1
|
Truthe S, Klassert TE, Schmelz S, Jonigk D, Blankenfeldt W, Slevogt H. Role of Lectin-Like Oxidized Low-Density Lipoprotein Receptor-1 in Inflammation and Pathogen-Associated Interactions. J Innate Immun 2024; 16:105-132. [PMID: 38232720 PMCID: PMC10866614 DOI: 10.1159/000535793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 12/11/2023] [Indexed: 01/19/2024] Open
Abstract
BACKGROUND Lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) is known as a major receptor for oxidized low-density lipoproteins (oxLDL) and plays a significant role in the genesis of atherosclerosis. Recent research has shown its involvement in cancer, ischemic stroke, and diabetes. LOX-1 is a C-type lectin receptor and is involved in the activation of immune cells and inflammatory processes. It may further interact with pathogens, suggesting a role in infections or the host's response. SUMMARY This review compiles the current knowledge of potential implications of LOX-1 in inflammatory processes and in host-pathogen interactions with a particular emphasis on its regulatory role in immune responses. Also discussed are genomic and structural variations found in LOX-1 homologs across different species as well as potential involvements of LOX-1 in inflammatory processes from the angle of different cell types and organ-specific interactions. KEY MESSAGES The results presented reveal both similar and different structures in human and murine LOX-1 and provide clues as to the possible origins of different modes of interaction. These descriptions raise concerns about the suitability, particularly of mouse models, that are often used in the analysis of its functionality in humans. Further research should also aim to better understand the mostly unknown binding and interaction mechanisms between LOX-1 and different pathogens. This pursuit will not only enhance our understanding of LOX-1 involvement in inflammatory processes but also identify potential targets for immunomodulatory approaches.
Collapse
Affiliation(s)
- Sarah Truthe
- Department of Respiratory Medicine and Infectious Diseases, Hannover Medical School, German Center for Lung Research (DZL), BREATH, Hannover, Germany,
- Dynamics of Respiratory Infection Group, Helmholtz Centre for Infection Research, Braunschweig, Germany,
- Hannover Biomedical Research School (HRBS) and ZIB (Centre of Infection Biology), Braunschweig, Germany,
| | - Tilman E Klassert
- Department of Respiratory Medicine and Infectious Diseases, Hannover Medical School, German Center for Lung Research (DZL), BREATH, Hannover, Germany
- Dynamics of Respiratory Infection Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Stefan Schmelz
- Department Structure and Function of Proteins, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Danny Jonigk
- Institute of Pathology, RWTH Medical University Aachen, Aachen, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Wulf Blankenfeldt
- Department Structure and Function of Proteins, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Hortense Slevogt
- Department of Respiratory Medicine and Infectious Diseases, Hannover Medical School, German Center for Lung Research (DZL), BREATH, Hannover, Germany
- Dynamics of Respiratory Infection Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| |
Collapse
|
2
|
Zhang Q, Du G, Tong L, Guo X, Wei Y. Overexpression of LOX-1 in hepatocytes protects vascular smooth muscle cells from phenotype transformation and wire injury induced carotid neoatherosclerosis through ALOX15. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166805. [PMID: 37468019 DOI: 10.1016/j.bbadis.2023.166805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 06/16/2023] [Accepted: 07/06/2023] [Indexed: 07/21/2023]
Abstract
Neoatherosclerosis (NA), the main pathological basis of late stent failure, is the main limitation of interventional therapy. However, the specific pathogenesis and treatment remain unclear. In vivo, NA model was established by carotid wire injury and high-fat feeding in ApoE-/- mice. Oxidized low-density lipoprotein receptor-1/lectin-like oxidized low-density lipoprotein receptor-1 (OLR1/LOX-1), a specific receptor for oxidized low-density lipoprotein (ox-LDL), was specifically ectopically overexpressed in hepatocytes by portal vein injection of adeno-associated serotype 8 (AAV8)-thyroid binding globulin (TBG)-Olr1 and the protective effect against NA was examined. In vitro, LOX-1 was overexpressed on HHL5 using lentivirus (LV)-OLR1 and the vascular smooth muscle cells (VSMCs)-HHL5 indirect co-culture system was established to examine its protective effect on VSMCs and the molecular mechanism. Functionally, we found that specific ectopic overexpression of LOX-1 by hepatocytes competitively engulfed and metabolized ox-LDL, alleviating its resulting phenotypic transformation of VSMCs including migration, downregulation of contractile shape markers (smooth muscle α-actin (SMαA) and smooth muscle-22α (SM22α)), and upregulation of proliferative/migratory shape markers (osteopontin (OPN) and Vimentin) as well as foaminess and apoptosis, thereby alleviating NA, which independent of low-density lipoprotein (LDL) lowering treatment (evolocumab, a monoclonal antibody to proprotein convertase subtilisin/kexin type 9 (PCSK9)). Mechanistically, we found that overexpression of LOX-1 in hepatocytes competitively engulfed and metabolized ox-LDL through upregulation of arachidonate-15-lipoxygenase (ALOX15), which further upregulated scavenger receptor class B type I (SRBI) and ATP-binding cassette transporter A1 (ABCA1). In conclusion, the overexpression of LOX-1 in liver protects VSMCs from phenotypic transformation and wire injury induced carotid neoatherosclerosis through ALOX15.
Collapse
Affiliation(s)
- Qing Zhang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gaohui Du
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lu Tong
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaopeng Guo
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Yumiao Wei
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
3
|
Pontzen DL, Bahls M, Albrecht D, Felix SB, Dörr M, Ittermann T, Nauck M, Friedrich N. Low-grade inflammation is associated with a heterogeneous lipoprotein subclass profile in an apparently healthy population sample. Lipids Health Dis 2023; 22:100. [PMID: 37434164 PMCID: PMC10334607 DOI: 10.1186/s12944-023-01856-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 06/22/2023] [Indexed: 07/13/2023] Open
Abstract
BACKGROUND AND AIMS Prevention measures for cardiovascular diseases (CVD) have shifted their focus from lipoproteins to the immune system. However, low-grade inflammation and dyslipidemia are tightly entangled. The objective of this study was to assess the relations between a broad panel of inflammatory biomarkers and lipoprotein subclass parameters. METHODS We utilized data from the population-based Study of Health in Pomerania (SHIP-TREND, n = 403). Plasma concentrations of 37 inflammatory markers were measured by a bead-based assay. Furthermore, we employed nuclear magnetic resonance spectroscopy to measure total cholesterol, total triglycerides, total phospholipids as well as the fractional concentrations of cholesterol, triglycerides, phospholipids, ApoA1, ApoA2 and ApoB in all major lipoprotein subclasses. Associations between inflammatory biomarkers and lipoprotein subclasses were analyzed by adjusted linear regression models. RESULTS APRIL, BAFF, TWEAK, sCD30, Pentraxin-3, sTNFR1, sTNFR2, Osteocalcin, Chitinase 3-like 1, IFN-alpha2, IFN-gamma, IL-11, IL-12p40, IL-29, IL-32, IL-35, TSLP, MMP1 and MMP2 were related with lipoprotein subclass components, forming two distinct clusters. APRIL had inverse relations to HDL-C (total and subclasses) and HDL Apo-A1 and Apo-A2 content. MMP-2 was inversely related to VLDL-C (total and subclasses), IDL-C as well as LDL5/6-C and VLDL-TG, IDL-TG, total triglycerides as well as LDL5/5-TG and HDL4-TG. Additionally, we identified a cluster of cytokines linked to the Th1-immune response, which were associated with an atherogenic lipoprotein profile. CONCLUSION Our findings expand the existing knowledge of inflammation-lipoprotein interactions, many of which are suggested to be involved in the pathogeneses of chronic non-communicable diseases. The results of our study support the use of immunomodulatory substances for the treatment and possibly prevention of CVD.
Collapse
Affiliation(s)
- Daniel L Pontzen
- University Medicine Greifswald, Ferdinand-Sauerbruch-Str. 17475, Greifswald, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, Greifswald, Germany
| | - Martin Bahls
- University Medicine Greifswald, Ferdinand-Sauerbruch-Str. 17475, Greifswald, Germany.
- German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, Greifswald, Germany.
| | - Diana Albrecht
- Institute for Community Medicine, SHIP-KEF, University Medicine Greifswald, Greifswald, Germany
- Leibniz Institute Greifswald, Leibniz Institute for Plasma Science and Technology eV, Greifswald, Germany
| | - Stephan B Felix
- University Medicine Greifswald, Ferdinand-Sauerbruch-Str. 17475, Greifswald, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, Greifswald, Germany
| | - Marcus Dörr
- University Medicine Greifswald, Ferdinand-Sauerbruch-Str. 17475, Greifswald, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, Greifswald, Germany
| | - Till Ittermann
- German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, Greifswald, Germany
- Institute for Community Medicine, SHIP-KEF, University Medicine Greifswald, Greifswald, Germany
| | - Matthias Nauck
- German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, Greifswald, Germany
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Nele Friedrich
- German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, Greifswald, Germany
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
4
|
Ong EZ, Koh CWT, Tng DJH, Ooi JSG, Yee JX, Chew VSY, Leong YS, Gunasegaran K, Yeo CP, Oon LLE, Sim JXY, Chan KR, Low JG, Ooi EE. RNase2 is a possible trigger of acute-on-chronic inflammation leading to mRNA vaccine-associated cardiac complication. MED 2023:S2666-6340(23)00104-6. [PMID: 37105176 PMCID: PMC10131284 DOI: 10.1016/j.medj.2023.04.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/26/2023] [Accepted: 04/03/2023] [Indexed: 04/29/2023]
Abstract
BACKGROUND Post-mRNA vaccination-associated cardiac complication is a rare but life-threatening adverse event. Its risk has been well balanced by the benefit of vaccination-induced protection against severe COVID-19. As the rate of severe COVID-19 has consequently declined, future booster vaccination to sustain immunity, especially against infection with new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants, may encounter benefit-risk ratios that are less favorable than at the start of the COVID-19 vaccination campaign. Understanding the pathogenesis of rare but severe vaccine-associated adverse events to minimize its risk is thus urgent. METHODS Here, we report a serendipitous finding of a case of cardiac complication following a third shot of COVID-19 mRNA vaccine. As this case was enrolled in a cohort study, pre-vaccination and pre-symptomatic blood samples were available for genomic and multiplex cytokine analyses. FINDINGS These analyses revealed the presence of subclinical chronic inflammation, with an elevated expression of RNASE2 at pre-booster baseline as a possible trigger of an acute-on-chronic inflammation that resulted in the cardiac complication. RNASE2 encodes for the ribonuclease RNase2, which cleaves RNA at the 3' side of uridine, which may thus remove the only Toll-like receptor (TLR)-avoidance safety feature of current mRNA vaccines. CONCLUSIONS These pre-booster and pre-symptomatic gene and cytokine expression data provide unique insights into the possible pathogenesis of vaccine-associated cardiac complication and suggest the incorporation of additional nucleoside modification for an added safety margin. FUNDING This work was funded by the NMRC Open Fund-Large Collaborative Grant on Integrated Innovations on Infectious Diseases (OFLCG19May-0034).
Collapse
Affiliation(s)
- Eugenia Z Ong
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore; Viral Research and Experimental Medicine Centre, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
| | - Clara W T Koh
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Danny J H Tng
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore; Department of Infectious Diseases, Singapore General Hospital, Singapore, Singapore
| | - Justin S G Ooi
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Jia Xin Yee
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore; Viral Research and Experimental Medicine Centre, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
| | - Valerie S Y Chew
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore; Viral Research and Experimental Medicine Centre, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
| | - Yan Shan Leong
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore; Viral Research and Experimental Medicine Centre, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
| | | | - Chin Pin Yeo
- Department of Pathology, Singapore General Hospital, Singapore, Singapore
| | - Lynette L E Oon
- Department of Pathology, Singapore General Hospital, Singapore, Singapore
| | - Jean X Y Sim
- Department of Infectious Diseases, Singapore General Hospital, Singapore, Singapore
| | - Kuan Rong Chan
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore.
| | - Jenny G Low
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore; Viral Research and Experimental Medicine Centre, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore; Department of Infectious Diseases, Singapore General Hospital, Singapore, Singapore.
| | - Eng Eong Ooi
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore; Viral Research and Experimental Medicine Centre, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore; Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
5
|
Korkmaz FT, Shenoy AT, Symer EM, Baird LA, Odom CV, Arafa EI, Dimbo EL, Na E, Molina-Arocho W, Brudner M, Standiford TJ, Mehta JL, Sawamura T, Jones MR, Mizgerd JP, Traber KE, Quinton LJ. Lectin-like oxidized low-density lipoprotein receptor 1 attenuates pneumonia-induced lung injury. JCI Insight 2022; 7:e149955. [PMID: 36264633 PMCID: PMC9746901 DOI: 10.1172/jci.insight.149955] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 10/18/2022] [Indexed: 01/12/2023] Open
Abstract
Identifying host factors that contribute to pneumonia incidence and severity are of utmost importance to guiding the development of more effective therapies. Lectin-like oxidized low-density lipoprotein receptor 1 (LOX-1, encoded by OLR1) is a scavenger receptor known to promote vascular injury and inflammation, but whether and how LOX-1 functions in the lung are unknown. Here, we provide evidence of substantial accumulation of LOX-1 in the lungs of patients with acute respiratory distress syndrome and in mice with pneumonia. Unlike previously described injurious contributions of LOX-1, we found that LOX-1 is uniquely protective in the pulmonary airspaces, limiting proteinaceous edema and inflammation. We also identified alveolar macrophages and recruited neutrophils as 2 prominent sites of LOX-1 expression in the lungs, whereby macrophages are capable of further induction during pneumonia and neutrophils exhibit a rapid, but heterogenous, elevation of LOX-1 in the infected lung. Blockade of LOX-1 led to dysregulated immune signaling in alveolar macrophages, marked by alterations in activation markers and a concomitant elevation of inflammatory gene networks. However, bone marrow chimeras also suggested a prominent role for neutrophils in LOX-1-mediated lung protection, further supported by LOX-1+ neutrophils exhibiting transcriptional changes consistent with reparative processes. Taken together, this work establishes LOX-1 as a tissue-protective factor in the lungs during pneumonia, possibly mediated by its influence on immune signaling in alveolar macrophages and LOX-1+ airspace neutrophils.
Collapse
Affiliation(s)
- Filiz T. Korkmaz
- Division of Immunology and Infectious Disease, Department of Medicine, UMass Chan Medical School, Worcester, Massachusetts, USA
| | | | | | | | | | | | | | | | | | - Matthew Brudner
- Flow Cytometry Core Facility, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Theodore J. Standiford
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Jawahar L. Mehta
- Department of Internal Medicine, College of Medicine, University of Arkansas for Medical Sciences and the Central Arkansas Veterans Healthcare System, Little Rock, Arkansas, USA
| | - Tatsuya Sawamura
- Department of Molecular Pathophysiology, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| | | | - Joseph P. Mizgerd
- Pulmonary Center
- Department of Microbiology, and
- Department of Medicine and
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, USA
| | | | - Lee J. Quinton
- Division of Immunology and Infectious Disease, Department of Medicine, UMass Chan Medical School, Worcester, Massachusetts, USA
- Pulmonary Center
- Department of Medicine and
| |
Collapse
|
6
|
Shi Y, Lu Y, You J. Antigen transfer and its effect on vaccine-induced immune amplification and tolerance. Am J Cancer Res 2022; 12:5888-5913. [PMID: 35966588 PMCID: PMC9373810 DOI: 10.7150/thno.75904] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 07/15/2022] [Indexed: 12/13/2022] Open
Abstract
Antigen transfer refers to the process of intercellular information exchange, where antigenic components including nucleic acids, antigen proteins/peptides and peptide-major histocompatibility complexes (p-MHCs) are transmitted from donor cells to recipient cells at the thymus, secondary lymphoid organs (SLOs), intestine, allergic sites, allografts, pathological lesions and vaccine injection sites via trogocytosis, gap junctions, tunnel nanotubes (TNTs), or extracellular vesicles (EVs). In the context of vaccine inoculation, antigen transfer is manipulated by the vaccine type and administration route, which consequently influences, even alters the immunological outcome, i.e., immune amplification and tolerance. Mainly focused on dendritic cells (DCs)-based antigen receptors, this review systematically introduces the biological process, molecular basis and clinical manifestation of antigen transfer.
Collapse
Affiliation(s)
- Yingying Shi
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, Zhejiang, China
| | - Yichao Lu
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, Zhejiang, China
| | - Jian You
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, Zhejiang, China
| |
Collapse
|
7
|
Pastor Y, Ghazzaui N, Hammoudi A, Centlivre M, Cardinaud S, Levy Y. Refining the DC-targeting vaccination for preventing emerging infectious diseases. Front Immunol 2022; 13:949779. [PMID: 36016929 PMCID: PMC9396646 DOI: 10.3389/fimmu.2022.949779] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 07/14/2022] [Indexed: 11/26/2022] Open
Abstract
The development of safe, long-term, effective vaccines is still a challenge for many infectious diseases. Thus, the search of new vaccine strategies and production platforms that allow rapidly and effectively responding against emerging or reemerging pathogens has become a priority in the last years. Targeting the antigens directly to dendritic cells (DCs) has emerged as a new approach to enhance the immune response after vaccination. This strategy is based on the fusion of the antigens of choice to monoclonal antibodies directed against specific DC surface receptors such as CD40. Since time is essential, in silico approaches are of high interest to select the most immunogenic and conserved epitopes to improve the T- and B-cells responses. The purpose of this review is to present the advances in DC vaccination, with special focus on DC targeting vaccines and epitope mapping strategies and provide a new framework for improving vaccine responses against infectious diseases.
Collapse
Affiliation(s)
- Yadira Pastor
- Vaccine Research Institute, Université Paris-Est Créteil, Institut Mondor de Recherche Biomédicale, Inserm U955, Team 16, Créteil, France
| | - Nour Ghazzaui
- Vaccine Research Institute, Université Paris-Est Créteil, Institut Mondor de Recherche Biomédicale, Inserm U955, Team 16, Créteil, France
| | - Adele Hammoudi
- Vaccine Research Institute, Université Paris-Est Créteil, Institut Mondor de Recherche Biomédicale, Inserm U955, Team 16, Créteil, France
| | - Mireille Centlivre
- Vaccine Research Institute, Université Paris-Est Créteil, Institut Mondor de Recherche Biomédicale, Inserm U955, Team 16, Créteil, France
| | - Sylvain Cardinaud
- Vaccine Research Institute, Université Paris-Est Créteil, Institut Mondor de Recherche Biomédicale, Inserm U955, Team 16, Créteil, France
| | - Yves Levy
- Vaccine Research Institute, Université Paris-Est Créteil, Institut Mondor de Recherche Biomédicale, Inserm U955, Team 16, Créteil, France
- Assistance Publique-Hôpitaux de Paris, Groupe Henri-Mondor Albert-Chenevier, Service Immunologie Clinique, Créteil, France
- *Correspondence: Yves Levy,
| |
Collapse
|
8
|
Li M, Zhang R, Li J, Li J. The Role of C-Type Lectin Receptor Signaling in the Intestinal Microbiota-Inflammation-Cancer Axis. Front Immunol 2022; 13:894445. [PMID: 35619716 PMCID: PMC9127077 DOI: 10.3389/fimmu.2022.894445] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 04/04/2022] [Indexed: 12/13/2022] Open
Abstract
As a subset of pattern recognition receptors (PRRs), C-type lectin-like receptors (CLRs) are mainly expressed by myeloid cells as both transmembrane and soluble forms. CLRs recognize not only pathogen associated molecular patterns (PAMPs), but also damage-associated molecular patterns (DAMPs) to promote innate immune responses and affect adaptive immune responses. Upon engagement by PAMPs or DAMPs, CLR signaling initiates various biological activities in vivo, such as cytokine secretion and immune cell recruitment. Recently, several CLRs have been implicated as contributory to the pathogenesis of intestinal inflammation, which represents a prominent risk factor for colorectal cancer (CRC). CLRs function as an interface among microbiota, intestinal epithelial barrier and immune system, so we firstly discussed the relationship between dysbiosis caused by microbiota alteration and inflammatory bowel disease (IBD), then focused on the role of CLRs signaling in pathogenesis of IBD (including Mincle, Dectin-3, Dectin-1, DCIR, DC-SIGN, LOX-1 and their downstream CARD9). Given that CLRs mediate intricate inflammatory signals and inflammation plays a significant role in tumorigenesis, we finally highlight the specific effects of CLRs on CRC, especially colitis-associated cancer (CAC), hoping to open new horizons on pathogenesis and therapeutics of IBD and CAC.
Collapse
Affiliation(s)
- Muhan Li
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Gut Microbiota Translational Medicine Research, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Runfeng Zhang
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Gut Microbiota Translational Medicine Research, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ji Li
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Gut Microbiota Translational Medicine Research, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jingnan Li
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Gut Microbiota Translational Medicine Research, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
9
|
STxB as an Antigen Delivery Tool for Mucosal Vaccination. Toxins (Basel) 2022; 14:toxins14030202. [PMID: 35324699 PMCID: PMC8948715 DOI: 10.3390/toxins14030202] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/03/2022] [Accepted: 03/07/2022] [Indexed: 12/31/2022] Open
Abstract
Immunotherapy against cancer and infectious disease holds the promise of high efficacy with minor side effects. Mucosal vaccines to protect against tumors or infections disease agents that affect the upper airways or the lung are still lacking, however. One mucosal vaccine candidate is the B-subunit of Shiga toxin, STxB. In this review, we compare STxB to other immunotherapy vectors. STxB is a non-toxic protein that binds to a glycosylated lipid, termed globotriaosylceramide (Gb3), which is preferentially expressed by dendritic cells. We review the use of STxB for the cross-presentation of tumor or viral antigens in a MHC class I-restricted manner to induce humoral immunity against these antigens in addition to polyfunctional and persistent CD4+ and CD8+ T lymphocytes capable of protecting against viral infection or tumor growth. Other literature will be summarized that documents a powerful induction of mucosal IgA and resident memory CD8+ T cells against mucosal tumors specifically when STxB-antigen conjugates are administered via the nasal route. It will also be pointed out how STxB-based vaccines have been shown in preclinical cancer models to synergize with other therapeutic modalities (immune checkpoint inhibitors, anti-angiogenic therapy, radiotherapy). Finally, we will discuss how molecular aspects such as low immunogenicity, cross-species conservation of Gb3 expression, and lack of toxicity contribute to the competitive positioning of STxB among the different DC targeting approaches. STxB thereby appears as an original and innovative tool for the development of mucosal vaccines in infectious diseases and cancer.
Collapse
|
10
|
Iseghohi F, Yahemba AP, Rowaiye AB, Oli AN. Dendritic cells as vaccine targets. VACCINOLOGY AND METHODS IN VACCINE RESEARCH 2022:57-94. [DOI: 10.1016/b978-0-323-91146-7.00010-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
11
|
Ceglia V, Kelley EJ, Boyle AS, Zurawski S, Mead HL, Harms CE, Blanck JP, Flamar AL, Kirschman JH, Ogongo P, Ernst JD, Levy Y, Zurawski G, Altin JA. A Framework to Identify Antigen-Expanded T Cell Receptor Clusters Within Complex Repertoires. Front Immunol 2021; 12:735584. [PMID: 34917073 PMCID: PMC8670329 DOI: 10.3389/fimmu.2021.735584] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 11/01/2021] [Indexed: 11/13/2022] Open
Abstract
Common approaches for monitoring T cell responses are limited in their multiplexity and sensitivity. In contrast, deep sequencing of the T Cell Receptor (TCR) repertoire provides a global view that is limited only in terms of theoretical sensitivity due to the depth of available sampling; however, the assignment of antigen specificities within TCR repertoires has become a bottleneck. This study combines antigen-driven expansion, deep TCR sequencing, and a novel analysis framework to show that homologous ‘Clusters of Expanded TCRs (CETs)’ can be confidently identified without cell isolation, and assigned to antigen against a background of non-specific clones. We show that clonotypes within each CET respond to the same epitope, and that protein antigens stimulate multiple CETs reactive to constituent peptides. Finally, we demonstrate the personalized assignment of antigen-specificity to rare clones within fully-diverse uncultured repertoires. The method presented here may be used to monitor T cell responses to vaccination and immunotherapy with high fidelity.
Collapse
Affiliation(s)
- Valentina Ceglia
- Baylor Institute for Immunology Research, Dallas, TX, United States.,Université Paris-Est Créteil, Sciences de la Vie et de la Santé, Créteil, France.,Vaccine Research Institute, INSERM, Unité U955, Institut Mondor de Recherche Biomédicale, Créteil, France
| | - Erin J Kelley
- Translational Genomics Research Institute, Flagstaff, AZ, United States
| | - Annalee S Boyle
- Translational Genomics Research Institute, Flagstaff, AZ, United States
| | - Sandra Zurawski
- Baylor Institute for Immunology Research, Dallas, TX, United States.,Vaccine Research Institute, INSERM, Unité U955, Institut Mondor de Recherche Biomédicale, Créteil, France
| | - Heather L Mead
- Translational Genomics Research Institute, Flagstaff, AZ, United States
| | - Caroline E Harms
- Translational Genomics Research Institute, Flagstaff, AZ, United States
| | | | - Anne-Laure Flamar
- Baylor Institute for Immunology Research, Dallas, TX, United States.,Université Paris-Est Créteil, Sciences de la Vie et de la Santé, Créteil, France.,Vaccine Research Institute, INSERM, Unité U955, Institut Mondor de Recherche Biomédicale, Créteil, France
| | | | - Paul Ogongo
- Department of Medicine, Division of Experimental Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Joel D Ernst
- Department of Medicine, Division of Experimental Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Yves Levy
- Université Paris-Est Créteil, Sciences de la Vie et de la Santé, Créteil, France.,Vaccine Research Institute, INSERM, Unité U955, Institut Mondor de Recherche Biomédicale, Créteil, France
| | - Gerard Zurawski
- Baylor Institute for Immunology Research, Dallas, TX, United States.,Vaccine Research Institute, INSERM, Unité U955, Institut Mondor de Recherche Biomédicale, Créteil, France
| | - John A Altin
- Translational Genomics Research Institute, Flagstaff, AZ, United States
| |
Collapse
|
12
|
Ye Y, Xu C, Chen F, Liu Q, Cheng N. Targeting Innate Immunity in Breast Cancer Therapy: A Narrative Review. Front Immunol 2021; 12:771201. [PMID: 34899721 PMCID: PMC8656691 DOI: 10.3389/fimmu.2021.771201] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 11/08/2021] [Indexed: 01/07/2023] Open
Abstract
Although breast cancer has been previously considered "cold" tumors, numerous studies are currently conducted to explore the great potentials of immunotherapies in improving breast cancer patient outcomes. In addition to the focus on stimulating adaptive immunity for antitumor responses, growing evidence showed the importance of triggering host innate immunity to eradicate established tumors and/or control tumor metastasis of breast cancer. In this review, we first briefly introduce the breast tumor immune microenvironment. We also discuss innate immune targets and pathways and mechanisms of their synergy with the adaptive antitumor response and other treatment strategies. Lastly, we review clinical trials targeting innate immune pathways for breast cancer therapies.
Collapse
Affiliation(s)
- Yanqi Ye
- Zenomics. Inc. Magnify at California NanoSystems Institute, Los Angeles, CA, United States
| | - Chun Xu
- School of Dentistry, The University of Queensland, Brisbane, QLD, Australia
| | - Fengqian Chen
- School of Medicine, University of Maryland, Baltimore, MD, United States
| | - Qi Liu
- School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Ning Cheng
- Department of Otolaryngology - Head and Neck Surgery, University of California at San Francisco, San Francisco, CA, United States
| |
Collapse
|
13
|
Lu Y, Shi Y, You J. Strategy and clinical application of up-regulating cross presentation by DCs in anti-tumor therapy. J Control Release 2021; 341:184-205. [PMID: 34774890 DOI: 10.1016/j.jconrel.2021.11.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 11/04/2021] [Accepted: 11/06/2021] [Indexed: 12/20/2022]
Abstract
The cross presentation of exogenous antigen (Ag) by dendritic cells (DCs) facilitates a diversified mode of T-cell activation, orchestrates specific humoral and cellular immunity, and contributes to an efficient anti-tumor immune response. DCs-mediated cross presentation is subject to both intrinsic and extrinsic factors, including the homing and phenotype of DCs, the spatiotemporal trafficking and degradation kinetics of Ag, and multiple microenvironmental clues, with many details largely unexplored. Here, we systemically review the current mechanistic understanding and regulation strategies of cross presentation by heterogeneous DC populations. We also provide insights into the future exploitation of DCs cross presentation for a better clinical efficacy in anti-tumor therapy.
Collapse
Affiliation(s)
- Yichao Lu
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Yingying Shi
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Jian You
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
14
|
Ceglia V, Zurawski S, Montes M, Bouteau A, Wang Z, Ellis J, Igyártó BZ, Lévy Y, Zurawski G. Anti-CD40 Antibodies Fused to CD40 Ligand Have Superagonist Properties. THE JOURNAL OF IMMUNOLOGY 2021; 207:2060-2076. [PMID: 34551965 DOI: 10.4049/jimmunol.2000704] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 08/16/2021] [Indexed: 12/11/2022]
Abstract
CD40 is a potent activating receptor within the TNFR family expressed on APCs of the immune system, and it regulates many aspects of B and T cell immunity via interaction with CD40 ligand (CD40L; CD154) expressed on the surface of activated T cells. Soluble CD40L and agonistic mAbs directed to CD40 are being explored as adjuvants in therapeutic or vaccination settings. Some anti-CD40 Abs can synergize with soluble monomeric CD40L. We show that direct fusion of CD40L to certain agonistic anti-CD40 Abs confers superagonist properties, reducing the dose required for efficacy, notably greatly increasing total cytokine secretion by human dendritic cells. The tetravalent configuration of anti-CD40-CD40L Abs promotes CD40 cell surface clustering and internalization and is the likely mechanism of increased receptor activation. CD40L fused to either the L or H chain C termini, with or without flexible linkers, were all superagonists with greater potency than CD40L trimer. The increased anti-CD40-CD40L Ab potency was independent of higher order aggregation. Moreover, the anti-CD40-CD40L Ab showed higher potency in vivo in human CD40 transgenic mice compared with the parental anti-CD40 Ab. To broaden the concept of fusing agonistic Ab to natural ligand, we fused OX40L to an agonistic OX40 Ab, and this resulted in dramatically increased efficacy for proliferation and cytokine production of activated human CD4+ T cells as well as releasing the Ab from dependency on cross-linking. This work shows that directly fusing antireceptor Abs to ligand is a useful strategy to dramatically increase agonist potency.
Collapse
Affiliation(s)
- Valentina Ceglia
- Baylor Scott & White Immunology Research, Dallas, TX.,Université Paris-Est Créteil, Créteil, France.,Vaccine Research Institute, INSERM, Institut Mondor de Recherche Biomédicale, Créteil, France
| | - Sandra Zurawski
- Baylor Scott & White Immunology Research, Dallas, TX.,Vaccine Research Institute, INSERM, Institut Mondor de Recherche Biomédicale, Créteil, France
| | - Monica Montes
- Baylor Scott & White Immunology Research, Dallas, TX.,Vaccine Research Institute, INSERM, Institut Mondor de Recherche Biomédicale, Créteil, France
| | - Aurélie Bouteau
- Institute of Biomedical Studies, Baylor University, Waco, TX; and.,Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA
| | - Zhiqing Wang
- Baylor Scott & White Immunology Research, Dallas, TX.,Vaccine Research Institute, INSERM, Institut Mondor de Recherche Biomédicale, Créteil, France
| | - Jerome Ellis
- Baylor Scott & White Immunology Research, Dallas, TX.,Vaccine Research Institute, INSERM, Institut Mondor de Recherche Biomédicale, Créteil, France
| | - Botond Z Igyártó
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA
| | - Yves Lévy
- Université Paris-Est Créteil, Créteil, France.,Vaccine Research Institute, INSERM, Institut Mondor de Recherche Biomédicale, Créteil, France
| | - Gerard Zurawski
- Baylor Scott & White Immunology Research, Dallas, TX; .,Vaccine Research Institute, INSERM, Institut Mondor de Recherche Biomédicale, Créteil, France
| |
Collapse
|
15
|
Trbojević-Akmačić I, Petrović T, Lauc G. SARS-CoV-2 S glycoprotein binding to multiple host receptors enables cell entry and infection. Glycoconj J 2021; 38:611-623. [PMID: 34542788 PMCID: PMC8450557 DOI: 10.1007/s10719-021-10021-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/26/2021] [Accepted: 09/07/2021] [Indexed: 12/15/2022]
Abstract
The severe acute respiratory syndrome-related coronavirus-2 (SARS-CoV-2) infection displays a wide array of clinical manifestations. Although some risk factors for coronavirus disease 2019 (COVID-19) severity and outcomes have been identified the underlying biologic mechanisms are still not well understood. The surface SARS-CoV-2 proteins are heavily glycosylated enabling host cell interaction and viral entry. Angiotensin-converting enzyme 2 (ACE2) has been identified to be the main host cell receptor enabling SARS-CoV-2 cell entry after interaction with its S glycoprotein. However, recent studies report SARS-CoV-2 S glycoprotein interaction with other cell receptors, mainly C-type lectins which recognize specific glycan epitopes facilitating SARS-CoV-2 entry to susceptible cells. Here, we are summarizing the main findings on SARS-CoV-2 interactions with ACE2 and other cell membrane surface receptors and soluble lectins involved in the viral cell entry modulating its infectivity and potentially playing a role in subsequent clinical manifestations of COVID-19.
Collapse
Affiliation(s)
| | - Tea Petrović
- Genos Glycoscience Research Laboratory, Zagreb, Croatia
| | - Gordan Lauc
- Genos Glycoscience Research Laboratory, Zagreb, Croatia
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
16
|
Targeting human langerin promotes HIV-1 specific humoral immune responses. PLoS Pathog 2021; 17:e1009749. [PMID: 34324611 PMCID: PMC8354475 DOI: 10.1371/journal.ppat.1009749] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 08/10/2021] [Accepted: 06/24/2021] [Indexed: 12/01/2022] Open
Abstract
The main avenue for the development of an HIV-1 vaccine remains the induction of protective antibodies. A rationale approach is to target antigen to specific receptors on dendritic cells (DC) via fused monoclonal antibodies (mAb). In mouse and non-human primate models, targeting of skin Langerhans cells (LC) with anti-Langerin mAbs fused with HIV-1 Gag antigen drives antigen-specific humoral responses. The development of these immunization strategies in humans requires a better understanding of early immune events driven by human LC. We therefore produced anti-Langerin mAbs fused with the HIV-1 gp140z Envelope (αLC.Env). First, we show that primary skin human LC and in vitro differentiated LC induce differentiation and expansion of naïve CD4+ T cells into T follicular helper (Tfh) cells. Second, when human LC are pre-treated with αLC.Env, differentiated Tfh cells significantly promote the production of specific IgG by B cells. Strikingly, HIV-Env-specific Ig are secreted by HIV-specific memory B cells. Consistently, we found that receptors and cytokines involved in Tfh differentiation and B cell functions are upregulated by LC during their maturation and after targeting Langerin. Finally, we show that subcutaneous immunization of mice by αLC.Env induces germinal center (GC) reaction in draining lymph nodes with higher numbers of Tfh cells, Env-specific B cells, as well as specific IgG serum levels compared to mice immunized with the non-targeting Env antigen. Altogether, we provide evidence that human LC properly targeted may be licensed to efficiently induce Tfh cell and B cell responses in GC. In recent years, the place of innovative vaccines based on the induction/regulation and modulation of the immune response with the aim to elicit an integrated T- and B cell immune responses against complex antigens has emerged besides “classical” vaccine vectors. Targeting antigens to dendritic cells is a vaccine technology concept supported by more than a decade of animal models and human pre-clinical experimentation. Recent investigations in animals underscored that Langerhans cells (LC) are an important target to consider for the induction of antibody responses by DC targeting vaccine approaches. Nonetheless, the development of these immunization strategies in humans remains elusive. We therefore developed and produced an HIV vaccine candidate targeting specifically LC through the Langerin receptor. We tested the ability of our vaccine candidate of targeting LC from skin explant and of inducing in vitro the differentiation of T follicular helper (Tfh) cells. Using complementary in vitro models, we demonstrated that Tfh cells induced by human LC are functional and the targeting of LC by our vaccine candidate promotes the secretion of anti-HIV IgG by memory B cells from HIV-infected individuals. In this study human LC exhibit key cellular functions able to drive potent anti-HIV-1 humoral responses providing mechanistic evidence of the Tfh- and B cell stimulating functions of primary skin targeted LC. Finally, we demonstrated in Xcr1DTA mice the significant advantage of LC targeting for inducing Tfh and germinal center (GC)-B cells and anti-HIV-1 antibodies. Therefore, the targeting of the human Langerin receptor appears to be a promising strategy for developing efficient HIV-1 vaccine.
Collapse
|
17
|
Akhmedov A, Sawamura T, Chen CH, Kraler S, Vdovenko D, Lüscher TF. Lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1): a crucial driver of atherosclerotic cardiovascular disease. Eur Heart J 2021; 42:1797-1807. [PMID: 36282110 DOI: 10.1093/eurheartj/ehaa770] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/18/2020] [Accepted: 09/07/2020] [Indexed: 12/16/2022] Open
Abstract
Cardiovascular diseases (CVDs), specifically lipid-driven atherosclerotic CVDs, remain the number one cause of death worldwide. The lectin-like oxidized low-density lipoprotein (LDL) receptor-1 (LOX-1), a scavenger receptor that promotes endothelial dysfunction by inducing pro-atherogenic signalling and plaque formation via the endothelial uptake of oxidized LDL (oxLDL) and electronegative LDL, contributes to the initiation, progression, and destabilization of atheromatous plaques, eventually leading to the development of myocardial infarction and certain forms of stroke. In addition to its expression in endothelial cells, LOX-1 is expressed in macrophages, cardiomyocytes, fibroblasts, dendritic cells, lymphocytes, and neutrophils, further implicating this receptor in multiple aspects of atherosclerotic plaque formation. LOX-1 holds promise as a novel diagnostic and therapeutic target for certain CVDs; therefore, understanding the molecular structure and function of LOX-1 is of critical importance. In this review, we highlight the latest scientific findings related to LOX-1, its ligands, and their roles in the broad spectrum of CVDs. We describe recent findings from basic research, delineate their translational value, and discuss the potential of LOX-1 as a novel target for the prevention, diagnosis, and treatment of related CVDs.
Collapse
Affiliation(s)
- Alexander Akhmedov
- Center for Molecular Cardiology, University of Zurich, Wagistreet 12, Schlieren 8952, Switzerland
| | - Tatsuya Sawamura
- Department of Molecular Pathophysiology, Shinshu University School of Medicine, Shinshu University 3-1-1, Asahi, Matsumoto 390-8621, Japan
| | - Chu-Huang Chen
- Vascular and Medical Research, Texas Heart Institute, 6770 Bertner Avenue, Houston, TX 77030, USA
| | - Simon Kraler
- Center for Molecular Cardiology, University of Zurich, Wagistreet 12, Schlieren 8952, Switzerland
| | - Daria Vdovenko
- Center for Molecular Cardiology, University of Zurich, Wagistreet 12, Schlieren 8952, Switzerland
| | - Thomas F Lüscher
- Center for Molecular Cardiology, University of Zurich, Wagistreet 12, Schlieren 8952, Switzerland.,Royal Brompton and Harefield Hospitals, Sydney Street, London SW3 6NP, UK.,National Heart and Lung Institute, Imperial College, Dovehause Street, London SW3 6LY, UK
| |
Collapse
|
18
|
Kim D, Chung H, Lee JE, Kim J, Hwang J, Chung Y. Immunologic Aspects of Dyslipidemia: a Critical Regulator of Adaptive Immunity and Immune Disorders. J Lipid Atheroscler 2021; 10:184-201. [PMID: 34095011 PMCID: PMC8159760 DOI: 10.12997/jla.2021.10.2.184] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/23/2021] [Accepted: 05/02/2021] [Indexed: 11/09/2022] Open
Abstract
Dyslipidemia is a major cause of cardiovascular diseases which represent a leading cause of death in humans. Diverse immune cells are known to be involved in the pathogenesis of cardiovascular diseases such as atherosclerosis. Conversely, dyslipidemia is known to be tightly associated with immune disorders in humans, as evidenced by a higher incidence of atherosclerosis in patients with autoimmune diseases including psoriasis, rheumatoid arthritis, and systemic lupus erythematosus. Given that the dyslipidemia-related autoimmune diseases are caused by autoreactive T cells and B cells, dyslipidemia seems to directly or indirectly regulate the adaptive immunity. Indeed, accumulating evidence has unveiled that proatherogenic factors can impact the differentiation and function of CD4+ T cells, CD8+ T cells, and B cells. This review discusses an updated overview on the regulation of adaptive immunity by dyslipidemia and proposes a potential therapeutic strategy for immune disorders by targeting lipid metabolism.
Collapse
Affiliation(s)
- Daehong Kim
- Laboratory of Immune Regulation, Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Korea
| | - Hayeon Chung
- Laboratory of Immune Regulation, Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Korea
| | - Jeong-Eun Lee
- Laboratory of Immune Regulation, Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Korea
| | - Jiyeon Kim
- Laboratory of Immune Regulation, Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Korea
| | - Junseok Hwang
- Laboratory of Immune Regulation, Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Korea
| | - Yeonseok Chung
- Laboratory of Immune Regulation, Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Korea
| |
Collapse
|
19
|
Mentrup T, Cabrera-Cabrera F, Schröder B. Proteolytic Regulation of the Lectin-Like Oxidized Lipoprotein Receptor LOX-1. Front Cardiovasc Med 2021; 7:594441. [PMID: 33553253 PMCID: PMC7856673 DOI: 10.3389/fcvm.2020.594441] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 12/21/2020] [Indexed: 11/13/2022] Open
Abstract
The lectin-like oxidized-LDL (oxLDL) receptor LOX-1, which is broadly expressed in vascular cells, represents a key mediator of endothelial activation and dysfunction in atherosclerotic plaque development. Being a member of the C-type lectin receptor family, LOX-1 can bind different ligands, with oxLDL being the best characterized. LOX-1 mediates oxLDL uptake into vascular cells and by this means can promote foam cell formation. In addition, LOX-1 triggers multiple signaling pathways, which ultimately induce a pro-atherogenic and pro-fibrotic transcriptional program. However, the molecular mechanisms underlying this signal transduction remain incompletely understood. In this regard, proteolysis has recently emerged as a regulatory mechanism of LOX-1 function. Different proteolytic cleavages within the LOX-1 protein can initiate its turnover and control the cellular levels of this receptor. Thereby, cleavage products with individual biological functions and/or medical significance are produced. Ectodomain shedding leads to the release of a soluble form of the receptor (sLOX1) which has been suggested to have diagnostic potential as a biomarker. Removal of the ectodomain leaves behind a membrane-bound N-terminal fragment (NTF), which despite being devoid of the ligand-binding domain is actively involved in signal transduction. Degradation of this LOX-1 NTF, which represents an athero-protective mechanism, critically depends on the aspartyl intramembrane proteases Signal peptide peptidase-like 2a and b (SPPL2a/b). Here, we present an overview of the biology of LOX-1 focusing on how proteolytic cleavages directly modulate the function of this receptor and, what kind of pathophysiological implications this has in cardiovascular disease.
Collapse
Affiliation(s)
| | | | - Bernd Schröder
- Institute for Physiological Chemistry, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
20
|
Gadanec LK, McSweeney KR, Qaradakhi T, Ali B, Zulli A, Apostolopoulos V. Can SARS-CoV-2 Virus Use Multiple Receptors to Enter Host Cells? Int J Mol Sci 2021; 22:992. [PMID: 33498183 PMCID: PMC7863934 DOI: 10.3390/ijms22030992] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/18/2021] [Accepted: 01/18/2021] [Indexed: 12/12/2022] Open
Abstract
The occurrence of the novel severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), responsible for coronavirus disease 2019 (COVD-19), represents a catastrophic threat to global health. Protruding from the viral surface is a densely glycosylated spike (S) protein, which engages angiotensin-converting enzyme 2 (ACE2) to mediate host cell entry. However, studies have reported viral susceptibility in intra- and extrapulmonary immune and non-immune cells lacking ACE2, suggesting that the S protein may exploit additional receptors for infection. Studies have demonstrated interactions between S protein and innate immune system, including C-lectin type receptors (CLR), toll-like receptors (TLR) and neuropilin-1 (NRP1), and the non-immune receptor glucose regulated protein 78 (GRP78). Recognition of carbohydrate moieties clustered on the surface of the S protein may drive receptor-dependent internalization, accentuate severe immunopathological inflammation, and allow for systemic spread of infection, independent of ACE2. Furthermore, targeting TLRs, CLRs, and other receptors (Ezrin and dipeptidyl peptidase-4) that do not directly engage SARS-CoV-2 S protein, but may contribute to augmented anti-viral immunity and viral clearance, may represent therapeutic targets against COVID-19.
Collapse
|
21
|
Fernandes Â, Dias AM, Silva MC, Gaifem J, Azevedo CM, Carballo I, Pinho SS. The Role of Glycans in Chronic Inflammatory Gastrointestinal and Liver Disorders and Cancer. COMPREHENSIVE GLYCOSCIENCE 2021:444-470. [DOI: 10.1016/b978-0-12-819475-1.00036-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
22
|
Lu J, Dumitrascu B, McDowell IC, Jo B, Barrera A, Hong LK, Leichter SM, Reddy TE, Engelhardt BE. Causal network inference from gene transcriptional time-series response to glucocorticoids. PLoS Comput Biol 2021; 17:e1008223. [PMID: 33513136 PMCID: PMC7875426 DOI: 10.1371/journal.pcbi.1008223] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 02/10/2021] [Accepted: 08/07/2020] [Indexed: 11/19/2022] Open
Abstract
Gene regulatory network inference is essential to uncover complex relationships among gene pathways and inform downstream experiments, ultimately enabling regulatory network re-engineering. Network inference from transcriptional time-series data requires accurate, interpretable, and efficient determination of causal relationships among thousands of genes. Here, we develop Bootstrap Elastic net regression from Time Series (BETS), a statistical framework based on Granger causality for the recovery of a directed gene network from transcriptional time-series data. BETS uses elastic net regression and stability selection from bootstrapped samples to infer causal relationships among genes. BETS is highly parallelized, enabling efficient analysis of large transcriptional data sets. We show competitive accuracy on a community benchmark, the DREAM4 100-gene network inference challenge, where BETS is one of the fastest among methods of similar performance and additionally infers whether causal effects are activating or inhibitory. We apply BETS to transcriptional time-series data of differentially-expressed genes from A549 cells exposed to glucocorticoids over a period of 12 hours. We identify a network of 2768 genes and 31,945 directed edges (FDR ≤ 0.2). We validate inferred causal network edges using two external data sources: Overexpression experiments on the same glucocorticoid system, and genetic variants associated with inferred edges in primary lung tissue in the Genotype-Tissue Expression (GTEx) v6 project. BETS is available as an open source software package at https://github.com/lujonathanh/BETS.
Collapse
Affiliation(s)
- Jonathan Lu
- Department of Computer Science, Princeton University, Princeton, New Jersey, United States of America
| | - Bianca Dumitrascu
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
| | - Ian C. McDowell
- Element Genomics, A UCB Company, Durham, North Carolina, United States of America
| | - Brian Jo
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
| | - Alejandro Barrera
- Center for Genomic and Computational Biology, Duke University, Durham, North Carolina, United States of America
- Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Linda K. Hong
- Center for Genomic and Computational Biology, Duke University, Durham, North Carolina, United States of America
| | - Sarah M. Leichter
- Center for Genomic and Computational Biology, Duke University, Durham, North Carolina, United States of America
| | - Timothy E. Reddy
- Department of Genome Sciences, Duke University, Durham, North Carolina, United States of America
| | - Barbara E. Engelhardt
- Department of Computer Science, Princeton University, Princeton, New Jersey, United States of America
- Center for Statistics and Machine Learning, Princeton University, Princeton, New Jersey, United States of America
| |
Collapse
|
23
|
Drouin M, Saenz J, Chiffoleau E. C-Type Lectin-Like Receptors: Head or Tail in Cell Death Immunity. Front Immunol 2020; 11:251. [PMID: 32133013 PMCID: PMC7040094 DOI: 10.3389/fimmu.2020.00251] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 01/30/2020] [Indexed: 12/12/2022] Open
Abstract
C-type lectin-like receptors (CLRs) represent a family of transmembrane pattern recognition receptors, expressed primarily by myeloid cells. They recognize not only pathogen moieties for host defense, but also modified self-antigens such as damage-associated molecular patterns released from dead cells. Upon ligation, CLR signaling leads to the production of inflammatory mediators to shape amplitude, duration and outcome of the immune response. Thus, following excessive injury, dysregulation of these receptors leads to the development of inflammatory diseases. Herein, we will focus on four CLRs of the "Dectin family," shown to decode the immunogenicity of cell death. CLEC9A on dendritic cells links F-actin exposed by dying cells to favor cross-presentation of dead-cell associated antigens to CD8+ T cells. Nevertheless, CLEC9A exerts also feedback mechanisms to temper neutrophil recruitment and prevent additional tissue damage. MINCLE expressed by macrophages binds nuclear SAP130 released by necrotic cells to potentiate pro-inflammatory responses. However, the consequent inflammation can exacerbate pathogenesis of inflammatory diseases. Moreover, in a tumor microenvironment, MINCLE induces macrophage-induced immune suppression and cancer progression. Similarly, triggering of LOX-1 by oxidized LDL, amplifies pro-inflammatory response but promotes tumor immune escape and metastasis. Finally, CLEC12A that recognizes monosodium urate crystals formed during cell death, inhibits activating signals to prevent detrimental inflammation. Interestingly, CLEC12A also sustains type-I IFN response to finely tune immune responses in case of viral-induced collateral damage. Therefore, CLRs acting in concert as sensors of injury, could be used in a targeted way to treat numerous diseases such as allergies, obesity, tumors, and autoimmunity.
Collapse
Affiliation(s)
- Marion Drouin
- Université de Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Nantes, France.,OSE Immunotherapeutics, Nantes, France
| | - Javier Saenz
- Université de Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Nantes, France
| | - Elise Chiffoleau
- Université de Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Nantes, France
| |
Collapse
|
24
|
Ryu S, Howland A, Song B, Youn C, Song PI. Scavenger Receptor Class A to E Involved in Various Cancers. Chonnam Med J 2020; 56:1-5. [PMID: 32021835 PMCID: PMC6976765 DOI: 10.4068/cmj.2020.56.1.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 12/26/2019] [Accepted: 01/03/2020] [Indexed: 12/26/2022] Open
Abstract
Scavenger receptors typically bind to multiple ligands on a cell surface, including endogenous and modified host-derived molecules and microbial pathogens. They promote the elimination of degraded or harmful substances such as non-self or altered-self targets through endocytosis, phagocytosis, and adhesion. Currently, scavenger receptors are subdivided into eight classes based on several variations in their sequences due to alternative splicing. Since recent studies indicate targeting scavenger receptors has been involved in cancer prognosis and carcinogenesis, we will focus on the current knowledge about the emerging role of scavenger receptor classes A to E in cancer progression.
Collapse
Affiliation(s)
- Sunhyo Ryu
- Boston University School of Medicine, Boston, MA, USA
| | - Amanda Howland
- University of Colorado Denver School of Medicine, Aurora, CO, USA
| | | | - Chakyung Youn
- Department of Biomedical Science, Research Center for Proteinaceous Materials, Chosun University School of Medicine, Gwangju, Korea
| | | |
Collapse
|
25
|
Potential targets for intervention against doxorubicin-induced cardiotoxicity based on genetic studies: a systematic review of the literature. J Mol Cell Cardiol 2020; 138:88-98. [DOI: 10.1016/j.yjmcc.2019.11.150] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 10/24/2019] [Accepted: 11/03/2019] [Indexed: 12/12/2022]
|
26
|
AL-Eitan LN, Alghamdi MA, Tarkhan AH, Al-Qarqaz FA. Gene Expression Profiling of MicroRNAs in HPV-Induced Warts and Normal Skin. Biomolecules 2019; 9:E757. [PMID: 31766385 PMCID: PMC6995532 DOI: 10.3390/biom9120757] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/16/2019] [Accepted: 11/19/2019] [Indexed: 01/03/2023] Open
Abstract
: Infection with the human papillomavirus (HPV) is a common occurrence among the global population, with millions of new cases emerging on an annual basis. Dysregulated microRNA (miRNA) expression is increasingly being identified to play a role in a number of different diseases, especially in the context of high-risk HPV infection. The present study investigated the miRNA expression profiles of warts induced by low-risk HPV. In warts, miR-27b, miR-24-1, miR-3654, miR-647, and miR-1914 were downregulated while miR-612 was upregulated compared to normal skin. Using miRTargetLink Human, experimentally supported evidence was obtained showing that miR-27b targeted the vascular endothelial growth factor C (VEGFC) and CAMP-responsive element binding protein 1 (CREB1) genes. The VEGFC and CREB1 genes have been reported to be involved in tumorigenesis and wart formation, respectively. Similarly, the oxidized low-density lipoprotein receptor 1 (OLR1) gene, which plays an important role in the humoral immunity of the skin, and the plexin D1 (PLXND1) gene, which is highly expressed in tumor vasculature, were both found to be common targets of miR-27b, miR-1914, and miR-612.
Collapse
Affiliation(s)
- Laith N. AL-Eitan
- Department of Applied Biological Sciences, Jordan University of Science and Technology, Irbid 22110, Jordan;
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Mansour A. Alghamdi
- Department of Anatomy, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia;
| | - Amneh H. Tarkhan
- Department of Applied Biological Sciences, Jordan University of Science and Technology, Irbid 22110, Jordan;
| | - Firas A. Al-Qarqaz
- Department of Internal Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan;
- Division of Dermatology, Department of Internal Medicine, King Abdullah University Hospital Jordan University of Science and Technology, Irbid 22110, Jordan
| |
Collapse
|
27
|
Feng X, Bao R, Li L, Deisenhammer F, Arnason BGW, Reder AT. Interferon-β corrects massive gene dysregulation in multiple sclerosis: Short-term and long-term effects on immune regulation and neuroprotection. EBioMedicine 2019; 49:269-283. [PMID: 31648992 PMCID: PMC6945282 DOI: 10.1016/j.ebiom.2019.09.059] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 09/26/2019] [Accepted: 09/27/2019] [Indexed: 12/23/2022] Open
Abstract
Background In multiple sclerosis (MS), immune up-regulation is coupled to subnormal immune response to interferon-β (IFN-β) and low serum IFN-β levels. The relationship between the defect in IFN signalling and acute and long-term effects of IFN-β on gene expression in MS is inadequately understood. Methods We profiled IFN-β-induced transcriptome shifts, using high-resolution microarrays on 227 mononuclear cell samples from IFN-β-treated MS Complete Responders (CR) stable for five years, and stable and active Partial Responders (PR), stable and active untreated MS, and healthy controls. Findings IFN-β injection induced short-term changes in 1,200 genes compared to baseline expression after 4-day IFN washout. Pre-injection after washout, and in response to IFN-β injections, PR more frequently had abnormal gene expression than CR. Surprisingly, short-term IFN-β induced little shift in Th1/Th17/Th2 gene expression, but up-regulated immune-inhibitory genes (ILT, IDO1, PD-L1). Expression of 8,800 genes was dysregulated in therapy-naïve compared to IFN-β-treated patients. These long-term changes in protein-coding and long non-coding RNAs affect immunity, synaptic transmission, and CNS cell survival, and correct the disordered therapy-naïve transcriptome to near-normal. In keeping with its impact on clinical course and brain repair in MS, long-term IFN-β treatment reversed the overexpression of proinflammatory and MMP genes, while enhancing genes involved in the oligodendroglia-protective integrated stress response, neuroprotection, and immunoregulation. In the rectified long-term signature, 277 transcripts differed between stable PR and CR patients. Interpretation IFN-β had minimal short-term effects on Th1 and Th2 pathways, but long-term it corrected gene dysregulation and induced immunoregulatory and neuroprotective genes. These data offer new biomarkers for IFN-β responsiveness. Funding Unrestricted grants from the US National MS Society, NMSS RG#4509A, and Bayer Pharmaceuticals
Collapse
Affiliation(s)
- Xuan Feng
- Department of Neurology and the Grossman Institute for Neuroscience, Quantitative Biology and Human Behavior, University of Chicago, Chicago, IL 60637, United States
| | - Riyue Bao
- Center for Research Informatics, University of Chicago, Chicago, IL 60637, United States; Department of Paediatrics, University of Chicago, Chicago, IL 60637, United States; Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA 15232, United States
| | - Lei Li
- Department of Neurology and the Grossman Institute for Neuroscience, Quantitative Biology and Human Behavior, University of Chicago, Chicago, IL 60637, United States; Hospital of Harbin Medical University, Harbin 150086, China
| | | | - Barry G W Arnason
- Department of Neurology and the Grossman Institute for Neuroscience, Quantitative Biology and Human Behavior, University of Chicago, Chicago, IL 60637, United States
| | - Anthony T Reder
- Department of Neurology and the Grossman Institute for Neuroscience, Quantitative Biology and Human Behavior, University of Chicago, Chicago, IL 60637, United States.
| |
Collapse
|
28
|
Abstract
The C-type lectins are a superfamily of proteins that recognize a broad repertoire of ligands and that regulate a diverse range of physiological functions. Most research attention has focused on the ability of C-type lectins to function in innate and adaptive antimicrobial immune responses, but these proteins are increasingly being recognized to have a major role in autoimmune diseases and to contribute to many other aspects of multicellular existence. Defects in these molecules lead to developmental and physiological abnormalities, as well as altered susceptibility to infectious and non-infectious diseases. In this Review, we present an overview of the roles of C-type lectins in immunity and homeostasis, with an emphasis on the most exciting recent discoveries.
Collapse
|
29
|
Gu C, Wang L, Zurawski S, Oh S. Signaling Cascade through DC-ASGPR Induces Transcriptionally Active CREB for IL-10 Induction and Immune Regulation. THE JOURNAL OF IMMUNOLOGY 2019; 203:389-399. [DOI: 10.4049/jimmunol.1900289] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 05/17/2019] [Indexed: 12/15/2022]
|
30
|
Protective Effects of Chinese Traditional Medicine Longhu Rendan against Atherosclerosis via Negative Regulation of LOX-1. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:4812639. [PMID: 30402125 PMCID: PMC6196979 DOI: 10.1155/2018/4812639] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Accepted: 08/23/2018] [Indexed: 12/31/2022]
Abstract
Longhu Rendan (LHRD), a Chinese traditional compound medicine, has a remarkable treatment effect on motion sickness for about half a century. However, the role of LHRD in atherosclerosis treatment is still unclear. In this study, LHRD treatment significantly diminished total cholesterol (TC), triglyceride (TG), and low-density lipoprotein cholesterol (LDL-C) levels in apolipoprotein E gene-knockout (ApoE−/−) mice fed with high fat and high cholesterol diet (western diet). Besides, LHRD treatment significantly reduced atherosclerotic lesion and plaques formation in both aortic roots and aortic trees. Furthermore, immunofluorescence staining in aortic roots demonstrated that LHRD treatment inhibited lectin-like oxidized low-density-lipoprotein receptor-1 (LOX-1) expression in atherosclerotic plaques. These results indicated that LHRD ameliorated atherosclerosis via reducing serum levels of TC, TG, and LDL-C as well as LOX-1 expression, subsequently attenuating atherosclerotic lesion and lipid deposition. In conclusion, LHRD could significantly attenuate experimental atherosclerosis and might be a novel potential drug for the prevention and treatment of atherosclerosis.
Collapse
|
31
|
Chiffoleau E. C-Type Lectin-Like Receptors As Emerging Orchestrators of Sterile Inflammation Represent Potential Therapeutic Targets. Front Immunol 2018; 9:227. [PMID: 29497419 PMCID: PMC5818397 DOI: 10.3389/fimmu.2018.00227] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 01/26/2018] [Indexed: 01/19/2023] Open
Abstract
Over the last decade, C-type lectin-like receptors (CTLRs), expressed mostly by myeloid cells, have gained increasing attention for their role in the fine tuning of both innate and adaptive immunity. Not only CTLRs recognize pathogen-derived ligands to protect against infection but also endogenous ligands such as self-carbohydrates, proteins, or lipids to control homeostasis and tissue injury. Interestingly, CTLRs act as antigen-uptake receptors via their carbohydrate-recognition domain for internalization and subsequent presentation to T-cells. Furthermore, CTLRs signal through a complex intracellular network leading to the secretion of a particular set of cytokines that differently polarizes downstream effector T-cell responses according to the ligand and pattern recognition receptor co-engagement. Thus, by orchestrating the balance between inflammatory and resolution pathways, CTLRs are now considered as driving players of sterile inflammation whose dysregulation leads to the development of various pathologies such as autoimmune diseases, allergy, or cancer. For examples, the macrophage-inducible C-type lectin (MINCLE), by sensing glycolipids released during cell-damage, promotes skin allergy and the pathogenesis of experimental autoimmune uveoretinitis. Besides, recent studies described that tumors use physiological process of the CTLRs’ dendritic cell-associated C-type lectin-1 (DECTIN-1) and MINCLE to locally suppress myeloid cell activation and promote immune evasion. Therefore, we aim here to overview the current knowledge of the pivotal role of CTLRs in sterile inflammation with special attention given to the “Dectin-1” and “Dectin-2” families. Moreover, we will discuss the potential of these receptors as promising therapeutic targets to treat a wide range of acute and chronic diseases.
Collapse
Affiliation(s)
- Elise Chiffoleau
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France.,IHU Cesti, Nantes, France.,Labex Immunotherapy Graft Oncology (IGO), Nantes, France
| |
Collapse
|
32
|
Zhiming W, Luman W, Tingting Q, Yiwei C. Chemokines and receptors in intestinal B lymphocytes. J Leukoc Biol 2018; 103:807-819. [PMID: 29443417 DOI: 10.1002/jlb.1ru0717-299rr] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Revised: 01/11/2018] [Accepted: 01/11/2018] [Indexed: 02/06/2023] Open
Abstract
Recent studies indicate that chemoattractant cytokines (chemokines) and their receptors modulate intestinal B lymphocytes in different ways, including regulating their maturity and differentiation in the bone marrow and homing to intestinal target tissues. Here, we review several important chemokine/chemokine receptor axes that guide intestinal B cells, focusing on the homing and migration of IgA antibody-secreting cells (IgA-ASCs) to intestinal-associated lymphoid tissues. We describe the selective regulation of these chemokine axes in coordinating the IgA-ASC trafficking in intestinal diseases. Finally, we discuss the role of B cells as chemokine producers serving dual roles in regulating the mucosal immune microenvironment.
Collapse
Affiliation(s)
- Wang Zhiming
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Wang Luman
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China.,Biotherapy Research Center, Fudan University, Shanghai, China
| | - Qian Tingting
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Chu Yiwei
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China.,Biotherapy Research Center, Fudan University, Shanghai, China
| |
Collapse
|
33
|
Molecular vaccine prepared by fusion of XCL1 to the multi-epitope protein of foot-and-mouth disease virus enhances the specific humoural immune response in cattle. Appl Microbiol Biotechnol 2017; 101:7889-7900. [PMID: 28929328 DOI: 10.1007/s00253-017-8523-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 08/24/2017] [Accepted: 09/07/2017] [Indexed: 10/18/2022]
Abstract
Targeting antigen to dendritic cells (DCs) is a promising way to manipulate the immune response and to design prophylactic molecular vaccines. In this study, the cattle XCL1, ligand of XCR1, was fused to the type O foot-and-mouth disease virus (FMDV) multi-epitope protein (XCL-OB7) to create a molecular vaccine antigen, and an △XCL-OB7 protein with a mutation in XCL1 was used as the control. XCL-OB7 protein specifically bound to the XCR1 receptor, as detected by flow cytometry. Cattle vaccinated with XCL-OB7 showed a significantly higher antibody response than that to the △XCL-OB7 control (P < 0.05). In contrast, when XCL-OB7 was incorporated with poly (I:C) to prepare the vaccine, the antibody response of the immunized cattle was significantly decreased in this group and was lower than that in the △XCL-OB7 plus poly (I:C) group. The FMDV challenge indicated that cattle immunized with the XCL-OB7 alone or the △XCL-OB7 plus poly (I:C) obtained an 80% (4/5) clinical protective rate. However, cattle vaccinated with △XCL-OB7 plus poly (I:C) showed more effective inhibition of virus replication than that in the XCL-OB7 group after viral challenge, according to the presence of antibodies against FMDV non-structural protein 3B. This is the first test of DC-targeted vaccines in veterinary medicine to use XCL1 fused to FMDV antigens. This primary result showed that an XCL1-based molecular vaccine enhanced the antibody response in cattle. This knowledge should be valuable for the development of antibody-dependent vaccines for some infectious diseases in cattle.
Collapse
|
34
|
Bruno V, Rizzacasa B, Pietropolli A, Capogna MV, Massoud R, Ticconi C, Piccione E, Cortese C, Novelli G, Amati F. OLR1 and Loxin Expression in PBMCs of Women with a History of Unexplained Recurrent Miscarriage: A Pilot Study. Genet Test Mol Biomarkers 2017; 21:363-372. [PMID: 28409654 DOI: 10.1089/gtmb.2016.0331] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
AIMS The aim of this study was to evaluate the expression of OLR1 and its alternative splicing isoform Loxin in unexplained recurrent miscarriage (uRM). METHODS Sixty-three women of reproductive age were recruited and were divided into four groups: 18 pregnant and 23 non-pregnant women with uRM, and 12 pregnant and 10 non-pregnant women with physiological pregnancies. Complementary DNA derived from peripheral blood mononuclear cells (PBMCs) was analyzed by quantitative real-time PCR to evaluate the expression of OLR1 and Loxin. Oxidized low-density lipoproteins (ox-LDLs) were assayed from serum by a commercially available kit. RESULTS Pregnant uRM women presented with a higher, though not significant, OLR1/Loxin ratio and a higher ox-LDLs serum level (p ≤ 0.05) compared with pregnant control women. OLR1 and Loxin levels were significantly decreased in non-pregnant uRM women compared with the control (OLR1: 0.00018 vs. 0.00043, p ≤ 0.005; Loxin: 0.00018 vs. 0.00060, p ≤ 0.005, respectively). Loxin expression decreased by about two-thirds (p ≤ 0.005) in pregnant women compared with non-pregnant control women. A higher expression of OLR1 in pregnant women compared with non-pregnant women with uRM (p ≤ 0.05) was observed, but no variation in Loxin expression was observed. CONCLUSIONS The results of this study show an association of peripheral OLR1 and Loxin expression levels in uRM women, and they suggest the possible existence of an uncontrolled oxidative stress in these women in the first trimester of pregnancy.
Collapse
Affiliation(s)
- Valentina Bruno
- 1 Academic Department of Biomedicine and Prevention, Section of Gynecology and Obstetrics, University of Rome Tor Vergata and Department of Surgery, Section of Gynecology and Obstetrics, Tor Vergata University Hospital , Rome, Italy .,2 Department of Surgery, Section of Gynecology and Obstetrics, Tor Vergata University Hospital, Rome , Italy
| | - Barbara Rizzacasa
- 3 Department of Biomedicine and Prevention, Section of Genetics, University of Rome Tor Vergata , Rome, Italy
| | - Adalgisa Pietropolli
- 1 Academic Department of Biomedicine and Prevention, Section of Gynecology and Obstetrics, University of Rome Tor Vergata and Department of Surgery, Section of Gynecology and Obstetrics, Tor Vergata University Hospital , Rome, Italy .,2 Department of Surgery, Section of Gynecology and Obstetrics, Tor Vergata University Hospital, Rome , Italy
| | - Maria Vittoria Capogna
- 1 Academic Department of Biomedicine and Prevention, Section of Gynecology and Obstetrics, University of Rome Tor Vergata and Department of Surgery, Section of Gynecology and Obstetrics, Tor Vergata University Hospital , Rome, Italy .,2 Department of Surgery, Section of Gynecology and Obstetrics, Tor Vergata University Hospital, Rome , Italy
| | - Renato Massoud
- 4 Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Tor Vergata University Hospital , Rome, Italy
| | - Carlo Ticconi
- 1 Academic Department of Biomedicine and Prevention, Section of Gynecology and Obstetrics, University of Rome Tor Vergata and Department of Surgery, Section of Gynecology and Obstetrics, Tor Vergata University Hospital , Rome, Italy .,2 Department of Surgery, Section of Gynecology and Obstetrics, Tor Vergata University Hospital, Rome , Italy
| | - Emilio Piccione
- 1 Academic Department of Biomedicine and Prevention, Section of Gynecology and Obstetrics, University of Rome Tor Vergata and Department of Surgery, Section of Gynecology and Obstetrics, Tor Vergata University Hospital , Rome, Italy .,2 Department of Surgery, Section of Gynecology and Obstetrics, Tor Vergata University Hospital, Rome , Italy
| | - Claudio Cortese
- 4 Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Tor Vergata University Hospital , Rome, Italy
| | - Giuseppe Novelli
- 3 Department of Biomedicine and Prevention, Section of Genetics, University of Rome Tor Vergata , Rome, Italy
| | - Francesca Amati
- 3 Department of Biomedicine and Prevention, Section of Genetics, University of Rome Tor Vergata , Rome, Italy
| |
Collapse
|
35
|
Superiority in Rhesus Macaques of Targeting HIV-1 Env gp140 to CD40 versus LOX-1 in Combination with Replication-Competent NYVAC-KC for Induction of Env-Specific Antibody and T Cell Responses. J Virol 2017; 91:JVI.01596-16. [PMID: 28202751 DOI: 10.1128/jvi.01596-16] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 01/13/2017] [Indexed: 01/13/2023] Open
Abstract
We compared the HIV-1-specific immune responses generated by targeting HIV-1 envelope protein (Env gp140) to either CD40 or LOX-1, two endocytic receptors on dendritic cells (DCs), in rhesus macaques primed with a poxvirus vector (NYVAC-KC) expressing Env gp140. The DC-targeting vaccines, humanized recombinant monoclonal antibodies fused to Env gp140, were administered as a boost with poly-ICLC adjuvant either alone or coadministered with the NYVAC-KC vector. All the DC-targeting vaccine administrations with poly-ICLC increased the low-level serum anti-Env IgG responses elicited by NYVAC-KC priming significantly more (up to a P value of 0.01) than in a group without poly-ICLC. The responses were robust and cross-reactive and contained antibodies specific to multiple epitopes within gp140, including the C1, C2, V1, V2, and V3, C4, C5, and gp41 immunodominant regions. The DC-targeting vaccines also elicited modest serum Env-specific IgA responses. All groups gave serum neutralization activity limited to tier 1 viruses and antibody-dependent cytotoxicity responses (ADCC) after DC-targeting boosts. Furthermore, CD4+ and CD8+ T cell responses specific to multiple Env epitopes were strongly boosted by the DC-targeting vaccines plus poly-ICLC. Together, these results indicate that prime-boost immunization via NYVAC-KC and either anti-CD40.Env gp140/poly-ICLC or anti-LOX-1.Env gp140/poly-ICLC induced balanced antibody and T cell responses against HIV-1 Env. Coadministration of NYVAC-KC with the DC-targeting vaccines increased T cell responses but had minimal effects on antibody responses except for suppressing serum IgA responses. Overall, targeting Env to CD40 gave more robust T cell and serum antibody responses with broader epitope representation and greater durability than with LOX-1.IMPORTANCE An effective vaccine to prevent HIV-1 infection does not yet exist. An approach to elicit strong protective antibody development is to direct virus protein antigens specifically to dendritic cells, which are now known to be the key cell type for controlling immunity. In this study, we have tested in nonhuman primates two prototype vaccines engineered to direct the HIV-1 coat protein Env to dendritic cells. These vaccines bind to either CD40 or LOX-1, two dendritic cell surface receptors with different functions and tissue distributions. We tested the vaccines described above in combination with attenuated virus vectors that express Env. Both vaccines, but especially that delivered via CD40, raised robust immunity against HIV-1 as measured by monitoring potentially protective antibody and T cell responses in the blood. The safety and efficacy of the CD40-targeted vaccine justify further development for future human clinical trials.
Collapse
|
36
|
LOX-1 and Its Splice Variants: A New Challenge for Atherosclerosis and Cancer-Targeted Therapies. Int J Mol Sci 2017; 18:ijms18020290. [PMID: 28146073 PMCID: PMC5343826 DOI: 10.3390/ijms18020290] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 01/15/2017] [Accepted: 01/23/2017] [Indexed: 12/13/2022] Open
Abstract
Alternative splicing (AS) is a process in which precursor messenger RNA (pre-mRNA) splicing sites are differentially selected to diversify the protein isoform population. Changes in AS patterns have an essential role in normal development, differentiation and response to physiological stimuli. It is documented that AS can generate both “risk” and “protective” splice variants that can contribute to the pathogenesis of several diseases including atherosclerosis. The main endothelial receptor for oxidized low-density lipoprotein (ox-LDLs) is LOX-1 receptor protein encoded by the OLR1 gene. When OLR1 undergoes AS events, it generates three variants: OLR1, OLR1D4 and LOXIN. The latter lacks exon 5 and two-thirds of the functional domain. Literature data demonstrate a protective role of LOXIN in pathologies correlated with LOX-1 overexpression such as atherosclerosis and tumors. In this review, we summarize recent developments in understanding of OLR1 AS while also highlighting data warranting further investigation of this process as a novel therapeutic target.
Collapse
|
37
|
Chorny A, Casas-Recasens S, Sintes J, Shan M, Polentarutti N, García-Escudero R, Walland AC, Yeiser JR, Cassis L, Carrillo J, Puga I, Cunha C, Bastos H, Rodrigues F, Lacerda JF, Morais A, Dieguez-Gonzalez R, Heeger PS, Salvatori G, Carvalho A, Garcia-Sastre A, Blander JM, Mantovani A, Garlanda C, Cerutti A. The soluble pattern recognition receptor PTX3 links humoral innate and adaptive immune responses by helping marginal zone B cells. J Exp Med 2016; 213:2167-85. [PMID: 27621420 PMCID: PMC5030794 DOI: 10.1084/jem.20150282] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 08/04/2016] [Indexed: 01/01/2023] Open
Abstract
Cerutti and collaborators show that the humoral arms of the innate and adaptive immune systems are functionally interconnected by pentraxin 3, a soluble pattern recognition receptor that couples innate immune recognition with antibody-inducing function. Pentraxin 3 (PTX3) is a fluid-phase pattern recognition receptor of the humoral innate immune system with ancestral antibody-like properties but unknown antibody-inducing function. In this study, we found binding of PTX3 to splenic marginal zone (MZ) B cells, an innate-like subset of antibody-producing lymphocytes strategically positioned at the interface between the circulation and the adaptive immune system. PTX3 was released by a subset of neutrophils that surrounded the splenic MZ and expressed an immune activation–related gene signature distinct from that of circulating neutrophils. Binding of PTX3 promoted homeostatic production of IgM and class-switched IgG antibodies to microbial capsular polysaccharides, which decreased in PTX3-deficient mice and humans. In addition, PTX3 increased IgM and IgG production after infection with blood-borne encapsulated bacteria or immunization with bacterial carbohydrates. This immunogenic effect stemmed from the activation of MZ B cells through a neutrophil-regulated pathway that elicited class switching and plasmablast expansion via a combination of T cell–independent and T cell–dependent signals. Thus, PTX3 may bridge the humoral arms of the innate and adaptive immune systems by serving as an endogenous adjuvant for MZ B cells. This property could be harnessed to develop more effective vaccines against encapsulated pathogens.
Collapse
Affiliation(s)
- Alejo Chorny
- Department of Medicine, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Sandra Casas-Recasens
- Department of Medicine, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Jordi Sintes
- Program for Inflammatory and Cardiovascular Disorders, Institut Hospital del Mar d'Investigacions Mèdiques, 08003 Barcelona, Spain
| | - Meimei Shan
- Department of Medicine, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Nadia Polentarutti
- Istituto di Ricovero e Cura a Carattere Scientifico Humanitas Clinical and Research Hospital, Rozzano, 20089 Milan, Italy
| | - Ramón García-Escudero
- Molecular Oncology Unit, Centro de Investigaciones Energéticas, Medioambientales, y Tecnológicas, 28040 Madrid, Spain
| | - A Cooper Walland
- Department of Medicine, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - John R Yeiser
- Department of Medicine, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Linda Cassis
- Program for Inflammatory and Cardiovascular Disorders, Institut Hospital del Mar d'Investigacions Mèdiques, 08003 Barcelona, Spain
| | - Jorge Carrillo
- Department of Medicine, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029 Institut de Recerca de la Sida IrsiCaixa, Hospital Universitari Germans Trias i Pujol, 08916 Badalona, Barcelona, Spain
| | - Irene Puga
- Program for Inflammatory and Cardiovascular Disorders, Institut Hospital del Mar d'Investigacions Mèdiques, 08003 Barcelona, Spain
| | - Cristina Cunha
- Life and Health Sciences Research Institute, School of Health Sciences, University of Minho, 4710-057 Braga, Portugal PT Government Associate Laboratory, Braga/Guimarães, Life and Health Sciences Research Institute /3B's, University of Minho, 4710-057 Braga, Portugal
| | - Hélder Bastos
- Life and Health Sciences Research Institute, School of Health Sciences, University of Minho, 4710-057 Braga, Portugal PT Government Associate Laboratory, Braga/Guimarães, Life and Health Sciences Research Institute /3B's, University of Minho, 4710-057 Braga, Portugal Serviço de Pneumologia, Centro Hospitalar São João, Faculdade de Medicina, Universidade do Porto, 4200-319 Porto, Portugal
| | - Fernando Rodrigues
- Life and Health Sciences Research Institute, School of Health Sciences, University of Minho, 4710-057 Braga, Portugal PT Government Associate Laboratory, Braga/Guimarães, Life and Health Sciences Research Institute /3B's, University of Minho, 4710-057 Braga, Portugal
| | - João F Lacerda
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal Hospital de Santa Maria, 1649-035 Lisboa, Portugal
| | - António Morais
- Serviço de Pneumologia, Centro Hospitalar São João, Faculdade de Medicina, Universidade do Porto, 4200-319 Porto, Portugal
| | - Rebeca Dieguez-Gonzalez
- Department of Medicine, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Peter S Heeger
- Department of Medicine, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029 Translational Transplant Research Center and Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | | | - Agostinho Carvalho
- Life and Health Sciences Research Institute, School of Health Sciences, University of Minho, 4710-057 Braga, Portugal PT Government Associate Laboratory, Braga/Guimarães, Life and Health Sciences Research Institute /3B's, University of Minho, 4710-057 Braga, Portugal
| | - Adolfo Garcia-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - J Magarian Blander
- Department of Medicine, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029 Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Alberto Mantovani
- Istituto di Ricovero e Cura a Carattere Scientifico Humanitas Clinical and Research Hospital, Rozzano, 20089 Milan, Italy Humanitas University, Rozzano, 20089 Milan, Italy
| | - Cecilia Garlanda
- Istituto di Ricovero e Cura a Carattere Scientifico Humanitas Clinical and Research Hospital, Rozzano, 20089 Milan, Italy Humanitas University, Rozzano, 20089 Milan, Italy
| | - Andrea Cerutti
- Department of Medicine, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029 Program for Inflammatory and Cardiovascular Disorders, Institut Hospital del Mar d'Investigacions Mèdiques, 08003 Barcelona, Spain Catalan Institute for Research and Advanced Studies, 08003 Barcelona, Spain
| |
Collapse
|
38
|
Yin W, Duluc D, Joo H, Xue Y, Gu C, Wang Z, Wang L, Ouedraogo R, Oxford L, Clark A, Parikh F, Kim-Schulze S, Thompson-Snipes L, Lee SY, Beauregard C, Woo JH, Zurawski S, Sikora AG, Zurawski G, Oh S. Therapeutic HPV Cancer Vaccine Targeted to CD40 Elicits Effective CD8+ T-cell Immunity. Cancer Immunol Res 2016; 4:823-834. [PMID: 27485136 DOI: 10.1158/2326-6066.cir-16-0128] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 07/21/2016] [Indexed: 11/16/2022]
Abstract
Human papillomavirus (HPV), particularly HPV16 and HPV18, can cause cancers in diverse anatomical sites, including the anogenital and oropharyngeal (throat) regions. Therefore, development of safe and clinically effective therapeutic vaccines is an important goal. Herein, we show that a recombinant fusion protein of a humanized antibody to CD40 fused to HPV16.E6/7 (αCD40-HPV16.E6/7) can evoke HPV16.E6/7-specific CD8+ and CD4+ T-cell responses in head-and-neck cancer patients in vitro and in human CD40 transgenic (hCD40Tg) mice in vivo The combination of αCD40-HPV16.E6/7 and poly(I:C) efficiently primed HPV16.E6/7-specific T cells, particularly CD8+ T cells, in hCD40Tg mice. Inclusion of montanide enhanced HPV16.E6/7-specific CD4+, but not CD8+, T-cell responses. Poly(I:C) plus αCD40-HPV16.E6/7 was sufficient to mount both preventative and therapeutic immunity against TC-1 tumors in hCD40Tg mice, significantly increasing the frequency of HPV16-specific CD8+ CTLs in the tumors, but not in peripheral blood. In line with this, tumor volume inversely correlated with the frequency of HPV16.E6/7-specific CD8+ T cells in tumors, but not in blood. These data suggest that CD40-targeting vaccines for HPV-associated malignancies can provide a highly immunogenic platform with a strong likelihood of clinical benefit. Data from this study offer strong support for the development of CD40-targeting vaccines for other cancers in the future. Cancer Immunol Res; 4(10); 823-34. ©2016 AACR.
Collapse
Affiliation(s)
- Wenjie Yin
- Baylor Institute for Immunology Research, Dallas, Texas. Institute of Biomedical Studies, Baylor University, Waco, Texas
| | | | - HyeMee Joo
- Baylor Institute for Immunology Research, Dallas, Texas. Institute of Biomedical Studies, Baylor University, Waco, Texas
| | - Yaming Xue
- Baylor Institute for Immunology Research, Dallas, Texas
| | - Chao Gu
- Baylor Institute for Immunology Research, Dallas, Texas. Institute of Biomedical Studies, Baylor University, Waco, Texas
| | - Zhiqing Wang
- Baylor Institute for Immunology Research, Dallas, Texas
| | - Lei Wang
- Baylor Institute for Immunology Research, Dallas, Texas
| | | | - Lance Oxford
- Division of Head and Neck Surgery, Texas Oncology, Baylor University Medical Center, Dallas, Texas
| | - Amelia Clark
- Department of Otolaryngology, Stanford School of Medicine, Palo Alto, California
| | - Falguni Parikh
- Bobby R. Alford Department of Otolaryngology-Head and Neck Surgery, Baylor College of Medicine, Houston, Texas
| | | | - LuAnn Thompson-Snipes
- Baylor Institute for Immunology Research, Dallas, Texas. Institute of Biomedical Studies, Baylor University, Waco, Texas
| | - Sang-Yull Lee
- Department of Pathology, School of Medicine, Pusan National University, Yangsan, Gyeongsangnam-do, Republic of Korea
| | | | - Jung-Hee Woo
- Cancer Research Institute, Baylor Scott and White Health, Temple, Texas
| | | | - Andrew G Sikora
- Bobby R. Alford Department of Otolaryngology-Head and Neck Surgery, Baylor College of Medicine, Houston, Texas
| | - Gerard Zurawski
- Baylor Institute for Immunology Research, Dallas, Texas. Institute of Biomedical Studies, Baylor University, Waco, Texas
| | - SangKon Oh
- Baylor Institute for Immunology Research, Dallas, Texas. Institute of Biomedical Studies, Baylor University, Waco, Texas.
| |
Collapse
|
39
|
Affiliation(s)
- SangKon Oh
- Baylor Institute for Immunology Research, Live Oak, Dallas, TX, USA
| | - HyeMee Joo
- Baylor Institute for Immunology Research, Live Oak, Dallas, TX, USA
| |
Collapse
|
40
|
Xue J, Zhang X, Zhang C, Kang N, Liu X, Yu J, Zhang N, Wang H, Zhang L, Chen R, Cui L, Wang L, Wang X. Protective effect of Naoxintong against cerebral ischemia reperfusion injury in mice. JOURNAL OF ETHNOPHARMACOLOGY 2016; 182:181-189. [PMID: 26902830 DOI: 10.1016/j.jep.2016.02.022] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Revised: 01/05/2016] [Accepted: 02/14/2016] [Indexed: 06/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Naoxintong (NXT), a renowned traditional Chinese medicine in China, has been used for the treatment of acute and chronic cardio-cerebrovascular diseases in clinic for more than 20 years. AIM OF THE STUDY To evaluate the potential neuroprotective effect of NXT against ischemia reperfusion (I/R) injury in mice and investigate the underlying mechanisms. MATERIALS AND METHODS Focal cerebral I/R injury in adult male CD-1 mice was induced by transient middle cerebral artery occlusion (tMCAO) for 1h followed by reperfusion for 23h. Mice were randomly divided into five groups: Sham group; tMCAO group; Vehicle group; NXT-treated groups at doses of 0.36g/kg and 0.54g/kg. The effects of NXT on murine neurological function were estimated by neurological defect scores, infarct volume and brain water content at 24h after tMCAO. Immunohistochemistry and Western blot were used to detect the expression of LOX-1, pERK1/2 and NF-κB at 24h after tMCAO. qRT-PCR was used to detect the expression of LOX-1 and NF-κB at 24h after tMCAO. RESULTS Compared with Vehicle group, 0.54g/kg group of NXT significantly ameliorated neurological outcome, infarction volume and brain water content, decreased the expression of LOX-1, pERK1/2 and NF-κB (P<0.05). CONCLUSION NXT protected the mice brain against I/R injury, and this protection maybe associated with the down-regulation of LOX-1, pERK1/2 and NF-κB expression.
Collapse
Affiliation(s)
- Jing Xue
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, PR China
| | - Xiangjian Zhang
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, PR China; Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, Shijiazhuang, Hebei 050000, PR China; Hebei Key Laboratory of Vascular Homeostasis, Shijiazhuang, Hebei, 050000, PR China.
| | - Cong Zhang
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, PR China
| | - Ning Kang
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, PR China
| | - Xiaoxia Liu
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, PR China
| | - Jingying Yu
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, PR China
| | - Nan Zhang
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, PR China
| | - Hong Wang
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, PR China
| | - Lan Zhang
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, PR China
| | - Rong Chen
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, PR China; Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, Shijiazhuang, Hebei 050000, PR China; Hebei Key Laboratory of Vascular Homeostasis, Shijiazhuang, Hebei, 050000, PR China
| | - Lili Cui
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, PR China; Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, Shijiazhuang, Hebei 050000, PR China; Hebei Key Laboratory of Vascular Homeostasis, Shijiazhuang, Hebei, 050000, PR China
| | - Lina Wang
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, PR China; Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, Shijiazhuang, Hebei 050000, PR China; Hebei Key Laboratory of Vascular Homeostasis, Shijiazhuang, Hebei, 050000, PR China
| | - Xiaolu Wang
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, PR China; Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, Shijiazhuang, Hebei 050000, PR China; Hebei Key Laboratory of Vascular Homeostasis, Shijiazhuang, Hebei, 050000, PR China
| |
Collapse
|
41
|
Zurawski G, Zurawski S, Flamar AL, Richert L, Wagner R, Tomaras GD, Montefiori DC, Roederer M, Ferrari G, Lacabaratz C, Bonnabau H, Klucar P, Wang Z, Foulds KE, Kao SF, Yates NL, LaBranche C, Jacobs BL, Kibler K, Asbach B, Kliche A, Salazar A, Reed S, Self S, Gottardo R, Galmin L, Weiss D, Cristillo A, Thiebaut R, Pantaleo G, Levy Y. Targeting HIV-1 Env gp140 to LOX-1 Elicits Immune Responses in Rhesus Macaques. PLoS One 2016; 11:e0153484. [PMID: 27077384 PMCID: PMC4831750 DOI: 10.1371/journal.pone.0153484] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 03/19/2016] [Indexed: 12/30/2022] Open
Abstract
Improved antigenicity against HIV-1 envelope (Env) protein is needed to elicit vaccine-induced protective immunity in humans. Here we describe the first tests in non-human primates (NHPs) of Env gp140 protein fused to a humanized anti-LOX-1 recombinant antibody for delivering Env directly to LOX-1-bearing antigen presenting cells, especially dendritic cells (DC). LOX-1, or 1ectin-like oxidized low-density lipoprotein (LDL) receptor-1, is expressed on various antigen presenting cells and endothelial cells, and is involved in promoting humoral immune responses. The anti-LOX-1 Env gp140 fusion protein was tested for priming immune responses and boosting responses in animals primed with replication competent NYVAC-KC Env gp140 vaccinia virus. Anti-LOX-1 Env gp140 vaccination elicited robust cellular and humoral responses when used for either priming or boosting immunity. Co-administration with Poly ICLC, a TLR3 agonist, was superior to GLA, a TLR4 agonist. Both CD4+ and CD8+ Env-specific T cell responses were elicited by anti-LOX-1 Env gp140, but in particular the CD4+ T cells were multifunctional and directed to multiple epitopes. Serum IgG and IgA antibody responses induced by anti-LOX-1 Env gp140 against various gp140 domains were cross-reactive across HIV-1 clades; however, the sera neutralized only HIV-1 bearing sequences most similar to the clade C 96ZM651 Env gp140 carried by the anti-LOX-1 vehicle. These data, as well as the safety of this protein vaccine, justify further exploration of this DC-targeting vaccine approach for protective immunity against HIV-1.
Collapse
Affiliation(s)
- Gerard Zurawski
- Vaccine Research Institute, Université Paris-Est, Faculté de Médecine, INSERM U955, and Assistance Publique-Hôpitaux de Paris, Groupe Henri-Mondor Albert- Chenevier, service d’immunologie clinique, INRIA SISTM, Créteil, France
- Baylor Institute for Immunology Research and INSERM U955, Dallas, Texas, United States of America
- * E-mail:
| | - Sandra Zurawski
- Vaccine Research Institute, Université Paris-Est, Faculté de Médecine, INSERM U955, and Assistance Publique-Hôpitaux de Paris, Groupe Henri-Mondor Albert- Chenevier, service d’immunologie clinique, INRIA SISTM, Créteil, France
- Baylor Institute for Immunology Research and INSERM U955, Dallas, Texas, United States of America
| | - Anne-Laure Flamar
- Vaccine Research Institute, Université Paris-Est, Faculté de Médecine, INSERM U955, and Assistance Publique-Hôpitaux de Paris, Groupe Henri-Mondor Albert- Chenevier, service d’immunologie clinique, INRIA SISTM, Créteil, France
- Baylor Institute for Immunology Research and INSERM U955, Dallas, Texas, United States of America
| | - Laura Richert
- INSERM U897, INRIA SISTM, Université Bordeaux Segalen, Bordeaux, France
| | - Ralf Wagner
- Molecular Microbiology and Gene Therapy Unit, Institute of Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
| | - Georgia D. Tomaras
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
| | - David C. Montefiori
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Mario Roederer
- Vaccine Research Center, NIAID, NIH, Bethesda, Maryland, United States of America
| | - Guido Ferrari
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Christine Lacabaratz
- Vaccine Research Institute, Université Paris-Est, Faculté de Médecine, INSERM U955, and Assistance Publique-Hôpitaux de Paris, Groupe Henri-Mondor Albert- Chenevier, service d’immunologie clinique, INRIA SISTM, Créteil, France
| | - Henri Bonnabau
- INSERM U897, INRIA SISTM, Université Bordeaux Segalen, Bordeaux, France
| | - Peter Klucar
- Vaccine Research Institute, Université Paris-Est, Faculté de Médecine, INSERM U955, and Assistance Publique-Hôpitaux de Paris, Groupe Henri-Mondor Albert- Chenevier, service d’immunologie clinique, INRIA SISTM, Créteil, France
- Baylor Institute for Immunology Research and INSERM U955, Dallas, Texas, United States of America
| | - Zhiqing Wang
- Vaccine Research Institute, Université Paris-Est, Faculté de Médecine, INSERM U955, and Assistance Publique-Hôpitaux de Paris, Groupe Henri-Mondor Albert- Chenevier, service d’immunologie clinique, INRIA SISTM, Créteil, France
- Baylor Institute for Immunology Research and INSERM U955, Dallas, Texas, United States of America
| | - Kathryn E. Foulds
- Vaccine Research Center, NIAID, NIH, Bethesda, Maryland, United States of America
| | - Shing-Fen Kao
- Vaccine Research Center, NIAID, NIH, Bethesda, Maryland, United States of America
| | - Nicole L. Yates
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Celia LaBranche
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Bertram L. Jacobs
- School of Life Sciences, Center for Infectious Diseases and Vaccinology, Arizona State University, Tempe, Arizona, United States of America
| | - Karen Kibler
- School of Life Sciences, Center for Infectious Diseases and Vaccinology, Arizona State University, Tempe, Arizona, United States of America
| | - Benedikt Asbach
- Molecular Microbiology and Gene Therapy Unit, Institute of Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
| | - Alexander Kliche
- Molecular Microbiology and Gene Therapy Unit, Institute of Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
| | | | - Steve Reed
- Infectious Disease Research Institute, Seattle, Washington, United States of America
| | - Steve Self
- Vaccine and Infectious Disease and Public Health Sciences Divisions, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Raphael Gottardo
- Vaccine and Infectious Disease and Public Health Sciences Divisions, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Lindsey Galmin
- Advanced BioScience Laboratories, Inc., Rockville, Maryland, United States of America
| | - Deborah Weiss
- Advanced BioScience Laboratories, Inc., Rockville, Maryland, United States of America
| | - Anthony Cristillo
- Advanced BioScience Laboratories, Inc., Rockville, Maryland, United States of America
| | - Rodolphe Thiebaut
- INSERM U897, INRIA SISTM, Université Bordeaux Segalen, Bordeaux, France
| | - Giuseppe Pantaleo
- Centre Hospitalier Universitaire Vaudois, CH-101, Lausanne, Switzerland
| | - Yves Levy
- Vaccine Research Institute, Université Paris-Est, Faculté de Médecine, INSERM U955, and Assistance Publique-Hôpitaux de Paris, Groupe Henri-Mondor Albert- Chenevier, service d’immunologie clinique, INRIA SISTM, Créteil, France
| |
Collapse
|
42
|
Abstract
The generation of antigen-specific neutralizing antibodies and memory B cells is one of the most important immune protections of the host and is the basis for successful vaccination strategies. The protective antibodies, secreted by preexisting long-lived plasma cells and reactivated antigen-experienced memory B cells, constitute the main humoral immune defense. Distinct from the primary antibody response, the humoral memory response is generated much faster and with greater magnitude, and it produces antibodies with higher affinity and variable isotypes. Humoral immunity is critically dependent on the germinal center where high-affinity memory B cells and plasma cells are generated. In this chapter, we focus on recent advances in our understanding of the molecular mechanisms that govern fate decision for memory B cells and plasma cells and the mechanisms that maintain the long-lived plasma-cell pool, with emphasis on how the transcription factor Blimp-1 (B lymphocyte-induced maturation protein-1) helps regulate the above-mentioned immunoregulatory steps to ensure the production and maintenance of antibody-secreting plasma cells as well as how it directs memory cell vs plasma-cell fate. We also discuss the molecular basis of Blimp-1 action and how its expression is regulated.
Collapse
|
43
|
Direct Delivery of Antigens to Dendritic Cells via Antibodies Specific for Endocytic Receptors as a Promising Strategy for Future Therapies. Vaccines (Basel) 2016; 4:vaccines4020008. [PMID: 27043640 PMCID: PMC4931625 DOI: 10.3390/vaccines4020008] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 03/15/2016] [Accepted: 03/18/2016] [Indexed: 12/12/2022] Open
Abstract
Dendritic cells (DCs) are the most potent professional antigen presenting cells and are therefore indispensable for the control of immunity. The technique of antibody mediated antigen targeting to DC subsets has been the basis of intense research for more than a decade. Many murine studies have utilized this approach of antigen delivery to various kinds of endocytic receptors of DCs both in vitro and in vivo. Today, it is widely accepted that different DC subsets are important for the induction of select immune responses. Nevertheless, many questions still remain to be answered, such as the actual influence of the targeted receptor on the initiation of the immune response to the delivered antigen. Further efforts to better understand the induction of antigen-specific immune responses will support the transfer of this knowledge into novel treatment strategies for human diseases. In this review, we will discuss the state-of-the-art aspects of the basic principles of antibody mediated antigen targeting approaches. A table will also provide a broad overview of the latest studies using antigen targeting including addressed DC subset, targeted receptors, outcome, and applied coupling techniques.
Collapse
|
44
|
Ishikawa M, Ito H, Furu M, Hashimoto M, Fujii T, Okahata A, Mimori T, Matsuda S. Plasma sLOX-1 is a potent biomarker of clinical remission and disease activity in patients with seropositive RA. Mod Rheumatol 2016; 26:696-701. [DOI: 10.3109/14397595.2015.1128871] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Masahiro Ishikawa
- Department of Orthopedic Surgery,
- Department of the Control for Rheumatic Diseases, and
| | | | - Moritoshi Furu
- Department of Orthopedic Surgery,
- Department of the Control for Rheumatic Diseases, and
| | | | - Takao Fujii
- Department of the Control for Rheumatic Diseases, and
| | | | - Tsuneyo Mimori
- Department of Rheumatology and Clinical Immunology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | | |
Collapse
|
45
|
Functional Specialty of CD40 and Dendritic Cell Surface Lectins for Exogenous Antigen Presentation to CD8(+) and CD4(+) T Cells. EBioMedicine 2016; 5:46-58. [PMID: 27077111 PMCID: PMC4816850 DOI: 10.1016/j.ebiom.2016.01.029] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 01/21/2016] [Accepted: 01/25/2016] [Indexed: 11/25/2022] Open
Abstract
Dendritic cells (DCs) are major antigen-presenting cells that can efficiently prime and cross-prime antigen-specific T cells. Delivering antigen to DCs via surface receptors is thus an appealing strategy to evoke cellular immunity. Nonetheless, which DC surface receptor to target to yield the optimal CD8+ and CD4+ T cell responses remains elusive. Herein, we report the superiority of CD40 over 9 different lectins and scavenger receptors at evoking antigen-specific CD8+ T cell responses. However, lectins (e.g., LOX-1 and Dectin-1) were more efficient than CD40 at eliciting CD4+ T cell responses. Common and distinct patterns of subcellular and intracellular localization of receptor-bound αCD40, αLOX-1 and αDectin-1 further support their functional specialization at enhancing antigen presentation to either CD8+ or CD4+ T cells. Lastly, we demonstrate that antigen targeting to CD40 can evoke potent antigen-specific CD8+ T cell responses in human CD40 transgenic mice. This study provides fundamental information for the rational design of vaccines against cancers and viral infections. Antigen delivery to DCs via CD40 is more efficient than through nine other receptors at eliciting CD8 T+ cell response. Antigen delivery via lectins (e.g., LOX-1 and Dectin-1) is more efficient than CD40 at eliciting CD4+ T cell responses.
The success of an immunotherapeutic vaccine for cancer is largely dependent on its ability to evoke potent cellular immunity. Although targeting antigens to dendritic cells (DCs) has been known to be an efficient strategy to evoke cellular immunity, which targeted receptors yield the optimal cellular immunity remained elusive. We report that targeting CD40, compared to 9 other DC receptors, results in the greatest levels of CD8+ cytotoxic T cell responses, while targeting lectins results in enhanced CD4+ helper T cell responses. The findings of this study will assist us in the rational design of immunotherapeutic vaccines against cancers.
Collapse
Key Words
- ANOVA, analysis of variance
- AP, alkaline phosphatase
- APC, antigen-presenting cells
- CD, cluster of differentiation
- CD40
- CFSE, carboxyfluorescein succinimidyl ester
- CTL, cytotoxic T lymphocyte
- Coh, cohesin
- Cross-presentation
- DC, dendritic cell
- Dendritic cell
- Doc, dockerin
- EEA1, early endosome antigen 1
- ELISA, enzyme-linked immunosorbent assay
- ELISpot, enzyme-linked immunospot
- Flu.M1, influenza virus matrix protein 1
- GM-CSF, granulocyte-macrophage colony-stimulating factor
- HA1, hemagglutinin subunit 1
- HLA, human leukocyte antigen
- HPV, human papillomavirus
- HRP, horseradish peroxidase
- IFN, interferon
- IL, interleukin
- JaCoP, Just another Colocalization Plugin
- LAMP-1, lysosomal-associated membrane protein 1
- Lectins
- MART-1, melanoma antigen recognized by T cells 1
- MHC, major histocompatibility complex
- Mo-DC, monocyte-derived dendritic cell
- NHP, non-human primate
- NP, nucleoprotein
- PBMC, peripheral blood mononuclear cells
- PBS, phosphate-buffered saline
- PSA, prostate specific antigen
- Poly(I:C), polyinosinic:polycytidylic acid
- TLR, toll-like receptor
- TMB, 3,3′,5,5′-tetramethylbenzidine
- TNF, tumor necrosis factor
- Vaccine
- hCD40Tg, human CD40 transgenic
- i.p., intraperitoneal(ly)
- mAb, monoclonal antibody
- mDC, myeloid dendritic cell
- pDC, plasmacytoid dendritic cell
- s.c., subcutaneous(ly)
Collapse
|
46
|
Zhu H, Fang X, Zhang D, Wu W, Shao M, Wang L, Gu J. Membrane-bound heat shock proteins facilitate the uptake of dying cells and cross-presentation of cellular antigen. Apoptosis 2015; 21:96-109. [DOI: 10.1007/s10495-015-1187-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
47
|
Arjunan P, El-Awady A, Dannebaum RO, Kunde-Ramamoorthy G, Cutler CW. High-throughput sequencing reveals key genes and immune homeostatic pathways activated in myeloid dendritic cells by Porphyromonas gingivalis 381 and its fimbrial mutants. Mol Oral Microbiol 2015; 31:78-93. [PMID: 26466817 DOI: 10.1111/omi.12131] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2015] [Indexed: 12/14/2022]
Abstract
The human microbiome consists of highly diverse microbial communities that colonize our skin and mucosal surfaces, aiding in maintenance of immune homeostasis. The keystone pathogen Porphyromonas gingivalis induces a dysbiosis and disrupts immune homeostasis through as yet unclear mechanisms. The fimbrial adhesins of P. gingivalis facilitate biofilm formation, invasion of and dissemination by blood dendritic cells; hence, fimbriae may be key factors in disruption of immune homeostasis. In this study we employed RNA-sequencing transcriptome profiling to identify differentially expressed genes (DEGs) in human monocyte-derived dendritic cells (MoDCs) in response to in vitro infection/exposure by Pg381 or its isogenic mutant strains that solely express minor-Mfa1 fimbriae (DPG3), major-FimA fimbriae (MFI) or are deficient in both fimbriae (MFB) relative to uninfected control. Our results yielded a total of 479 DEGs that were at least two-fold upregulated and downregulated in MoDCs significantly (P ≤ 0.05) by all four strains and certain DEGs that were strain-specific. Interestingly, the gene ontology biological and functional analysis shows that the upregulated genes in DPG3-induced MoDCs were more significant than other strains and associated with inflammation, immune response, anti-apoptosis, cell proliferation, and other homeostatic functions. Both transcriptome and quantitative polymerase chain reaction results show that DPG3, which solely expresses Mfa1, increased ZNF366, CD209, LOX1, IDO1, IL-10, CCL2, SOCS3, STAT3 and FOXO1 gene expression. In conclusion, we have identified key DC-mediated immune homeostatic pathways that could contribute to dysbiosis in periodontal infection with P. gingivalis.
Collapse
Affiliation(s)
- P Arjunan
- Department of Periodontics, Georgia Regents University, Augusta, GA, USA
| | - A El-Awady
- Department of Periodontics, Georgia Regents University, Augusta, GA, USA
| | - R O Dannebaum
- Department of Energy, Joint Genome Institute, Walnut Creek, CA, USA
| | - G Kunde-Ramamoorthy
- Department of Energy, Joint Genome Institute, Walnut Creek, CA, USA.,Department of Biochemistry, National University of Singapore, Singapore
| | - C W Cutler
- Department of Periodontics, Georgia Regents University, Augusta, GA, USA
| |
Collapse
|
48
|
Abstract
Scavenger receptors constitute a large family of evolutionally conserved protein molecules that are structurally and functionally diverse. Although scavenger receptors were originally identified based on their capacity to scavenge modified lipoproteins, these molecules have been shown to recognize and bind to a broad spectrum of ligands, including modified and unmodified host-derived molecules or microbial components. As a major subset of innate pattern recognition receptors, scavenger receptors are mainly expressed on myeloid cells and function in a wide range of biological processes, such as endocytosis, adhesion, lipid transport, antigen presentation, and pathogen clearance. In addition to playing a crucial role in maintenance of host homeostasis, scavenger receptors have been implicated in the pathogenesis of a number of diseases, e.g., atherosclerosis, neurodegeneration, or metabolic disorders. Emerging evidence has begun to reveal these receptor molecules as important regulators of tumor behavior and host immune responses to cancer. This review summarizes our current understanding on the newly identified, distinct functions of scavenger receptors in cancer biology and immunology. The potential of scavenger receptors as diagnostic biomarkers and novel targets for therapeutic interventions to treat malignancies is also highlighted.
Collapse
Affiliation(s)
- Xiaofei Yu
- Department of Human and Molecular Genetics, Richmond, Virginia, USA; VCU Institute of Molecular Medicine, Richmond, Virginia, USA; VCU Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Chunqing Guo
- Department of Human and Molecular Genetics, Richmond, Virginia, USA; VCU Institute of Molecular Medicine, Richmond, Virginia, USA; VCU Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Paul B Fisher
- Department of Human and Molecular Genetics, Richmond, Virginia, USA; VCU Institute of Molecular Medicine, Richmond, Virginia, USA; VCU Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - John R Subjeck
- Department of Cellular Stress Biology, Roswell Park Cancer Institute, Buffalo, New York, USA.
| | - Xiang-Yang Wang
- Department of Human and Molecular Genetics, Richmond, Virginia, USA; VCU Institute of Molecular Medicine, Richmond, Virginia, USA; VCU Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA.
| |
Collapse
|
49
|
Role of group 3 innate lymphoid cells in antibody production. Curr Opin Immunol 2015; 33:36-42. [PMID: 25621842 PMCID: PMC4488900 DOI: 10.1016/j.coi.2015.01.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 01/12/2015] [Indexed: 01/21/2023]
Abstract
Innate lymphoid cells (ILCs) constitute a heterogeneous family of effector lymphocytes of the innate immune system that mediate lymphoid organogenesis, tissue repair, immunity and inflammation. The initial view that ILCs exert their protective functions solely during the innate phase of an immune response has been recently challenged by evidence indicating that ILCs shape adaptive immunity by establishing both contact-dependent and contact-independent interactions with multiple hematopoietic and non-hematopoietic cells, including B cells. Some of these interactions enhance antibody responses both systemically and at mucosal sites of entry.
Collapse
|
50
|
Abstract
Lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) is best known for promoting atherosclerosis. In this issue of Immunity, Joo et al. (2014) find that dendritic cells triggered through LOX-1 can directly support plasmablast production via the production of the cytokines APRIL and BAFF.
Collapse
Affiliation(s)
- Robert Brink
- Immunology Division, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst NSW 2010, Australia; St Vincent's Clinical School, UNSW Australia, 390 Victoria Street, Darlinghurst NSW 2010, Australia.
| |
Collapse
|