5164, ERL 1303, ImmunoConcEpt, Bordeaux, France
| |
Collapse
|
5
|
Ferrer P, Berry AA, Bucsan AN, Prajapati SK, Krishnan K, Barbeau MC, Rickert DM, Guerrero SM, Usui M, Abebe Y, Patil A, Chakravarty S, Billingsley PF, Pa'ahana-Brown F, Strauss K, Shrestha B, Nomicos E, Deye GA, Sim BKL, Hoffman SL, Williamson KC, Lyke KE. Repeat controlled human Plasmodium falciparum infections delay bloodstream patency and reduce symptoms. Nat Commun 2024; 15:5194. [PMID: 38890271 PMCID: PMC11189388 DOI: 10.1038/s41467-024-49041-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 05/22/2024] [Indexed: 06/20/2024] Open
Abstract
Resistance to clinical malaria takes years to develop even in hyperendemic regions and sterilizing immunity has rarely been observed. To evaluate the maturation of the host response against controlled repeat exposures to P. falciparum (Pf) NF54 strain-infected mosquitoes, we systematically monitored malaria-naïve participants through an initial exposure to uninfected mosquitoes and 4 subsequent homologous exposures to Pf-infected mosquitoes over 21 months (n = 8 males) (ClinicalTrials.gov# NCT03014258). The primary outcome was to determine whether protective immunity against parasite infection develops following repeat CHMI and the secondary outcomes were to track the clinical signs and symptoms of malaria and anti-Pf antibody development following repeat CHMI. After two exposures, time to blood stage patency increases significantly and the number of reported symptoms decreases indicating the development of clinical tolerance. The time to patency correlates positively with both anti-Pf circumsporozoite protein (CSP) IgG and CD8 + CD69+ effector memory T cell levels consistent with partial pre-erythrocytic immunity. IFNγ levels decrease significantly during the participants' second exposure to high blood stage parasitemia and could contribute to the decrease in symptoms. In contrast, CD4-CD8 + T cells expressing CXCR5 and the inhibitory receptor, PD-1, increase significantly after subsequent Pf exposures, possibly dampening the memory response and interfering with the generation of robust sterilizing immunity.
Collapse
Affiliation(s)
- Patricia Ferrer
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Rockville, MD, USA
| | - Andrea A Berry
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Allison N Bucsan
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Rockville, MD, USA
| | - Surendra K Prajapati
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Rockville, MD, USA
| | - Karthik Krishnan
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Rockville, MD, USA
| | - Michelle C Barbeau
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Rockville, MD, USA
| | - David M Rickert
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Rockville, MD, USA
| | - Sandra Mendoza Guerrero
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Rockville, MD, USA
| | - Miho Usui
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Rockville, MD, USA
| | | | | | | | | | - Faith Pa'ahana-Brown
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Kathy Strauss
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Biraj Shrestha
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Effie Nomicos
- Division of Microbiology and Infectious Diseases, Parasitology and International Programs Branch, NIAID, NIH, Bethesda, MD, USA
| | - Gregory A Deye
- Division of Microbiology and Infectious Diseases, Parasitology and International Programs Branch, NIAID, NIH, Bethesda, MD, USA
| | | | | | - Kim C Williamson
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.
| | - Kirsten E Lyke
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
6
|
Hale BD, Severin Y, Graebnitz F, Stark D, Guignard D, Mena J, Festl Y, Lee S, Hanimann J, Zangger NS, Meier M, Goslings D, Lamprecht O, Frey BM, Oxenius A, Snijder B. Cellular architecture shapes the naïve T cell response. Science 2024; 384:eadh8697. [PMID: 38843327 DOI: 10.1126/science.adh8967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 04/16/2024] [Indexed: 06/15/2024]
Abstract
After antigen stimulation, naïve T cells display reproducible population-level responses, which arise from individual T cells pursuing specific differentiation trajectories. However, cell-intrinsic predeterminants controlling these single-cell decisions remain enigmatic. We found that the subcellular architectures of naïve CD8 T cells, defined by the presence (TØ) or absence (TO) of nuclear envelope invaginations, changed with maturation, activation, and differentiation. Upon T cell receptor (TCR) stimulation, naïve TØ cells displayed increased expression of the early-response gene Nr4a1, dependent upon heightened calcium entry. Subsequently, in vitro differentiation revealed that TØ cells generated effector-like cells more so compared with TO cells, which proliferated less and preferentially adopted a memory-precursor phenotype. These data suggest that cellular architecture may be a predeterminant of naïve CD8 T cell fate.
Collapse
MESH Headings
- Animals
- Mice
- Calcium/metabolism
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/ultrastructure
- Cell Differentiation
- Immunologic Memory
- Lymphocyte Activation
- Mice, Inbred C57BL
- Nuclear Envelope/metabolism
- Nuclear Receptor Subfamily 4, Group A, Member 1/genetics
- Nuclear Receptor Subfamily 4, Group A, Member 1/metabolism
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
- Microscopy, Fluorescence
- Fluorescent Antibody Technique
- Humans
Collapse
Affiliation(s)
- Benjamin D Hale
- Institute of Molecular Systems Biology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Yannik Severin
- Institute of Molecular Systems Biology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Fabienne Graebnitz
- Institute of Microbiology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Dominique Stark
- Institute of Microbiology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Daniel Guignard
- Institute of Molecular Systems Biology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Julien Mena
- Institute of Molecular Systems Biology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Yasmin Festl
- Institute of Molecular Systems Biology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Sohyon Lee
- Institute of Molecular Systems Biology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Jacob Hanimann
- Institute of Molecular Systems Biology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Nathan S Zangger
- Institute of Microbiology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Michelle Meier
- Institute of Molecular Systems Biology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - David Goslings
- Blood Transfusion Service Zürich, Swiss Red Cross (SRC), Schlieren, Switzerland
| | - Olga Lamprecht
- Blood Transfusion Service Zürich, Swiss Red Cross (SRC), Schlieren, Switzerland
| | - Beat M Frey
- Blood Transfusion Service Zürich, Swiss Red Cross (SRC), Schlieren, Switzerland
| | - Annette Oxenius
- Institute of Microbiology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Berend Snijder
- Institute of Molecular Systems Biology, Department of Biology, ETH Zürich, Zürich, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Comprehensive Cancer Center Zurich (CCCZ), Zürich, Switzerland
| |
Collapse
|
7
|
Aoki H, Kitabatake M, Abe H, Xu P, Tsunoda M, Shichino S, Hara A, Ouji-Sageshima N, Motozono C, Ito T, Matsushima K, Ueha S. CD8 + T cell memory induced by successive SARS-CoV-2 mRNA vaccinations is characterized by shifts in clonal dominance. Cell Rep 2024; 43:113887. [PMID: 38458195 DOI: 10.1016/j.celrep.2024.113887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 12/27/2023] [Accepted: 02/14/2024] [Indexed: 03/10/2024] Open
Abstract
mRNA vaccines against the spike glycoprotein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) elicit strong T cell responses. However, a clonal-resolution analysis of T cell responses to mRNA vaccination has not been performed. Here, we temporally track the CD8+ T cell repertoire in individuals who received three shots of the BNT162b2 mRNA vaccine through longitudinal T cell receptor sequencing with peptide-human leukocyte antigen (HLA) tetramer analysis. We demonstrate a shift in T cell responses between the clonotypes with different kinetics: from early responders that expand rapidly after the first shot to main responders that greatly expand after the second shot. Although the main responders re-expand after the third shot, their clonal diversity is skewed, and newly elicited third responders partially replace them. Furthermore, this shift in clonal dominance occurs not only between, but also within, clonotypes specific for spike epitopes. Our study will be a valuable resource for understanding vaccine-induced T cell responses in general.
Collapse
Affiliation(s)
- Hiroyasu Aoki
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda City, Chiba 2780022, Japan; Department of Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 1130033, Japan
| | - Masahiro Kitabatake
- Department of Immunology, Nara Medical University, Kashihara City, Nara 6348521, Japan
| | - Haruka Abe
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda City, Chiba 2780022, Japan
| | - Peng Xu
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda City, Chiba 2780022, Japan
| | - Mikiya Tsunoda
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda City, Chiba 2780022, Japan
| | - Shigeyuki Shichino
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda City, Chiba 2780022, Japan
| | - Atsushi Hara
- Department of Immunology, Nara Medical University, Kashihara City, Nara 6348521, Japan
| | - Noriko Ouji-Sageshima
- Department of Immunology, Nara Medical University, Kashihara City, Nara 6348521, Japan
| | - Chihiro Motozono
- Division of Infection and Immunity, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto City, Kumamoto 8600811, Japan
| | - Toshihiro Ito
- Department of Immunology, Nara Medical University, Kashihara City, Nara 6348521, Japan
| | - Kouji Matsushima
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda City, Chiba 2780022, Japan
| | - Satoshi Ueha
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda City, Chiba 2780022, Japan.
| |
Collapse
|
8
|
Chen DG, Xie J, Su Y, Heath JR. T cell receptor sequences are the dominant factor contributing to the phenotype of CD8 + T cells with specificities against immunogenic viral antigens. Cell Rep 2023; 42:113279. [PMID: 37883974 PMCID: PMC10729740 DOI: 10.1016/j.celrep.2023.113279] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/23/2023] [Accepted: 09/29/2023] [Indexed: 10/28/2023] Open
Abstract
Antigen-specific CD8+ T cells mediate pathogen clearance. T cell phenotype is influenced by T cell receptor (TCR) sequences and environmental signals. Quantitative comparisons of these factors in human disease, while challenging to obtain, can provide foundational insights into basic T cell biology. Here, we investigate the phenotype kinetics of 679 CD8+ T cell clonotypes, each with specificity against one of three immunogenic viral antigens. Data were collected from a longitudinal study of 68 COVID-19 patients with antigens from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), cytomegalovirus (CMV), and influenza. Each antigen is associated with a different type of immune activation during COVID-19. We find TCR sequence to be by far the most important factor in shaping T cell phenotype and persistence for populations specific to any of these antigens. Our work demonstrates the important relationship between TCR sequence and T cell phenotype and persistence and helps explain why T cell phenotype often appears to be determined early in an infection.
Collapse
Affiliation(s)
- Daniel G Chen
- Institute of Systems Biology, Seattle, WA 98109, USA; Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Clinical Research Division, Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Jingyi Xie
- Institute of Systems Biology, Seattle, WA 98109, USA; Molecular Engineering & Sciences Institute, University of Washington, Seattle, WA 98105, USA
| | - Yapeng Su
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Clinical Research Division, Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - James R Heath
- Institute of Systems Biology, Seattle, WA 98109, USA; Department of Bioengineering, University of Washington, Seattle, WA 98105, USA.
| |
Collapse
|
9
|
Gicobi JK, Mao Z, DeFranco G, Hirdler JB, Li Y, Vianzon VV, Dellacecca ER, Hsu MA, Barham W, Yan Y, Mansfield AS, Lin Y, Wu X, Hitosugi T, Owen D, Grams MP, Orme JJ, Lucien F, Zeng H, Park SS, Dong H. Salvage therapy expands highly cytotoxic and metabolically fit resilient CD8 + T cells via ME1 up-regulation. SCIENCE ADVANCES 2023; 9:eadi2414. [PMID: 37967193 PMCID: PMC10651128 DOI: 10.1126/sciadv.adi2414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 10/16/2023] [Indexed: 11/17/2023]
Abstract
Patients with advanced cancers who either do not experience initial response to or progress while on immune checkpoint inhibitors (ICIs) receive salvage radiotherapy to reduce tumor burden and tumor-related symptoms. Occasionally, some patients experience substantial global tumor regression with a rebound of cytotoxic CD8+ T cells. We have termed the rebound of cytotoxic CD8+ T cells in response to salvage therapy as T cell resilience and examined the underlying mechanisms of resilience. Resilient T cells are enriched for CX3CR1+ CD8+ T cells with low mitochondrial membrane potential, accumulate less reactive oxygen species (ROS), and express more malic enzyme 1 (ME1). ME1 overexpression enhanced the cytotoxicity and expansion of effector CD8+ T cells partially via the type I interferon pathway. ME1 also increased mitochondrial respiration while maintaining the redox state balance. ME1 increased the cytotoxicity of peripheral lymphocytes from patients with advanced cancers. Thus, preserved resilient T cells in patients rebound after salvage therapy and ME1 enhances their resiliency.
Collapse
Affiliation(s)
- Joanina K. Gicobi
- Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Zhiming Mao
- Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Grace DeFranco
- Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | | | - Ying Li
- Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, FL, USA
| | - Vianca V. Vianzon
- Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Emilia R. Dellacecca
- Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Michelle A. Hsu
- Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Whitney Barham
- Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Yiyi Yan
- Division of Medical Oncology, Mayo Clinic, Jacksonville, FL, USA
| | | | - Yi Lin
- Division of Medical Oncology, Mayo Clinic, Rochester, MN, USA
| | - Xiaosheng Wu
- Division of Medical Oncology, Mayo Clinic, Rochester, MN, USA
| | - Taro Hitosugi
- Department of Oncology, Mayo Clinic, Rochester, MN, USA
| | - Dawn Owen
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, USA
| | - Michael P. Grams
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, USA
| | - Jacob J. Orme
- Division of Medical Oncology, Mayo Clinic, Rochester, MN, USA
| | | | - Hu Zeng
- Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
- Department of Rheumatology, Mayo Clinic, Rochester, MN, USA
| | - Sean S. Park
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, USA
| | - Haidong Dong
- Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
- Department of Urology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
10
|
Preiss NK, Kamal Y, Wilkins OM, Li C, Kolling FW, Trask HW, Usherwood YK, Cheng C, Frost HR, Usherwood EJ. Characterizing control of memory CD8 T cell differentiation by BTB-ZF transcription factor Zbtb20. Life Sci Alliance 2023; 6:e202201683. [PMID: 37414528 PMCID: PMC10326419 DOI: 10.26508/lsa.202201683] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 07/08/2023] Open
Abstract
Members of the BTB-ZF transcription factor family regulate the immune system. Our laboratory identified that family member Zbtb20 contributes to the differentiation, recall responses, and metabolism of CD8 T cells. Here, we report a characterization of the transcriptional and epigenetic signatures controlled by Zbtb20 at single-cell resolution during the effector and memory phases of the CD8 T cell response. Without Zbtb20, transcriptional programs associated with memory CD8 T cell formation were up-regulated throughout the CD8 T response. A signature of open chromatin was associated with genes controlling T cell activation, consistent with the known impact on differentiation. In addition, memory CD8 T cells lacking Zbtb20 were characterized by open chromatin regions with overrepresentation of AP-1 transcription factor motifs and elevated RNA- and protein-level expressions of the corresponding AP-1 components. Finally, we describe motifs and genomic annotations from the DNA targets of Zbtb20 in CD8 T cells identified by cleavage under targets and release under nuclease (CUT&RUN). Together, these data establish the transcriptional and epigenetic networks contributing to the control of CD8 T cell responses by Zbtb20.
Collapse
Affiliation(s)
- Nicholas K Preiss
- Microbiology and Immunology Department, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Yasmin Kamal
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Owen M Wilkins
- Department of Biomedical Data Science, Geisel School of Medicine, Dartmouth College, Hanover, NH, USA
- Genomics and Molecular Biology Shared Resource, Dartmouth Cancer Center, Geisel School of Medicine, Lebanon, NH, USA
| | - Chenyang Li
- Genomic Medicine Department, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center UTHealth Houston, Houston, TX, USA
| | - Fred W Kolling
- Genomics and Molecular Biology Shared Resource, Dartmouth Cancer Center, Geisel School of Medicine, Lebanon, NH, USA
| | - Heidi W Trask
- Genomics and Molecular Biology Shared Resource, Dartmouth Cancer Center, Geisel School of Medicine, Lebanon, NH, USA
| | - Young-Kwang Usherwood
- Microbiology and Immunology Department, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Chao Cheng
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- The Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, USA
| | - Hildreth R Frost
- Department of Biomedical Data Science, Geisel School of Medicine, Dartmouth College, Hanover, NH, USA
| | - Edward J Usherwood
- Microbiology and Immunology Department, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| |
Collapse
|
11
|
Fonseca FN, Haach V, Bellaver FV, Bombassaro G, Gava D, da Silva LP, Baron LF, Simonelly M, Carvalho WA, Schaefer R, Bastos AP. Immunological profile of mice immunized with a polyvalent virosome-based influenza vaccine. Virol J 2023; 20:187. [PMID: 37605141 PMCID: PMC10463652 DOI: 10.1186/s12985-023-02158-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/11/2023] [Indexed: 08/23/2023] Open
Abstract
BACKGROUND Influenza A virus (IAV) causes respiratory disease in pigs and is a major concern for public health. Vaccination of pigs is the most successful measure to mitigate the impact of the disease in the herds. Influenza-based virosome is an effective immunomodulating carrier that replicates the natural antigen presentation pathway and has tolerability profile due to their purity and biocompatibility. METHODS This study aimed to develop a polyvalent virosome influenza vaccine containing the hemagglutinin and neuraminidase proteins derived from the swine IAVs (swIAVs) H1N1, H1N2 and H3N2 subtypes, and to investigate its effectiveness in mice as a potential vaccine for swine. Mice were immunized with two vaccine doses (1 and 15 days), intramuscularly and intranasally. At 21 days and eight months later after the second vaccine dose, mice were euthanized. The humoral and cellular immune responses in mice vaccinated intranasally or intramuscularly with a polyvalent influenza virosomal vaccine were investigated. RESULTS Only intramuscular vaccination induced high hemagglutination inhibition (HI) titers. Seroconversion and seroprotection (> 4-fold rise in HI antibody titers, reaching a titer of ≥ 1:40) were achieved in 80% of mice (intramuscularly vaccinated group) at 21 days after booster immunization. Virus-neutralizing antibody titers against IAV were detected at 8 months after vaccination, indicating long-lasting immunity. Overall, mice immunized with the virosome displayed greater ability for B, effector-T and memory-T cells from the spleen to respond to H1N1, H1N2 and H3N2 antigens. CONCLUSIONS All findings showed an efficient immune response against IAVs in mice vaccinated with a polyvalent virosome-based influenza vaccine.
Collapse
Affiliation(s)
| | - Vanessa Haach
- Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Heidarian M, Jensen IJ, Kannan SK, Pewe LL, Hassert M, Park S, Xue HH, Harty JT, Badovinac VP. Sublethal whole-body irradiation induces permanent loss and dysfunction in pathogen-specific circulating memory CD8 T cell populations. Proc Natl Acad Sci U S A 2023; 120:e2302785120. [PMID: 37364124 PMCID: PMC10318958 DOI: 10.1073/pnas.2302785120] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/31/2023] [Indexed: 06/28/2023] Open
Abstract
The increasing use of nuclear energy sources inevitably raises the risk of accidental or deliberate radiation exposure and associated immune dysfunction. However, the extent to which radiation exposure impacts memory CD8 T cells, potent mediators of immunity to recurring intracellular infections and malignancies, remains understudied. Using P14 CD8 T cell chimeric mice (P14 chimeras) with an lymphocytic choriomeningitis virus (LCMV) infection model, we observed that sublethal (5Gy) whole-body irradiation (WBI) induced a rapid decline in the number of naive (TN) and P14 circulating memory CD8 T cells (TCIRCM), with the former being more susceptible to radiation-induced numeric loss. While TN cell numbers rapidly recovered, as previously described, the number of P14 TCIRCM cells remained low at least 9 mo after radiation exposure. Additionally, the remaining P14 TCIRCM in irradiated hosts exhibited an inefficient transition to a central memory (CD62L+) phenotype compared to nonirradiated P14 chimeras. WBI also resulted in long-lasting T cell intrinsic deficits in memory CD8 T cells, including diminished cytokine and chemokine production along with impaired secondary expansion upon cognate Ag reencounter. Irradiated P14 chimeras displayed significantly higher bacterial burden after challenge with Listeria monocytogenes expressing the LCMV GP33-41 epitope relative to nonirradiated controls, likely due to radiation-induced numerical and functional impairments. Taken together, our findings suggest that sublethal radiation exposure caused a long-term numerical, impaired differentiation, and functional dysregulation in preexisting TCIRCM, rendering previously protected hosts susceptible to reinfection.
Collapse
Affiliation(s)
| | - Isaac J. Jensen
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA52246
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY10032
| | - Shravan Kumar Kannan
- Department of Pathology, University of Iowa, Iowa City, IA52246
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA52246
| | - Lecia L. Pewe
- Department of Pathology, University of Iowa, Iowa City, IA52246
| | - Mariah Hassert
- Department of Pathology, University of Iowa, Iowa City, IA52246
| | - SungRye Park
- Center for Discovery and Innovation, Hackensack University Medical Center, Nutley, NJ07110
| | - Hai-Hui Xue
- Center for Discovery and Innovation, Hackensack University Medical Center, Nutley, NJ07110
| | - John T. Harty
- Department of Pathology, University of Iowa, Iowa City, IA52246
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA52246
| | - Vladimir P. Badovinac
- Department of Pathology, University of Iowa, Iowa City, IA52246
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA52246
| |
Collapse
|
13
|
Laphanuwat P, Gomes DCO, Akbar AN. Senescent T cells: Beneficial and detrimental roles. Immunol Rev 2023; 316:160-175. [PMID: 37098109 PMCID: PMC10952287 DOI: 10.1111/imr.13206] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/20/2023] [Accepted: 04/01/2023] [Indexed: 04/27/2023]
Abstract
As the thymus involutes during aging, the T-cell pool has to be maintained by the periodic expansion of preexisting T cells during adulthood. A conundrum is that repeated episodes of activation and proliferation drive the differentiation of T cells toward replicative senescence, due to telomere erosion. This review discusses mechanisms that regulate the end-stage differentiation (senescence) of T cells. Although these cells, within both CD4 and CD8 compartments, lose proliferative activity after antigen-specific challenge, they acquire innate-like immune function. While this may confer broad immune protection during aging, these senescent T cells may also cause immunopathology, especially in the context of excessive inflammation in tissue microenvironments.
Collapse
Affiliation(s)
- Phatthamon Laphanuwat
- Division of MedicineUniversity College LondonLondonUK
- Department of PharmacologyFaculty of Medicine, Khon Kaen UniversityKhon KaenThailand
| | - Daniel Claudio Oliveira Gomes
- Division of MedicineUniversity College LondonLondonUK
- Núcleo de Doenças InfecciosasUniversidade Federal do Espírito SantoVitoriaBrazil
- Núcleo de BiotecnologiaUniversidade Federal do Espírito SantoVitoriaBrazil
| | - Arne N. Akbar
- Division of MedicineUniversity College LondonLondonUK
| |
Collapse
|
14
|
Fidelle M, Rauber C, Alves Costa Silva C, Tian AL, Lahmar I, de La Varende ALM, Zhao L, Thelemaque C, Lebhar I, Messaoudene M, Pizzato E, Birebent R, Mbogning Fonkou MD, Zoppi S, Reni A, Dalban C, Leduc M, Ferrere G, Durand S, Ly P, Silvin A, Mulder K, Dutertre CA, Ginhoux F, Yonekura S, Roberti MP, Tidjani-Alou M, Terrisse S, Chen J, Kepp O, Schippers A, Wagner N, Suárez-Gosálvez J, Kobold S, Fahrner JE, Richard C, Bosq J, Lordello L, Vitali G, Galleron N, Quinquis B, Le Chatelier E, Blanchard L, Girard JP, Jarry A, Gervois N, Godefroy E, Labarrière N, Koschny R, Daillère R, Besse B, Truntzer C, Ghiringhelli F, Coatnoan N, Mhanna V, Klatzmann D, Drubay D, Albiges L, Thomas AM, Segata N, Danlos FX, Marabelle A, Routy B, Derosa L, Kroemer G, Zitvogel L. A microbiota-modulated checkpoint directs immunosuppressive intestinal T cells into cancers. Science 2023; 380:eabo2296. [PMID: 37289890 DOI: 10.1126/science.abo2296] [Citation(s) in RCA: 49] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 04/14/2023] [Indexed: 06/10/2023]
Abstract
Antibiotics (ABX) compromise the efficacy of programmed cell death protein 1 (PD-1) blockade in cancer patients, but the mechanisms underlying their immunosuppressive effects remain unknown. By inducing the down-regulation of mucosal addressin cell adhesion molecule 1 (MAdCAM-1) in the ileum, post-ABX gut recolonization by Enterocloster species drove the emigration of enterotropic α4β7+CD4+ regulatory T 17 cells into the tumor. These deleterious ABX effects were mimicked by oral gavage of Enterocloster species, by genetic deficiency, or by antibody-mediated neutralization of MAdCAM-1 and its receptor, α4β7 integrin. By contrast, fecal microbiota transplantation or interleukin-17A neutralization prevented ABX-induced immunosuppression. In independent lung, kidney, and bladder cancer patient cohorts, low serum levels of soluble MAdCAM-1 had a negative prognostic impact. Thus, the MAdCAM-1-α4β7 axis constitutes an actionable gut immune checkpoint in cancer immunosurveillance.
Collapse
Affiliation(s)
- Marine Fidelle
- Gustave Roussy Cancer Campus, Villejuif Cedex, France
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France
- Institut National de la Santé Et de la Recherche Médicale (INSERM) U1015, Équipe Labellisée - Ligue Nationale contre le Cancer, Villejuif, France
| | - Conrad Rauber
- Gustave Roussy Cancer Campus, Villejuif Cedex, France
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France
- Institut National de la Santé Et de la Recherche Médicale (INSERM) U1015, Équipe Labellisée - Ligue Nationale contre le Cancer, Villejuif, France
- Department of Gastroenterology and Infectious Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - Carolina Alves Costa Silva
- Gustave Roussy Cancer Campus, Villejuif Cedex, France
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France
- Institut National de la Santé Et de la Recherche Médicale (INSERM) U1015, Équipe Labellisée - Ligue Nationale contre le Cancer, Villejuif, France
| | - Ai-Ling Tian
- Gustave Roussy Cancer Campus, Villejuif Cedex, France
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France
- Centre de Recherche des Cordeliers, INSERM U1138, Équipe Labellisée - Ligue Nationale contre le Cancer, Université Paris Cité, Sorbonne Université, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
| | - Imran Lahmar
- Gustave Roussy Cancer Campus, Villejuif Cedex, France
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France
- Institut National de la Santé Et de la Recherche Médicale (INSERM) U1015, Équipe Labellisée - Ligue Nationale contre le Cancer, Villejuif, France
| | - Anne-Laure Mallard de La Varende
- Gustave Roussy Cancer Campus, Villejuif Cedex, France
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France
- Institut National de la Santé Et de la Recherche Médicale (INSERM) U1015, Équipe Labellisée - Ligue Nationale contre le Cancer, Villejuif, France
| | - Liwei Zhao
- Gustave Roussy Cancer Campus, Villejuif Cedex, France
- Centre de Recherche des Cordeliers, INSERM U1138, Équipe Labellisée - Ligue Nationale contre le Cancer, Université Paris Cité, Sorbonne Université, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
| | - Cassandra Thelemaque
- Gustave Roussy Cancer Campus, Villejuif Cedex, France
- Institut National de la Santé Et de la Recherche Médicale (INSERM) U1015, Équipe Labellisée - Ligue Nationale contre le Cancer, Villejuif, France
| | - Isabelle Lebhar
- Gustave Roussy Cancer Campus, Villejuif Cedex, France
- Institut National de la Santé Et de la Recherche Médicale (INSERM) U1015, Équipe Labellisée - Ligue Nationale contre le Cancer, Villejuif, France
| | - Meriem Messaoudene
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Quebec, Canada
| | - Eugenie Pizzato
- Gustave Roussy Cancer Campus, Villejuif Cedex, France
- Institut National de la Santé Et de la Recherche Médicale (INSERM) U1015, Équipe Labellisée - Ligue Nationale contre le Cancer, Villejuif, France
| | - Roxanne Birebent
- Gustave Roussy Cancer Campus, Villejuif Cedex, France
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France
- Institut National de la Santé Et de la Recherche Médicale (INSERM) U1015, Équipe Labellisée - Ligue Nationale contre le Cancer, Villejuif, France
| | - Maxime Descartes Mbogning Fonkou
- Gustave Roussy Cancer Campus, Villejuif Cedex, France
- Institut National de la Santé Et de la Recherche Médicale (INSERM) U1015, Équipe Labellisée - Ligue Nationale contre le Cancer, Villejuif, France
| | - Silvia Zoppi
- Gustave Roussy Cancer Campus, Villejuif Cedex, France
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Anna Reni
- Gustave Roussy Cancer Campus, Villejuif Cedex, France
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France
- Section of Oncology, Department of Medicine, University of Verona School of Medicine and Verona University Hospital Trust, Verona, Italy
| | - Cécile Dalban
- Clinical Research Department, Centre Léon Bérard, Lyon, France
| | - Marion Leduc
- Gustave Roussy Cancer Campus, Villejuif Cedex, France
- Centre de Recherche des Cordeliers, INSERM U1138, Équipe Labellisée - Ligue Nationale contre le Cancer, Université Paris Cité, Sorbonne Université, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
| | - Gladys Ferrere
- Gustave Roussy Cancer Campus, Villejuif Cedex, France
- Institut National de la Santé Et de la Recherche Médicale (INSERM) U1015, Équipe Labellisée - Ligue Nationale contre le Cancer, Villejuif, France
- EverImmune, Gustave Roussy Cancer Campus, Villejuif Cedex, France
| | - Sylvère Durand
- Gustave Roussy Cancer Campus, Villejuif Cedex, France
- Centre de Recherche des Cordeliers, INSERM U1138, Équipe Labellisée - Ligue Nationale contre le Cancer, Université Paris Cité, Sorbonne Université, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
| | - Pierre Ly
- Gustave Roussy Cancer Campus, Villejuif Cedex, France
- Institut National de la Santé Et de la Recherche Médicale (INSERM) U1015, Équipe Labellisée - Ligue Nationale contre le Cancer, Villejuif, France
- Center of Clinical Investigations in Biotherapies of Cancer (BIOTHERIS), Villejuif, France
| | - Aymeric Silvin
- Gustave Roussy Cancer Campus, Villejuif Cedex, France
- Institut National de la Santé Et de la Recherche Médicale (INSERM) U1015, Équipe Labellisée - Ligue Nationale contre le Cancer, Villejuif, France
| | - Kevin Mulder
- Gustave Roussy Cancer Campus, Villejuif Cedex, France
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France
- Institut National de la Santé Et de la Recherche Médicale (INSERM) U1015, Équipe Labellisée - Ligue Nationale contre le Cancer, Villejuif, France
| | - Charles-Antoine Dutertre
- Gustave Roussy Cancer Campus, Villejuif Cedex, France
- Institut National de la Santé Et de la Recherche Médicale (INSERM) U1015, Équipe Labellisée - Ligue Nationale contre le Cancer, Villejuif, France
| | - Florent Ginhoux
- Gustave Roussy Cancer Campus, Villejuif Cedex, France
- Institut National de la Santé Et de la Recherche Médicale (INSERM) U1015, Équipe Labellisée - Ligue Nationale contre le Cancer, Villejuif, France
| | - Satoru Yonekura
- Gustave Roussy Cancer Campus, Villejuif Cedex, France
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France
- Institut National de la Santé Et de la Recherche Médicale (INSERM) U1015, Équipe Labellisée - Ligue Nationale contre le Cancer, Villejuif, France
| | - Maria Paula Roberti
- Gustave Roussy Cancer Campus, Villejuif Cedex, France
- Institut National de la Santé Et de la Recherche Médicale (INSERM) U1015, Équipe Labellisée - Ligue Nationale contre le Cancer, Villejuif, France
- Clinical Cooperation Unit Applied Tumor Immunity, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Medical Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital (UKHD), Heidelberg, Germany
| | - Maryam Tidjani-Alou
- Gustave Roussy Cancer Campus, Villejuif Cedex, France
- Institut National de la Santé Et de la Recherche Médicale (INSERM) U1015, Équipe Labellisée - Ligue Nationale contre le Cancer, Villejuif, France
| | - Safae Terrisse
- Gustave Roussy Cancer Campus, Villejuif Cedex, France
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France
- Institut National de la Santé Et de la Recherche Médicale (INSERM) U1015, Équipe Labellisée - Ligue Nationale contre le Cancer, Villejuif, France
| | - Jianzhou Chen
- Gustave Roussy Cancer Campus, Villejuif Cedex, France
- Institut National de la Santé Et de la Recherche Médicale (INSERM) U1015, Équipe Labellisée - Ligue Nationale contre le Cancer, Villejuif, France
| | - Oliver Kepp
- Gustave Roussy Cancer Campus, Villejuif Cedex, France
- Centre de Recherche des Cordeliers, INSERM U1138, Équipe Labellisée - Ligue Nationale contre le Cancer, Université Paris Cité, Sorbonne Université, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
| | - Angela Schippers
- Department of Pediatrics, University Hospital RWTH Aachen, Aachen, Germany
| | - Norbert Wagner
- Department of Pediatrics, University Hospital RWTH Aachen, Aachen, Germany
| | - Javier Suárez-Gosálvez
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, LMU Munich, Germany
| | - Sebastian Kobold
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, LMU Munich, Germany
- German Cancer Consortium (DKTK), partner site Munich, Munich, Germany
| | - Jean-Eudes Fahrner
- Gustave Roussy Cancer Campus, Villejuif Cedex, France
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France
- Institut National de la Santé Et de la Recherche Médicale (INSERM) U1015, Équipe Labellisée - Ligue Nationale contre le Cancer, Villejuif, France
| | - Corentin Richard
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Quebec, Canada
| | | | - Leonardo Lordello
- Gustave Roussy Cancer Campus, Villejuif Cedex, France
- Institut National de la Santé Et de la Recherche Médicale (INSERM) U1015, Équipe Labellisée - Ligue Nationale contre le Cancer, Villejuif, France
| | - Giacomo Vitali
- MetaGenoPolis, INRAe, Université Paris-Saclay, Jouy en Josas, France
| | - Nathalie Galleron
- MetaGenoPolis, INRAe, Université Paris-Saclay, Jouy en Josas, France
| | - Benoît Quinquis
- MetaGenoPolis, INRAe, Université Paris-Saclay, Jouy en Josas, France
| | | | - Lucas Blanchard
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Jean-Philippe Girard
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Anne Jarry
- Nantes Université, Université d'Angers, INSERM, CNRS, Immunology and New Concepts in ImmunoTherapy, INCIT, UMR 1302/EMR6001, Nantes, France
| | - Nadine Gervois
- Nantes Université, Université d'Angers, INSERM, CNRS, Immunology and New Concepts in ImmunoTherapy, INCIT, UMR 1302/EMR6001, Nantes, France
| | - Emmanuelle Godefroy
- Nantes Université, Université d'Angers, INSERM, CNRS, Immunology and New Concepts in ImmunoTherapy, INCIT, UMR 1302/EMR6001, Nantes, France
| | - Nathalie Labarrière
- Nantes Université, Université d'Angers, INSERM, CNRS, Immunology and New Concepts in ImmunoTherapy, INCIT, UMR 1302/EMR6001, Nantes, France
- LabEx IGO, Université de Nantes, Nantes, France
| | - Ronald Koschny
- Department of Gastroenterology and Infectious Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - Romain Daillère
- EverImmune, Gustave Roussy Cancer Campus, Villejuif Cedex, France
| | - Benjamin Besse
- Gustave Roussy Cancer Campus, Villejuif Cedex, France
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France
| | - Caroline Truntzer
- Université de Bourgogne Franche-Comté, Plateforme de Transfert de Biologie du Cancer, Centre Georges-François Leclerc, Equipe Labellisée Ligue Nationale Contre le Cancer, Centre de Recherche INSERM LNC-UMR1231, Institut Médical de Génétique et d'Immunologie, Dijon, France
| | - François Ghiringhelli
- Université de Bourgogne Franche-Comté, Plateforme de Transfert de Biologie du Cancer, Centre Georges-François Leclerc, Equipe Labellisée Ligue Nationale Contre le Cancer, Centre de Recherche INSERM LNC-UMR1231, Institut Médical de Génétique et d'Immunologie, Dijon, France
| | - Nicolas Coatnoan
- AP-HP, Hôpital Pitié-Salpêtrière, Clinical Investigation Center for Biotherapies (CIC-BTi) and Immunology-Inflammation-Infectiology and Dermatology Department (3iD), Paris, France
- Sorbonne Université, INSERM, UMRS959 Immunology-Immunopathology-Immunotherapy Laboratory, Paris, France
| | - Vanessa Mhanna
- AP-HP, Hôpital Pitié-Salpêtrière, Clinical Investigation Center for Biotherapies (CIC-BTi) and Immunology-Inflammation-Infectiology and Dermatology Department (3iD), Paris, France
- Sorbonne Université, INSERM, UMRS959 Immunology-Immunopathology-Immunotherapy Laboratory, Paris, France
| | - David Klatzmann
- AP-HP, Hôpital Pitié-Salpêtrière, Clinical Investigation Center for Biotherapies (CIC-BTi) and Immunology-Inflammation-Infectiology and Dermatology Department (3iD), Paris, France
- Sorbonne Université, INSERM, UMRS959 Immunology-Immunopathology-Immunotherapy Laboratory, Paris, France
| | - Damien Drubay
- Gustave Roussy Cancer Campus, Villejuif Cedex, France
- Office of Biostatistics and Epidemiology, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
- Inserm, Université Paris-Saclay, CESP U1018, Oncostat, labeled Ligue Contre le Cancer, Villejuif, France
| | - Laurence Albiges
- Gustave Roussy Cancer Campus, Villejuif Cedex, France
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France
| | - Andrew Maltez Thomas
- Department of Computational, Cellular and Integrative Biology, University of Trento, Trento, Italy
| | - Nicola Segata
- Department of Computational, Cellular and Integrative Biology, University of Trento, Trento, Italy
- Istituto Europeo di Oncologia (IEO), National Cancer Institute (IRCCS), Milan, Italy
| | - François-Xavier Danlos
- Gustave Roussy Cancer Campus, Villejuif Cedex, France
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France
- Institut National de la Santé Et de la Recherche Médicale (INSERM) U1015, Équipe Labellisée - Ligue Nationale contre le Cancer, Villejuif, France
- Center of Clinical Investigations in Biotherapies of Cancer (BIOTHERIS), Villejuif, France
- Drug Development Department, Gustave Roussy Cancer Campus, Villejuif Cedex, France
| | - Aurélien Marabelle
- Gustave Roussy Cancer Campus, Villejuif Cedex, France
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France
- Institut National de la Santé Et de la Recherche Médicale (INSERM) U1015, Équipe Labellisée - Ligue Nationale contre le Cancer, Villejuif, France
- Center of Clinical Investigations in Biotherapies of Cancer (BIOTHERIS), Villejuif, France
- Drug Development Department, Gustave Roussy Cancer Campus, Villejuif Cedex, France
| | - Bertrand Routy
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Quebec, Canada
- Hematology-Oncology Division, Department of Medicine, Centre Hospitalier de l'Université de Montréal (CHUM), Montréal, Quebec, Canada
| | - Lisa Derosa
- Gustave Roussy Cancer Campus, Villejuif Cedex, France
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France
- Institut National de la Santé Et de la Recherche Médicale (INSERM) U1015, Équipe Labellisée - Ligue Nationale contre le Cancer, Villejuif, France
- Center of Clinical Investigations in Biotherapies of Cancer (BIOTHERIS), Villejuif, France
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, INSERM U1138, Équipe Labellisée - Ligue Nationale contre le Cancer, Université Paris Cité, Sorbonne Université, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
- Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, Assistance Publique - Hôpitaux de Paris (AP-HP), Paris, France
| | - Laurence Zitvogel
- Gustave Roussy Cancer Campus, Villejuif Cedex, France
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France
- Institut National de la Santé Et de la Recherche Médicale (INSERM) U1015, Équipe Labellisée - Ligue Nationale contre le Cancer, Villejuif, France
- Center of Clinical Investigations in Biotherapies of Cancer (BIOTHERIS), Villejuif, France
| |
Collapse
|
15
|
Burrack AL, Spartz EJ, Rollins MR, Miller EA, Firulyova M, Cruz E, Goldberg MF, Wang IX, Nanda H, Shen S, Zaitsev K, Stromnes IM. Cxcr3 constrains pancreatic cancer dissemination through instructing T cell fate. Cancer Immunol Immunother 2023; 72:1461-1478. [PMID: 36472588 PMCID: PMC10198906 DOI: 10.1007/s00262-022-03338-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/18/2022] [Indexed: 12/12/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDA) is a lethal and metastatic malignancy resistant to therapy. Elucidating how pancreatic tumor-specific T cells differentiate and are maintained in vivo could inform novel therapeutic avenues to promote T cell antitumor activity. Here, we show that the spleen is a critical site harboring tumor-specific CD8 T cells that functionally segregate based on differential Cxcr3 and Klrg1 expression. Cxcr3+ Klrg1- T cells express the memory stem cell marker Tcf1, whereas Cxcr3-Klrg1 + T cells express GzmB consistent with terminal differentiation. We identify a Cxcr3+ Klrg1+ intermediate T cell subpopulation in the spleen that is highly enriched for tumor specificity. However, tumor-specific T cells infiltrating primary tumors progressively downregulate both Cxcr3 and Klrg1 while upregulating exhaustion markers PD-1 and Lag-3. We show that antigen-specific T cell infiltration into PDA is Cxcr3 independent. Further, Cxcr3-deficiency results in enhanced antigen-specific T cell IFNγ production in primary tumors, suggesting that Cxcr3 promotes loss of effector function. Ultimately, however, Cxcr3 was critical for mitigating cancer cell dissemination following immunotherapy with CD40 agonist + anti-PD-L1 or T cell receptor engineered T cell therapy targeting mesothelin. In the absence of Cxcr3, splenic Klrg1 + GzmB + antitumor T cells wain while pancreatic cancer disseminates suggesting a role for these cells in eliminating circulating metastatic tumor cells. Intratumoral myeloid cells are poised to produce Cxcl10, whereas splenic DC subsets produce Cxcl9 following immunotherapy supporting differential roles for these chemokines on T cell differentiation. Together, our study supports that Cxcr3 mitigates tumor cell dissemination by impacting peripheral T cell fate rather than intratumoral T cell trafficking.
Collapse
Affiliation(s)
- Adam L Burrack
- Department of Microbiology and Immunology, University of Minnesota Medical School, 2101 6th St SE, 2-186 WMBB, Minneapolis, MN, 55414, USA
- Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, 55415, USA
| | - Ellen J Spartz
- Department of Microbiology and Immunology, University of Minnesota Medical School, 2101 6th St SE, 2-186 WMBB, Minneapolis, MN, 55414, USA
- Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, 55415, USA
| | - Meagan R Rollins
- Department of Microbiology and Immunology, University of Minnesota Medical School, 2101 6th St SE, 2-186 WMBB, Minneapolis, MN, 55414, USA
- Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, 55415, USA
| | - Ebony A Miller
- Department of Microbiology and Immunology, University of Minnesota Medical School, 2101 6th St SE, 2-186 WMBB, Minneapolis, MN, 55414, USA
- Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, 55415, USA
| | - Maria Firulyova
- Computer Technologies Laboratory, ITMO University, Saint Petersburg, Russia
| | - Eduardo Cruz
- Department of Microbiology and Immunology, University of Minnesota Medical School, 2101 6th St SE, 2-186 WMBB, Minneapolis, MN, 55414, USA
- Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, 55415, USA
| | - Michael F Goldberg
- Department of Microbiology and Immunology, University of Minnesota Medical School, 2101 6th St SE, 2-186 WMBB, Minneapolis, MN, 55414, USA
- Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, 55415, USA
| | - Iris X Wang
- Department of Microbiology and Immunology, University of Minnesota Medical School, 2101 6th St SE, 2-186 WMBB, Minneapolis, MN, 55414, USA
- Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, 55415, USA
| | - Hezkiel Nanda
- Institute for Health Informatics, University of Minnesota Medical School, Minneapolis, MN, 55414, USA
- Clinical Translational Science Institute, University of Minnesota, Minneapolis, MN, USA
| | - Steven Shen
- Institute for Health Informatics, University of Minnesota Medical School, Minneapolis, MN, 55414, USA
- Clinical Translational Science Institute, University of Minnesota, Minneapolis, MN, USA
| | - Konstantin Zaitsev
- Computer Technologies Laboratory, ITMO University, Saint Petersburg, Russia
| | - Ingunn M Stromnes
- Department of Microbiology and Immunology, University of Minnesota Medical School, 2101 6th St SE, 2-186 WMBB, Minneapolis, MN, 55414, USA.
- Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, 55415, USA.
- Masonic Cancer Center, Minneapolis, USA.
- Center for Genome Engineering, University of Minnesota Medical School, Minneapolis, MN, 55414, USA.
| |
Collapse
|
16
|
Modur V, Muhammad B, Yang JQ, Zheng Y, Komurov K, Guo F. Mechanism of inert inflammation in an immune checkpoint blockade-resistant tumor subtype bearing transcription elongation defects. Cell Rep 2023; 42:112364. [PMID: 37043352 PMCID: PMC10562518 DOI: 10.1016/j.celrep.2023.112364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 08/22/2022] [Accepted: 03/21/2023] [Indexed: 04/13/2023] Open
Abstract
The clinical response to immune checkpoint blockade (ICB) correlates with tumor-infiltrating cytolytic T lymphocytes (CTLs) prior to treatment. However, many of these inflamed tumors resist ICB through unknown mechanisms. We show that tumors with transcription elongation deficiencies (TEdef+), which we previously reported as being resistant to ICB in mouse models and the clinic, have high baseline CTLs. We show that high baseline CTLs in TEdef+ tumors result from aberrant activation of the nucleic acid sensing-TBK1-CCL5/CXCL9 signaling cascade, which results in an immunosuppressive microenvironment with elevated regulatory T cells and exhausted CTLs. ICB therapy of TEdef+ tumors fail to increase CTL infiltration and suppress tumor growth in both experimental and clinical settings, suggesting that TEdef+, along with surrogate markers of tumor immunogenicity such as tumor mutational burden and CTLs, should be considered in the decision process for patient immunotherapy indication.
Collapse
Affiliation(s)
- Vishnu Modur
- Division of Experimental Hematology and Cancer Biology, Children's Hospital Medical Center, and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| | - Belal Muhammad
- Division of Experimental Hematology and Cancer Biology, Children's Hospital Medical Center, and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Jun-Qi Yang
- Division of Experimental Hematology and Cancer Biology, Children's Hospital Medical Center, and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Yi Zheng
- Division of Experimental Hematology and Cancer Biology, Children's Hospital Medical Center, and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| | | | - Fukun Guo
- Division of Experimental Hematology and Cancer Biology, Children's Hospital Medical Center, and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
17
|
Liu X, Li H, Li S, Yuan J, Pang Y. Maintenance and recall of memory T cell populations against tuberculosis: Implications for vaccine design. Front Immunol 2023; 14:1100741. [PMID: 37063832 PMCID: PMC10102482 DOI: 10.3389/fimmu.2023.1100741] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 03/24/2023] [Indexed: 04/03/2023] Open
Abstract
Despite the widespread use of standardised drug regimens, advanced diagnostics, and Mycobacterium bovis Bacille-Calmette-Guérin (BCG) vaccines, the global tuberculosis (TB) epidemic remains uncontrollable. To address this challenge, improved vaccines are urgently required that can elicit persistent immunologic memory, the hallmark of successful vaccines. Nonetheless, the processes underlying the induction and maintenance of immunologic memory are not entirely understood. Clarifying how memory T cells (Tm cells) are created and survive long term may be a crucial step towards the development of effective T cell–targeted vaccines. Here, we review research findings on the memory T cell response, which involves mobilization of several distinct Tm cell subsets that are required for efficient host suppression of M. tuberculosis (Mtb) activity. We also summaries current knowledge related to the T cell response-based host barrier against Mtb infection and discuss advantages and disadvantages of novel TB vaccine candidates.
Collapse
Affiliation(s)
| | | | | | | | - Yu Pang
- *Correspondence: Jinfeng Yuan, ; Yu Pang,
| |
Collapse
|
18
|
Soerens AG, Künzli M, Quarnstrom CF, Scott MC, Swanson L, Locquiao JJ, Ghoneim HE, Zehn D, Youngblood B, Vezys V, Masopust D. Functional T cells are capable of supernumerary cell division and longevity. Nature 2023; 614:762-766. [PMID: 36653453 DOI: 10.1038/s41586-022-05626-9] [Citation(s) in RCA: 63] [Impact Index Per Article: 63.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 12/05/2022] [Indexed: 01/20/2023]
Abstract
Differentiated somatic mammalian cells putatively exhibit species-specific division limits that impede cancer but may constrain lifespans1-3. To provide immunity, transiently stimulated CD8+ T cells undergo unusually rapid bursts of numerous cell divisions, and then form quiescent long-lived memory cells that remain poised to reproliferate following subsequent immunological challenges. Here we addressed whether T cells are intrinsically constrained by chronological or cell-division limits. We activated mouse T cells in vivo using acute heterologous prime-boost-boost vaccinations4, transferred expanded cells to new mice, and then repeated this process iteratively. Over 10 years (greatly exceeding the mouse lifespan)5 and 51 successive immunizations, T cells remained competent to respond to vaccination. Cells required sufficient rest between stimulation events. Despite demonstrating the potential to expand the starting population at least 1040-fold, cells did not show loss of proliferation control and results were not due to contamination with young cells. Persistent stimulation by chronic infections or cancer can cause T cell proliferative senescence, functional exhaustion and death6. We found that although iterative acute stimulations also induced sustained expression and epigenetic remodelling of common exhaustion markers (including PD1, which is also known as PDCD1, and TOX) in the cells, they could still proliferate, execute antimicrobial functions and form quiescent memory cells. These observations provide a model to better understand memory cell differentiation, exhaustion, cancer and ageing, and show that functionally competent T cells can retain the potential for extraordinary population expansion and longevity well beyond their organismal lifespan.
Collapse
Affiliation(s)
- Andrew G Soerens
- Center for Immunology, Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN, USA
| | - Marco Künzli
- Center for Immunology, Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN, USA
| | - Clare F Quarnstrom
- Center for Immunology, Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN, USA
| | - Milcah C Scott
- Center for Immunology, Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN, USA
| | - Lee Swanson
- Center for Immunology, Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN, USA
| | - J J Locquiao
- Center for Immunology, Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN, USA
| | - Hazem E Ghoneim
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Dietmar Zehn
- Division of Animal Physiology and Immunology, School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Benjamin Youngblood
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Vaiva Vezys
- Center for Immunology, Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN, USA
| | - David Masopust
- Center for Immunology, Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
19
|
Montico G, Mingozzi F, Casciano F, Protti G, Gornati L, Marzola E, Banfi G, Guerrini R, Secchiero P, Volinia S, Granucci F, Reali E. CCR4 + CD8 + T cells clonally expand to differentiated effectors in murine psoriasis and in human psoriatic arthritis. Eur J Immunol 2023; 53:e2149702. [PMID: 36722608 DOI: 10.1002/eji.202149702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 01/23/2023] [Accepted: 01/30/2023] [Indexed: 02/02/2023]
Abstract
Psoriasis is a chronic inflammatory skin disease with an autoimmune component and associated with joint inflammation in up to 30% of cases. To investigate autoreactive T cells, we developed an imiquimod-induced psoriasis-like inflammation model in K5-mOVA.tg C57BL/6 mice expressing ovalbumin (OVA) on the keratinocyte membrane, adoptively transferred with OT-I OVA-specific CD8+ T cells. We evaluated the expansion of OT-I CD8+ T cells and their localization in skin, blood, and spleen. scRNA-seq and TCR sequencing data from patients with psoriatic arthritis were also analyzed. In the imiquimod-treated K5-mOVA.tg mouse model, OT-I T cells were markedly expanded in the skin and blood at early time points. OT-I T cells in the skin showed mainly CXCR3+ effector memory phenotype, whereas in peripheral blood there was an expansion of CCR4+ CXCR3+ OT-I cells. At a later time point, expanded OVA-specific T-cell population was found in the spleen. In patients with psoriatic arthritis, scRNA-seq and TCR sequencing data showed clonal expansion of CCR4+ TCM cells in the circulation and further expansion in the synovial fluid. Importantly, there was a clonotype overlap between CCR4+ TCM in the peripheral blood and CD8+ T-cell effectors in the synovial fluid. This mechanism could play a role in the generation and spreading of autoreactive T cells to the synovioentheseal tissues in psoriasis patients at risk of developing psoriatic arthritis.
Collapse
Affiliation(s)
| | - Francesca Mingozzi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Fabio Casciano
- Department of Translational Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy.,Interdepartmental Research Center for the Study of Multiple Sclerosis and Inflammatory and Degenerative Diseases of the Nervous System, University of Ferrara, Ferrara, Italy
| | - Giulia Protti
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy.,National Institute of Molecular Genetics "Romeo ed Enrica Invernizzi" (INGM), Milan, Italy
| | - Laura Gornati
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Erika Marzola
- Department of Chemical Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| | | | - Remo Guerrini
- Department of Chemical Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| | - Paola Secchiero
- Department of Translational Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Stefano Volinia
- Department of Translational Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy.,Biological and Chemical Research Centre (CNBCh UW), University of Warsaw, Warsaw, Poland
| | - Francesca Granucci
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Eva Reali
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| |
Collapse
|
20
|
Heidarian M, Griffith TS, Badovinac VP. Sepsis-induced changes in differentiation, maintenance, and function of memory CD8 T cell subsets. Front Immunol 2023; 14:1130009. [PMID: 36756117 PMCID: PMC9899844 DOI: 10.3389/fimmu.2023.1130009] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 01/09/2023] [Indexed: 01/24/2023] Open
Abstract
Formation of long-lasting memory lymphocytes is one of the foundational characteristics of adaptive immunity and the basis of many vaccination strategies. Following the rapid expansion and contraction of effector CD8 T cells, the surviving antigen (Ag)-specific cells give rise to the memory CD8 T cells that persist for a long time and are phenotypically and functionally distinct from their naïve counterparts. Significant heterogeneity exists within the memory CD8 T cell pool, as different subsets display distinct tissue localization preferences, cytotoxic ability, and proliferative capacity, but all memory CD8 T cells are equipped to mount an enhanced immune response upon Ag re-encounter. Memory CD8 T cells demonstrate numerical stability under homeostatic conditions, but sepsis causes a significant decline in the number of memory CD8 T cells and diminishes their Ag-dependent and -independent functions. Sepsis also rewires the transcriptional profile of memory CD8 T cells, which profoundly impacts memory CD8 T cell differentiation and, ultimately, the protective capacity of memory CD8 T cells upon subsequent stimulation. This review delves into different aspects of memory CD8 T cell subsets as well as the immediate and long-term impact of sepsis on memory CD8 T cell biology.
Collapse
Affiliation(s)
| | - Thomas S. Griffith
- Department of Urology, University of Minnesota, Minneapolis, MN, United States,Minneapolis Veterans Affairs Health Care System, Minneapolis, MN, United States
| | - Vladimir P. Badovinac
- Department of Pathology, University of Iowa, Iowa, IA, United States,Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa, IA, United States,*Correspondence: Vladimir P. Badovinac,
| |
Collapse
|
21
|
Ando S, Perkins CM, Sajiki Y, Chastain C, Valanparambil RM, Wieland A, Hudson WH, Hashimoto M, Ramalingam SS, Freeman GJ, Ahmed R, Araki K. mTOR regulates T cell exhaustion and PD-1-targeted immunotherapy response during chronic viral infection. J Clin Invest 2023; 133:e160025. [PMID: 36378537 PMCID: PMC9843061 DOI: 10.1172/jci160025] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
T cell exhaustion is a state of T cell dysfunction associated with expression of programmed death 1 (PD-1). Exhausted CD8+ T cells are maintained by self-renewing stem-like T cells that provide differentiated TIM3+ cells, a part of which possesses effector-like properties. PD-1-targeted therapies enhance T cell response by promoting differentiation of stem-like T cells toward TIM3+ cells, but the role of mTOR during T cell exhaustion remains elusive. Here, we showed that mTOR inhibition has distinct outcomes during the beginning of and after the establishment of chronic viral infection. Blocking mTOR during the T cell expansion phase enhanced the T cell response by causing accumulation of stem-like T cells, leading to improved efficacy of PD-1 immunotherapy; whereas, after exhaustion progressed, mTOR inhibition caused immunosuppression, characterized by decreased TIM3+ cells and increased viral load with minimal changes in stem-like T cells. Mechanistically, a cell-intrinsic mTOR signal was vital for differentiation of stem-like T cells into the TIM3+ state in the early and late phases of chronic infection as well as during PD-1 immunotherapy. Thus, PD-1 blockade worked after cessation of mTOR inhibition, but simultaneous treatment failed to induce functional TIM3+ cells, reducing efficacy of PD-1 immunotherapy. Our data demonstrate that mTOR regulates T cell exhaustion and have important implications for combination cancer therapies with PD-1 blockade.
Collapse
Affiliation(s)
- Satomi Ando
- Division of Infectious Diseases, Center for Inflammation and Tolerance, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Charles M. Perkins
- Division of Infectious Diseases, Center for Inflammation and Tolerance, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Yamato Sajiki
- Division of Infectious Diseases, Center for Inflammation and Tolerance, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Chase Chastain
- Division of Infectious Diseases, Center for Inflammation and Tolerance, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | | | - Andreas Wieland
- Emory Vaccine Center
- Depatment of Microbiology and Immunology, and
| | | | - Masao Hashimoto
- Emory Vaccine Center
- Depatment of Microbiology and Immunology, and
| | - Suresh S. Ramalingam
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia, USA
- Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Gordon J. Freeman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Rafi Ahmed
- Emory Vaccine Center
- Depatment of Microbiology and Immunology, and
- Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Koichi Araki
- Division of Infectious Diseases, Center for Inflammation and Tolerance, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
22
|
Moioffer SJ, Berton RR, McGonagill PW, Jensen IJ, Griffith TS, Badovinac VP. Inefficient Recovery of Repeatedly Stimulated Memory CD8 T Cells after Polymicrobial Sepsis Induction Leads to Changes in Memory CD8 T Cell Pool Composition. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:168-179. [PMID: 36480268 PMCID: PMC9840817 DOI: 10.4049/jimmunol.2200676] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/09/2022] [Indexed: 01/03/2023]
Abstract
Long-lasting sepsis-induced immunoparalysis has been principally studied in primary (1°) memory CD8 T cells; however, the impact of sepsis on memory CD8 T cells with a history of repeated cognate Ag encounters is largely unknown but important in understanding the role of sepsis in shaping the pre-existing memory CD8 T cell compartment. Higher-order memory CD8 T cells are crucial in providing immunity against common pathogens that reinfect the host or are generated by repeated vaccination. In this study, we analyzed peripheral blood from septic patients and show that memory CD8 T cells with defined Ag specificity for recurring CMV infection proliferate less than bulk populations of central memory CD8 T cells. Using TCR-transgenic T cells to generate 1° and higher-order (quaternary [4°]) memory T cells within the same host, we demonstrate that the susceptibility and loss of both memory subsets are similar after sepsis induction, and sepsis diminished Ag-dependent and -independent (bystander) functions of these memory subsets equally. Both the 1° and 4° memory T cell populations proliferated in a sepsis-induced lymphopenic environment; however, due to the intrinsic differences in baseline proliferative capacity, expression of receptors (e.g., CD127/CD122), and responsiveness to homeostatic cytokines, 1° memory T cells become overrepresented over time in sepsis survivors. Finally, IL-7/anti-IL-7 mAb complex treatment early after sepsis induction preferentially rescued the proliferation and accumulation of 1° memory T cells, whereas recovery of 4° memory T cells was less pronounced. Thus, inefficient recovery of repeatedly stimulated memory cells after polymicrobial sepsis induction leads to changes in memory T cell pool composition, a notion with important implications in devising strategies to recover the number and function of pre-existing memory CD8 T cells in sepsis survivors.
Collapse
Affiliation(s)
| | - Roger R. Berton
- Department of Pathology, University of Iowa, Iowa City, IA;,Interdisciplinary Program in Immunology, University of Iowa, Iowa City, IA
| | | | - Isaac J. Jensen
- Columbia University Irving Medical Center, University of Minnesota, Minneapolis, MN
| | - Thomas S. Griffith
- Department of Urology, University of Minnesota, Minneapolis, MN,,Minneapolis Veterans Affairs Health Care System, Minneapolis, MN
| | - Vladimir P. Badovinac
- Department of Pathology, University of Iowa, Iowa City, IA;,Interdisciplinary Program in Immunology, University of Iowa, Iowa City, IA
| |
Collapse
|
23
|
Hassert M, Harty JT. Tissue resident memory T cells- A new benchmark for the induction of vaccine-induced mucosal immunity. Front Immunol 2022; 13:1039194. [PMID: 36275668 PMCID: PMC9581298 DOI: 10.3389/fimmu.2022.1039194] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 09/21/2022] [Indexed: 11/13/2022] Open
Abstract
Historically, the gold-standard benchmark for vaccine immunogenicity has been the induction of neutralizing antibodies detectable in the serum of peripheral blood. However, in recent years there has been a new appreciation for the mucosa as an important site for vaccine induced immunity. As a point of first contact, the mucosal tissue represents a major site of immune based detection and restriction of pathogen entry and dissemination. Tissue resident memory T cells (Trm) are one of the critical cell types involved in this early detection and restriction of mucosal pathogens. Following tissue-specific infection or vaccination, Trm lodge themselves within tissues and can perform rapid sensing and alarm functions to control local re-infections, in an effort that has been defined as important for restriction of a number of respiratory pathogens including influenza and respiratory syncytial virus. Despite this characterized importance, only minor attention has been paid to the importance of Trm as a benchmark for vaccine immunogenicity. The purpose of this review is to highlight the functions of Trm with particular emphasis on respiratory infections, and to suggest the inclusion of Trm elicitation as a benchmark for vaccine immunogenicity in animal models, and where possible, human samples.
Collapse
|
24
|
Duneton C, Winterberg PD, Ford ML. Activation and regulation of alloreactive T cell immunity in solid organ transplantation. Nat Rev Nephrol 2022; 18:663-676. [PMID: 35902775 PMCID: PMC9968399 DOI: 10.1038/s41581-022-00600-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/23/2022] [Indexed: 01/18/2023]
Abstract
Transplantation is the only curative treatment for patients with kidney failure but it poses unique immunological challenges that must be overcome to prevent allograft rejection and ensure long-term graft survival. Alloreactive T cells are important contributors to graft rejection, and a clearer understanding of the mechanisms by which these cells recognize donor antigens - through direct, indirect or semi-direct pathways - will facilitate their therapeutic targeting. Post-T cell priming rejection responses can also be modified by targeting pathways that regulate T cell trafficking, survival cytokines or innate immune activation. Moreover, the quantity and quality of donor-reactive memory T cells crucially shape alloimmune responses. Of note, many fundamental concepts in transplant immunology have been derived from models of infection. However, the programmed differentiation of allograft-specific T cell responses is probably distinct from that of pathogen-elicited responses, owing to the dearth of pathogen-derived innate immune activation in the transplantation setting. Understanding the fundamental (and potentially unique) immunological pathways that lead to allograft rejection is therefore a prerequisite for the rational development of therapeutics that promote transplantation tolerance.
Collapse
Affiliation(s)
- Charlotte Duneton
- Paediatric Nephrology, Robert Debré Hospital, Paris, France
- Emory Transplant Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Pamela D Winterberg
- Paediatric Nephrology, Emory University Department of Paediatrics and Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Mandy L Ford
- Emory Transplant Center, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
25
|
Sun Y, Zhang Z, Zhang C, Zhang N, Wang P, Chu Y, Chard Dunmall LS, Lemoine NR, Wang Y. An effective therapeutic regime for treatment of glioma using oncolytic vaccinia virus expressing IL-21 in combination with immune checkpoint inhibition. Mol Ther Oncolytics 2022; 26:105-119. [PMID: 35795092 PMCID: PMC9233193 DOI: 10.1016/j.omto.2022.05.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 05/13/2022] [Indexed: 12/24/2022] Open
Abstract
Glioblastoma (GBM) is the most common primary malignant tumor in the brain, accounting for 51.4% of all primary brain tumors. GBM has a highly immunosuppressive tumor microenvironment (TME) and, as such, responses to immunotherapeutic strategies are poor. Vaccinia virus (VV) is an oncolytic virus that has shown tremendous therapeutic effect in various tumor types. In addition to its directly lytic effect on tumor cells, it has an ability to enhance immune cell infiltration into the TME allowing for improved immune control over the tumor. Here, we used a new generation of VV expressing the therapeutic payload interleukin-21 to treat murine GL261 glioma models. After both intratumoral and intravenous delivery, virus treatment induced remodeling of the TME to promote a robust anti-tumor immune response that resulted in control over tumor growth and long-term survival in both subcutaneous and orthotopic mouse models. Treatment efficacy was significantly improved in combination with systemic α-PD1 therapy, which is ineffective as a standalone treatment but synergizes with oncolytic VV to enhance therapeutic outcomes. Importantly, this study also revealed the upregulation of stem cell memory T cell populations after the virus treatment that exert strong and durable anti-tumor activity.
Collapse
Affiliation(s)
- Yijie Sun
- National Centre for International Research in Cell and Gene Therapy, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450052, China
| | - Zhe Zhang
- National Centre for International Research in Cell and Gene Therapy, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450052, China
| | - Chenglin Zhang
- National Centre for International Research in Cell and Gene Therapy, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450052, China
| | - Na Zhang
- National Centre for International Research in Cell and Gene Therapy, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450052, China
| | - Pengju Wang
- National Centre for International Research in Cell and Gene Therapy, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450052, China
| | - Yongchao Chu
- National Centre for International Research in Cell and Gene Therapy, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450052, China
| | - Louisa S. Chard Dunmall
- Centre for Cancer Biomarkers & Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | - Nicholas R. Lemoine
- National Centre for International Research in Cell and Gene Therapy, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450052, China
- Centre for Cancer Biomarkers & Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | - Yaohe Wang
- National Centre for International Research in Cell and Gene Therapy, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450052, China
- Centre for Cancer Biomarkers & Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK
| |
Collapse
|
26
|
Sharma J, Mudalagiriyappa S, Nanjappa SG. T cell responses to control fungal infection in an immunological memory lens. Front Immunol 2022; 13:905867. [PMID: 36177012 PMCID: PMC9513067 DOI: 10.3389/fimmu.2022.905867] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 08/22/2022] [Indexed: 11/24/2022] Open
Abstract
In recent years, fungal vaccine research emanated significant findings in the field of antifungal T-cell immunity. The generation of effector T cells is essential to combat many mucosal and systemic fungal infections. The development of antifungal memory T cells is integral for controlling or preventing fungal infections, and understanding the factors, regulators, and modifiers that dictate the generation of such T cells is necessary. Despite the deficiency in the clear understanding of antifungal memory T-cell longevity and attributes, in this review, we will compile some of the existing literature on antifungal T-cell immunity in the context of memory T-cell development against fungal infections.
Collapse
Affiliation(s)
| | | | - Som Gowda Nanjappa
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
27
|
Yi L, Yang L. Stem-like T cells and niches: Implications in human health and disease. Front Immunol 2022; 13:907172. [PMID: 36059484 PMCID: PMC9428355 DOI: 10.3389/fimmu.2022.907172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 07/28/2022] [Indexed: 11/13/2022] Open
Abstract
Recently, accumulating evidence has elucidated the important role of T cells with stem-like characteristics in long-term maintenance of T cell responses and better patient outcomes after immunotherapy. The fate of TSL cells has been correlated with many physiological and pathological human processes. In this review, we described present advances demonstrating that stem-like T (TSL) cells are central players in human health and disease. We interpreted the evolutionary characteristics, mechanism and functions of TSL cells. Moreover, we discuss the import role of distinct niches and how they affect the stemness of TSL cells. Furthermore, we also outlined currently available strategies to generate TSL cells and associated affecting factors. Moreover, we summarized implication of TSL cells in therapies in two areas: stemness enhancement for vaccines, ICB, and adoptive T cell therapies, and stemness disruption for autoimmune disorders.
Collapse
|
28
|
Bourque J, Kousnetsov R, Hawiger D. Roles of Hopx in the differentiation and functions of immune cells. Eur J Cell Biol 2022; 101:151242. [DOI: 10.1016/j.ejcb.2022.151242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/20/2022] [Accepted: 05/20/2022] [Indexed: 11/03/2022] Open
|
29
|
Fujiki F, Morimoto S, Katsuhara A, Okuda A, Ogawa S, Ueda E, Miyazaki M, Isotani A, Ikawa M, Nishida S, Nakajima H, Tsuboi A, Oka Y, Nakata J, Hosen N, Kumanogoh A, Oji Y, Sugiyama H. T Cell-Intrinsic Vitamin A Metabolism and Its Signaling Are Targets for Memory T Cell-Based Cancer Immunotherapy. Front Immunol 2022; 13:935465. [PMID: 35844620 PMCID: PMC9280205 DOI: 10.3389/fimmu.2022.935465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/03/2022] [Indexed: 11/13/2022] Open
Abstract
Memory T cells play an essential role in infectious and tumor immunity. Vitamin A metabolites such as retinoic acid are immune modulators, but the role of vitamin A metabolism in memory T-cell differentiation is unclear. In this study, we identified retinol dehydrogenase 10 (Rdh10), which metabolizes vitamin A to retinal (RAL), as a key molecule for regulating T cell differentiation. T cell-specific Rdh10 deficiency enhanced memory T-cell formation through blocking RAL production in infection model. Epigenetic profiling revealed that retinoic acid receptor (RAR) signaling activated by vitamin A metabolites induced comprehensive epigenetic repression of memory T cell-associated genes, including TCF7, thereby promoting effector T-cell differentiation. Importantly, memory T cells generated by Rdh deficiency and blocking RAR signaling elicited potent anti-tumor responses in adoptive T-cell transfer setting. Thus, T cell differentiation is regulated by vitamin A metabolism and its signaling, which should be novel targets for memory T cell-based cancer immunotherapy.
Collapse
Affiliation(s)
- Fumihiro Fujiki
- Department of Cancer Immunology, Graduate School of Medicine, Osaka University, Suita, Japan
- *Correspondence: Fumihiro Fujiki, ; Haruo Sugiyama,
| | - Soyoko Morimoto
- Department of Cancer Stem Cell Biology, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Akiko Katsuhara
- Department of Functional Diagnostic Science, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Akane Okuda
- Department of Functional Diagnostic Science, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Saeka Ogawa
- Department of Functional Diagnostic Science, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Eriko Ueda
- Department of Functional Diagnostic Science, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Maki Miyazaki
- Department of Functional Diagnostic Science, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Ayako Isotani
- Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan
| | - Masahito Ikawa
- Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Sumiyuki Nishida
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Hiroko Nakajima
- Department of Cancer Immunology, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Akihiro Tsuboi
- Department of Cancer Immunotherapy, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Yoshihiro Oka
- Department of Cancer Stem Cell Biology, Graduate School of Medicine, Osaka University, Suita, Japan
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Japan
- Department of Immunopathology, WPI Immunology Frontier Research Center, Osaka University, Suita, Japan
| | - Jun Nakata
- Department of Clinical Laboratory and Biomedical Sciences, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Naoki Hosen
- Department of Cancer Stem Cell Biology, Graduate School of Medicine, Osaka University, Suita, Japan
- Department of Hematology and Oncology, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Atsushi Kumanogoh
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Japan
- Department of Immunopathology, WPI Immunology Frontier Research Center, Osaka University, Suita, Japan
| | - Yusuke Oji
- Department of Clinical Laboratory and Biomedical Sciences, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Haruo Sugiyama
- Department of Cancer Immunology, Graduate School of Medicine, Osaka University, Suita, Japan
- *Correspondence: Fumihiro Fujiki, ; Haruo Sugiyama,
| |
Collapse
|
30
|
Lv W, He P, Ma Y, Tan D, Li F, Xie T, Han J, Wang J, Mi Y, Niu H, Zhu B. Optimizing the Boosting Schedule of Subunit Vaccines Consisting of BCG and "Non-BCG" Antigens to Induce Long-Term Immune Memory. Front Immunol 2022; 13:862726. [PMID: 35493466 PMCID: PMC9039131 DOI: 10.3389/fimmu.2022.862726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/16/2022] [Indexed: 11/13/2022] Open
Abstract
Boosting Bacillus Calmette-Guérin (BCG) with subunit vaccine is expected to induce long-term protection against tuberculosis (TB). However, it is urgently needed to optimize the boosting schedule of subunit vaccines, which consists of antigens from or not from BCG, to induce long-term immune memory. To address it two subunit vaccines, Mtb10.4-HspX (MH) consisting of BCG antigens and ESAT6-CFP10 (EC) consisting of antigens from the region of difference (RD) of Mycobacterium tuberculosis (M. tuberculosis), were applied to immunize BCG-primed C57BL/6 mice twice or thrice with different intervals, respectively. The long-term antigen-specific immune responses and protective efficacy against M. tuberculosis H37Ra were determined. The results showed that following BCG priming, MH boosting twice at 12-24 weeks or EC immunizations thrice at 12-16-24 weeks enhanced the number and function of long-lived memory T cells with improved protection against H37Ra, while MH boosting thrice at 12-16-24 weeks or twice at 8-14 weeks and EC immunizations twice at 12-24 weeks or thrice at 8-10-14 weeks didn't induce long-term immunity. It suggests that following BCG priming, both BCG antigens MH boosting twice and "non-BCG" antigens EC immunizations thrice at suitable intervals induce long-lived memory T cell-mediated immunity.
Collapse
Affiliation(s)
- Wei Lv
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation and Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Pu He
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation and Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Yanlin Ma
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation and Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Daquan Tan
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation and Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Fei Li
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation and Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Tao Xie
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation and Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Jiangyuan Han
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation and Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Juan Wang
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation and Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Youjun Mi
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation and Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.,Institute of Pathophysiology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Hongxia Niu
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation and Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Bingdong Zhu
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation and Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.,State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou, China
| |
Collapse
|
31
|
Therapeutic Vaccines Targeting Neoantigens to Induce T-Cell Immunity against Cancers. Pharmaceutics 2022; 14:pharmaceutics14040867. [PMID: 35456701 PMCID: PMC9029780 DOI: 10.3390/pharmaceutics14040867] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/11/2022] [Accepted: 04/13/2022] [Indexed: 12/12/2022] Open
Abstract
Cancer immunotherapy has achieved multiple clinical benefits and has become an indispensable component of cancer treatment. Targeting tumor-specific antigens, also known as neoantigens, plays a crucial role in cancer immunotherapy. T cells of adaptive immunity that recognize neoantigens, but do not induce unwanted off-target effects, have demonstrated high efficacy and low side effects in cancer immunotherapy. Tumor neoantigens derived from accumulated genetic instability can be characterized using emerging technologies, such as high-throughput sequencing, bioinformatics, predictive algorithms, mass-spectrometry analyses, and immunogenicity validation. Neoepitopes with a higher affinity for major histocompatibility complexes can be identified and further applied to the field of cancer vaccines. Therapeutic vaccines composed of tumor lysates or cells and DNA, mRNA, or peptides of neoantigens have revoked adaptive immunity to kill cancer cells in clinical trials. Broad clinical applicability of these therapeutic cancer vaccines has emerged. In this review, we discuss recent progress in neoantigen identification and applications for cancer vaccines and the results of ongoing trials.
Collapse
|
32
|
Pickering H, Schaenman J, Rossetti M, Ahn R, Sunga G, Liang EC, Bunnapradist S, Reed EF. T cell senescence and impaired CMV-specific response are associated with infection risk in kidney transplant recipients. Hum Immunol 2022; 83:273-280. [PMID: 35190203 PMCID: PMC9462879 DOI: 10.1016/j.humimm.2022.01.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 01/30/2022] [Accepted: 01/31/2022] [Indexed: 02/04/2023]
Abstract
Older kidney transplant recipients demonstrate increased rates of infection, and lower rates of rejection, compared with younger kidney transplant recipients. However, the mechanism behind this observation remains unknown. To develop a multifaceted view of age-associated immune dysfunction, we determined the function and phenotype of T cells predisposing to vulnerability to infection on a molecular level. Overlapping peptide pools representing the dominant CMV antigens were used to stimulate PBMC collected from 51 kidney transplant recipients, using cytokine secretion to determine specificity and intensity of response. Staphylococcal endotoxin B (SEB) was analyzed in parallel. To define immune cell subsets, we used single cell RNA sequencing (scRNAseq) to evaluate cellular surface markers and gene expression. We found increased frequency of SEB- and CMV-specific T cells was associated with freedom from infection, especially in older patients. Spatialized t-SNE analysis revealed decreased frequency of naïve T cells, increased frequency of TEMRA cells, and decreased frequency of IFNγ secreting T cells in patients with infection. Application of scRNAseq analysis revealed increased frequency of terminally differentiated T cells expressing NK-associated receptors and inhibitory markers. These findings offer unique insight into the mechanism behind vulnerability to infection in the kidney transplant recipient, revealing a specific T cell subtype of impaired antigen response and terminal effector phenotype as markers of T cell senescence.
Collapse
Affiliation(s)
| | | | | | - Richard Ahn
- Quantitative and Computational Biosciences, USA
| | | | | | - Suphamai Bunnapradist
- Division of Nephrology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Elaine F Reed
- Department of Pathology and Laboratory Medicine, USA
| |
Collapse
|
33
|
CCR8-targeted specific depletion of clonally expanded Treg cells in tumor tissues evokes potent tumor immunity with long-lasting memory. Proc Natl Acad Sci U S A 2022; 119:2114282119. [PMID: 35140181 PMCID: PMC8851483 DOI: 10.1073/pnas.2114282119] [Citation(s) in RCA: 78] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2022] [Indexed: 12/15/2022] Open
Abstract
Immunosuppressive Foxp3-expressing regulatory T cells (Tregs) in tumor tissues are assumed to be clonally expanding via recognizing tumor-associated antigens. By single-cell RNA sequencing, we have searched for the molecules that are specifically expressed by such multiclonal tumor Tregs, but not by tumor-infiltrating effector T cells or natural Tregs in other tissues. The search revealed the chemokine receptor CCR8 as a candidate. Treatment of tumor-bearing mice with cell-depleting anti-CCR8 antibody indeed selectively removed multiclonal tumor Tregs without affecting effector T cells or tissue Tregs, eradicating established tumors with induction of potent tumor-specific effector/memory T cells and without activating autoimmune T cells. Thus, specific depletion of clonally expanding tumor Tregs is clinically instrumental for evoking effective tumor immunity without autoimmune adverse effects. Foxp3-expressing CD25+CD4+ regulatory T cells (Tregs) are abundant in tumor tissues. Here, hypothesizing that tumor Tregs would clonally expand after they are activated by tumor-associated antigens to suppress antitumor immune responses, we performed single-cell analysis on tumor Tregs to characterize them by T cell receptor clonotype and gene-expression profiles. We found that multiclonal Tregs present in tumor tissues predominantly expressed the chemokine receptor CCR8. In mice and humans, CCR8+ Tregs constituted 30 to 80% of tumor Tregs in various cancers and less than 10% of Tregs in other tissues, whereas most tumor-infiltrating conventional T cells (Tconvs) were CCR8–. CCR8+ tumor Tregs were highly differentiated and functionally stable. Administration of cell-depleting anti-CCR8 monoclonal antibodies (mAbs) indeed selectively eliminated multiclonal tumor Tregs, leading to cure of established tumors in mice. The treatment resulted in the expansion of CD8+ effector Tconvs, including tumor antigen-specific ones, that were more activated and less exhausted than those induced by PD-1 immune checkpoint blockade. Anti-CCR8 mAb treatment also evoked strong secondary immune responses against the same tumor cell line inoculated several months after tumor eradication, indicating that elimination of tumor-reactive multiclonal Tregs was sufficient to induce memory-type tumor-specific effector Tconvs. Despite induction of such potent tumor immunity, anti-CCR8 mAb treatment elicited minimal autoimmunity in mice, contrasting with systemic Treg depletion, which eradicated tumors but induced severe autoimmune disease. Thus, specific removal of clonally expanding Tregs in tumor tissues for a limited period by cell-depleting anti-CCR8 mAb treatment can generate potent tumor immunity with long-lasting memory and without deleterious autoimmunity.
Collapse
|
34
|
Yan L, Ou Y, Xia S, Huang J, Zhang W, Shao H, Shen H, Bo H, Tao C, Wang J, Wu F. Combined overexpression of four transcription factors promotes effector T cell dedifferentiation toward early phenotypes. Immunogenetics 2022; 74:231-244. [PMID: 35001141 DOI: 10.1007/s00251-021-01248-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 12/26/2021] [Indexed: 12/14/2022]
Abstract
Effector T cells, which are abundant but are short-lived after reinfusion into the body, are generally used for T-cell therapy, and antitumor immunity is typically not maintained over the long term. Genetic modification by early differentiated T cells and reinfusion has been shown to enhance antitumor immunity in vivo. This study overexpressed the characteristic transcription factors of differentiated early T cells by transfecting effector T cells with transcription factor recombinant lentivirus (S6 group: BCL6, EOMES, FOXP1, LEF1, TCF7, KLF7; S1 group: BCL6, EOMES, FOXP1, KLF7; S3 group: BCL6, EOMES, FOXP1, LEF1) to induce a sufficient number of effector T cells to dedifferentiate and optimize the transcription factor system. The results revealed that overexpression of early characteristic transcription factors in effector T cells upregulated the expression of early T cell differentiation markers (CCR7 and CD62L), with the S1 group having the highest expression level, while the rising trend of late differentiation marker (CD45RO) expression was suppressed. Moreover, the expression of early differentiation-related genes (ACTN1, CERS6, BCL2) was significantly increased, while the expression of late differentiation-related genes (KLRG-1) and effector function-related genes (GNLY, GZMB, PRF1) was significantly decreased; this difference in expression was more significant in the S1 group than in the other two experimental groups. The antiapoptotic ability of each experimental group was significantly enhanced, while the secretion ability of TNF-α and IFN-γ was weakened, with the effector cytokine secretion ability of the S1 group being the weakest. Transcriptomic analysis showed that the gene expression profile of each experimental group was significantly different from that of the control group, with differences in the gene expression pattern and number of differentially expressed genes in the S1 group compared with the other two experimental groups. The differentially expressed gene enrichment pathways were basically related to the cell cycle, cell division, and immune function. In conclusion, overexpression of early characteristic transcription factors in effector T cells induces their dedifferentiation, and induction of dedifferentiation by the S1 group may be more effective.
Collapse
Affiliation(s)
- Lijun Yan
- Guangdong Province Key Laboratory of Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou, China.,School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yusheng Ou
- Guangdong Province Key Laboratory of Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou, China.,School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Shengfang Xia
- Guangdong Province Key Laboratory of Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou, China.,School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jianqing Huang
- Guangdong Province Key Laboratory of Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou, China.,School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Wenfeng Zhang
- Guangdong Province Key Laboratory of Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou, China.,School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Hongwei Shao
- Guangdong Province Key Laboratory of Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou, China.,School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Han Shen
- Guangdong Province Key Laboratory of Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou, China.,School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Huaben Bo
- Guangdong Province Key Laboratory of Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou, China.,School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Changli Tao
- Guangdong Province Key Laboratory of Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou, China.,School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jinquan Wang
- Guangdong Province Key Laboratory of Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou, China.,School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Fenglin Wu
- Guangdong Province Key Laboratory of Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou, China. .,School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China.
| |
Collapse
|
35
|
Ahn R, Schaenman J, Qian Z, Pickering H, Groysberg V, Rossetti M, Llamas M, Hoffmann A, Gjertson D, Deng M, Bunnapradist S, Reed EF. Acute and Chronic Changes in Gene Expression After CMV DNAemia in Kidney Transplant Recipients. Front Immunol 2021; 12:750659. [PMID: 34867983 PMCID: PMC8634678 DOI: 10.3389/fimmu.2021.750659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/20/2021] [Indexed: 12/13/2022] Open
Abstract
Cytomegalovirus (CMV) viremia continues to cause significant morbidity and mortality in kidney transplant patients with clinical complications including organ rejection and death. Whole blood gene expression dynamics in CMV viremic patients from onset of DNAemia through convalescence has not been well studied to date in humans. To evaluate how CMV infection impacts whole blood leukocyte gene expression over time, we evaluated a matched cohort of 62 kidney transplant recipients with and without CMV DNAemia using blood samples collected at multiple time points during the 12-month period after transplant. While transcriptomic differences were minimal at baseline between DNAemic and non-DNAemic patients, hundreds of genes were differentially expressed at the long-term timepoint, including genes enriching for pathways important for macrophages, interferon, and IL-8 signaling. Amongst patients with CMV DNAemia, the greatest amount of transcriptomic change occurred between baseline and 1-week post-DNAemia, with increase in pathways for interferon signaling and cytotoxic T cell function. Time-course gene set analysis of these differentially expressed genes revealed that most of the enriched pathways had a significant time-trend. While many pathways that were significantly down- or upregulated at 1 week returned to baseline-like levels, we noted that several pathways important in adaptive and innate cell function remained upregulated at the long-term timepoint after resolution of CMV DNAemia. Differential expression analysis and time-course gene set analysis revealed the dynamics of genes and pathways involved in the immune response to CMV DNAemia in kidney transplant patients. Understanding transcriptional changes caused by CMV DNAemia may identify the mechanism behind patient vulnerability to CMV reactivation and increased risk of rejection in transplant recipients and suggest protective strategies to counter the negative immunologic impact of CMV. These findings provide a framework to identify immune correlates for risk assessment and guiding need for extending antiviral prophylaxis.
Collapse
Affiliation(s)
- Richard Ahn
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, CA, United States.,Institute for Quantitative and Computational Biosciences, University of California Los Angeles, Los Angeles, CA, United States
| | - Joanna Schaenman
- Department of Medicine, University of California Los Angeles, Los Angeles, CA, United States
| | - Zachary Qian
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, CA, United States.,Institute for Quantitative and Computational Biosciences, University of California Los Angeles, Los Angeles, CA, United States
| | - Harry Pickering
- Department of Pathology and Laboratory Medicine, University of California Los Angeles, Los Angeles, CA, United States
| | - Victoria Groysberg
- Department of Pathology and Laboratory Medicine, University of California Los Angeles, Los Angeles, CA, United States
| | - Maura Rossetti
- Department of Pathology and Laboratory Medicine, University of California Los Angeles, Los Angeles, CA, United States
| | - Megan Llamas
- Department of Pathology and Laboratory Medicine, University of California Los Angeles, Los Angeles, CA, United States
| | - Alexander Hoffmann
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, CA, United States.,Institute for Quantitative and Computational Biosciences, University of California Los Angeles, Los Angeles, CA, United States
| | - David Gjertson
- Department of Pathology and Laboratory Medicine, University of California Los Angeles, Los Angeles, CA, United States.,Department of Biostatistics, University of California Los Angeles, Los Angeles, CA, United States
| | - Mario Deng
- Department of Medicine, University of California Los Angeles, Los Angeles, CA, United States
| | - Suphamai Bunnapradist
- Department of Medicine, University of California Los Angeles, Los Angeles, CA, United States
| | - Elaine F Reed
- Department of Pathology and Laboratory Medicine, University of California Los Angeles, Los Angeles, CA, United States
| | | |
Collapse
|
36
|
Bourque J, Opejin A, Surnov A, Iberg CA, Gross C, Jain R, Epstein JA, Hawiger D. Landscape of Hopx expression in cells of the immune system. Heliyon 2021; 7:e08311. [PMID: 34805566 PMCID: PMC8590040 DOI: 10.1016/j.heliyon.2021.e08311] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/30/2021] [Accepted: 10/29/2021] [Indexed: 11/29/2022] Open
Abstract
Homeodomain only protein (Hopx) is a regulator of cell differentiation and function, and it has also emerged as a crucial marker of specific developmental and differentiation potentials. Hopx expression and functions have been identified in some stem cells, tumors, and in certain immune cells. However, expression of Hopx in immune cells remains insufficiently characterized. Here we report a comprehensive pattern of Hopx expression in multiple types of immune cells under steady state conditions. By utilizing single-cell RNA sequencing (scRNA-seq) and flow cytometric analysis, we characterize a constitutive expression of Hopx in specific subsets of CD4+ and CD8+ T cells and B cells, as well as natural killer (NK), NKT, and myeloid cells. In contrast, Hopx expression is not present in conventional dendritic cells and eosinophils. The utility of identifying expression of Hopx in immune cells may prove vital in delineating specific roles of Hopx under multiple immune conditions.
Collapse
Affiliation(s)
- Jessica Bourque
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO 63118, USA
| | - Adeleye Opejin
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO 63118, USA
| | - Alexey Surnov
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO 63118, USA
| | - Courtney A Iberg
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO 63118, USA
| | - Cindy Gross
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO 63118, USA
| | - Rajan Jain
- Department of Medicine, Cardiovascular Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jonathan A Epstein
- Department of Medicine, Cardiovascular Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Daniel Hawiger
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO 63118, USA
| |
Collapse
|
37
|
Vaccines for Non-Viral Cancer Prevention. Int J Mol Sci 2021; 22:ijms222010900. [PMID: 34681560 PMCID: PMC8535337 DOI: 10.3390/ijms222010900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 09/30/2021] [Accepted: 10/02/2021] [Indexed: 12/20/2022] Open
Abstract
Cancer vaccines are a type of immune therapy that seeks to modulate the host’s immune system to induce durable and protective immune responses against cancer-related antigens. The little clinical success of therapeutic cancer vaccines is generally attributed to the immunosuppressive tumor microenvironment at late-stage diseases. The administration of cancer-preventive vaccination at early stages, such as pre-malignant lesions or even in healthy individuals at high cancer risk could increase clinical efficacy by potentiating immune surveillance and pre-existing specific immune responses, thus eliminating de novo appearing lesions or maintaining equilibrium. Indeed, research focus has begun to shift to these approaches and some of them are yielding encouraging outcomes.
Collapse
|
38
|
Xu T, Pereira RM, Martinez GJ. An Updated Model for the Epigenetic Regulation of Effector and Memory CD8 + T Cell Differentiation. THE JOURNAL OF IMMUNOLOGY 2021; 207:1497-1505. [PMID: 34493604 DOI: 10.4049/jimmunol.2100633] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 07/22/2021] [Indexed: 11/19/2022]
Abstract
Naive CD8+ T cells, upon encountering their cognate Ag in vivo, clonally expand and differentiate into distinct cell fates, regulated by transcription factors and epigenetic modulators. Several models have been proposed to explain the differentiation of CTLs, although none fully recapitulate the experimental evidence. In this review article, we will summarize the latest research on the epigenetic regulation of CTL differentiation as well as provide a combined model that contemplates them.
Collapse
Affiliation(s)
- Tianhao Xu
- Discipline of Microbiology and Immunology, Center for Cancer Cell Biology, Immunology and Infection, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL; and
| | - Renata M Pereira
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Gustavo J Martinez
- Discipline of Microbiology and Immunology, Center for Cancer Cell Biology, Immunology and Infection, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL; and
| |
Collapse
|
39
|
Boutet M, Benet Z, Guillen E, Koch C, M’Homa Soudja S, Delahaye F, Fooksman D, Lauvau G. Memory CD8 + T cells mediate early pathogen-specific protection via localized delivery of chemokines and IFNγ to clusters of monocytes. SCIENCE ADVANCES 2021; 7:eabf9975. [PMID: 34516896 PMCID: PMC8442869 DOI: 10.1126/sciadv.abf9975] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 07/12/2021] [Indexed: 06/13/2023]
Abstract
While cognate antigen drives clonal expansion of memory CD8+ T (CD8+ TM) cells to achieve sterilizing immunity in immunized hosts, not much is known on how cognate antigen contributes to early protection before clonal expansion occurs. Here, using distinct models of immunization, we establish that cognate antigen recognition by CD8+ TM cells on dendritic cells initiates their rapid and coordinated production of a burst of CCL3, CCL4, and XCL1 chemokines under the transcriptional control of interferon (IFN) regulatory factor 4. Using intravital microscopy imaging, we reveal that CD8+ TM cells undergo antigen-dependent arrest in splenic red pulp clusters of CCR2+Ly6C+ monocytes to which they deliver IFNγ and chemokines. IFNγ enables chemokine-induced microbicidal activities in monocytes for protection. Thus, rapid and effective CD8+ TM cell responses require spatially and temporally coordinated events that quickly restrict microbial pathogen growth through the local delivery of activating chemokines to CCR2+Ly6C+ monocytes.
Collapse
Affiliation(s)
- Marie Boutet
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1301 Morris Park Avenue, Bronx, NY 10461, USA
| | - Zachary Benet
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1301 Morris Park Avenue, Bronx, NY 10461, USA
- Department of Pathology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Erik Guillen
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1301 Morris Park Avenue, Bronx, NY 10461, USA
| | - Caroline Koch
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1301 Morris Park Avenue, Bronx, NY 10461, USA
| | - Saidi M’Homa Soudja
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1301 Morris Park Avenue, Bronx, NY 10461, USA
| | - Fabien Delahaye
- Department of Genetics, Albert Einstein College of Medicine, 1301 Morris Park Avenue, Bronx, NY 10461, USA
- Institut Pasteur de Lille, UMR1283/8199, 59000 Lille, France
| | - David Fooksman
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1301 Morris Park Avenue, Bronx, NY 10461, USA
- Department of Pathology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Grégoire Lauvau
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1301 Morris Park Avenue, Bronx, NY 10461, USA
| |
Collapse
|
40
|
Shaw TN, Haley MJ, Dookie RS, Godfrey JJ, Cheeseman AJ, Strangward P, Zeef LAH, Villegas-Mendez A, Couper KN. Memory CD8 + T cells exhibit tissue imprinting and non-stable exposure-dependent reactivation characteristics following blood-stage Plasmodium berghei ANKA infections. Immunology 2021; 164:737-753. [PMID: 34407221 PMCID: PMC8561116 DOI: 10.1111/imm.13405] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 08/09/2021] [Accepted: 08/13/2021] [Indexed: 02/06/2023] Open
Abstract
Experimental cerebral malaria (ECM) is a severe complication of Plasmodium berghei ANKA (PbA) infection in mice, characterized by CD8+ T‐cell accumulation within the brain. Whilst the dynamics of CD8+ T‐cell activation and migration during extant primary PbA infection have been extensively researched, the fate of the parasite‐specific CD8+ T cells upon resolution of ECM is not understood. In this study, we show that memory OT‐I cells persist systemically within the spleen, lung and brain following recovery from ECM after primary PbA‐OVA infection. Whereas memory OT‐I cells within the spleen and lung exhibited canonical central memory (Tcm) and effector memory (Tem) phenotypes, respectively, memory OT‐I cells within the brain post‐PbA‐OVA infection displayed an enriched CD69+CD103− profile and expressed low levels of T‐bet. OT‐I cells within the brain were excluded from short‐term intravascular antibody labelling but were targeted effectively by longer‐term systemically administered antibodies. Thus, the memory OT‐I cells were extravascular within the brain post‐ECM but were potentially not resident memory cells. Importantly, whilst memory OT‐I cells exhibited strong reactivation during secondary PbA‐OVA infection, preventing activation of new primary effector T cells, they had dampened reactivation during a fourth PbA‐OVA infection. Overall, our results demonstrate that memory CD8+ T cells are systemically distributed but exhibit a unique phenotype within the brain post‐ECM, and that their reactivation characteristics are shaped by infection history. Our results raise important questions regarding the role of distinct memory CD8+ T‐cell populations within the brain and other tissues during repeat Plasmodium infections.
Collapse
Affiliation(s)
- Tovah N Shaw
- Faculty of Biology, Medicine and Health, The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK.,School of Biological Sciences, Institute of Immunology and Infection, University of Edinburgh, Edinburgh, UK
| | - Michael J Haley
- Faculty of Biology, Medicine and Health, The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
| | - Rebecca S Dookie
- Faculty of Biology, Medicine and Health, The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
| | - Jenna J Godfrey
- Faculty of Biology, Medicine and Health, The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
| | - Antonn J Cheeseman
- Faculty of Biology, Medicine and Health, The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
| | - Patrick Strangward
- Faculty of Biology, Medicine and Health, The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
| | - Leo A H Zeef
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Ana Villegas-Mendez
- Faculty of Biology, Medicine and Health, The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
| | - Kevin N Couper
- Faculty of Biology, Medicine and Health, The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
| |
Collapse
|
41
|
Omilusik KD, Nadjsombati MS, Yoshida TM, Shaw LA, Goulding J, Goldrath AW. Ubiquitin Specific Protease 1 Expression and Function in T Cell Immunity. THE JOURNAL OF IMMUNOLOGY 2021; 207:1377-1387. [PMID: 34380645 PMCID: PMC8387442 DOI: 10.4049/jimmunol.2100303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/30/2021] [Indexed: 12/24/2022]
Abstract
T cells are essential mediators of immune responses against infectious diseases and provide long-lived protection from reinfection. The differentiation of naive to effector T cells and the subsequent differentiation and persistence of memory T cell populations in response to infection is a highly regulated process. E protein transcription factors and their inhibitors, Id proteins, are important regulators of both CD4+ and CD8+ T cell responses; however, their regulation at the protein level has not been explored. Recently, the deubiquitinase USP1 was shown to stabilize Id2 and modulate cellular differentiation in osteosarcomas. In this study, we investigated a role for Usp1 in posttranslational control of Id2 and Id3 in murine T cells. We show that Usp1 was upregulated in T cells following activation in vitro or following infection in vivo, and the extent of Usp1 expression correlated with the degree of T cell expansion. Usp1 directly interacted with Id2 and Id3 following T cell activation. However, Usp1 deficiency did not impact Id protein abundance in effector T cells or alter effector T cell expansion or differentiation following a primary infection. Usp1 deficiency resulted in a gradual loss of memory CD8+ T cells over time and reduced Id2 protein levels and proliferation of effector CD8+ T cell following reinfection. Together, these results identify Usp1 as a player in modulating recall responses at the protein level and highlight differences in regulation of T cell responses between primary and subsequent infection encounters. Finally, our observations reveal differential regulation of Id2/3 proteins between immune versus nonimmune cell types.
Collapse
Affiliation(s)
- Kyla D Omilusik
- Division of Biological Sciences, Molecular Biology Section, University of California San Diego, La Jolla, CA
| | - Marija S Nadjsombati
- Division of Biological Sciences, Molecular Biology Section, University of California San Diego, La Jolla, CA
| | - Tomomi M Yoshida
- Division of Biological Sciences, Molecular Biology Section, University of California San Diego, La Jolla, CA
| | - Laura A Shaw
- Division of Biological Sciences, Molecular Biology Section, University of California San Diego, La Jolla, CA
| | - John Goulding
- Division of Biological Sciences, Molecular Biology Section, University of California San Diego, La Jolla, CA
| | - Ananda W Goldrath
- Division of Biological Sciences, Molecular Biology Section, University of California San Diego, La Jolla, CA
| |
Collapse
|
42
|
Bonte S, de Munter S, Billiet L, Goetgeluk G, Ingels J, Jansen H, Pille M, de Cock L, Weening K, Taghon T, Leclercq G, Vandekerckhove B, Kerre T. In vitro OP9-DL1 co-culture and subsequent maturation in the presence of IL-21 generates tumor antigen-specific T cells with a favorable less-differentiated phenotype and enhanced functionality. Oncoimmunology 2021; 10:1954800. [PMID: 34367734 PMCID: PMC8312599 DOI: 10.1080/2162402x.2021.1954800] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
T cell receptor (TCR)-redirected T cells target intracellular antigens such as Wilms' tumor 1 (WT1), a tumor-associated antigen overexpressed in several malignancies, including acute myeloid leukemia (AML). For both chimeric antigen receptor (CAR)- and TCR-redirected T cells, several clinical studies indicate that T cell subsets with a less-differentiated phenotype (e.g. stem cell memory T cells, TSCM) survive longer and mediate superior anti-tumor effects in vivo as opposed to more terminally differentiated T cells. Cytokines added during in vitro and ex vivo culture of T cells play an important role in driving the phenotype of T cells for adoptive transfer. Using the OP9-DL1 co-culture system, we have shown previously that we are able to generate in vitro, starting from clinically relevant stem cell sources, T cells with a single tumor antigen (TA)-specific TCR. This method circumvents possible TCR chain mispairing and unwanted toxicities that might occur when introducing a TA-specific TCR in peripheral blood lymphocytes. We now show that we are able to optimize our in vitro culture protocol, by adding IL-21 during maturation, resulting in generation of TA-specific T cells with a less-differentiated phenotype and enhanced in vitro anti-tumor effects. We believe the favorable TSCM-like phenotype of these in vitro generated T cells preludes superior in vivo persistence and anti-tumor efficacy. Therefore, these TA-specific T cells could be of use as a valuable new form of patient-tailored T cell immunotherapy for malignancies for which finding a suitable CAR-T target antigen is challenging, such as AML.
Collapse
Affiliation(s)
- Sarah Bonte
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Stijn de Munter
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium.,Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Lore Billiet
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Glenn Goetgeluk
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium.,Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Joline Ingels
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Hanne Jansen
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Melissa Pille
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Laurenz de Cock
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium.,Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Karin Weening
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Tom Taghon
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium.,Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Georges Leclercq
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium.,Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Bart Vandekerckhove
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium.,Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Tessa Kerre
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent, Belgium.,Department of Diagnostic Sciences, Ghent University, Ghent, Belgium.,Department of Hematology, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
43
|
Anthony SM, Van Braeckel-Budimir N, Moioffer SJ, van de Wall S, Shan Q, Vijay R, Sompallae R, Hartwig SM, Jensen IJ, Varga SM, Butler NS, Xue HH, Badovinac VP, Harty JT. Protective function and durability of mouse lymph node-resident memory CD8 + T cells. eLife 2021; 10:68662. [PMID: 34143731 PMCID: PMC8213409 DOI: 10.7554/elife.68662] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 06/09/2021] [Indexed: 12/13/2022] Open
Abstract
Protective lung tissue-resident memory CD8+T cells (Trm) form after influenza A virus (IAV) infection. We show that IAV infection of mice generates CD69+CD103+and other memory CD8+T cell populations in lung-draining mediastinal lymph nodes (mLNs) from circulating naive or memory CD8+T cells. Repeated antigen exposure, mimicking seasonal IAV infections, generates quaternary memory (4M) CD8+T cells that protect mLN from viral infection better than 1M CD8+T cells. Better protection by 4M CD8+T cells associates with enhanced granzyme A/B expression and stable maintenance of mLN CD69+CD103+4M CD8+T cells, vs the steady decline of CD69+CD103+1M CD8+T cells, paralleling the durability of protective CD69+CD103+4M vs 1M in the lung after IAV infection. Coordinated upregulation in canonical Trm-associated genes occurs in circulating 4M vs 1M populations without the enrichment of canonical downregulated Trm genes. Thus, repeated antigen exposure arms circulating memory CD8+T cells with enhanced capacity to form long-lived populations of Trm that enhance control of viral infections of the mLN.
Collapse
Affiliation(s)
- Scott M Anthony
- Department of Pathology, The University of Iowa, Iowa City, United States
| | | | - Steven J Moioffer
- Department of Pathology, The University of Iowa, Iowa City, United States
| | | | - Qiang Shan
- Department of Microbiology and Immunology, The University of Iowa, Iowa City, United States.,Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, United States
| | - Rahul Vijay
- Department of Microbiology and Immunology, The University of Iowa, Iowa City, United States
| | | | - Stacey M Hartwig
- Department of Microbiology and Immunology, The University of Iowa, Iowa City, United States
| | - Isaac J Jensen
- Department of Pathology, The University of Iowa, Iowa City, United States.,Department of Microbiology and Immunology, The University of Iowa, Iowa City, United States.,Interdisciplinary Graduate Program in Immunology, The University of Iowa, Iowa City, United States
| | - Steven M Varga
- Department of Pathology, The University of Iowa, Iowa City, United States.,Department of Microbiology and Immunology, The University of Iowa, Iowa City, United States.,Interdisciplinary Graduate Program in Immunology, The University of Iowa, Iowa City, United States
| | - Noah S Butler
- Department of Microbiology and Immunology, The University of Iowa, Iowa City, United States.,Interdisciplinary Graduate Program in Immunology, The University of Iowa, Iowa City, United States
| | - Hai-Hui Xue
- Department of Microbiology and Immunology, The University of Iowa, Iowa City, United States.,Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, United States.,Interdisciplinary Graduate Program in Immunology, The University of Iowa, Iowa City, United States
| | - Vladimir P Badovinac
- Department of Pathology, The University of Iowa, Iowa City, United States.,Department of Microbiology and Immunology, The University of Iowa, Iowa City, United States.,Interdisciplinary Graduate Program in Immunology, The University of Iowa, Iowa City, United States
| | - John T Harty
- Department of Pathology, The University of Iowa, Iowa City, United States.,Interdisciplinary Graduate Program in Immunology, The University of Iowa, Iowa City, United States
| |
Collapse
|
44
|
Moraschi BF, Noronha IH, Ferreira CP, Cariste LM, Monteiro CB, Denapoli P, Vrechi T, Pereira GJS, Gazzinelli RT, Lannes-Vieira J, Rodrigues MM, Bortoluci KR, Vasconcelos JRC. Rapamycin Improves the Response of Effector and Memory CD8 + T Cells Induced by Immunization With ASP2 of Trypanosoma cruzi. Front Cell Infect Microbiol 2021; 11:676183. [PMID: 34123875 PMCID: PMC8191465 DOI: 10.3389/fcimb.2021.676183] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 04/20/2021] [Indexed: 11/13/2022] Open
Abstract
Deficiency in memory formation and increased immunosenescence are pivotal features of Trypanosoma cruzi infection proposed to play a role in parasite persistence and disease development. The vaccination protocol that consists in a prime with plasmid DNA followed by the boost with a deficient recombinant human adenovirus type 5, both carrying the ASP2 gene of T. cruzi, is a powerful strategy to elicit effector memory CD8+ T-cells against this parasite. In virus infections, the inhibition of mTOR, a kinase involved in several biological processes, improves the response of memory CD8+ T-cells. Therefore, our aim was to assess the role of rapamycin, the pharmacological inhibitor of mTOR, in CD8+ T response against T. cruzi induced by heterologous prime-boost vaccine. For this purpose, C57BL/6 or A/Sn mice were immunized and daily treated with rapamycin for 34 days. CD8+ T-cells response was evaluated by immunophenotyping, intracellular staining, ELISpot assay and in vivo cytotoxicity. In comparison with vehicle-injection, rapamycin administration during immunization enhanced the frequency of ASP2-specific CD8+ T-cells and the percentage of the polyfunctional population, which degranulated (CD107a+) and secreted both interferon gamma (IFNγ) and tumor necrosis factor (TNF). The beneficial effects were long-lasting and could be detected 95 days after priming. Moreover, the effects were detected in mice immunized with ten-fold lower doses of plasmid/adenovirus. Additionally, the highly susceptible to T. cruzi infection A/Sn mice, when immunized with low vaccine doses, treated with rapamycin, and challenged with trypomastigote forms of the Y strain showed a survival rate of 100%, compared with 42% in vehicle-injected group. Trying to shed light on the biological mechanisms involved in these beneficial effects on CD8+ T-cells by mTOR inhibition after immunization, we showed that in vivo proliferation was higher after rapamycin treatment compared with vehicle-injected group. Taken together, our data provide a new approach to vaccine development against intracellular parasites, placing the mTOR inhibitor rapamycin as an adjuvant to improve effective CD8+ T-cell response.
Collapse
Affiliation(s)
- Barbara Ferri Moraschi
- Molecular Immunology Laboratory, Center of Molecular and Cellular Therapy, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Isaú Henrique Noronha
- Molecular Immunology Laboratory, Center of Molecular and Cellular Therapy, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Camila Pontes Ferreira
- Molecular Immunology Laboratory, Center of Molecular and Cellular Therapy, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Leonardo M. Cariste
- Recombinant Vaccines Laboratory, Department of Biosciences, Federal University of São Paulo, Santos, Brazil
| | - Caroline B. Monteiro
- Recombinant Vaccines Laboratory, Department of Biosciences, Federal University of São Paulo, Santos, Brazil
| | - Priscila Denapoli
- Molecular Immunology Laboratory, Center of Molecular and Cellular Therapy, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Talita Vrechi
- Department of Pharmacology, Federal University of São Paulo, (UNIFESP), São Paulo, Brazil
| | - Gustavo J. S. Pereira
- Department of Pharmacology, Federal University of São Paulo, (UNIFESP), São Paulo, Brazil
| | - Ricardo T. Gazzinelli
- René Rachou Research Center, Fiocruz, Belo Horizonte, Brazil
- Division of Infectious Disease and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, United States
| | - Joseli Lannes-Vieira
- Laboratoy of Biology of the Interactions, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro, Brazil
| | - Maurício M. Rodrigues
- Molecular Immunology Laboratory, Center of Molecular and Cellular Therapy, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Karina R. Bortoluci
- Molecular Immunology Laboratory, Center of Molecular and Cellular Therapy, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
- Department of Pharmacology, Federal University of São Paulo, (UNIFESP), São Paulo, Brazil
| | - José Ronnie C. Vasconcelos
- Molecular Immunology Laboratory, Center of Molecular and Cellular Therapy, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
- Recombinant Vaccines Laboratory, Department of Biosciences, Federal University of São Paulo, Santos, Brazil
| |
Collapse
|
45
|
Generation of highly proliferative rejuvenated cytotoxic T cell clones through pluripotency reprogramming for adoptive immunotherapy. Mol Ther 2021; 29:3027-3041. [PMID: 34023508 DOI: 10.1016/j.ymthe.2021.05.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 02/03/2021] [Accepted: 05/18/2021] [Indexed: 11/22/2022] Open
Abstract
Adoptive immunotherapy has emerged as a powerful approach to cure cancer and chronic infections. Currently, the generation of a massive number of T cells that provide long-lasting immunity is challenged by exhaustion and differentiation-associated senescence, which inevitably arise during in vitro cloning and expansion. To circumvent these problems, several studies have proposed an induced pluripotent stem cell (iPSC)-mediated rejuvenation strategy to revitalize the exhausted/senescent T-cell clones. Because iPSC-derived cytotoxic T lymphocytes (iPSC-CTLs) generated via commonly used monolayer systems have unfavorable innate-like features such as aberrant natural killer (NK) activity and limited replication potential, we modified the redifferentiation culture to generate CD8αβ+CD5+CCR7+CD45RA+CD56- adaptive iPSC-CTLs. The modified iPSC-CTLs exhibited early memory phenotype, including high replicative capacity and the ability to give rise to potent effector cells. In expansion culture with an optimized cytokine cocktail, iPSC-CTLs proliferated more than 1015-fold in a feeder-free condition. Our redifferentiation and expansion package of early memory iPSC-CTLs could supply memory and effector T cells for both autologous and allogeneic immunotherapies.
Collapse
|
46
|
Chung HK, McDonald B, Kaech SM. The architectural design of CD8+ T cell responses in acute and chronic infection: Parallel structures with divergent fates. J Exp Med 2021; 218:e20201730. [PMID: 33755719 PMCID: PMC7992501 DOI: 10.1084/jem.20201730] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 12/19/2022] Open
Abstract
In response to infection, T cells adopt a range of differentiation states, creating numerous heterogeneous subsets that exhibit different phenotypes, functions, and migration patterns. This T cell heterogeneity is a universal feature of T cell immunity, needed to effectively control pathogens in a context-dependent manner and generate long-lived immunity to those pathogens. Here, we review new insights into differentiation state dynamics and population heterogeneity of CD8+ T cells in acute and chronic viral infections and cancer and highlight the parallels and distinctions between acute and chronic antigen stimulation settings. We focus on transcriptional and epigenetic networks that modulate the plasticity and terminal differentiation of antigen-specific CD8+ T cells and generate functionally diverse T cell subsets with different roles to combat infection and cancer.
Collapse
Affiliation(s)
- H. Kay Chung
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA
| | - Bryan McDonald
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA
- Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, CA
| | - Susan M. Kaech
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA
| |
Collapse
|
47
|
Blass E, Ott PA. Advances in the development of personalized neoantigen-based therapeutic cancer vaccines. Nat Rev Clin Oncol 2021; 18:215-229. [PMID: 33473220 PMCID: PMC7816749 DOI: 10.1038/s41571-020-00460-2] [Citation(s) in RCA: 468] [Impact Index Per Article: 156.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2020] [Indexed: 01/31/2023]
Abstract
Within the past decade, the field of immunotherapy has revolutionized the treatment of many cancers with the development and regulatory approval of various immune-checkpoint inhibitors and chimeric antigen receptor T cell therapies in diverse indications. Another promising approach to cancer immunotherapy involves the use of personalized vaccines designed to trigger de novo T cell responses against neoantigens, which are highly specific to tumours of individual patients, in order to amplify and broaden the endogenous repertoire of tumour-specific T cells. Results from initial clinical studies of personalized neoantigen-based vaccines, enabled by the availability of rapid and cost-effective sequencing and bioinformatics technologies, have demonstrated robust tumour-specific immunogenicity and preliminary evidence of antitumour activity in patients with melanoma and other cancers. Herein, we provide an overview of the complex process that is necessary to generate a personalized neoantigen vaccine, review the types of vaccine-induced T cells that are found within tumours and outline strategies to enhance the T cell responses. In addition, we discuss the current status of clinical studies testing personalized neoantigen vaccines in patients with cancer and considerations for future clinical investigation of this novel, individualized approach to immunotherapy.
Collapse
Affiliation(s)
- Eryn Blass
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Patrick A Ott
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
48
|
Blass E, Ott PA. Advances in the development of personalized neoantigen-based therapeutic cancer vaccines. Nat Rev Clin Oncol 2021. [PMID: 33473220 DOI: 10.1038/s41571-020-00460-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Abstract
Within the past decade, the field of immunotherapy has revolutionized the treatment of many cancers with the development and regulatory approval of various immune-checkpoint inhibitors and chimeric antigen receptor T cell therapies in diverse indications. Another promising approach to cancer immunotherapy involves the use of personalized vaccines designed to trigger de novo T cell responses against neoantigens, which are highly specific to tumours of individual patients, in order to amplify and broaden the endogenous repertoire of tumour-specific T cells. Results from initial clinical studies of personalized neoantigen-based vaccines, enabled by the availability of rapid and cost-effective sequencing and bioinformatics technologies, have demonstrated robust tumour-specific immunogenicity and preliminary evidence of antitumour activity in patients with melanoma and other cancers. Herein, we provide an overview of the complex process that is necessary to generate a personalized neoantigen vaccine, review the types of vaccine-induced T cells that are found within tumours and outline strategies to enhance the T cell responses. In addition, we discuss the current status of clinical studies testing personalized neoantigen vaccines in patients with cancer and considerations for future clinical investigation of this novel, individualized approach to immunotherapy.
Collapse
Affiliation(s)
- Eryn Blass
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Patrick A Ott
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
49
|
CD45RB Status of CD8 + T Cell Memory Defines T Cell Receptor Affinity and Persistence. Cell Rep 2021; 30:1282-1291.e5. [PMID: 32023448 DOI: 10.1016/j.celrep.2020.01.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 10/18/2019] [Accepted: 01/03/2020] [Indexed: 12/12/2022] Open
Abstract
The identity of CD45 isoforms on the T cell surface changes following the activation of naive T cells and impacts intracellular signaling. In this study, we find that the anti-viral memory CD8+ T pool is unexpectedly comprised of both CD45RBhi and CD45RBlo populations. Relative to CD45RBlo memory T cells, CD45RBhi memory T cells have lower affinity and display greater clonal diversity, as well as a persistent CD27hi phenotype. The CD45RBhi memory population displays a homeostatic survival advantage in vivo relative to CD45RBlo memory, and long-lived high-affinity cells that persisted long term convert from CD45RBlo to CD45RBhi. Human CD45RO+ memory is comprised of both CD45RBhi and CD45RBlo populations with distinct phenotypes, and antigen-specific memory to two viruses is predominantly CD45RBhi. These data demonstrate that CD45RB status is distinct from the conventional central/effector T cell memory classification and has potential utility for monitoring and characterizing pathogen-specific CD8+ T cell responses.
Collapse
|
50
|
Palgen JL, Feraoun Y, Dzangué-Tchoupou G, Joly C, Martinon F, Le Grand R, Beignon AS. Optimize Prime/Boost Vaccine Strategies: Trained Immunity as a New Player in the Game. Front Immunol 2021; 12:612747. [PMID: 33763063 PMCID: PMC7982481 DOI: 10.3389/fimmu.2021.612747] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 02/11/2021] [Indexed: 12/11/2022] Open
Abstract
Most vaccines require multiple doses to induce long-lasting protective immunity in a high frequency of vaccines, and to ensure strong both individual and herd immunity. Repetitive immunogenic stimulations not only increase the intensity and durability of adaptive immunity, but also influence its quality. Several vaccine parameters are known to influence adaptive immune responses, including notably the number of immunizations, the delay between them, and the delivery sequence of different recombinant vaccine vectors. Furthermore, the initial effector innate immune response is key to activate and modulate B and T cell responses. Optimization of homologous and heterologous prime/boost vaccination strategies requires a thorough understanding of how vaccination history affects memory B and T cell characteristics. This requires deeper knowledge of how innate cells respond to multiple vaccine encounters. Here, we review how innate cells, more particularly those of the myeloid lineage, sense and respond differently to a 1st and a 2nd vaccine dose, both in an extrinsic and intrinsic manner. On one hand, the presence of primary specific antibodies and memory T cells, whose critical properties change with time after priming, provides a distinct environment for innate cells at the time of re-vaccination. On the other hand, innate cells themselves can exert enhanced intrinsic antimicrobial functions, long after initial stimulation, which is referred to as trained immunity. We discuss the potential of trained innate cells to be game-changers in prime/boost vaccine strategies. Their increased functionality in antigen uptake, antigen presentation, migration, and as cytokine producers, could indeed improve the restimulation of primary memory B and T cells and their differentiation into potent secondary memory cells in response to the boost. A better understanding of trained immunity mechanisms will be highly valuable for harnessing the full potential of trained innate cells, to optimize immunization strategies.
Collapse
Affiliation(s)
- Jean-Louis Palgen
- Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, INSERM, CEA, Fontenay-aux-Roses, France.,School of Medical Sciences, Kirby Institute for Infection and Immunity, Cellular Genomics Futures Institute, University of New South Wales, Sydney, NSW, Australia
| | - Yanis Feraoun
- Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, INSERM, CEA, Fontenay-aux-Roses, France
| | - Gaëlle Dzangué-Tchoupou
- Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, INSERM, CEA, Fontenay-aux-Roses, France
| | - Candie Joly
- Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, INSERM, CEA, Fontenay-aux-Roses, France
| | - Frédéric Martinon
- Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, INSERM, CEA, Fontenay-aux-Roses, France
| | - Roger Le Grand
- Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, INSERM, CEA, Fontenay-aux-Roses, France
| | - Anne-Sophie Beignon
- Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, INSERM, CEA, Fontenay-aux-Roses, France
| |
Collapse
|