1
|
Chia JE, Rousseau RP, Ozturk M, Poswayo SKL, Lucas R, Brombacher F, Parihar SP. The divergent outcome of IL-4Rα signalling on Foxp3 T regulatory cells in listeriosis and tuberculosis. Front Immunol 2024; 15:1427055. [PMID: 39483462 PMCID: PMC11524857 DOI: 10.3389/fimmu.2024.1427055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 09/18/2024] [Indexed: 11/03/2024] Open
Abstract
Introduction Forkhead box P3 (Foxp3) T regulatory cells are critical for maintaining self-tolerance, immune homeostasis, and regulating the immune system. Methods We investigated interleukin-4 receptor alpha (IL-4Rα) signalling on T regulatory cells (Tregs) during Listeria monocytogenes (L. monocytogenes) infection using a mouse model on a BALB/c background, specifically with IL-4Rα knockdown in Tregs (Foxp3creIL-4Rα-/lox). Results We showed an impairment of Treg responses, along with a decreased bacterial burden and diminished tissue pathology in the liver and spleen, which translated into better survival. Mechanistically, we observed an enhancement of the Th1 signature, characterised by increased expression of the T-bet transcription factor and a greater number of effector T cells producing IFN-γ, IL-2 following ex-vivo stimulation with heat-killed L. monocytogenes in Foxp3creIL-4Rα-/lox mice. Furthermore, CD8 T cells from Foxp3creIL-4Rα-/lox mice displayed increased cytotoxicity (Granzyme-B) with higher proliferation capacity (Ki-67), better survival (Bcl-2) with concomitant reduced apoptosis (activated caspase 3). In contrast to L. monocytogenes, Foxp3creIL-4Rα-/lox mice displayed similar bacterial burdens, lung pathology and survival during Mycobacterium tuberculosis (M. tuberculosis) infection, despite increased T cell numbers and IFN-γ, TNF and IL-17 production. Conclusion Our results demonstrated that the diminished IL-4Rα signalling on Foxp3+ T regulatory cells resulted in a loss of their functionality, leading to survival benefits in listeriosis but not in tuberculosis.
Collapse
Affiliation(s)
- Julius E. Chia
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Cape Town, South Africa
- Division of Immunology, Institute of Infectious Diseases and Molecular Medicine (IDM), Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Robert P. Rousseau
- Division of Immunology, Institute of Infectious Diseases and Molecular Medicine (IDM), Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Centre for Infectious Diseases Research in Africa (CIDRI-Africa), Institute of Infectious Diseases and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Mumin Ozturk
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Cape Town, South Africa
- Division of Immunology, Institute of Infectious Diseases and Molecular Medicine (IDM), Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Sibongiseni K. L. Poswayo
- Division of Immunology, Institute of Infectious Diseases and Molecular Medicine (IDM), Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Centre for Infectious Diseases Research in Africa (CIDRI-Africa), Institute of Infectious Diseases and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Rodney Lucas
- Research Animal Facility (RAF), Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Frank Brombacher
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Cape Town, South Africa
- Division of Immunology, Institute of Infectious Diseases and Molecular Medicine (IDM), Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Centre for Infectious Diseases Research in Africa (CIDRI-Africa), Institute of Infectious Diseases and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Suraj P. Parihar
- Division of Immunology, Institute of Infectious Diseases and Molecular Medicine (IDM), Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Centre for Infectious Diseases Research in Africa (CIDRI-Africa), Institute of Infectious Diseases and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Division of Medical Microbiology, Institute of Infectious Diseases and Molecular Medicine (IDM), Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Division of Human Metabolomics, North-West University, Potchefstroom, South Africa
| |
Collapse
|
2
|
Guak H, Weiland M, Ark AV, Zhai L, Lau K, Corrado M, Davidson P, Asiedu E, Mabvakure B, Compton S, DeCamp L, Scullion CA, Jones RG, Nowinski SM, Krawczyk CM. Transcriptional programming mediated by the histone demethylase KDM5C regulates dendritic cell population heterogeneity and function. Cell Rep 2024; 43:114506. [PMID: 39052479 PMCID: PMC11416765 DOI: 10.1016/j.celrep.2024.114506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/30/2024] [Accepted: 06/27/2024] [Indexed: 07/27/2024] Open
Abstract
Functional and phenotypic heterogeneity of dendritic cells (DCs) play crucial roles in facilitating the development of diverse immune responses essential for host protection. Here, we report that KDM5C, a histone lysine demethylase, regulates conventional or classical DC (cDC) and plasmacytoid DC (pDC) population heterogeneity and function. Mice deficient in KDM5C in DCs have increased proportions of cDC2Bs and cDC1s, which is partly dependent on type I interferon (IFN) and pDCs. Loss of KDM5C results in an increase in Ly6C- pDCs, which, compared to Ly6C+ pDCs, have limited ability to produce type I IFN and more efficiently stimulate antigen-specific CD8 T cells. KDM5C-deficient DCs have increased expression of inflammatory genes, altered expression of lineage-specific genes, and decreased function. In response to Listeria infection, KDM5C-deficient mice mount reduced CD8 T cell responses due to decreased antigen presentation by cDC1s. Thus, KDM5C is a key regulator of DC heterogeneity and critical driver of the functional properties of DCs.
Collapse
Affiliation(s)
- Hannah Guak
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI 49503, USA; Department of Pediatrics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Matthew Weiland
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Alexandra Vander Ark
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Lukai Zhai
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Kin Lau
- Bioinformatics and Biostatistics Core, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Mario Corrado
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI 49503, USA; Department of Internal Medicine, University of Toronto, Toronto, ON M5S 3H2, Canada
| | - Paula Davidson
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Ebenezer Asiedu
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Batsirai Mabvakure
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI 49503, USA; Department of Oncology, Georgetown University School of Medicine, Washington, DC 20057, USA; Georgetown Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA
| | - Shelby Compton
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Lisa DeCamp
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Catherine A Scullion
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI 49503, USA; Department of Experimental Medicine, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Russell G Jones
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Sara M Nowinski
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Connie M Krawczyk
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI 49503, USA.
| |
Collapse
|
3
|
Reuveni D, Assi S, Gore Y, Brazowski E, Leung PSC, Shalit T, Gershwin ME, Zigmond E. Conventional type 1 dendritic cells are essential for the development of primary biliary cholangitis. Liver Int 2024; 44:2063-2074. [PMID: 38700427 DOI: 10.1111/liv.15961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 02/15/2024] [Accepted: 04/19/2024] [Indexed: 05/05/2024]
Abstract
BACKGROUND & AIMS Primary biliary cholangitis (PBC) is a progressive-cholestatic autoimmune liver disease. Dendritic cells (DC) are professional antigen-presenting cells and their prominent presence around damaged bile ducts of PBC patients are documented. cDC1 is a rare subset of DC known for its cross-presentation abilities and interleukin 12 production. Our aim was to assess the role of cDC1 in the pathogenesis of PBC. METHODS We utilized an inducible murine model of PBC and took advantage of the DC reporter mice Zbtb46gfp and the Batf3-/- mice that specifically lack the cDC1 subset. cDC1 cells were sorted from blood of PBC patients and healthy individuals and subjected to Bulk-MARS-seq transcriptome analysis. RESULTS Histopathology assessment demonstrated peri-portal inflammation in wild type (WT) mice, whereas only minor abnormalities were observed in Batf3-/- mice. Flow cytometry analysis revealed a two-fold reduction in hepatic CD8/CD4 T cells ratio in Batf3-/- mice, suggesting reduced intrahepatic CD8 T cells expansion. Histological evidence of portal fibrosis was detected only in the WT but not in Batf3-/- mice. This finding was supported by decreased expression levels of pro-fibrotic genes in the livers of Batf3-/- mice. Transcriptome analysis of human cDC1, revealed 78 differentially expressed genes between PBC patients and controls. Genes related to antigen presentation, TNF and IFN signalling and mitochondrial dysfunction were significantly increased in cDC1 isolated from PBC patients. CONCLUSION Our data illustrated the contribution the cDC1 subset in the pathogenesis of PBC and provides a novel direction for immune based cell-specific targeted therapeutic approach in PBC.
Collapse
Affiliation(s)
- Debby Reuveni
- The Research Center for Digestive Tract and Liver Diseases, Department of Gastroenterology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- The Center for Liver Diseases, Chaim Sheba Medical Center, Ramat Gan, Israel
| | - Siwar Assi
- The Research Center for Digestive Tract and Liver Diseases, Department of Gastroenterology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yael Gore
- The Research Center for Digestive Tract and Liver Diseases, Department of Gastroenterology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Eli Brazowski
- Department of Pathology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Patrick S C Leung
- Division of Rheumatology, University of California at Davis, Davis, California, USA
| | - Tali Shalit
- The Mantoux Bioinformatics Institute of the Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Merrill E Gershwin
- Division of Rheumatology, University of California at Davis, Davis, California, USA
| | - Ehud Zigmond
- The Research Center for Digestive Tract and Liver Diseases, Department of Gastroenterology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- The Center for Liver Diseases, Chaim Sheba Medical Center, Ramat Gan, Israel
| |
Collapse
|
4
|
Tucker JS, Khan H, D’Orazio SEF. Lymph node stromal cells vary in susceptibility to infection but can support the intracellular growth of Listeria monocytogenes. J Leukoc Biol 2024; 116:132-145. [PMID: 38416405 PMCID: PMC11212796 DOI: 10.1093/jleuko/qiae040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/26/2024] [Accepted: 02/13/2024] [Indexed: 02/29/2024] Open
Abstract
Lymph node stromal cells (LNSCs) are an often overlooked component of the immune system but play a crucial role in maintaining tissue homeostasis and orchestrating immune responses. Our understanding of the functions these cells serve in the context of bacterial infections remains limited. We previously showed that Listeria monocytogenes, a facultative intracellular foodborne bacterial pathogen, must replicate within an as-yet-unidentified cell type in the mesenteric lymph node (MLN) to spread systemically. Here, we show that L. monocytogenes could invade, escape from the vacuole, replicate exponentially, and induce a type I interferon response in the cytosol of 2 LNSC populations infected in vitro, fibroblastic reticular cells (FRCs) and blood endothelial cells (BECs). Infected FRCs and BECs also produced a significant chemokine and proinflammatory cytokine response after in vitro infection. Flow cytometric analysis confirmed that GFP+ L. monocytogenes were associated with a small percentage of MLN stromal cells in vivo following foodborne infection of mice. Using fluorescent microscopy, we showed that these cell-associated bacteria were intracellular L. monocytogenes and that the number of infected FRCs and BECs changed over the course of a 3-day infection in mice. Ex vivo culturing of these infected LNSC populations revealed viable, replicating bacteria that grew on agar plates. These results highlight the unexplored potential of FRCs and BECs to serve as suitable growth niches for L. monocytogenes during foodborne infection and to contribute to the proinflammatory environment within the MLN that promotes clearance of listeriosis.
Collapse
Affiliation(s)
- Jamila S Tucker
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky College of Medicine, 780 Rose Street, MS417, Lexington, KY 40536-0298, United States
| | - Hiba Khan
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky College of Medicine, 780 Rose Street, MS417, Lexington, KY 40536-0298, United States
| | - Sarah E F D’Orazio
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky College of Medicine, 780 Rose Street, MS417, Lexington, KY 40536-0298, United States
| |
Collapse
|
5
|
Grabowska J, Léopold V, Olesek K, Nijen Twilhaar MK, Affandi AJ, Brouwer MC, Jongerius I, Verschoor A, van Kooten C, van Kooyk Y, Storm G, van ‘t Veer C, den Haan JMM. Platelets interact with CD169 + macrophages and cDC1 and enhance liposome-induced CD8 + T cell responses. Front Immunol 2023; 14:1290272. [PMID: 38054006 PMCID: PMC10694434 DOI: 10.3389/fimmu.2023.1290272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/03/2023] [Indexed: 12/07/2023] Open
Abstract
Historically platelets are mostly known for their crucial contribution to hemostasis, but there is growing understanding of their role in inflammation and immunity. The immunomodulatory role of platelets entails interaction with pathogens, but also with immune cells including macrophages and dendritic cells (DCs), to activate adaptive immune responses. In our previous work, we have demonstrated that splenic CD169+ macrophages scavenge liposomes and collaborate with conventional type 1 DCs (cDC1) to induce expansion of CD8+ T cells. Here, we show that platelets associate with liposomes and bind to DNGR-1/Clec9a and CD169/Siglec-1 receptors in vitro. In addition, platelets interacted with splenic CD169+ macrophages and cDC1 and further increased liposome internalization by cDC1. Most importantly, platelet depletion prior to liposomal immunization resulted in significantly diminished antigen-specific CD8+ T cell responses, but not germinal center B cell responses. Previously, complement C3 was shown to be essential for platelet-mediated CD8+ T cell activation during bacterial infection. However, after liposomal vaccination CD8+ T cell priming was not dependent on complement C3. While DCs from platelet-deficient mice exhibited unaltered maturation status, they did express lower levels of CCR7. In addition, in the absence of platelets, CCL5 plasma levels were significantly reduced. Overall, our findings demonstrate that platelets engage in a cross-talk with CD169+ macrophages and cDC1 and emphasize the importance of platelets in induction of CD8+ T cell responses in the context of liposomal vaccination.
Collapse
Affiliation(s)
- Joanna Grabowska
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Cancer Biology and Immunology Program, Cancer Center Amsterdam, Amsterdam, Netherlands
- Cancer Immunology Program, Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Valentine Léopold
- Center of Experimental and Molecular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Department of Anesthesiology and Critical Care, Paris University, Lariboisière Hospital, Paris, France
- Inserm UMR-S 942, Cardiovascular Markers in Stress Conditions (MASCOT), University of Paris, Paris, France
| | - Katarzyna Olesek
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Cancer Biology and Immunology Program, Cancer Center Amsterdam, Amsterdam, Netherlands
- Cancer Immunology Program, Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Maarten K. Nijen Twilhaar
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Cancer Biology and Immunology Program, Cancer Center Amsterdam, Amsterdam, Netherlands
- Cancer Immunology Program, Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Alsya J. Affandi
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Cancer Biology and Immunology Program, Cancer Center Amsterdam, Amsterdam, Netherlands
- Cancer Immunology Program, Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Mieke C. Brouwer
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Centre, Amsterdam Infection and Immunity Institute, Amsterdam, Netherlands
| | - Ilse Jongerius
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Centre, Amsterdam Infection and Immunity Institute, Amsterdam, Netherlands
| | - Admar Verschoor
- Department of Dermatology, University of Lübeck, Lübeck, Germany
- Department of Otorhinolaryngology, Technische Universität München and Klinikum Rechts der Isar, Munich, Germany
| | - Cees van Kooten
- Department of Medicine, Division of Nephrology and Transplant Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Yvette van Kooyk
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Cancer Biology and Immunology Program, Cancer Center Amsterdam, Amsterdam, Netherlands
- Cancer Immunology Program, Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Gert Storm
- Department of Pharmaceutics, Faculty of Science, Utrecht University, Utrecht, Netherlands
- Department of Biomaterials, Science and Technology, Faculty of Science and Technology, University of Twente, Enschede, Netherlands
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Cornelis van ‘t Veer
- Center of Experimental and Molecular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Joke M. M. den Haan
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Cancer Biology and Immunology Program, Cancer Center Amsterdam, Amsterdam, Netherlands
- Cancer Immunology Program, Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| |
Collapse
|
6
|
Probst HC, Stoitzner P, Amon L, Backer RA, Brand A, Chen J, Clausen BE, Dieckmann S, Dudziak D, Heger L, Hodapp K, Hornsteiner F, Hovav AH, Jacobi L, Ji X, Kamenjarin N, Lahl K, Lahmar I, Lakus J, Lehmann CHK, Ortner D, Picard M, Roberti MP, Rossnagel L, Saba Y, Schalla C, Schlitzer A, Schraml BU, Schütze K, Seichter A, Seré K, Seretis A, Sopper S, Strandt H, Sykora MM, Theobald H, Tripp CH, Zitvogel L. Guidelines for DC preparation and flow cytometry analysis of mouse nonlymphoid tissues. Eur J Immunol 2023; 53:e2249819. [PMID: 36512638 DOI: 10.1002/eji.202249819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 12/15/2022]
Abstract
This article is part of the Dendritic Cell Guidelines article series, which provides a collection of state-of-the-art protocols for the preparation, phenotype analysis by flow cytometry, generation, fluorescence microscopy and functional characterization of mouse and human dendritic cells (DC) from lymphoid organs and various nonlymphoid tissues. DC are sentinels of the immune system present in almost every mammalian organ. Since they represent a rare cell population, DC need to be extracted from organs with protocols that are specifically developed for each tissue. This article provides detailed protocols for the preparation of single-cell suspensions from various mouse nonlymphoid tissues, including skin, intestine, lung, kidney, mammary glands, oral mucosa and transplantable tumors. Furthermore, our guidelines include comprehensive protocols for multiplex flow cytometry analysis of DC subsets and feature top tricks for their proper discrimination from other myeloid cells. With this collection, we provide guidelines for in-depth analysis of DC subsets that will advance our understanding of their respective roles in healthy and diseased tissues. While all protocols were written by experienced scientists who routinely use them in their work, this article was also peer-reviewed by leading experts and approved by all coauthors, making it an essential resource for basic and clinical DC immunologists.
Collapse
Affiliation(s)
- Hans Christian Probst
- Institute of Immunology, University Medical Center Mainz, Mainz, Germany
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Patrizia Stoitzner
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, Innsbruck, Austria
| | - Lukas Amon
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Hartmannstraße 14, D-91052, Erlangen, Germany
| | - Ronald A Backer
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
- Institute for Molecular Medicine, Paul Klein Center for Immune Intervention, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Anna Brand
- Institute for Molecular Medicine, Paul Klein Center for Immune Intervention, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Jianzhou Chen
- Gustave Roussy Cancer Campus (GRCC), U1015 INSERM, University Paris Saclay, Villejuif, France
| | - Björn E Clausen
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
- Institute for Molecular Medicine, Paul Klein Center for Immune Intervention, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Sophie Dieckmann
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, Innsbruck, Austria
| | - Diana Dudziak
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Hartmannstraße 14, D-91052, Erlangen, Germany
- Medical Immunology Campus Erlangen (MICE), D-91054, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Germany
- Friedrich-Alexander University (FAU), Erlangen-Nürnberg, Germany
| | - Lukas Heger
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Hartmannstraße 14, D-91052, Erlangen, Germany
| | - Katrin Hodapp
- Institute of Immunology, University Medical Center Mainz, Mainz, Germany
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Florian Hornsteiner
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, Innsbruck, Austria
| | - Avi-Hai Hovav
- Institute of Biomedical and Oral Research, Faculty of Dental Medicine, Hebrew University, Jerusalem, Israel
| | - Lukas Jacobi
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Hartmannstraße 14, D-91052, Erlangen, Germany
| | - Xingqi Ji
- Walter-Brendel-Centre of Experimental Medicine, University Hospital, LMU Munich, 82152, Planegg-Martinsried, Germany
- Institute for Cardiovascular Physiology and Pathophysiology, Biomedical Center, Faculty of Medicine, LMU Munich, 82152, Planegg-Martinsried, Germany
| | - Nadine Kamenjarin
- Institute of Immunology, University Medical Center Mainz, Mainz, Germany
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Katharina Lahl
- Section for Experimental and Translational Immunology, Institute for Health Technology, Technical University of Denmark (DTU), Kongens Lyngby, 2800, Denmark
- Immunology Section, Lund University, Lund, 221 84, Sweden
| | - Imran Lahmar
- Gustave Roussy Cancer Campus (GRCC), U1015 INSERM, University Paris Saclay, Villejuif, France
| | - Jelena Lakus
- Institute for Molecular Medicine, Paul Klein Center for Immune Intervention, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Christian H K Lehmann
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Hartmannstraße 14, D-91052, Erlangen, Germany
- Medical Immunology Campus Erlangen (MICE), D-91054, Erlangen, Germany
| | - Daniela Ortner
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, Innsbruck, Austria
| | - Marion Picard
- Gustave Roussy Cancer Campus (GRCC), U1015 INSERM, University Paris Saclay, Villejuif, France
| | - Maria Paula Roberti
- Gustave Roussy Cancer Campus (GRCC), U1015 INSERM, University Paris Saclay, Villejuif, France
- Department of Medical Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital (UKHD), Heidelberg, Germany
- Clinical Cooperation Unit Applied Tumor Immunity, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Lukas Rossnagel
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Hartmannstraße 14, D-91052, Erlangen, Germany
| | - Yasmin Saba
- Institute of Biomedical and Oral Research, Faculty of Dental Medicine, Hebrew University, Jerusalem, Israel
| | - Carmen Schalla
- Institute for Biomedical Engineering, Department of Cell Biology, RWTH Aachen University Medical School, Aachen, Germany
- Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Andreas Schlitzer
- Quantitative Systems Biology, Life and Medical Sciences (LIMES) Institute, University of Bonn, Germany
| | - Barbara U Schraml
- Walter-Brendel-Centre of Experimental Medicine, University Hospital, LMU Munich, 82152, Planegg-Martinsried, Germany
- Institute for Cardiovascular Physiology and Pathophysiology, Biomedical Center, Faculty of Medicine, LMU Munich, 82152, Planegg-Martinsried, Germany
| | - Kristian Schütze
- Institute of Immunology, University Medical Center Mainz, Mainz, Germany
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Anna Seichter
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Hartmannstraße 14, D-91052, Erlangen, Germany
| | - Kristin Seré
- Institute for Biomedical Engineering, Department of Cell Biology, RWTH Aachen University Medical School, Aachen, Germany
- Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Athanasios Seretis
- Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck, Austria
| | - Sieghart Sopper
- Internal Medicine V, Hematology and Oncology, Medical University of Innsbruck, Innsbruck, Austria
- Tyrolean Cancer Research Center, Innsbruck, Austria
| | - Helen Strandt
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, Innsbruck, Austria
| | - Martina M Sykora
- Internal Medicine V, Hematology and Oncology, Medical University of Innsbruck, Innsbruck, Austria
- Tyrolean Cancer Research Center, Innsbruck, Austria
| | - Hannah Theobald
- Quantitative Systems Biology, Life and Medical Sciences (LIMES) Institute, University of Bonn, Germany
| | - Christoph H Tripp
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, Innsbruck, Austria
| | - Laurence Zitvogel
- Gustave Roussy Cancer Campus (GRCC), U1015 INSERM, University Paris Saclay, Villejuif, France
| |
Collapse
|
7
|
Wang Y, Zhang Q, He T, Wang Y, Lu T, Wang Z, Wang Y, Lin S, Yang K, Wang X, Xie J, Zhou Y, Hong Y, Liu WH, Mao K, Cheng SC, Chen X, Li Q, Xiao N. The transcription factor Zeb1 controls homeostasis and function of type 1 conventional dendritic cells. Nat Commun 2023; 14:6639. [PMID: 37863917 PMCID: PMC10589231 DOI: 10.1038/s41467-023-42428-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 10/11/2023] [Indexed: 10/22/2023] Open
Abstract
Type 1 conventional dendritic cells (cDC1) are the most efficient cross-presenting cells that induce protective cytotoxic T cell response. However, the regulation of their homeostasis and function is incompletely understood. Here we observe a selective reduction of splenic cDC1 accompanied by excessive cell death in mice with Zeb1 deficiency in dendritic cells, rendering the mice more resistant to Listeria infection. Additionally, cDC1 from other sources of Zeb1-deficient mice display impaired cross-presentation of exogenous antigens, compromising antitumor CD8+ T cell responses. Mechanistically, Zeb1 represses the expression of microRNA-96/182 that target Cybb mRNA of NADPH oxidase Nox2, and consequently facilitates reactive-oxygen-species-dependent rupture of phagosomal membrane to allow antigen export to the cytosol. Cybb re-expression in Zeb1-deficient cDC1 fully restores the defective cross-presentation while microRNA-96/182 overexpression in Zeb1-sufficient cDC1 inhibits cross-presentation. Therefore, our results identify a Zeb1-microRNA-96/182-Cybb pathway that controls cross-presentation in cDC1 and uncover an essential role of Zeb1 in cDC1 homeostasis.
Collapse
Affiliation(s)
- Yan Wang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Quan Zhang
- National Institute for Data Science in Health and Medicine, Xiamen University, Fujian, 361102, China
- School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Tingting He
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Yechen Wang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Tianqi Lu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Zengge Wang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Yiyi Wang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Shen Lin
- School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Kang Yang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Xinming Wang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Jun Xie
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Ying Zhou
- National Institute for Data Science in Health and Medicine, Xiamen University, Fujian, 361102, China
- School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Yazhen Hong
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Wen-Hsien Liu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Kairui Mao
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Shih-Chin Cheng
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Xin Chen
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Qiyuan Li
- National Institute for Data Science in Health and Medicine, Xiamen University, Fujian, 361102, China.
- School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China.
- Department of Hematology, The First Affiliated Hospital of Xiamen University, Xiamen, 361003, China.
| | - Nengming Xiao
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China.
| |
Collapse
|
8
|
Tucker JS, Cho J, Albrecht TM, Ferrell JL, D’Orazio SEF. Egress of Listeria monocytogenes from Mesenteric Lymph Nodes Depends on Intracellular Replication and Cell-to-Cell Spread. Infect Immun 2023; 91:e0006423. [PMID: 36916918 PMCID: PMC10112146 DOI: 10.1128/iai.00064-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 02/20/2023] [Indexed: 03/15/2023] Open
Abstract
The mesenteric lymph nodes (MLN) function as a barrier to systemic spread for both commensal and pathogenic bacteria in the gut. Listeria monocytogenes, a facultative intracellular foodborne pathogen, readily overcomes this barrier and spreads into the bloodstream, causing life-threatening systemic infections. We show here that intracellular replication protected L. monocytogenes from clearance by monocytes and neutrophils and promoted colonization of the small intestine-draining MLN (sMLN) but was not required for dissemination to the colon-draining MLN (cMLN). Intestinal tissue had enough free lipoate to support LplA2-dependent extracellular growth of L. monocytogenes, but exogenous lipoate in the MLN was severely limited, and so the bacteria could replicate only inside cells, where they used LplA1 to scavenge lipoate from host peptides. When foodborne infection was manipulated to allow ΔlplA1 L. monocytogenes to colonize the MLN to the same extent as wild-type bacteria, the mutant was still never recovered in the spleen or liver of any animal. We found that intracellular replication in the MLN promoted actin-based motility and cell-to-cell spread of L. monocytogenes and that rapid efficient exit from the MLN was actA dependent. We conclude that intracellular replication of L. monocytogenes in intestinal tissues is not essential and serves primarily to amplify bacterial burdens above a critical threshold needed to efficiently colonize the cMLN. In contrast, intracellular replication in the MLN is absolutely required for further systemic spread and serves primarily to promote ActA-mediated cell-to-cell spread.
Collapse
Affiliation(s)
- Jamila S. Tucker
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, Kentucky, USA
| | - Jooyoung Cho
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, Kentucky, USA
| | - Taylor M. Albrecht
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, Kentucky, USA
| | - Jessica L. Ferrell
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, Kentucky, USA
| | - Sarah E. F. D’Orazio
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
9
|
Duluc D, Sisirak V. Origin, Phenotype, and Function of Mouse Dendritic Cell Subsets. Methods Mol Biol 2023; 2618:3-16. [PMID: 36905505 DOI: 10.1007/978-1-0716-2938-3_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Dendritic cells are cells of hematopoietic origin that are specialized in antigen presentation and instruction of innate and adaptive immune responses. They are a heterogenous group of cells populating lymphoid organs and most tissues. Dendritic cells are commonly separated in three main subsets that differ in their developmental paths, phenotype, and functions. Most studies on dendritic cells were done primarily in mice; therefore, in this chapter, we propose to summarize the current knowledge and recent progress on mouse dendritic cell subsets' development, phenotype, and functions.
Collapse
Affiliation(s)
- Dorothée Duluc
- Université de Bordeaux, CNRS, ImmunoConcEpT, UMR 5164, Bordeaux, France.
| | - Vanja Sisirak
- UMR CNRS 5164 - Immunoconcept, Université de Bordeaux, Bordeaux, France.
| |
Collapse
|
10
|
Dysregulated haemostasis in thrombo-inflammatory disease. Clin Sci (Lond) 2022; 136:1809-1829. [PMID: 36524413 PMCID: PMC9760580 DOI: 10.1042/cs20220208] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 11/17/2022] [Accepted: 11/25/2022] [Indexed: 12/23/2022]
Abstract
Inflammatory disease is often associated with an increased incidence of venous thromboembolism in affected patients, although in most instances, the mechanistic basis for this increased thrombogenicity remains poorly understood. Acute infection, as exemplified by sepsis, malaria and most recently, COVID-19, drives 'immunothrombosis', where the immune defence response to capture and neutralise invading pathogens causes concurrent activation of deleterious prothrombotic cellular and biological responses. Moreover, dysregulated innate and adaptive immune responses in patients with chronic inflammatory conditions, such as inflammatory bowel disease, allergies, and neurodegenerative disorders, are now recognised to occur in parallel with activation of coagulation. In this review, we describe the detailed cellular and biochemical mechanisms that cause inflammation-driven haemostatic dysregulation, including aberrant contact pathway activation, increased tissue factor activity and release, innate immune cell activation and programmed cell death, and T cell-mediated changes in thrombus resolution. In addition, we consider how lifestyle changes increasingly associated with modern life, such as circadian rhythm disruption, chronic stress and old age, are increasingly implicated in unbalancing haemostasis. Finally, we describe the emergence of potential therapies with broad-ranging immunothrombotic functions, and how drug development in this area is challenged by our nascent understanding of the key molecular and cellular parameters that control the shared nodes of proinflammatory and procoagulant pathways. Despite the increasing recognition and understanding of the prothrombotic nature of inflammatory disease, significant challenges remain in effectively managing affected patients, and new therapeutic approaches to curtail the key pathogenic steps in immune response-driven thrombosis are urgently required.
Collapse
|
11
|
Pelgrom LR, Patente TA, Otto F, Nouwen LV, Ozir-Fazalalikhan A, van der Ham AJ, van der Zande HJP, Heieis GA, Arens R, Everts B. mTORC1 signaling in antigen-presenting cells of the skin restrains CD8 + T cell priming. Cell Rep 2022; 40:111032. [PMID: 35793635 DOI: 10.1016/j.celrep.2022.111032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 04/21/2022] [Accepted: 06/13/2022] [Indexed: 11/29/2022] Open
Abstract
How mechanistic target of rapamycin complex 1 (mTORC1), a key regulator of cellular metabolism, affects dendritic cell (DC) metabolism and T cell-priming capacity has primarily been investigated in vitro, but how mTORC1 regulates this in vivo remains poorly defined. Here, using mice deficient for mTORC1 component raptor in DCs, we find that loss of mTORC1 negatively affects glycolytic and fatty acid metabolism and maturation of conventional DCs, particularly cDC1s. Nonetheless, antigen-specific CD8+ T cell responses to infection are not compromised and are even enhanced following skin immunization. This is associated with increased activation of Langerhans cells and a subpopulation of EpCAM-expressing cDC1s, of which the latter show an increased physical interaction with CD8+ T cells in situ. Together, this work reveals that mTORC1 limits CD8+ T cell priming in vivo by differentially orchestrating the metabolism and immunogenicity of distinct antigen-presenting cell subsets, which may have implications for clinical use of mTOR inhibitors.
Collapse
Affiliation(s)
- Leonard R Pelgrom
- Department of Parasitology, Leiden University Medical Center, Leiden, the Netherlands
| | - Thiago A Patente
- Department of Parasitology, Leiden University Medical Center, Leiden, the Netherlands
| | - Frank Otto
- Department of Parasitology, Leiden University Medical Center, Leiden, the Netherlands
| | - Lonneke V Nouwen
- Department of Parasitology, Leiden University Medical Center, Leiden, the Netherlands
| | | | - Alwin J van der Ham
- Department of Parasitology, Leiden University Medical Center, Leiden, the Netherlands
| | | | - Graham A Heieis
- Department of Parasitology, Leiden University Medical Center, Leiden, the Netherlands
| | - Ramon Arens
- Department of Immunology, Leiden University Medical Center, Leiden, the Netherlands
| | - Bart Everts
- Department of Parasitology, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
12
|
Sasaki I, Kato T, Hemmi H, Fukuda-Ohta Y, Wakaki-Nishiyama N, Yamamoto A, Kaisho T. Conventional Type 1 Dendritic Cells in Intestinal Immune Homeostasis. Front Immunol 2022; 13:857954. [PMID: 35693801 PMCID: PMC9184449 DOI: 10.3389/fimmu.2022.857954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 05/04/2022] [Indexed: 11/15/2022] Open
Abstract
Dendritic cells (DC) play critical roles in linking innate and adaptive immunity. DC are heterogenous and there are subsets with various distinct functions. One DC subset, conventional type 1 DC (cDC1), can be defined by expression of CD8α/CD103 in mice and CD141 in humans, or by expression of a chemokine receptor, XCR1, which is a conserved marker in both mice and human. cDC1 are characterized by high ability to ingest dying cells and to cross-present antigens for generating cytotoxic CD8 T cell responses. Through these activities, cDC1 play crucial roles in immune responses against infectious pathogens or tumors. Meanwhile, cDC1 involvement in homeostatic situations is not fully understood. Analyses by using mutant mice, in which cDC1 are ablated in vivo, revealed that cDC1 are critical for maintaining intestinal immune homeostasis. Here, we review the homeostatic roles of cDC1, focusing upon intestinal immunity.
Collapse
Affiliation(s)
- Izumi Sasaki
- Department of Immunology, Institute for Advanced Medicine, Wakayama Medical University, Wakayama, Japan
- *Correspondence: Izumi Sasaki, ; Tsuneyasu Kaisho,
| | - Takashi Kato
- Department of Immunology, Institute for Advanced Medicine, Wakayama Medical University, Wakayama, Japan
| | - Hiroaki Hemmi
- Department of Immunology, Institute for Advanced Medicine, Wakayama Medical University, Wakayama, Japan
- Laboratory of Immunology, Faculty of Veterinary Medicine, Okayama University of Science, Ehime, Japan
| | - Yuri Fukuda-Ohta
- Department of Immunology, Institute for Advanced Medicine, Wakayama Medical University, Wakayama, Japan
| | - Naoko Wakaki-Nishiyama
- Department of Immunology, Institute for Advanced Medicine, Wakayama Medical University, Wakayama, Japan
| | - Asumi Yamamoto
- Department of Immunology, Institute for Advanced Medicine, Wakayama Medical University, Wakayama, Japan
| | - Tsuneyasu Kaisho
- Department of Immunology, Institute for Advanced Medicine, Wakayama Medical University, Wakayama, Japan
- *Correspondence: Izumi Sasaki, ; Tsuneyasu Kaisho,
| |
Collapse
|
13
|
Liu D, Duan L, Cyster JG. Chemo- and mechanosensing by dendritic cells facilitate antigen surveillance in the spleen. Immunol Rev 2022; 306:25-42. [PMID: 35147233 PMCID: PMC8852366 DOI: 10.1111/imr.13055] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 12/05/2021] [Indexed: 12/30/2022]
Abstract
Spleen dendritic cells (DC) are critical for initiation of adaptive immune responses against blood-borne invaders. Key to DC function is their positioning at sites of pathogen entry, and their abilities to selectively capture foreign antigens and promptly engage T cells. Focusing on conventional DC2 (cDC2), we discuss the contribution of chemoattractant receptors (EBI2 or GPR183, S1PR1, and CCR7) and integrins to cDC2 positioning and function. We give particular attention to a newly identified role in cDC2 for adhesion G-protein coupled receptor E5 (Adgre5 or CD97) and its ligand CD55, detailing how this mechanosensing system contributes to splenic cDC2 positioning and homeostasis. Additional roles of CD97 in the immune system are reviewed. The ability of cDC2 to be activated by circulating missing self-CD47 cells and to integrate multiple red blood cell (RBC)-derived inputs is discussed. Finally, we describe the process of activated cDC2 migration to engage and prime helper T cells. Throughout the review, we consider the insights into cDC function in the spleen that have emerged from imaging studies.
Collapse
Affiliation(s)
- Dan Liu
- Howard Hughes Medical Institute and Department of Microbiology and Immunology, University of California, San Francisco, California, USA
| | - Lihui Duan
- Howard Hughes Medical Institute and Department of Microbiology and Immunology, University of California, San Francisco, California, USA
| | - Jason G Cyster
- Howard Hughes Medical Institute and Department of Microbiology and Immunology, University of California, San Francisco, California, USA
| |
Collapse
|
14
|
Zhang X, Lin X, Luo H, Zhi Y, Yi X, Wu X, Duan W, Cao Y, Pang J, Liu S, Zhou P. Pharmacological inhibition of K v1.3 channel impairs TLR3/4 activation and type I IFN response and confers protection against Listeria monocytogenes infection. Pharmacol Res 2022; 177:106112. [PMID: 35122955 DOI: 10.1016/j.phrs.2022.106112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/28/2022] [Accepted: 01/31/2022] [Indexed: 10/19/2022]
Abstract
Emerging data have demonstrated the critical roles of potassium efflux in the innate immune system. However, the role of potassium efflux in TLR3/4 activation and type I interferon (IFN) responses are not well elucidated. In the present study, we found potassium efflux is essential for TLR3/4 signaling, which mediates the expression of IFN and its inducible gene Cxcl10 and proinflammatory cytokine gene TNF-α. Furthermore, pharmacological inhibition of Kv1.3 channel (PAP-1), but not Kir2.1, KCa3.1 or TWIK2, attenuated TLR3/4 receptor activation in macrophages. Mechanistically, PAP-1 suppressed LPS-induced inflammatory function through marked suppressing the activation of JNK mitogen-activated protein kinase (MAPK) and p65 subunit of nuclear factor-kB (NF-kB). Notably, PAP-1 effectively protected mice against Listeria monocytogenes induced infection. Our findings reveal that potassium efflux mediated by the Kv1.3 channel is essential for TLR3/4 activation and suggest that pharmacological inhibition of Kv1.3 may help to treat type I IFN related autoimmune diseases and bacterial infections.
Collapse
Affiliation(s)
- Xin Zhang
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou (510515), China
| | - Xiulin Lin
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou (510515), China
| | - Hui Luo
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou (510515), China
| | - Yuanxing Zhi
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou (510515), China
| | - Xin Yi
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou (510515), China
| | - Xiaoyan Wu
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou (510515), China
| | - Wendi Duan
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou (310024), China
| | - Ying Cao
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou (510515), China
| | - Jianxin Pang
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou (510515), China
| | - Shuwen Liu
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou (510515), China
| | - Pingzheng Zhou
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou (510515), China.
| |
Collapse
|
15
|
Kammoun H, Kim M, Hafner L, Gaillard J, Disson O, Lecuit M. Listeriosis, a model infection to study host-pathogen interactions in vivo. Curr Opin Microbiol 2021; 66:11-20. [PMID: 34923331 DOI: 10.1016/j.mib.2021.11.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/27/2021] [Accepted: 11/30/2021] [Indexed: 12/19/2022]
Abstract
Listeria monocytogenes (Lm) is a foodborne pathogen and the etiological agent of listeriosis. This facultative intracellular Gram-positive bacterium has the ability to colonize the intestinal lumen, cross the intestinal, blood-brain and placental barriers, leading to bacteremia, neurolisteriosis and maternal-fetal listeriosis. Lm is a model microorganism for the study of the interplay between a pathogenic microbe, host tissues and microbiota in vivo. Here we review how animal models permissive to Lm-host interactions allow deciphering some of the key steps of the infectious process, from the intestinal lumen to the crossing of host barriers and dissemination within the host. We also highlight recent investigations using tagged Lm and clinically relevant strains that have shed light on within-host dynamics and the purifying selection of Lm virulence factors. Studying Lm infection in vivo is a way forward to explore host biology and unveil the mechanisms that have selected its capacity to closely associate with its vertebrate hosts.
Collapse
Affiliation(s)
- Hana Kammoun
- Institut Pasteur, Université de Paris, Inserm U1117, Biology of Infection Unit, 75015 Paris, France
| | - Minhee Kim
- Institut Pasteur, Université de Paris, Inserm U1117, Biology of Infection Unit, 75015 Paris, France
| | - Lukas Hafner
- Institut Pasteur, Université de Paris, Inserm U1117, Biology of Infection Unit, 75015 Paris, France
| | - Julien Gaillard
- Institut Pasteur, Université de Paris, Inserm U1117, Biology of Infection Unit, 75015 Paris, France
| | - Olivier Disson
- Institut Pasteur, Université de Paris, Inserm U1117, Biology of Infection Unit, 75015 Paris, France
| | - Marc Lecuit
- Institut Pasteur, Université de Paris, Inserm U1117, Biology of Infection Unit, 75015 Paris, France; Institut Pasteur, National Reference Centre and WHO Collaborating Centre Listeria, 75015 Paris, France; Necker-Enfants Malades University Hospital, Division of Infectious Diseases and Tropical Medicine, APHP, Institut Imagine, 75006 Paris, France.
| |
Collapse
|
16
|
Quereda JJ, Morón-García A, Palacios-Gorba C, Dessaux C, García-del Portillo F, Pucciarelli MG, Ortega AD. Pathogenicity and virulence of Listeria monocytogenes: A trip from environmental to medical microbiology. Virulence 2021; 12:2509-2545. [PMID: 34612177 PMCID: PMC8496543 DOI: 10.1080/21505594.2021.1975526] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 01/02/2023] Open
Abstract
Listeria monocytogenes is a saprophytic gram-positive bacterium, and an opportunistic foodborne pathogen that can produce listeriosis in humans and animals. It has evolved an exceptional ability to adapt to stress conditions encountered in different environments, resulting in a ubiquitous distribution. Because some food preservation methods and disinfection protocols in food-processing environments cannot efficiently prevent contaminations, L. monocytogenes constitutes a threat to human health and a challenge to food safety. In the host, Listeria colonizes the gastrointestinal tract, crosses the intestinal barrier, and disseminates through the blood to target organs. In immunocompromised individuals, the elderly, and pregnant women, the pathogen can cross the blood-brain and placental barriers, leading to neurolisteriosis and materno-fetal listeriosis. Molecular and cell biology studies of infection have proven L. monocytogenes to be a versatile pathogen that deploys unique strategies to invade different cell types, survive and move inside the eukaryotic host cell, and spread from cell to cell. Here, we present the multifaceted Listeria life cycle from a comprehensive perspective. We discuss genetic features of pathogenic Listeria species, analyze factors involved in food contamination, and review bacterial strategies to tolerate stresses encountered both during food processing and along the host's gastrointestinal tract. Then we dissect host-pathogen interactions underlying listerial pathogenesis in mammals from a cell biology and systemic point of view. Finally, we summarize the epidemiology, pathophysiology, and clinical features of listeriosis in humans and animals. This work aims to gather information from different fields crucial for a comprehensive understanding of the pathogenesis of L. monocytogenes.
Collapse
Affiliation(s)
- Juan J. Quereda
- Departamento de Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities. Valencia, Spain
| | - Alvaro Morón-García
- Departamento de Biología Celular. Facultad de Ciencias Biológicas, Universidad Complutense de Madrid. Madrid, Spain
| | - Carla Palacios-Gorba
- Departamento de Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities. Valencia, Spain
| | - Charlotte Dessaux
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología (CNB)- Consejo Superior De Investigaciones Científicas (CSIC), Madrid, Spain
| | - Francisco García-del Portillo
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología (CNB)- Consejo Superior De Investigaciones Científicas (CSIC), Madrid, Spain
| | - M. Graciela Pucciarelli
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología (CNB)- Consejo Superior De Investigaciones Científicas (CSIC), Madrid, Spain
- Centro de Biología Molecular ‘Severo Ochoa’. Departamento de Biología Molecular, Facultad de Ciencias, Universidad Autónoma de Madrid. Madrid, Spain
| | - Alvaro D. Ortega
- Departamento de Biología Celular. Facultad de Ciencias Biológicas, Universidad Complutense de Madrid. Madrid, Spain
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología (CNB)- Consejo Superior De Investigaciones Científicas (CSIC), Madrid, Spain
| |
Collapse
|
17
|
Leiser OP, Hobbs EC, Sims AC, Korch GW, Taylor KL. Beyond the List: Bioagent-Agnostic Signatures Could Enable a More Flexible and Resilient Biodefense Posture Than an Approach Based on Priority Agent Lists Alone. Pathogens 2021; 10:1497. [PMID: 34832652 PMCID: PMC8623450 DOI: 10.3390/pathogens10111497] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/11/2021] [Accepted: 11/13/2021] [Indexed: 12/23/2022] Open
Abstract
As of 2021, the biothreat policy and research communities organize their efforts around lists of priority agents, which elides consideration of novel pathogens and biotoxins. For example, the Select Agents and Toxins list is composed of agents that historic biological warfare programs had weaponized or that have previously caused great harm during natural outbreaks. Similarly, lists of priority agents promulgated by the World Health Organization and the National Institute of Allergy and Infectious Diseases are composed of previously known pathogens and biotoxins. To fill this gap, we argue that the research/scientific and biodefense/biosecurity communities should categorize agents based on how they impact their hosts to augment current list-based paradigms. Specifically, we propose integrating the results of multi-omics studies to identify bioagent-agnostic signatures (BASs) of disease-namely, patterns of biomarkers that accurately and reproducibly predict the impacts of infection or intoxication without prior knowledge of the causative agent. Here, we highlight three pathways that investigators might exploit as sources of signals to construct BASs and their applicability to this framework. The research community will need to forge robust interdisciplinary teams to surmount substantial experimental, technical, and data analytic challenges that stand in the way of our long-term vision. However, if successful, our functionality-based BAS model could present a means to more effectively surveil for and treat known and novel agents alike.
Collapse
Affiliation(s)
- Owen P. Leiser
- Pacific Northwest National Laboratory, Seattle, WA 98109, USA; (O.P.L.); (E.C.H.)
| | - Errett C. Hobbs
- Pacific Northwest National Laboratory, Seattle, WA 98109, USA; (O.P.L.); (E.C.H.)
| | - Amy C. Sims
- Pacific Northwest National Laboratory, Richland, WA 99354, USA;
| | - George W. Korch
- Battelle National Biodefense Institute, LLC, Fort Detrick, MD 21072, USA;
| | - Karen L. Taylor
- Pacific Northwest National Laboratory, Seattle, WA 98109, USA; (O.P.L.); (E.C.H.)
| |
Collapse
|
18
|
Boutet M, Benet Z, Guillen E, Koch C, M’Homa Soudja S, Delahaye F, Fooksman D, Lauvau G. Memory CD8 + T cells mediate early pathogen-specific protection via localized delivery of chemokines and IFNγ to clusters of monocytes. SCIENCE ADVANCES 2021; 7:eabf9975. [PMID: 34516896 PMCID: PMC8442869 DOI: 10.1126/sciadv.abf9975] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 07/12/2021] [Indexed: 06/13/2023]
Abstract
While cognate antigen drives clonal expansion of memory CD8+ T (CD8+ TM) cells to achieve sterilizing immunity in immunized hosts, not much is known on how cognate antigen contributes to early protection before clonal expansion occurs. Here, using distinct models of immunization, we establish that cognate antigen recognition by CD8+ TM cells on dendritic cells initiates their rapid and coordinated production of a burst of CCL3, CCL4, and XCL1 chemokines under the transcriptional control of interferon (IFN) regulatory factor 4. Using intravital microscopy imaging, we reveal that CD8+ TM cells undergo antigen-dependent arrest in splenic red pulp clusters of CCR2+Ly6C+ monocytes to which they deliver IFNγ and chemokines. IFNγ enables chemokine-induced microbicidal activities in monocytes for protection. Thus, rapid and effective CD8+ TM cell responses require spatially and temporally coordinated events that quickly restrict microbial pathogen growth through the local delivery of activating chemokines to CCR2+Ly6C+ monocytes.
Collapse
Affiliation(s)
- Marie Boutet
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1301 Morris Park Avenue, Bronx, NY 10461, USA
| | - Zachary Benet
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1301 Morris Park Avenue, Bronx, NY 10461, USA
- Department of Pathology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Erik Guillen
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1301 Morris Park Avenue, Bronx, NY 10461, USA
| | - Caroline Koch
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1301 Morris Park Avenue, Bronx, NY 10461, USA
| | - Saidi M’Homa Soudja
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1301 Morris Park Avenue, Bronx, NY 10461, USA
| | - Fabien Delahaye
- Department of Genetics, Albert Einstein College of Medicine, 1301 Morris Park Avenue, Bronx, NY 10461, USA
- Institut Pasteur de Lille, UMR1283/8199, 59000 Lille, France
| | - David Fooksman
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1301 Morris Park Avenue, Bronx, NY 10461, USA
- Department of Pathology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Grégoire Lauvau
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1301 Morris Park Avenue, Bronx, NY 10461, USA
| |
Collapse
|
19
|
Pombinho R, Pinheiro J, Resende M, Meireles D, Jalkanen S, Sousa S, Cabanes D. Stabilin-1 plays a protective role against Listeria monocytogenes infection through the regulation of cytokine and chemokine production and immune cell recruitment. Virulence 2021; 12:2088-2103. [PMID: 34374322 PMCID: PMC8366540 DOI: 10.1080/21505594.2021.1958606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Scavenger receptors are part of a complex surveillance system expressed by host cells to efficiently orchestrate innate immune response against bacterial infections. Stabilin-1 (STAB-1) is a scavenger receptor involved in cell trafficking, inflammation, and cancer; however, its role in infection remains to be elucidated. Listeria monocytogenes (Lm) is a major intracellular human food-borne pathogen causing severe infections in susceptible hosts. Using a mouse model of infection, we demonstrate here that STAB-1 controls Lm-induced cytokine and chemokine production and immune cell accumulation in Lm-infected organs. We show that STAB-1 also regulates the recruitment of myeloid cells in response to Lm infection and contributes to clear circulating bacteria. In addition, whereas STAB-1 appears to promote bacterial uptake by macrophages, infection by pathogenic Listeria induces the down regulation of STAB-1 expression and its delocalization from the host cell membrane. We propose STAB-1 as a new SR involved in the control of Lm infection through the regulation of host defense mechanisms, a process that would be targeted by bacterial virulence factors to promote infection.
Collapse
Affiliation(s)
- Rita Pombinho
- Instituto De Investigação E Inovação Em Saúde - i3S, Universidade Do Porto, Porto, Portugal.,Group of Molecular Microbiology, Instituto De Biologia Molecular E Celular - IBMC, Porto, Portugal
| | - Jorge Pinheiro
- Instituto De Investigação E Inovação Em Saúde - i3S, Universidade Do Porto, Porto, Portugal.,Group of Molecular Microbiology, Instituto De Biologia Molecular E Celular - IBMC, Porto, Portugal
| | - Mariana Resende
- Instituto De Investigação E Inovação Em Saúde - i3S, Universidade Do Porto, Porto, Portugal.,Microbiology and Immunology of Infection, Instituto De Biologia Molecular E Celular - IBMC, Porto, Portugal
| | - Diana Meireles
- Instituto De Investigação E Inovação Em Saúde - i3S, Universidade Do Porto, Porto, Portugal.,Group of Molecular Microbiology, Instituto De Biologia Molecular E Celular - IBMC, Porto, Portugal
| | - Sirpa Jalkanen
- MediCity Research Laboratory and Department of Medical Microbiology and Immunology, University of Turku, Turku, Finland
| | - Sandra Sousa
- Instituto De Investigação E Inovação Em Saúde - i3S, Universidade Do Porto, Porto, Portugal.,Group of Molecular Microbiology, Instituto De Biologia Molecular E Celular - IBMC, Porto, Portugal
| | - Didier Cabanes
- Instituto De Investigação E Inovação Em Saúde - i3S, Universidade Do Porto, Porto, Portugal.,Group of Molecular Microbiology, Instituto De Biologia Molecular E Celular - IBMC, Porto, Portugal
| |
Collapse
|
20
|
Novoszel P, Drobits B, Holcmann M, Fernandes CDS, Tschismarov R, Derdak S, Decker T, Wagner EF, Sibilia M. The AP-1 transcription factors c-Jun and JunB are essential for CD8α conventional dendritic cell identity. Cell Death Differ 2021; 28:2404-2420. [PMID: 33758366 PMCID: PMC8329169 DOI: 10.1038/s41418-021-00765-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 02/17/2021] [Accepted: 02/24/2021] [Indexed: 01/31/2023] Open
Abstract
Dendritic cell (DC) development is orchestrated by lineage-determining transcription factors (TFs). Although, members of the activator-protein-1 (AP-1) family, including Batf3, have been implicated in conventional (c)DC specification, the role of Jun proteins is poorly understood. Here, we identified c-Jun and JunB as essential for cDC1 fate specification and function. In mice, Jun proteins regulate extrinsic and intrinsic pathways, which control CD8α cDC1 diversification, whereas CD103 cDC1 development is unaffected. The loss of c-Jun and JunB in DC progenitors diminishes the CD8α cDC1 pool and thus confers resistance to Listeria monocytogenes infection. Their absence in CD8α cDC1 results in impaired TLR triggering and antigen cross-presentation. Both TFs are required for the maintenance of the CD8α cDC1 subset and suppression of cDC2 identity on a transcriptional and phenotypic level. Taken together, these results demonstrate the essential role of c-Jun and JunB in CD8α cDC1 diversification, function, and maintenance of their identity.
Collapse
Affiliation(s)
- Philipp Novoszel
- Institute of Cancer Research, Department of Medicine I, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Barbara Drobits
- Institute of Cancer Research, Department of Medicine I, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Martin Holcmann
- Institute of Cancer Research, Department of Medicine I, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Cristiano De Sa Fernandes
- Institute of Cancer Research, Department of Medicine I, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Roland Tschismarov
- Department of Microbiology, Immunobiology and Genetics, Max Perutz Labs, University of Vienna, Vienna, Austria
| | - Sophia Derdak
- Core Facilities, Medical University of Vienna, Vienna, Austria
| | - Thomas Decker
- Department of Microbiology, Immunobiology and Genetics, Max Perutz Labs, University of Vienna, Vienna, Austria
| | - Erwin F Wagner
- Department of Dermatology and Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Maria Sibilia
- Institute of Cancer Research, Department of Medicine I, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
21
|
Jing Y, Cao M, Zhang B, Long X, Wang X. cDC1 Dependent Accumulation of Memory T Cells Is Required for Chronic Autoimmune Inflammation in Murine Testis. Front Immunol 2021; 12:651860. [PMID: 34381443 PMCID: PMC8350123 DOI: 10.3389/fimmu.2021.651860] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 07/06/2021] [Indexed: 11/17/2022] Open
Abstract
As an immune privilege site, there are various types of immune cells in the testis. Previous research has been focused on the testicular macrophages, and much less is known about the T cells in the testis. Here, we found that T cells with memory phenotypes were the most abundant leukocyte in the testis except for macrophages. Our results showed that the proportion of testicular T cells increases gradually from birth to adulthood in mice and that the primary type of T cells changed from γδTCR+ T cells to αβTCR+ T cells. In addition, under homeostatic conditions, CD8+ T cells are the dominant subgroup and have different phenotypic characteristics from CD4+ T cells. We found that cDC1, but not cDC2, is necessary for the presence of T cells in the testis under physiological state. A significant decrease of T cells does not have a deleterious effect on the development of the testis or spermatogenesis. However, cDC1-dependent T cells play an indispensable role in chronic autoimmune orchitis of the testis. Collectively, our multifaceted data provide a comprehensive picture of the accumulation, localization, and function of testicular T cells.
Collapse
Affiliation(s)
- Yuchao Jing
- Department of Immunology, Key Laboratory of Immune Microenvironment and Diseases, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Min Cao
- Department of Immunology, Key Laboratory of Immune Microenvironment and Diseases, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Bei Zhang
- Department of Immunology, Key Laboratory of Immune Microenvironment and Diseases, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Xuehui Long
- Department of Immunology, Key Laboratory of Immune Microenvironment and Diseases, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Xiaoming Wang
- Department of Immunology, Key Laboratory of Immune Microenvironment and Diseases, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| |
Collapse
|
22
|
Precursor Abundance Influences Divergent Antigen-Specific CD8 + T Cell Responses after Yersinia pseudotuberculosis Foodborne Infection. Infect Immun 2021; 89:e0026521. [PMID: 34031132 DOI: 10.1128/iai.00265-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Primary infection of C57BL/6 mice with the bacterial pathogen Yersinia pseudotuberculosis elicits an unusually large H-2Kb-restricted CD8+ T cell response to the endogenous and protective bacterial epitope YopE69-77. To better understand the basis for this large response, the model OVA257-264 epitope was inserted into YopE in Y. pseudotuberculosis and antigen-specific CD8+ T cells in mice were characterized after foodborne infection with the resulting strain. The epitope YopE69-77 elicited significantly larger CD8+ T cell populations in the small intestine, mesenteric lymph nodes (MLNs), spleen, and liver between 7 and 30 days postinfection, despite residing in the same protein and having an affinity for H-2Kb similar to that of OVA257-264. YopE-specific CD8+ T cell precursors were ∼4.6 times as abundant as OVA-specific precursors in the MLNs, spleens, and other lymph nodes of naive mice, explaining the dominance of YopE69-77 over OVA257-264 at early infection times. However, other factors contributed to this dominance, as the ratio of YopE-specific to OVA-specific CD8+ T cells increased between 7 and 30 days postinfection. We also compared the YopE-specific and OVA-specific CD8+ T cells generated during infection for effector and memory phenotypes. Significantly higher percentages of YopE-specific cells were characterized as short-lived effectors, while higher percentages of OVA-specific cells were memory precursor effectors at day 30 postinfection in spleen and liver. Our results suggest that a large precursor number contributes to the dominance and effector and memory functions of CD8+ T cells generated in response to the protective YopE69-77 epitope during Y. pseudotuberculosis infection of C57BL/6 mice.
Collapse
|
23
|
Xia X, Chen Y, Xu J, Yu C, Chen W. SRC-3 deficiency protects host from Listeria monocytogenes infection through increasing ROS production and decreasing lymphocyte apoptosis. Int Immunopharmacol 2021; 96:107625. [PMID: 33857803 DOI: 10.1016/j.intimp.2021.107625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/26/2021] [Accepted: 03/27/2021] [Indexed: 10/21/2022]
Abstract
Listeria monocytogenes is the third major cause of death among food poisoning. Our previous studies have demonstrated that steroid receptor coactivator 3 (SRC-3) plays a critical protective role in host defense against extracellular bacterial pathogens such as Escherichia coli and Citrobacter rodentium. However, its role involved in intracellular bacterial pathogen infection remains unclear. Herein, we found that SRC-3-/- mice are more resistant to L. monocytogenes infection after tail intravenous injection with L. monocytogenes compared with wild-type mice. After infecting with L. monocytogenes, SRC-3-/- mice exhibited decreased mortality rate, decreased bacterial load, less body weight loss, less proinflammatory cytokines and less severe tissue damage compared with wild-type mice. SRC-3-/- mice produced more ROS and decreased L. monocytogenes-induced lymphocyte apoptosis. Mechanically, SRC-3-/- mice displayed decreased expressions of negative regulator of ROS (NRROS) and interferon (IFN)-β and its target genes such as Daxx, Mx1 and TRAIL associated with apoptosis. Taken together, SRC-3 deficiency can protect host from L. monocytogenes infection through increasing ROS production and decreasing lymphocyte apoptosis via affecting the expressions of NRROS and IFN-β.
Collapse
Affiliation(s)
| | - Yuan Chen
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Jianming Xu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Chundong Yu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, China.
| | - Wenbo Chen
- Department of Cardiology, The First Affiliated Hospital of Xiamen University, Xiamen, China.
| |
Collapse
|
24
|
Mi L, Wang Y, Xu H, Wang Y, Wu J, Dai H, Zhang Y. PRAK Promotes the Pathogen Clearance by Macrophage Through Regulating Autophagy and Inflammasome Activation. Front Immunol 2021; 12:618561. [PMID: 33936034 PMCID: PMC8085562 DOI: 10.3389/fimmu.2021.618561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 03/26/2021] [Indexed: 01/03/2023] Open
Abstract
The p38 regulated/activated protein kinase (PRAK) is a protein kinase downstream of p38MAPK. The present study investigated its function in the macrophage. Myeloid-specific deletion of Prak resulted in a significant reduction in F4/80+CD11b+ peritoneal macrophages with decreased expression of MHC-II and CD80. Upon infection with Listeria monocytogenes, Prak-deficient mice demonstrated an increased mortality, which was accompanied by a higher bacterial load in multiple tissues and elevated levels of proinflammatory cytokines in the serum. While the Prak-deficient macrophage showed similar potency in phagocytosis assays, its bactericidal activity was severely impaired. Moreover, Prak deficiency was associated with defects in ROS production, inflammasome activation as well as autophagy induction. Therefore, PRAK critically contributes to the clearance of intracellular pathogens by affecting multiple aspects of the macrophage function.
Collapse
Affiliation(s)
- Ligu Mi
- Department of Immunology, School of Basic Medical Sciences, National Health Commission (NHC) Key Laboratory of Medical Immunology, Peking University, Beijing, China.,Department of Immunology, School of Basic Medical Sciences, Shihezi University, Shihezi, Xinjiang, China
| | - Yan Wang
- Department of Immunology, School of Basic Medical Sciences, National Health Commission (NHC) Key Laboratory of Medical Immunology, Peking University, Beijing, China
| | - Hui Xu
- Institute of Biological Sciences, Jinzhou Medical University, Jinzhou, China
| | - Yu Wang
- Institute of Biological Sciences, Jinzhou Medical University, Jinzhou, China
| | - Jia Wu
- Department of Immunology, School of Basic Medical Sciences, National Health Commission (NHC) Key Laboratory of Medical Immunology, Peking University, Beijing, China
| | - Hui Dai
- Department of Immunology, School of Basic Medical Sciences, National Health Commission (NHC) Key Laboratory of Medical Immunology, Peking University, Beijing, China
| | - Yu Zhang
- Department of Immunology, School of Basic Medical Sciences, National Health Commission (NHC) Key Laboratory of Medical Immunology, Peking University, Beijing, China.,Institute of Biological Sciences, Jinzhou Medical University, Jinzhou, China
| |
Collapse
|
25
|
Chávez-Arroyo A, Portnoy DA. Why is Listeria monocytogenes such a potent inducer of CD8+ T-cells? Cell Microbiol 2021; 22:e13175. [PMID: 32185899 DOI: 10.1111/cmi.13175] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 01/21/2020] [Accepted: 01/22/2020] [Indexed: 12/20/2022]
Abstract
Listeria monocytogenes is a rapidly growing, Gram-positive, facultative intracellular pathogen that has been used for over 5 decades as a model to study basic aspects of infection and immunity. In a murine intravenous infection model, immunisation with a sublethal infection of L. monocytogenes initially leads to rapid intracellular multiplication followed by clearance of the bacteria and ultimately culminates in the development of long-lived cell-mediated immunity (CMI) mediated by antigen-specific CD8+ cytotoxic T-cells. Importantly, effective immunisation requires live, replicating bacteria. In this review, we summarise the cell and immunobiology of L. monocytogenes infection and discuss aspects of its pathogenesis that we suspect lead to robust CMI. We suggest five specific features of L. monocytogenes infection that positively impact the development of CMI: (a) the bacteria have a predilection for professional antigen-presenting cells; (b) the bacteria escape from phagosomes, grow, and secrete antigens into the host cell cytosol; (c) bacterial-secreted proteins enter the major histocompatibility complex (MHC) class I pathway of antigen processing and presentation; (d) the bacteria do not induce rapid host cell death; and (e) cytosolic bacteria induce a cytokine response that favours CMI. Collectively, these features make L. monocytogenes an attractive vaccine vector for both infectious disease applications and cancer immunotherapy.
Collapse
Affiliation(s)
- Alfredo Chávez-Arroyo
- Graduate Group in Microbiology, University of California, Berkeley, Berkeley, California
| | - Daniel A Portnoy
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California.,Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California
| |
Collapse
|
26
|
Larson SR, Bortell N, Illies A, Crisler WJ, Matsuda JL, Lenz LL. Myeloid Cell CK2 Regulates Inflammation and Resistance to Bacterial Infection. Front Immunol 2020; 11:590266. [PMID: 33363536 PMCID: PMC7752951 DOI: 10.3389/fimmu.2020.590266] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 11/05/2020] [Indexed: 12/27/2022] Open
Abstract
Kinase activity plays an essential role in the regulation of immune cell defenses against pathogens. The protein kinase CK2 (formerly casein kinase II) is an evolutionarily conserved kinase with hundreds of identified substrates. CK2 is ubiquitously expressed in somatic and immune cells, but the roles of CK2 in regulation of immune cell function remain largely elusive. This reflects the essential role of CK2 in organismal development and limited prior work with conditional CK2 mutant murine models. Here, we generated mice with a conditional (floxed) allele of Csnk2a, which encodes the catalytic CK2α subunit of CK2. When crossed to Lyz2-cre mice, excision of Csnk2a sequence impaired CK2α expression in myeloid cells but failed to detectably alter myeloid cell development. By contrast, deficiency for CK2α increased inflammatory myeloid cell recruitment, activation, and resistance following systemic Listeria monocytogenes (Lm) infection. Results from mixed chimera experiments indicated that CK2α deficiency in only a subset of myeloid cells was not sufficient to reduce bacterial burdens. Nor did cell-intrinsic deficiency for CK2α suffice to alter accumulation or activation of monocytes and neutrophils in infected tissues. These data suggest that CK2α expression by Lyz2-expressing cells promotes inflammatory and anti-bacterial responses through effects in trans. Our results highlight previously undescribed suppressive effects of CK2 activity on inflammatory myeloid cell responses and illustrate that cell-extrinsic effects of CK2 can shape inflammatory and protective innate immune responses.
Collapse
Affiliation(s)
- Sandy R. Larson
- Immunology and Microbiology Department, University of Colorado School of Medicine, Aurora, CO, United States
| | - Nikki Bortell
- Immunology and Microbiology Department, University of Colorado School of Medicine, Aurora, CO, United States
| | - Alysha Illies
- Immunology and Microbiology Department, University of Colorado School of Medicine, Aurora, CO, United States
| | - William J. Crisler
- Immunology and Microbiology Department, University of Colorado School of Medicine, Aurora, CO, United States
| | - Jennifer L. Matsuda
- Department of Biomedical Research, National Jewish Health, Denver, CO, United States
| | - Laurel L. Lenz
- Immunology and Microbiology Department, University of Colorado School of Medicine, Aurora, CO, United States
- Department of Biomedical Research, National Jewish Health, Denver, CO, United States
| |
Collapse
|
27
|
Imperato JN, Xu D, Romagnoli PA, Qiu Z, Perez P, Khairallah C, Pham QM, Andrusaite A, Bravo-Blas A, Milling SWF, Lefrancois L, Khanna KM, Puddington L, Sheridan BS. Mucosal CD8 T Cell Responses Are Shaped by Batf3-DC After Foodborne Listeria monocytogenes Infection. Front Immunol 2020; 11:575967. [PMID: 33042159 PMCID: PMC7518468 DOI: 10.3389/fimmu.2020.575967] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 08/24/2020] [Indexed: 12/24/2022] Open
Abstract
While immune responses have been rigorously examined after intravenous Listeria monocytogenes (Lm) infection, less is understood about its dissemination from the intestines or the induction of adaptive immunity after more physiologic models of foodborne infection. Consequently, this study focused on early events in the intestinal mucosa and draining mesenteric lymph nodes (MLN) using foodborne infection of mice with Lm modified to invade murine intestinal epithelium (InlAMLm). InlAMLm trafficked intracellularly from the intestines to the MLN and were associated with Batf3-independent dendritic cells (DC) in the lymphatics. Consistent with this, InlAMLm initially disseminated from the gut to the MLN normally in Batf3–/– mice. Activated migratory DC accumulated in the MLN by 3 days post-infection and surrounded foci of InlAMLm. At this time Batf3–/– mice displayed reduced InlAMLm burdens, implicating cDC1 in maximal bacterial accumulation in the MLN. Batf3–/– mice also exhibited profound defects in the induction and gut-homing of InlAMLm-specific effector CD8 T cells. Restoration of pathogen burden did not rescue antigen-specific CD8 T cell responses in Batf3–/– mice, indicating a critical role for Batf3 in generating anti-InlAMLm immunity following foodborne infection. Collectively, these data suggest that DC play diverse, dynamic roles in the early events following foodborne InlAMLm infection and in driving the establishment of intestinal Lm-specific effector T cells.
Collapse
Affiliation(s)
- Jessica Nancy Imperato
- Department of Microbiology and Immunology, Center for Infectious Diseases, Stony Brook University Renaissance School of Medicine, Stony Brook, NY, United States
| | - Daqi Xu
- Department of Immunology, UConn Health, Farmington, CT, United States
| | - Pablo A Romagnoli
- Centro de Investigacion en Medicina Traslacional Severo Amuchastegui, Instituto Universitario de Ciencias Biomédicas de Córdoba, Córdoba, Argentina
| | - Zhijuan Qiu
- Department of Microbiology and Immunology, Center for Infectious Diseases, Stony Brook University Renaissance School of Medicine, Stony Brook, NY, United States
| | - Pedro Perez
- Department of Microbiology and Immunology, Center for Infectious Diseases, Stony Brook University Renaissance School of Medicine, Stony Brook, NY, United States
| | - Camille Khairallah
- Department of Microbiology and Immunology, Center for Infectious Diseases, Stony Brook University Renaissance School of Medicine, Stony Brook, NY, United States
| | - Quynh-Mai Pham
- Department of Immunology, UConn Health, Farmington, CT, United States
| | - Anna Andrusaite
- Centre for Immunobiology, Institute of Infection, Immunity, and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | | | - Simon W F Milling
- Centre for Immunobiology, Institute of Infection, Immunity, and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Leo Lefrancois
- Department of Immunology, UConn Health, Farmington, CT, United States
| | - Kamal M Khanna
- Department of Microbiology, New York University, New York City, NY, United States
| | - Lynn Puddington
- Department of Immunology, UConn Health, Farmington, CT, United States
| | - Brian S Sheridan
- Department of Microbiology and Immunology, Center for Infectious Diseases, Stony Brook University Renaissance School of Medicine, Stony Brook, NY, United States
| |
Collapse
|
28
|
Qiu Z, Khairallah C, Romanov G, Sheridan BS. Cutting Edge: Batf3 Expression by CD8 T Cells Critically Regulates the Development of Memory Populations. THE JOURNAL OF IMMUNOLOGY 2020; 205:901-906. [PMID: 32669309 DOI: 10.4049/jimmunol.2000228] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 06/24/2020] [Indexed: 01/27/2023]
Abstract
The basic leucine zipper transcription factor ATF-like 3 (BATF3) is required for the development of conventional type 1 dendritic cells that are essential for cross-presentation and CD8 T cell-mediated immunity against intracellular pathogens and tumors. However, whether BATF3 intrinsically regulates CD8 T cell responses is not well studied. In this article, we report a role for cell-intrinsic Batf3 expression in regulating the establishment of circulating and resident memory T cells after foodborne Listeria monocytogenes infection of mice. Consistent with other studies, Batf3 expression by CD8 T cells was dispensable for the primary response. However, Batf3 -/- T cells underwent increased apoptosis during contraction to contribute to a substantially reduced memory population. Batf3 -/- memory cells had an impaired ability to mount a robust recall response but remained functional. These findings reveal a cell-intrinsic role of Batf3 in regulating CD8 T cell memory development.
Collapse
Affiliation(s)
- Zhijuan Qiu
- Department of Microbiology and Immunology, Center for Infectious Diseases, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794
| | - Camille Khairallah
- Department of Microbiology and Immunology, Center for Infectious Diseases, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794
| | - Galina Romanov
- Department of Microbiology and Immunology, Center for Infectious Diseases, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794
| | - Brian S Sheridan
- Department of Microbiology and Immunology, Center for Infectious Diseases, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794
| |
Collapse
|
29
|
Li B, Lu C, Oveissi S, Song J, Xiao K, Zanker D, Duan M, Chen J, Xu H, Zou Q, Wu C, Yewdell JW, Chen W. Host CD8α + and CD103 + dendritic cells prime transplant antigen-specific CD8 + T cells via cross-dressing. Immunol Cell Biol 2020; 98:563-576. [PMID: 32330333 DOI: 10.1111/imcb.12342] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 04/17/2020] [Accepted: 04/20/2020] [Indexed: 01/16/2023]
Abstract
The participation of dendritic cells (DCs) in CD8+ T-cell-mediated allograft rejection is a long-standing question of great clinical relevance for tissue transplantation. Here, we show that Batf3-/- mice demonstrate delayed allo-skin graft rejection and are deficient in priming allo-specific CD8+ T cells. Batf3-/- mouse priming is restored by transferring either purified CD8α+ or CD103+ DCs, demonstrating the critical role of these cells in alloreactivity. Using Db -restricted antiviral F5 transgenic T-cell receptor T cells, which we demonstrate are alloreactive with H-2Kd , we show that cross-dressing of CD8α+ and CD103+ primes CD8+ T-cell or allo-specific responses in vitro and in vivo. These findings suggest novel strategies for moderating tissue rejection based on interfering with DC cross-dressing or subsequent interaction with T cells.
Collapse
Affiliation(s)
- Bin Li
- The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China.,La Trobe Institute for Molecular Science, School of Molecular Science, La Trobe University, Bundoora, VIC, Australia.,National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Chunni Lu
- La Trobe Institute for Molecular Science, School of Molecular Science, La Trobe University, Bundoora, VIC, Australia
| | - Sara Oveissi
- La Trobe Institute for Molecular Science, School of Molecular Science, La Trobe University, Bundoora, VIC, Australia
| | - Jing Song
- La Trobe Institute for Molecular Science, School of Molecular Science, La Trobe University, Bundoora, VIC, Australia.,Department of Rheumatology, Second Military Medical University, Shanghai, China
| | - Kun Xiao
- La Trobe Institute for Molecular Science, School of Molecular Science, La Trobe University, Bundoora, VIC, Australia
| | - Damien Zanker
- La Trobe Institute for Molecular Science, School of Molecular Science, La Trobe University, Bundoora, VIC, Australia.,Peter MacCallum Cancer Centre, Parkville, VIC, Australia
| | - Mubin Duan
- La Trobe Institute for Molecular Science, School of Molecular Science, La Trobe University, Bundoora, VIC, Australia
| | - Jianxin Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Huji Xu
- Department of Rheumatology, Second Military Medical University, Shanghai, China
| | - Quanming Zou
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Chao Wu
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Jonathan W Yewdell
- Cellular Biology Section, Laboratory of Viral Diseases, NIAID, NIH, Bethesda, MD, USA
| | - Weisan Chen
- La Trobe Institute for Molecular Science, School of Molecular Science, La Trobe University, Bundoora, VIC, Australia
| |
Collapse
|
30
|
Host syndecan-1 promotes listeriosis by inhibiting intravascular neutrophil extracellular traps. PLoS Pathog 2020; 16:e1008497. [PMID: 32453780 PMCID: PMC7274463 DOI: 10.1371/journal.ppat.1008497] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 06/05/2020] [Accepted: 03/25/2020] [Indexed: 12/22/2022] Open
Abstract
Heparan sulfate proteoglycans (HSPGs) are at the forefront of host-microbe interactions. Molecular and cell-based studies suggest that HSPG-pathogen interactions promote pathogenesis by facilitating microbial attachment and invasion of host cells. However, the specific identity of HSPGs, precise mechanisms by which HSPGs promote pathogenesis, and the in vivo relevance of HSPG-pathogen interactions remain to be determined. HSPGs also modulate host responses to tissue injury and inflammation, but functions of HSPGs other than facilitating microbial attachment and internalization are understudied in infectious disease. Here we examined the role of syndecan-1 (Sdc1), a major cell surface HSPG of epithelial cells, in mouse models of Listeria monocytogenes (Lm) infection. We show that Sdc1-/- mice are significantly less susceptible to both intragastric and intravenous Lm infection compared to wild type (Wt) mice. This phenotype is not seen in Sdc3-/- or Sdc4-/- mice, indicating that ablation of Sdc1 causes a specific gain of function that enables mice to resist listeriosis. However, Sdc1 does not support Lm attachment or invasion of host cells, indicating that Sdc1 does not promote pathogenesis as a cell surface Lm receptor. Instead, Sdc1 inhibits the clearance of Lm before the bacterium gains access to its intracellular niche. Large intravascular aggregates of neutrophils and neutrophil extracellular traps (NETs) embedded with antimicrobial compounds are formed in Sdc1-/- livers, which trap and kill Lm. Lm infection induces Sdc1 shedding from the surface of hepatocytes in Wt livers, which is directly associated with the decrease in size of intravascular aggregated NETs. Furthermore, administration of purified Sdc1 ectodomains or DNase inhibits the formation of intravascular aggregated neutrophils and NETs and significantly increases the liver bacterial burden in Sdc1-/- mice. These data indicate that Lm induces Sdc1 shedding to subvert the activity of Sdc1 ectodomains to inhibit its clearance by intravascular aggregated NETs.
Collapse
|
31
|
Lewis SM, Williams A, Eisenbarth SC. Structure and function of the immune system in the spleen. Sci Immunol 2020; 4:4/33/eaau6085. [PMID: 30824527 DOI: 10.1126/sciimmunol.aau6085] [Citation(s) in RCA: 564] [Impact Index Per Article: 141.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 01/31/2019] [Indexed: 12/11/2022]
Abstract
The spleen is the largest secondary lymphoid organ in the body and, as such, hosts a wide range of immunologic functions alongside its roles in hematopoiesis and red blood cell clearance. The physical organization of the spleen allows it to filter blood of pathogens and abnormal cells and facilitate low-probability interactions between antigen-presenting cells (APCs) and cognate lymphocytes. APCs specific to the spleen regulate the T and B cell response to these antigenic targets in the blood. This review will focus on cell types, cell organization, and immunologic functions specific to the spleen and how these affect initiation of adaptive immunity to systemic blood-borne antigens. Potential differences in structure and function between mouse and human spleen will also be discussed.
Collapse
Affiliation(s)
- Steven M Lewis
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT 06520, USA.,Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Adam Williams
- Jackson Laboratory for Genomic Medicine, University of Connecticut Health Center, Farmington, CT 06032, USA.,Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT 06032, USA
| | - Stephanie C Eisenbarth
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT 06520, USA. .,Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
32
|
Xin G, Khatun A, Topchyan P, Zander R, Volberding PJ, Chen Y, Shen J, Fu C, Jiang A, See WA, Cui W. Pathogen-Boosted Adoptive Cell Transfer Therapy Induces Endogenous Antitumor Immunity through Antigen Spreading. Cancer Immunol Res 2020; 8:7-18. [PMID: 31719059 PMCID: PMC6946848 DOI: 10.1158/2326-6066.cir-19-0251] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 09/06/2019] [Accepted: 11/01/2019] [Indexed: 01/08/2023]
Abstract
Loss of target antigens in tumor cells has become one of the major hurdles limiting the efficacy of adoptive cell therapy (ACT)-based immunotherapies. The optimal approach to overcome this challenge includes broadening the immune response from the initially targeted tumor-associated antigen (TAA) to other TAAs expressed in the tumor. To induce a more broadly targeted antitumor response, we utilized our previously developed Re-energized ACT (ReACT), which capitalizes on the synergistic effect of pathogen-based immunotherapy and ACT. In this study, we showed that ReACT induced a sufficient endogenous CD8+ T-cell response beyond the initial target to prevent the outgrowth of antigen loss variants in a B16-F10 melanoma model. Sequentially, selective depletion experiments revealed that Batf3-driven cDC1s were essential for the activation of endogenous tumor-specific CD8+ T cells. In ReACT-treated mice that eradicated tumors, we observed that endogenous CD8+ T cells differentiated into memory cells and facilitated the rejection of local and distal tumor rechallenge. By targeting one TAA with ReACT, we provided broader TAA coverage to counter antigen escape and generate a durable memory response against local relapse and metastasis.See related Spotlight on p. 2.
Collapse
Affiliation(s)
- Gang Xin
- Blood Research Institute, Blood Center of Wisconsin, Milwaukee, Wisconsin
| | - Achia Khatun
- Blood Research Institute, Blood Center of Wisconsin, Milwaukee, Wisconsin
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Paytsar Topchyan
- Blood Research Institute, Blood Center of Wisconsin, Milwaukee, Wisconsin
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Ryan Zander
- Blood Research Institute, Blood Center of Wisconsin, Milwaukee, Wisconsin
| | - Peter J Volberding
- Blood Research Institute, Blood Center of Wisconsin, Milwaukee, Wisconsin
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Yao Chen
- Blood Research Institute, Blood Center of Wisconsin, Milwaukee, Wisconsin
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Jian Shen
- Blood Research Institute, Blood Center of Wisconsin, Milwaukee, Wisconsin
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Chunmei Fu
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, New York
| | - Aimin Jiang
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, New York
| | - William A See
- Department of Urology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Weiguo Cui
- Blood Research Institute, Blood Center of Wisconsin, Milwaukee, Wisconsin.
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
33
|
Guermonprez P, Gerber-Ferder Y, Vaivode K, Bourdely P, Helft J. Origin and development of classical dendritic cells. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2019; 349:1-54. [PMID: 31759429 DOI: 10.1016/bs.ircmb.2019.08.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Classical dendritic cells (cDCs) are mononuclear phagocytes of hematopoietic origin specialized in the induction and regulation of adaptive immunity. Initially defined by their unique T cell activation potential, it became quickly apparent that cDCs would be difficult to distinguish from other phagocyte lineages, by solely relying on marker-based approaches. Today, cDCs definition increasingly embed their unique ontogenetic features. A growing consensus defines cDCs on multiple criteria including: (1) dependency on the fms-like tyrosine kinase 3 ligand hematopoietic growth factor, (2) development from the common DC bone marrow progenitor, (3) constitutive expression of the transcription factor ZBTB46 and (4) the ability to induce, after adequate stimulation, the activation of naïve T lymphocytes. cDCs are a heterogeneous cell population that contains two main subsets, named type 1 and type 2 cDCs, arising from divergent ontogenetic pathways and populating multiple lymphoid and non-lymphoid tissues. Here, we present recent knowledge on the cellular and molecular pathways controlling the specification and commitment of cDC subsets from murine and human hematopoietic stem cells.
Collapse
Affiliation(s)
- Pierre Guermonprez
- King's College London, Centre for Inflammation Biology and Cancer Immunology, The Peter Gorer Department of Immmunobiology, London, United Kingdom; Université de Paris, CNRS ERL8252, INSERM1149, Centre for Inflammation Research, Paris, France.
| | - Yohan Gerber-Ferder
- Institut Curie, PSL Research University, INSERM U932, SiRIC «Translational Immunotherapy Team», Paris, France; Université de Paris, Immunity and Cancer Department, INSERM U932, Institut Curie, Paris, France
| | - Kristine Vaivode
- King's College London, Centre for Inflammation Biology and Cancer Immunology, The Peter Gorer Department of Immmunobiology, London, United Kingdom
| | - Pierre Bourdely
- King's College London, Centre for Inflammation Biology and Cancer Immunology, The Peter Gorer Department of Immmunobiology, London, United Kingdom
| | - Julie Helft
- Institut Curie, PSL Research University, INSERM U932, SiRIC «Translational Immunotherapy Team», Paris, France; Université de Paris, Immunity and Cancer Department, INSERM U932, Institut Curie, Paris, France.
| |
Collapse
|
34
|
Clark SE, Schmidt RL, McDermott DS, Lenz LL. A Batf3/Nlrp3/IL-18 Axis Promotes Natural Killer Cell IL-10 Production during Listeria monocytogenes Infection. Cell Rep 2019; 23:2582-2594. [PMID: 29847790 PMCID: PMC6170157 DOI: 10.1016/j.celrep.2018.04.106] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 03/06/2018] [Accepted: 04/25/2018] [Indexed: 11/27/2022] Open
Abstract
The bacterial pathogen Listeria monocytogenes (Lm) capitalizes on natural killer (NK) cell production of regulatory interleukin (IL)-10 to establish severe systemic infections. Here, we identify regulators of this IL-10 secretion. We show that IL-18 signals to NK cells license their ability to produce IL-10. IL-18 acts independent of IL-12 and STAT4, which co-stimulate IFNγ secretion. Dendritic cell (DC) expression of Nlrp3 is required for IL-18 release in response to the Lm p60 virulence protein. Therefore, mice lacking Nlrp3, Il18, or Il18R fail to accumulate serum IL-10 and are highly resistant to systemic Lm infection. We further show that cells expressing or dependent on Batf3 are required for IL-18-inducing IL-10 production observed in infected mice. These findings explain how Il18 and Batf3 promote susceptibility to bacterial infection and demonstrate the ability of Lm to exploit NLRP3 for the promotion of regulatory NK cell activity.
Collapse
Affiliation(s)
- Sarah E Clark
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Rebecca L Schmidt
- Department of Biomedical Research, National Jewish Health, Denver, CO 80206, USA
| | - Daniel S McDermott
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Laurel L Lenz
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA; Department of Biomedical Research, National Jewish Health, Denver, CO 80206, USA.
| |
Collapse
|
35
|
Maurice NJ, McElrath MJ, Andersen-Nissen E, Frahm N, Prlic M. CXCR3 enables recruitment and site-specific bystander activation of memory CD8 + T cells. Nat Commun 2019; 10:4987. [PMID: 31676770 PMCID: PMC6825240 DOI: 10.1038/s41467-019-12980-2] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 10/11/2019] [Indexed: 12/21/2022] Open
Abstract
Bystander activation of memory T cells occurs in the absence of cognate antigen during infections that elicit strong systemic inflammatory responses, which subsequently affect host immune responses. Here we report that memory T cell bystander activation is not limited to induction by systemic inflammation. We initially observe potential T cell bystander activation in a cohort of human vaccine recipients. Using a mouse model system, we then find that memory CD8+ T cells are specifically recruited to sites with activated antigen-presenting cells (APCs) in a CXCR3-dependent manner. In addition, CXCR3 is also necessary for T cell clustering around APCs and T cell bystander activation, which temporospatially overlaps with the subsequent antigen-specific T cell response. Our data thus suggest that bystander activation is part of the initial localized immune response, and is mediated by a site-specific recruitment process of memory T cells.
Collapse
Affiliation(s)
- Nicholas J Maurice
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA.,Molecular and Cellular Biology Program, University of Washington, Seattle, WA, 98195, USA
| | - M Juliana McElrath
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA.,HIV Vaccine Trials Network, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA.,Department of Global Health, University of Washington, Seattle, WA, 98195, USA.,Department of Medicine, University of Washington, Seattle, WA, 98195, USA.,Department of Laboratory Medicine, University of Washington, Seattle, WA, 98195, USA
| | - Erica Andersen-Nissen
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA.,Cape Town HIV Vaccine Trials Network Immunology Laboratory, Hutchinson Centre Research Institute of South Africa, 8001, Cape Town, South Africa
| | - Nicole Frahm
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Martin Prlic
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA. .,Molecular and Cellular Biology Program, University of Washington, Seattle, WA, 98195, USA. .,Department of Global Health, University of Washington, Seattle, WA, 98195, USA. .,Department of Immunology, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
36
|
The orphan nuclear receptor NR4A3 controls the differentiation of monocyte-derived dendritic cells following microbial stimulation. Proc Natl Acad Sci U S A 2019; 116:15150-15159. [PMID: 31285338 DOI: 10.1073/pnas.1821296116] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
In response to microbial stimulation, monocytes can differentiate into macrophages or monocyte-derived dendritic cells (MoDCs) but the molecular requirements guiding these possible fates are poorly understood. In addition, the physiological importance of MoDCs in the host cellular and immune responses to microbes remains elusive. Here, we demonstrate that the nuclear orphan receptor NR4A3 is required for the proper differentiation of MoDCs but not for other types of DCs. Indeed, the generation of DC-SIGN+ MoDCs in response to LPS was severely impaired in Nr4a3 -/- mice, which resulted in the inability to mount optimal CD8+ T cell responses to gram-negative bacteria. Transcriptomic analyses revealed that NR4A3 is required to skew monocyte differentiation toward MoDCs, at the expense of macrophages, and allows the acquisition of migratory characteristics required for MoDC function. Altogether, our data identify that the NR4A3 transcription factor is required to guide the fate of monocytes toward MoDCs.
Collapse
|
37
|
Ou P, Wen L, Liu X, Huang J, Huang X, Su C, Wang L, Ni H, Reizis B, Yang CY. Thioesterase PPT1 balances viral resistance and efficient T cell crosspriming in dendritic cells. J Exp Med 2019; 216:2091-2112. [PMID: 31262842 PMCID: PMC6719428 DOI: 10.1084/jem.20190041] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 05/05/2019] [Accepted: 06/12/2019] [Indexed: 12/21/2022] Open
Abstract
Crosspriming of CD8+ T cells by dendritic cells is crucial for host response against cancer and intracellular microbial infections. Ou et al. demonstrates that palmitoyl-protein thioesterase PPT1 is a phagosomal pH rheostat enabling both viral resistance and efficient crosspriming in cDC1s. Conventional type 1 dendritic cells (cDC1s) are inherently resistant to many viruses but, paradoxically, possess fewer acidic phagosomes that enable antigen retention and cross-presentation. We report that palmitoyl-protein thioesterase 1 (PPT1), which catabolizes lipid-modified proteins in neurons, is highly expressed in cDC1s. PPT1-deficient DCs are more susceptible to vesicular stomatitis virus (VSV) infection, and mice with PPT1 deficiency in cDC1s show impaired response to VSV. Conversely, PPT1-deficient cDC1s enhance the priming of naive CD8+ T cells into tissue-resident KLRG1+ effectors and memory T cells, resulting in rapid clearance of tumors and Listeria monocytogenes. Mechanistically, PPT1 protects steady state DCs from viruses by promoting antigen degradation and endosomal acidification via V-ATPase recruitment. After DC activation, immediate down-regulation of PPT1 is likely to facilitate efficient cross-presentation, production of costimulatory molecules and inflammatory cytokines. Thus, PPT1 acts as a molecular rheostat that allows cDC1s to crossprime efficiently without compromising viral resistance. These results suggest potential therapeutics to enhance cDC1-dependent crosspriming.
Collapse
Affiliation(s)
- Pengju Ou
- Department of Immunology, Sun Yat-sen University Zhongshan School of Medicine, Guangzhou, Guangdong, China.,Department of Chemotherapy, First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Lifen Wen
- Department of Immunology, Sun Yat-sen University Zhongshan School of Medicine, Guangzhou, Guangdong, China
| | - Xiaoli Liu
- Department of Immunology, Sun Yat-sen University Zhongshan School of Medicine, Guangzhou, Guangdong, China
| | - Jiancheng Huang
- Department of Immunology, Sun Yat-sen University Zhongshan School of Medicine, Guangzhou, Guangdong, China
| | - Xiaoling Huang
- Department of Immunology, Sun Yat-sen University Zhongshan School of Medicine, Guangzhou, Guangdong, China
| | - Chaofei Su
- Department of Immunology, Sun Yat-sen University Zhongshan School of Medicine, Guangzhou, Guangdong, China
| | - Ling Wang
- Department of Immunology, Sun Yat-sen University Zhongshan School of Medicine, Guangzhou, Guangdong, China
| | - Hai Ni
- Department of Immunology, Sun Yat-sen University Zhongshan School of Medicine, Guangzhou, Guangdong, China
| | - Boris Reizis
- Department of Pathology, New York University School of Medicine, New York, NY
| | - Cliff Y Yang
- Department of Immunology, Sun Yat-sen University Zhongshan School of Medicine, Guangzhou, Guangdong, China .,Key Laboratory of Tropical Disease Control, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong, China
| |
Collapse
|
38
|
IL-10-Dependent Crosstalk between Murine Marginal Zone B Cells, Macrophages, and CD8α + Dendritic Cells Promotes Listeria monocytogenes Infection. Immunity 2019; 51:64-76.e7. [PMID: 31231033 DOI: 10.1016/j.immuni.2019.05.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 03/20/2019] [Accepted: 05/21/2019] [Indexed: 01/07/2023]
Abstract
Type 1 CD8α+ conventional dendritic cells (cDC1s) are required for CD8+ T cell priming but, paradoxically, promote splenic Listeria monocytogenes infection. Using mice with impaired cDC2 function, we ruled out a role for cDC2s in this process and instead discovered an interleukin-10 (IL-10)-dependent cellular crosstalk in the marginal zone (MZ) that promoted bacterial infection. Mice lacking the guanine nucleotide exchange factor DOCK8 or CD19 lost IL-10-producing MZ B cells and were resistant to Listeria. IL-10 increased intracellular Listeria in cDC1s indirectly by reducing inducible nitric oxide synthase expression early after infection and increasing intracellular Listeria in MZ metallophilic macrophages (MMMs). These MMMs trans-infected cDC1s, which, in turn, transported Listeria into the white pulp to prime CD8+ T cells. However, this also facilitated bacterial expansion. Therefore, IL-10-mediated crosstalk between B cells, macrophages, and cDC1s in the MZ promotes both Listeria infection and CD8+ T cell activation.
Collapse
|
39
|
D'Orazio SEF. Innate and Adaptive Immune Responses during Listeria monocytogenes Infection. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0065-2019. [PMID: 31124430 PMCID: PMC11086964 DOI: 10.1128/microbiolspec.gpp3-0065-2019] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Indexed: 12/15/2022] Open
Abstract
It could be argued that we understand the immune response to infection with Listeria monocytogenes better than the immunity elicited by any other bacteria. L. monocytogenes are Gram-positive bacteria that are genetically tractable and easy to cultivate in vitro, and the mouse model of intravenous (i.v.) inoculation is highly reproducible. For these reasons, immunologists frequently use the mouse model of systemic listeriosis to dissect the mechanisms used by mammalian hosts to recognize and respond to infection. This article provides an overview of what we have learned over the past few decades and is divided into three sections: "Innate Immunity" describes how the host initially detects the presence of L. monocytogenes and characterizes the soluble and cellular responses that occur during the first few days postinfection; "Adaptive Immunity" discusses the exquisitely specific T cell response that mediates complete clearance of infection and immunological memory; "Use of Attenuated Listeria as a Vaccine Vector" highlights the ways that investigators have exploited our extensive knowledge of anti-Listeria immunity to develop cancer therapeutics.
Collapse
Affiliation(s)
- Sarah E F D'Orazio
- University of Kentucky, Microbiology, Immunology & Molecular Genetics, Lexington, KY 40536-0298
| |
Collapse
|
40
|
Guler R, Mpotje T, Ozturk M, Nono JK, Parihar SP, Chia JE, Abdel Aziz N, Hlaka L, Kumar S, Roy S, Penn-Nicholson A, Hanekom WA, Zak DE, Scriba TJ, Suzuki H, Brombacher F. Batf2 differentially regulates tissue immunopathology in Type 1 and Type 2 diseases. Mucosal Immunol 2019; 12:390-402. [PMID: 30542107 PMCID: PMC7051910 DOI: 10.1038/s41385-018-0108-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 10/04/2018] [Accepted: 10/07/2018] [Indexed: 02/04/2023]
Abstract
Basic leucine zipper transcription factor 2 (Batf2) activation is detrimental in Type 1-controlled infectious diseases, demonstrated during infection with Mycobacterium tuberculosis (Mtb) and Listeria monocytogenes Lm. In Batf2-deficient mice (Batf2-/-), infected with Mtb or Lm, mice survived and displayed reduced tissue pathology compared to infected control mice. Indeed, pulmonary inflammatory macrophage recruitment, pro-inflammatory cytokines and immune effectors were also decreased during tuberculosis. This explains that batf2 mRNA predictive early biomarker found in active TB patients is increased in peripheral blood. Similarly, Lm infection in human macrophages and mouse spleen and liver also increased Batf2 expression. In striking contrast, Type 2-controlled schistosomiasis exacerbates during infected Batf2-/- mice with increased intestinal fibro-granulomatous inflammation, pro-fibrotic immune cells, and elevated cytokine production leading to wasting disease and early death. Together, these data strongly indicate that Batf2 differentially regulates Type 1 and Type 2 immunity in infectious diseases.
Collapse
Affiliation(s)
- Reto Guler
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Cape Town, 7925 South Africa ,0000 0004 1937 1151grid.7836.aDepartment of Pathology, University of Cape Town, Institute of Infectious Diseases and Molecular Medicine (IDM), Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, Faculty of Health Sciences, University of Cape Town, Cape Town, 7925 South Africa ,0000 0004 1937 1151grid.7836.aWellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa), Institute of Infectious Diseases and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town, 7925 South Africa
| | - Thabo Mpotje
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Cape Town, 7925 South Africa ,0000 0004 1937 1151grid.7836.aDepartment of Pathology, University of Cape Town, Institute of Infectious Diseases and Molecular Medicine (IDM), Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, Faculty of Health Sciences, University of Cape Town, Cape Town, 7925 South Africa
| | - Mumin Ozturk
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Cape Town, 7925 South Africa ,0000 0004 1937 1151grid.7836.aDepartment of Pathology, University of Cape Town, Institute of Infectious Diseases and Molecular Medicine (IDM), Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, Faculty of Health Sciences, University of Cape Town, Cape Town, 7925 South Africa
| | - Justin K. Nono
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Cape Town, 7925 South Africa ,0000 0004 1937 1151grid.7836.aDepartment of Pathology, University of Cape Town, Institute of Infectious Diseases and Molecular Medicine (IDM), Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, Faculty of Health Sciences, University of Cape Town, Cape Town, 7925 South Africa ,0000 0004 0595 6917grid.500526.4The Medical Research Centre, Institute of Medical Research and Medicinal Plant Studies (IMPM), Ministry of Scientific Research and Innovation, Yaoundé, Cameroon
| | - Suraj P. Parihar
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Cape Town, 7925 South Africa ,0000 0004 1937 1151grid.7836.aDepartment of Pathology, University of Cape Town, Institute of Infectious Diseases and Molecular Medicine (IDM), Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, Faculty of Health Sciences, University of Cape Town, Cape Town, 7925 South Africa ,0000 0004 1937 1151grid.7836.aWellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa), Institute of Infectious Diseases and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town, 7925 South Africa ,0000 0004 1937 1151grid.7836.aDivision of Medical Microbiology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, 7925 South Africa
| | - Julius Ebua Chia
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Cape Town, 7925 South Africa ,0000 0004 1937 1151grid.7836.aDepartment of Pathology, University of Cape Town, Institute of Infectious Diseases and Molecular Medicine (IDM), Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, Faculty of Health Sciences, University of Cape Town, Cape Town, 7925 South Africa
| | - Nada Abdel Aziz
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Cape Town, 7925 South Africa ,0000 0004 1937 1151grid.7836.aDepartment of Pathology, University of Cape Town, Institute of Infectious Diseases and Molecular Medicine (IDM), Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, Faculty of Health Sciences, University of Cape Town, Cape Town, 7925 South Africa ,0000 0004 0639 9286grid.7776.1Department of Chemistry, Faculty of Science, Cairo University, Cairo, Egypt
| | - Lerato Hlaka
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Cape Town, 7925 South Africa ,0000 0004 1937 1151grid.7836.aDepartment of Pathology, University of Cape Town, Institute of Infectious Diseases and Molecular Medicine (IDM), Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, Faculty of Health Sciences, University of Cape Town, Cape Town, 7925 South Africa
| | - Santosh Kumar
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Cape Town, 7925 South Africa ,0000 0004 1937 1151grid.7836.aDepartment of Pathology, University of Cape Town, Institute of Infectious Diseases and Molecular Medicine (IDM), Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, Faculty of Health Sciences, University of Cape Town, Cape Town, 7925 South Africa
| | - Sugata Roy
- RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045 Japan
| | - Adam Penn-Nicholson
- 0000 0004 1937 1151grid.7836.aSouth African Tuberculosis Vaccine Initiative, Division of Immunology, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, 7925 South Africa
| | - Willem A. Hanekom
- 0000 0004 1937 1151grid.7836.aSouth African Tuberculosis Vaccine Initiative, Division of Immunology, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, 7925 South Africa
| | - Daniel E. Zak
- 0000 0004 0463 2611grid.53964.3dThe Center for Infectious Disease Research, Seattle, WA 98109 USA
| | - Thomas J. Scriba
- 0000 0004 1937 1151grid.7836.aSouth African Tuberculosis Vaccine Initiative, Division of Immunology, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, 7925 South Africa
| | - Harukazu Suzuki
- RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045 Japan
| | - Frank Brombacher
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Cape Town, 7925 South Africa ,0000 0004 1937 1151grid.7836.aDepartment of Pathology, University of Cape Town, Institute of Infectious Diseases and Molecular Medicine (IDM), Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, Faculty of Health Sciences, University of Cape Town, Cape Town, 7925 South Africa ,0000 0004 1937 1151grid.7836.aWellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa), Institute of Infectious Diseases and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town, 7925 South Africa
| |
Collapse
|
41
|
Terán-Navarro H, Calderon-Gonzalez R, Salcines-Cuevas D, García I, Marradi M, Freire J, Salmon E, Portillo-Gonzalez M, Frande-Cabanes E, García-Castaño A, Martinez-Callejo V, Gomez-Roman J, Tobes R, Rivera F, Yañez-Diaz S, Álvarez-Domínguez C. Pre-clinical development of Listeria-based nanovaccines as immunotherapies for solid tumours: insights from melanoma. Oncoimmunology 2018; 8:e1541534. [PMID: 30713801 PMCID: PMC6343812 DOI: 10.1080/2162402x.2018.1541534] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 10/15/2018] [Accepted: 10/24/2018] [Indexed: 01/28/2023] Open
Abstract
Gold glyconanoparticles loaded with the listeriolysin O peptide 91-99 (GNP-LLO91-99), a bacterial peptide with anti-metastatic properties, are vaccine delivery platforms facilitating immune cell targeting and increasing antigen loading. Here, we present proof of concept analyses for the consideration of GNP-LLO91-99 nanovaccines as a novel immunotherapy for cutaneous melanoma. Studies using mouse models of subcutaneous melanoma indicated that GNP-LLO91-99 nanovaccines recruite and modulate dendritic cell (DC) function within the tumour, alter tumour immunotolerance inducing melanoma-specific cytotoxic T cells, cause complete remission and improve survival. GNP-LLO91-99 nanovaccines showed superior tumour regression and survival benefits, when combined with anti-PD-1 or anti-CTLA-4 checkpoint inhibitors, resulting in an improvement in the efficacy of these immunotherapies. Studies on monocyte-derived DCs from patients with stage IA, IB or IIIB melanoma confirmed the ability of GNP-LLO91-99 nanovaccines to complement the action of checkpoint inhibitors, by not only reducing the expression of cell-death markers on DCs, but also potentiating DC antigen-presentation. We propose that GNP-LLO91-99 nanovaccines function as immune stimulators and immune effectors and serve as safe cancer therapies, alone or in combination with other immunotherapies.
Collapse
Affiliation(s)
- Hector Terán-Navarro
- Group of Listeria based Nanovaccines and cellular vaccines and their applications in biomedicine, Instituto de Investigación Marqués de Valdecilla (IDIVAL), Santander, Cantabria, Spain
| | - Ricardo Calderon-Gonzalez
- Group of Listeria based Nanovaccines and cellular vaccines and their applications in biomedicine, Instituto de Investigación Marqués de Valdecilla (IDIVAL), Santander, Cantabria, Spain
| | - David Salcines-Cuevas
- Group of Listeria based Nanovaccines and cellular vaccines and their applications in biomedicine, Instituto de Investigación Marqués de Valdecilla (IDIVAL), Santander, Cantabria, Spain
| | - Isabel García
- Bionanoplasmonics Laboratory, CIC biomaGUNE and Biomedical Research Networking Center in Bioengineering, Nanomaterials and Nanomedicine (CIBER-BBN), Donostia-San Sebastián, Gipuzkoa, Spain
| | - Marco Marradi
- Bionanoplasmonics Laboratory, CIC biomaGUNE and Biomedical Research Networking Center in Bioengineering, Nanomaterials and Nanomedicine (CIBER-BBN), Donostia-San Sebastián, Gipuzkoa, Spain
| | - Javier Freire
- Servicio de Anatomía Patológica, Hospital Universitario Marqués de Valdecilla, Santander, Cantabria, Spain
| | - Erwan Salmon
- Group of Listeria based Nanovaccines and cellular vaccines and their applications in biomedicine, Instituto de Investigación Marqués de Valdecilla (IDIVAL), Santander, Cantabria, Spain
| | - Mar Portillo-Gonzalez
- Group of Listeria based Nanovaccines and cellular vaccines and their applications in biomedicine, Instituto de Investigación Marqués de Valdecilla (IDIVAL), Santander, Cantabria, Spain
| | - Elisabet Frande-Cabanes
- Group of Listeria based Nanovaccines and cellular vaccines and their applications in biomedicine, Instituto de Investigación Marqués de Valdecilla (IDIVAL), Santander, Cantabria, Spain
| | - Almudena García-Castaño
- Servicio de Oncología Médica, Hospital Universitario Marqués de Valdecilla, Santander, Cantabria, Spain
| | - Virginia Martinez-Callejo
- Servicio de Farmacia Hospitalaria, Hospital Universitario Marqués de Valdecilla, Santander, Cantabria, Spain
| | - Javier Gomez-Roman
- Servicio de Anatomía Patológica, Hospital Universitario Marqués de Valdecilla, Santander, Cantabria, Spain
| | - Raquel Tobes
- Oh no Sequences! Research Group, Era7 Bioinformatics, Granada, Andalucia, Spain
| | - Fernando Rivera
- Servicio de Oncología Médica, Hospital Universitario Marqués de Valdecilla, Santander, Cantabria, Spain
| | - Sonsoles Yañez-Diaz
- Group of Listeria based Nanovaccines and cellular vaccines and their applications in biomedicine, Instituto de Investigación Marqués de Valdecilla (IDIVAL), Santander, Cantabria, Spain
- Servicio de Dermatología, Hospital Universitario Marqués de Valdecilla, Santander, Cantabria, Spain
| | - Carmen Álvarez-Domínguez
- Group of Listeria based Nanovaccines and cellular vaccines and their applications in biomedicine, Instituto de Investigación Marqués de Valdecilla (IDIVAL), Santander, Cantabria, Spain
| |
Collapse
|
42
|
Development, Diversity, and Function of Dendritic Cells in Mouse and Human. Cold Spring Harb Perspect Biol 2018; 10:cshperspect.a028613. [PMID: 28963110 PMCID: PMC6211386 DOI: 10.1101/cshperspect.a028613] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The study of murine dendritic cell (DC) development has been integral to the identification of specialized DC subsets that have unique requirements for their form and function. Advances in the field have also provided a framework for the identification of human DC counterparts, which appear to have conserved mechanisms of development and function. Multiple transcription factors are expressed in unique combinations that direct the development of classical DCs (cDCs), which include two major subsets known as cDC1s and cDC2s, and plasmacytoid DCs (pDCs). pDCs are potent producers of type I interferons and thus these cells are implicated in immune responses that depend on this cytokine. Mouse models deficient in the cDC1 lineage have revealed their importance in directing immune responses to intracellular bacteria, viruses, and cancer through the cross-presentation of cell-associated antigen. Models of transcription factor deficiency have been used to identify subsets of cDC2 that are required for T helper (Th)2 and Th17 responses to certain pathogens; however, no single factor is known to be absolutely required for the development of the complete cDC2 lineage. In this review, we will discuss the current state of knowledge of mouse and human DC development and function and highlight areas in the field that remain unresolved.
Collapse
|
43
|
Grabowska J, Lopez-Venegas MA, Affandi AJ, den Haan JMM. CD169 + Macrophages Capture and Dendritic Cells Instruct: The Interplay of the Gatekeeper and the General of the Immune System. Front Immunol 2018; 9:2472. [PMID: 30416504 PMCID: PMC6212557 DOI: 10.3389/fimmu.2018.02472] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 10/05/2018] [Indexed: 12/14/2022] Open
Abstract
Since the seminal discovery of dendritic cells (DCs) by Steinman and Cohn in 1973, there has been an ongoing debate to what extent macrophages and DCs are related and perform different functions. The current view is that macrophages and DCs originate from different lineages and that only DCs have the capacity to initiate adaptive immunity. Nevertheless, as we will discuss in this review, lymphoid tissue resident CD169+ macrophages have been shown to act in concert with DCs to promote or suppress adaptive immune responses for pathogens and self-antigens, respectively. Accordingly, we propose a functional alliance between CD169+ macrophages and DCs in which a division of tasks is established. CD169+ macrophages are responsible for the capture of pathogens and are frequently the first cell type infected and thereby provide a confined source of antigen. Subsequently, cross-presenting DCs interact with these antigen-containing CD169+ macrophages, pick up antigens and activate T cells. The cross-priming of T cells by DCs is enhanced by the localized production of type I interferons (IFN-I) derived from CD169+ macrophages and plasmacytoid DCs (pDCs) that induces DC maturation. The interaction between CD169+ macrophages and DCs appears not only to be essential for immune responses against pathogens, but also plays a role in the induction of self-tolerance and immune responses against cancer. In this review we will discuss the studies that demonstrate the collaboration between CD169+ macrophages and DCs in adaptive immunity.
Collapse
Affiliation(s)
- Joanna Grabowska
- Department of Molecular Cell Biology and Immunology, Amsterdam University Medical Center, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Miguel A Lopez-Venegas
- Department of Molecular Cell Biology and Immunology, Amsterdam University Medical Center, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Alsya J Affandi
- Department of Molecular Cell Biology and Immunology, Amsterdam University Medical Center, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Joke M M den Haan
- Department of Molecular Cell Biology and Immunology, Amsterdam University Medical Center, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
44
|
Receptor Activator of NF-κB Orchestrates Activation of Antiviral Memory CD8 T Cells in the Spleen Marginal Zone. Cell Rep 2018; 21:2515-2527. [PMID: 29186688 PMCID: PMC5723674 DOI: 10.1016/j.celrep.2017.10.111] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 09/30/2017] [Accepted: 10/28/2017] [Indexed: 12/23/2022] Open
Abstract
The spleen plays an important role in protective immunity to bloodborne pathogens. Macrophages and dendritic cells (DCs) in the spleen marginal zone capture microbial antigens to trigger adaptive immune responses. Marginal zone macrophages (MZMs) can also act as a replicative niche for intracellular pathogens, providing a platform for mounting the immune response. Here, we describe a role for RANK in the coordinated function of antigen-presenting cells in the spleen marginal zone and triggering anti-viral immunity. Targeted deletion of RANK results in the selective loss of CD169+ MZMs, which provide a niche for viral replication, while RANK signaling in DCs promotes the recruitment and activation of anti-viral memory CD8 T cells. These studies reveal a role for the RANKL/RANK signaling axis in the orchestration of protective immune responses in the spleen marginal zone that has important implications for the host response to viral infection and induction of acquired immunity.
Collapse
|
45
|
Listeria Monocytogenes: A Model Pathogen Continues to Refine Our Knowledge of the CD8 T Cell Response. Pathogens 2018; 7:pathogens7020055. [PMID: 29914156 PMCID: PMC6027175 DOI: 10.3390/pathogens7020055] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 06/13/2018] [Accepted: 06/14/2018] [Indexed: 12/12/2022] Open
Abstract
Listeria monocytogenes (Lm) infection induces robust CD8 T cell responses, which play a critical role in resolving Lm during primary infection and provide protective immunity to re-infections. Comprehensive studies have been conducted to delineate the CD8 T cell response after Lm infection. In this review, the generation of the CD8 T cell response to Lm infection will be discussed. The role of dendritic cell subsets in acquiring and presenting Lm antigens to CD8 T cells and the events that occur during T cell priming and activation will be addressed. CD8 T cell expansion, differentiation and contraction as well as the signals that regulate these processes during Lm infection will be explored. Finally, the formation of memory CD8 T cell subsets in the circulation and in the intestine will be analyzed. Recently, the study of CD8 T cell responses to Lm infection has begun to shift focus from the intravenous infection model to a natural oral infection model as the humanized mouse and murinized Lm have become readily available. Recent findings in the generation of CD8 T cell responses to oral infection using murinized Lm will be explored throughout the review. Finally, CD8 T cell-mediated protective immunity against Lm infection and the use of Lm as a vaccine vector for cancer immunotherapy will be highlighted. Overall, this review will provide detailed knowledge on the biology of CD8 T cell responses after Lm infection that may shed light on improving rational vaccine design.
Collapse
|
46
|
Perez OA, Yeung ST, Vera-Licona P, Romagnoli PA, Samji T, Ural BB, Maher L, Tanaka M, Khanna KM. CD169 + macrophages orchestrate innate immune responses by regulating bacterial localization in the spleen. Sci Immunol 2018; 2:2/16/eaah5520. [PMID: 28986418 DOI: 10.1126/sciimmunol.aah5520] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 05/22/2017] [Accepted: 08/14/2017] [Indexed: 01/09/2023]
Abstract
The spleen is an important site for generating protective immune responses against pathogens. After infection, immune cells undergo rapid reorganization to initiate and maintain localized inflammatory responses; however, the mechanisms governing this spatial and temporal cellular reorganization remain unclear. We show that the strategic position of splenic marginal zone CD169+ macrophages is vital for rapid initiation of antibacterial responses. In addition to controlling initial bacterial growth, CD169+ macrophages orchestrate a second phase of innate protection by mediating the transport of bacteria to splenic T cell zones. This compartmentalization of bacteria within the spleen was essential for driving the reorganization of innate immune cells into hierarchical clusters and for local interferon-γ production near sites of bacterial replication foci. Our results show that both phases of the antimicrobial innate immune response were dependent on CD169+ macrophages, and, in their absence, the series of events needed for pathogen clearance and subsequent survival of the host was disrupted. Our study provides insight into how lymphoid organ structure and function are related at a fundamental level.
Collapse
Affiliation(s)
- Oriana A Perez
- Department of Immunology, University of Connecticut (UConn) Health, Farmington, CT 06030, USA
| | - Stephen T Yeung
- Department of Immunology, University of Connecticut (UConn) Health, Farmington, CT 06030, USA
| | - Paola Vera-Licona
- Center for Quantitative Medicine, UConn Health, Farmington, CT 06030, USA.,Department of Cell Biology, UConn Health, Farmington, CT 06030, USA.,Department of Pediatrics, UConn Health, Farmington, CT 06030, USA.,Institute for Systems Genomics, UConn Health, Farmington, CT 06030, USA
| | - Pablo A Romagnoli
- Department of Immunology, University of Connecticut (UConn) Health, Farmington, CT 06030, USA
| | - Tasleem Samji
- Department of Immunology, University of Connecticut (UConn) Health, Farmington, CT 06030, USA
| | - Basak B Ural
- Department of Immunology, University of Connecticut (UConn) Health, Farmington, CT 06030, USA
| | - Leigh Maher
- Department of Immunology, University of Connecticut (UConn) Health, Farmington, CT 06030, USA
| | - Masato Tanaka
- School of Life Science, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Kamal M Khanna
- Department of Immunology, University of Connecticut (UConn) Health, Farmington, CT 06030, USA. .,Department of Pediatrics, UConn Health, Farmington, CT 06030, USA
| |
Collapse
|
47
|
Prendergast KA, Daniels NJ, Petersen TR, Hermans IF, Kirman JR. Langerin + CD8α + Dendritic Cells Drive Early CD8 + T Cell Activation and IL-12 Production During Systemic Bacterial Infection. Front Immunol 2018; 9:953. [PMID: 29867941 PMCID: PMC5949331 DOI: 10.3389/fimmu.2018.00953] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 04/17/2018] [Indexed: 12/18/2022] Open
Abstract
Bloodstream infections induce considerable morbidity, high mortality, and represent a significant burden of cost in health care; however, our understanding of the immune response to bacteremia is incomplete. Langerin+ CD8α+ dendritic cells (DCs), residing in the marginal zone of the murine spleen, have the capacity to cross-prime CD8+ T cells and produce IL-12, both of which are important components of antimicrobial immunity. Accordingly, we hypothesized that this DC subset may be a key promoter of adaptive immune responses to blood-borne bacterial infections. Utilizing mice that express the diphtheria toxin receptor under control of the langerin promoter, we investigated the impact of depleting langerin+ CD8α+ DCs in a murine model of intravenous infection with Mycobacterium bovis bacille Calmette–Guerin (BCG). In the absence of langerin+ CD8α+ DCs, the immune response to blood-borne BCG infection was diminished: bacterial numbers in the spleen increased, serum IL-12p40 decreased, and delayed CD8+ T cell activation, proliferation, and IFN-γ production was evident. Our data revealed that langerin+ CD8α+ DCs play a pivotal role in initiating CD8+ T cell responses and IL-12 production in response to bacteremia and may influence the early control of systemic bacterial infections.
Collapse
Affiliation(s)
- Kelly A Prendergast
- Malaghan Institute of Medical Research, Wellington, New Zealand.,School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Naomi J Daniels
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | | | - Ian F Hermans
- Malaghan Institute of Medical Research, Wellington, New Zealand.,School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - Joanna R Kirman
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| |
Collapse
|
48
|
Abstract
Within an organism, environmental stresses can trigger cell death, particularly apoptotic cell death. Apoptotic cells, themselves, are potent regulators of their cellular environment, involved primarily in effecting homeostatic control. Tumors, especially, exist in a dynamic balance of cell proliferation and cell death. This special feature of the tumorous microenvironment—namely, the prominence and persistence of cell death—necessarily entails a magnification of the extrinsic, postmortem effects of dead cells. In both normal and malignant tissues, apoptotic regulation is exerted through immune as well as non-immune mechanisms. Apoptotic cells suppress the repertoire of immune reactivities, both by attenuating innate (especially inflammatory) responses and by abrogating adaptive responses. In addition, apoptotic cells modulate multiple vital cell activities, including survival, proliferation (cell number), and growth (cell size). While the microenvironment of the tumor may contribute to apoptosis, the postmortem effects of apoptotic cells feature prominently in the reciprocal acclimatization between the tumor and its environment. In much the same way that pathogens evade the host’s defenses through exploitation of key aspects of innate and adaptive immunity, cancer cells subvert several normal homeostatic processes, in particular wound healing and organ regeneration, to transform and overtake their environment. In understanding this subversion, it is crucial to view a tumor not simply as a clone of malignant cells, but rather as a complex and highly organized structure in which there exists a multidirectional flow of information between the cancer cells themselves and the multiple other cell types and extracellular matrix components of which the tumor is comprised. Apoptotic cells, therefore, have the unfortunate consequence of facilitating tumorigenesis and tumor survival.
Collapse
Affiliation(s)
- David S Ucker
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, IL, United States
| | - Jerrold S Levine
- Department of Medicine, Division of Nephrology, University of Illinois College of Medicine, Jesse Brown Veterans Affairs Medical Center, Chicago, IL, United States
| |
Collapse
|
49
|
Leonardi I, Li X, Semon A, Li D, Doron I, Putzel G, Bar A, Prieto D, Rescigno M, McGovern DPB, Pla J, Iliev ID. CX3CR1 + mononuclear phagocytes control immunity to intestinal fungi. Science 2018; 359:232-236. [PMID: 29326275 DOI: 10.1126/science.aao1503] [Citation(s) in RCA: 207] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 11/15/2017] [Accepted: 12/09/2017] [Indexed: 12/23/2022]
Abstract
Intestinal fungi are an important component of the microbiota, and recent studies have unveiled their potential in modulating host immune homeostasis and inflammatory disease. Nonetheless, the mechanisms governing immunity to gut fungal communities (mycobiota) remain unknown. We identified CX3CR1+ mononuclear phagocytes (MNPs) as being essential for the initiation of innate and adaptive immune responses to intestinal fungi. CX3CR1+ MNPs express antifungal receptors and activate antifungal responses in a Syk-dependent manner. Genetic ablation of CX3CR1+ MNPs in mice led to changes in gut fungal communities and to severe colitis that was rescued by antifungal treatment. In Crohn's disease patients, a missense mutation in the gene encoding CX3CR1 was identified and found to be associated with impaired antifungal responses. These results unravel a role of CX3CR1+ MNPs in mediating interactions between intestinal mycobiota and host immunity at steady state and during inflammatory disease.
Collapse
Affiliation(s)
- Irina Leonardi
- Gastroenterology and Hepatology Division, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA.,The Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, New York, NY 10021, USA
| | - Xin Li
- Gastroenterology and Hepatology Division, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA.,The Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, New York, NY 10021, USA
| | - Alexa Semon
- Gastroenterology and Hepatology Division, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA.,The Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, New York, NY 10021, USA
| | - Dalin Li
- The F. Widjaja Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Itai Doron
- Gastroenterology and Hepatology Division, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA.,The Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, New York, NY 10021, USA
| | - Gregory Putzel
- The Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, New York, NY 10021, USA
| | - Agnieszka Bar
- Gastroenterology and Hepatology Division, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA.,The Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, New York, NY 10021, USA
| | - Daniel Prieto
- Faculty of Pharmacy, Department of Microbiology II, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Maria Rescigno
- Department of Experimental Oncology, European Institute of Oncology, I-20141 Milan, Italy
| | - Dermot P B McGovern
- The F. Widjaja Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Jesus Pla
- Faculty of Pharmacy, Department of Microbiology II, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Iliyan D Iliev
- Gastroenterology and Hepatology Division, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA.,The Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, New York, NY 10021, USA.,Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY 10065, USA
| |
Collapse
|
50
|
Pitts MG, D'Orazio SEF. A Comparison of Oral and Intravenous Mouse Models of Listeriosis. Pathogens 2018; 7:pathogens7010013. [PMID: 29361677 PMCID: PMC5874739 DOI: 10.3390/pathogens7010013] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 01/11/2018] [Accepted: 01/19/2018] [Indexed: 12/18/2022] Open
Abstract
Listeria monocytogenes is one of several enteric microbes that is acquired orally, invades the gastric mucosa, and then disseminates to peripheral tissues to cause systemic disease in humans. Intravenous (i.v.) inoculation of mice with L. monocytogenes has been the most widely-used small animal model of listeriosis over the past few decades. The infection is highly reproducible and has been invaluable in deciphering mechanisms of adaptive immunity in vivo, particularly CD8+ T cell responses to intracellular pathogens. However, the i.v. model completely bypasses the gut phase of the infection. Recent advances in generating both humanized mice and murinized bacteria, as well as the development of a foodborne route of transmission has reignited interest in studying oral models of listeriosis. In this review, we analyze previously published reports to highlight both the similarities and differences in tissue colonization and host response to infection using either oral or i.v. inoculation.
Collapse
Affiliation(s)
- Michelle G Pitts
- Department of Microbiology, Immunology & Molecular Genetics, University of Kentucky, 800 Rose Street-MS417, Lexington, KY 40536-0298, USA.
| | - Sarah E F D'Orazio
- Department of Microbiology, Immunology & Molecular Genetics, University of Kentucky, 800 Rose Street-MS417, Lexington, KY 40536-0298, USA.
| |
Collapse
|