1
|
McNee A, Kannan A, Jull P, Shankar S. Expanding Human Breg for Cellular Therapy in Transplantation: Time for Translation. Transplantation 2024:00007890-990000000-00920. [PMID: 39439021 DOI: 10.1097/tp.0000000000005243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Regulatory B cells (Breg) are instrumental in protecting allografts in transplantation. Breg signatures are identified in operationally tolerant human kidney transplant recipients and can predict organ survival and acute rejection. Animal models of transplantation and autoimmunity support the use of Breg as an adoptive cellular therapy. Detailed mechanistic studies have identified multiple signaling pathways utilized by Breg in their induction, expansion, and downstream function. These preclinical studies provide the guiding principles, which will inform protocols by which to expand this crucial immunoregulatory population before clinical use. There is an urgent need for novel therapies to improve long-term transplant outcomes and to minimize immunosuppression-related morbidity including life-threatening infection and cancer. Systematic evaluation of the signals, which drive Breg expansion, will be key to transforming the as of yet unharnessed potential of this potent immunoregulatory cell. In this review, we explore the potential avenues of translating Breg subsets from cell culture at the laboratory bench to cell therapy at the patient's bedside. We will discuss the standardization of Breg phenotypes to aid in precursor population selection and quality control of a Breg-cell therapy product. We will evaluate avenues by which to optimize protocols to drive human Breg expansion to levels sufficient for cellular therapy. Finally, we will examine the steps required in process development including scalable culture systems and quality control measures to deliver a viable Breg-cell therapy product for administration to a transplant recipient.
Collapse
Affiliation(s)
- Adam McNee
- Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Headington, Oxford, United Kingdom
| | - Ananya Kannan
- Oxford University Medical School, John Radcliffe Hospital, Headington, Oxford, United Kingdom
| | - Patrick Jull
- Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Headington, Oxford, United Kingdom
| | - Sushma Shankar
- Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Headington, Oxford, United Kingdom
| |
Collapse
|
2
|
Moysidou E, Christodoulou M, Lioulios G, Stai S, Karamitsos T, Dimitroulas T, Fylaktou A, Stangou M. Lymphocytes Change Their Phenotype and Function in Systemic Lupus Erythematosus and Lupus Nephritis. Int J Mol Sci 2024; 25:10905. [PMID: 39456692 PMCID: PMC11508046 DOI: 10.3390/ijms252010905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/04/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Systemic lupus erythematosus (SLE) is a complex autoimmune disease, characterized by considerable changes in peripheral lymphocyte structure and function, that plays a critical role in commencing and reviving the inflammatory and immune signaling pathways. In healthy individuals, B lymphocytes have a major role in guiding and directing defense mechanisms against pathogens. Certain changes in B lymphocyte phenotype, including alterations in surface and endosomal receptors, occur in the presence of SLE and lead to dysregulation of peripheral B lymphocyte subpopulations. Functional changes are characterized by loss of self-tolerance, intra- and extrafollicular activation, and increased cytokine and autoantibody production. T lymphocytes seem to have a supporting, rather than a leading, role in the disease pathogenesis. Substantial aberrations in peripheral T lymphocyte subsets are evident, and include a reduction of cytotoxic, regulatory, and advanced differentiated subtypes, together with an increase of activated and autoreactive forms and abnormalities in follicular T cells. Up-regulated subpopulations, such as central and effector memory T cells, produce pre-inflammatory cytokines, activate B lymphocytes, and stimulate cell signaling pathways. This review explores the pivotal roles of B and T lymphocytes in the pathogenesis of SLE and Lupus Nephritis, emphasizing the multifaceted mechanisms and interactions and their phenotypic and functional dysregulations.
Collapse
Affiliation(s)
- Eleni Moysidou
- School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (E.M.); (M.C.); (G.L.); (S.S.); (T.K.); (T.D.)
- 1st Department of Nephrology, Hippokration General Hospital, 54642 Thessaloniki, Greece
| | - Michalis Christodoulou
- School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (E.M.); (M.C.); (G.L.); (S.S.); (T.K.); (T.D.)
- 1st Department of Nephrology, Hippokration General Hospital, 54642 Thessaloniki, Greece
| | - Georgios Lioulios
- School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (E.M.); (M.C.); (G.L.); (S.S.); (T.K.); (T.D.)
- 1st Department of Nephrology, Hippokration General Hospital, 54642 Thessaloniki, Greece
| | - Stamatia Stai
- School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (E.M.); (M.C.); (G.L.); (S.S.); (T.K.); (T.D.)
- 1st Department of Nephrology, Hippokration General Hospital, 54642 Thessaloniki, Greece
| | - Theodoros Karamitsos
- School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (E.M.); (M.C.); (G.L.); (S.S.); (T.K.); (T.D.)
- 1st Department of Cardiology, AHEPA University Hospital, 54636 Thessaloniki, Greece
| | - Theodoros Dimitroulas
- School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (E.M.); (M.C.); (G.L.); (S.S.); (T.K.); (T.D.)
- 4th Department of Medicine, Hippokration General Hospital, 54642 Thessaloniki, Greece
| | - Asimina Fylaktou
- Department of Immunology, National Histocompatibility Center, Hippokration General Hospital, 54642 Thessaloniki, Greece;
| | - Maria Stangou
- School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (E.M.); (M.C.); (G.L.); (S.S.); (T.K.); (T.D.)
- 1st Department of Nephrology, Hippokration General Hospital, 54642 Thessaloniki, Greece
| |
Collapse
|
3
|
Gu Q, Draheim M, Planchais C, He Z, Mu F, Gong S, Shen C, Zhu H, Zhivaki D, Shahin K, Collard JM, Su M, Zhang X, Mouquet H, Lo-Man R. Intestinal newborn regulatory B cell antibodies modulate microbiota communities. Cell Host Microbe 2024; 32:1787-1804.e9. [PMID: 39243760 DOI: 10.1016/j.chom.2024.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 07/08/2024] [Accepted: 08/12/2024] [Indexed: 09/09/2024]
Abstract
The role of immunoglobulins produced by IL-10-producing regulatory B cells remains unknown. We found that a particular newborn regulatory B cell population (nBreg) negatively regulates the production of immunoglobulin M (IgM) via IL-10 in an autocrine manner, limiting the intensity of the polyreactive antibody response following innate activation. Based on nBreg scRNA-seq signature, we identify these cells and their repertoire in fetal and neonatal intestinal tissues. By characterizing 205 monoclonal antibodies cloned from intestinal nBreg, we show that newborn germline-encoded antibodies display reactivity against bacteria representing six different phyla of the early microbiota. nBreg-derived antibodies can influence the diversity and the cooperation between members of early microbial communities, at least in part by modulating energy metabolism. These results collectively suggest that nBreg populations help facilitate early-life microbiome establishment and shed light on the paradoxical activities of regulatory B cells in early life.
Collapse
Affiliation(s)
- Qisheng Gu
- CAS Key Laboratory of Molecular Virology and Immunology, The Center for Microbes, Development and Health, Unit of Immunity and Pediatric Infectious Diseases, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China; Université Paris Cite, Paris, France
| | - Marion Draheim
- CAS Key Laboratory of Molecular Virology and Immunology, The Center for Microbes, Development and Health, Unit of Immunity and Pediatric Infectious Diseases, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Cyril Planchais
- Humoral Immunology Unit, Institut Pasteur, Université Paris Cite, INSERM U1222, Paris, France
| | - Zihan He
- CAS Key Laboratory of Molecular Virology and Immunology, The Center for Microbes, Development and Health, Unit of Immunity and Pediatric Infectious Diseases, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Fan Mu
- CAS Key Laboratory of Molecular Virology and Immunology, The Center for Microbes, Development and Health, Unit of Immunity and Pediatric Infectious Diseases, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Shijie Gong
- CAS Key Laboratory of Molecular Virology and Immunology, The Center for Microbes, Development and Health, Unit of Immunity and Pediatric Infectious Diseases, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Chun Shen
- Children's Hospital of Fudan University, Shanghai, China
| | - Haitao Zhu
- Children's Hospital of Fudan University (Xiamen Branch), Xiamen Children's Hospital, Xiamen, China
| | - Dania Zhivaki
- Division of Gastroenterology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Khashayar Shahin
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan Microbiome Center, and Human Phenome Institute, Fudan University, Shanghai, China
| | - Jean-Marc Collard
- Enteric Bacterial Pathogens Unit & French National Reference Center for Escherichia Coli, Shigella and Salmonella, Institut Pasteur, Paris, France
| | - Min Su
- Obstetrics department, Affiliated Hospital of Nantong University, Nantong, China
| | - Xiaoming Zhang
- CAS Key Laboratory of Molecular Virology and Immunology, The Center for Microbes, Development and Health, Unit of Innate Defense and Immune Modulation, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
| | - Hugo Mouquet
- Humoral Immunology Unit, Institut Pasteur, Université Paris Cite, INSERM U1222, Paris, France.
| | - Richard Lo-Man
- CAS Key Laboratory of Molecular Virology and Immunology, The Center for Microbes, Development and Health, Unit of Immunity and Pediatric Infectious Diseases, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China; Université Paris Cite, Paris, France.
| |
Collapse
|
4
|
Baert L, Mahmudul HM, Stegall M, Joo H, Oh S. B Cell-mediated Immune Regulation and the Quest for Transplantation Tolerance. Transplantation 2024; 108:2021-2033. [PMID: 38389135 DOI: 10.1097/tp.0000000000004948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Pathophysiologic function of B cells in graft rejection has been well recognized in transplantation. B cells promote alloantigen-specific T-cell response and secrete antibodies that can cause antibody-mediated graft failures and rejections. Therefore, strategies targeting B cells, for example, B-cell depletion, have been used for the prevention of both acute and chronic rejections. Interestingly, however, recent mounting evidence indicates that subsets of B cells yet to be further identified can display potent immune regulatory functions, and they contribute to transplantation tolerance and operational tolerance in both experimental and clinical settings, respectively. In this review, we integrate currently available information on B-cell subsets, including T-cell Ig domain and mucin domain 1-positive transitional and T-cell immunoreceptor with Ig and immunoreceptor tyrosine-based inhibitory motif domain-positive memory B cells, displaying immune regulatory functions, with a focus on transplantation tolerance, by analyzing their mechanisms of action. In addition, we will discuss potential T-cell Ig domain and mucin domain 1-positive and T-cell immunoreceptor with Ig and immunoreceptor tyrosine-based inhibitory motif domain-positive B cell-based strategies for the enhancement of operational tolerance in transplantation patients.
Collapse
Affiliation(s)
- Laurie Baert
- Department of Immunology, Mayo Clinic, Scottsdale, AZ
| | | | - Mark Stegall
- Department of Surgery, William J. von Liebig Transplant Center, Mayo Clinic, Rochester, MN
| | - HyeMee Joo
- Department of Immunology, Mayo Clinic, Scottsdale, AZ
| | - SangKon Oh
- Department of Immunology, Mayo Clinic, Scottsdale, AZ
| |
Collapse
|
5
|
Ajadee A, Mahmud S, Hossain MB, Ahmmed R, Ali MA, Reza MS, Sarker SK, Mollah MNH. Screening of differential gene expression patterns through survival analysis for diagnosis, prognosis and therapies of clear cell renal cell carcinoma. PLoS One 2024; 19:e0310843. [PMID: 39348357 PMCID: PMC11441673 DOI: 10.1371/journal.pone.0310843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 09/02/2024] [Indexed: 10/02/2024] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is the most prevalent subtype of kidney cancer. Although there is increasing evidence linking ccRCC to genetic alterations, the exact molecular mechanism behind this relationship is not yet completely known to the researchers. Though drug therapies are the best choice after the metastasis, unfortunately, the majority of the patients progressively develop resistance against the therapeutic drugs after receiving it for almost 2 years. In this case, multi-targeted different variants of therapeutic drugs are essential for effective treatment against ccRCC. To understand molecular mechanisms of ccRCC development and progression, and explore multi-targeted different variants of therapeutic drugs, it is essential to identify ccRCC-causing key genes (KGs). In order to obtain ccRCC-causing KGs, at first, we detected 133 common differentially expressed genes (cDEGs) between ccRCC and control samples based on nine (9) microarray gene-expression datasets with NCBI accession IDs GSE16441, GSE53757, GSE66270, GSE66272, GSE16449, GSE76351, GSE66271, GSE71963, and GSE36895. Then, we filtered these cDEGs through survival analysis with the independent TCGA and GTEx database and obtained 54 scDEGs having significant prognostic power. Next, we used protein-protein interaction (PPI) network analysis with the reduced set of 54 scDEGs to identify ccRCC-causing top-ranked eight KGs (PLG, ENO2, ALDOB, UMOD, ALDH6A1, SLC12A3, SLC12A1, SERPINA5). The pan-cancer analysis with KGs based on TCGA database showed the significant association with different subtypes of kidney cancers including ccRCC. The gene regulatory network (GRN) analysis revealed some crucial transcriptional and post-transcriptional regulators of KGs. The scDEGs-set enrichment analysis significantly identified some crucial ccRCC-causing molecular functions, biological processes, cellular components, and pathways that are linked to the KGs. The results of DNA methylation study indicated the hypomethylation and hyper-methylation of KGs, which may lead the development of ccRCC. The immune infiltrating cell types (CD8+ T and CD4+ T cell, B cell, neutrophil, dendritic cell and macrophage) analysis with KGs indicated their significant association in ccRCC, where KGs are positively correlated with CD4+ T cells, but negatively correlated with the majority of other immune cells, which is supported by the literature review also. Then we detected 10 repurposable drug molecules (Irinotecan, Imatinib, Telaglenastat, Olaparib, RG-4733, Sorafenib, Sitravatinib, Cabozantinib, Abemaciclib, and Dovitinib.) by molecular docking with KGs-mediated receptor proteins. Their ADME/T analysis and cross-validation with the independent receptors, also supported their potent against ccRCC. Therefore, these outputs might be useful inputs/resources to the wet-lab researchers and clinicians for considering an effective treatment strategy against ccRCC.
Collapse
Affiliation(s)
- Alvira Ajadee
- Department of Statistics, Bioinformatics Lab (Dry), University of Rajshahi, Rajshahi, Bangladesh
| | - Sabkat Mahmud
- Department of Statistics, Bioinformatics Lab (Dry), University of Rajshahi, Rajshahi, Bangladesh
| | - Md. Bayazid Hossain
- Department of Statistics, Bioinformatics Lab (Dry), University of Rajshahi, Rajshahi, Bangladesh
- Department of Agricultural and Applied Statistics, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Reaz Ahmmed
- Department of Statistics, Bioinformatics Lab (Dry), University of Rajshahi, Rajshahi, Bangladesh
- Department of Biochemistry & Molecular Biology, University of Rajshahi, Rajshahi, Bangladesh
| | - Md. Ahad Ali
- Department of Statistics, Bioinformatics Lab (Dry), University of Rajshahi, Rajshahi, Bangladesh
- Department of Chemistry, University of Rajshahi, Rajshahi, Bangladesh
| | - Md. Selim Reza
- Department of Statistics, Bioinformatics Lab (Dry), University of Rajshahi, Rajshahi, Bangladesh
- Center for Biomedical Informatics & Genomics, School of Medicine, Tulane University, New Orleans, LA, United States of America
| | - Saroje Kumar Sarker
- Department of Statistics, Bioinformatics Lab (Dry), University of Rajshahi, Rajshahi, Bangladesh
| | - Md. Nurul Haque Mollah
- Department of Statistics, Bioinformatics Lab (Dry), University of Rajshahi, Rajshahi, Bangladesh
| |
Collapse
|
6
|
Ahsan NF, Lourenço S, Psyllou D, Long A, Shankar S, Bashford-Rogers R. The current understanding of the phenotypic and functional properties of human regulatory B cells (Bregs). OXFORD OPEN IMMUNOLOGY 2024; 5:iqae012. [PMID: 39346706 PMCID: PMC11427547 DOI: 10.1093/oxfimm/iqae012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 06/13/2024] [Accepted: 09/10/2024] [Indexed: 10/01/2024] Open
Abstract
B cells can have a wide range of pro- and anti- inflammatory functions. A subset of B cells called regulatory B cells (Bregs) can potently suppress immune responses. Bregs have been shown to maintain immune homeostasis and modulate inflammatory responses. Bregs are an exciting cellular target across a range of diseases, including Breg induction in autoimmunity, allergy and transplantation, and Breg suppression in cancers and infection. Bregs exhibit a remarkable phenotypic heterogeneity, rendering their unequivocal identification a challenging task. The lack of a universally accepted and exclusive surface marker set for Bregs across various studies contributes to inconsistencies in their categorization. This review paper presents a comprehensive overview of the current understanding of the phenotypic and functional properties of human Bregs while addressing the persisting ambiguities and discrepancies in their characterization. Finally, the paper examines the promising therapeutic opportunities presented by Bregs as their immunomodulatory capacities have gained attention in the context of autoimmune diseases, allergic conditions, and cancer. We explore the exciting potential in harnessing Bregs as potential therapeutic agents and the avenues that remain open for the development of Breg-based treatment strategies.
Collapse
Affiliation(s)
- Nawara Faiza Ahsan
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
- Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Stella Lourenço
- Keizo Asami Institute, Federal University of Pernambuco, Recife 50740-520, Brazil
| | - Dimitra Psyllou
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Alexander Long
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Sushma Shankar
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford OX3 7DQ, United Kingdom
| | - Rachael Bashford-Rogers
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
- Oxford Cancer Centre, University of Oxford, Oxford OX3 7LH, United Kingdom
| |
Collapse
|
7
|
Bradford HF, Mauri C. Diversity of regulatory B cells: Markers and functions. Eur J Immunol 2024:e2350496. [PMID: 39086053 DOI: 10.1002/eji.202350496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 08/02/2024]
Abstract
Regulatory B cells (Bregs) are a functionally distinct B-cell subset involved in the maintenance of homeostasis and inhibition of inflammation. Studies, from the last two decades, have increased our understanding of cellular and molecular mechanisms involved in their generation, function, and to a certain extent phenotype. Current research endeavours to unravel the causes and consequences of Breg defects in disease, with increasing evidence highlighting the relevance of Bregs in promoting tumorigenic responses. Here we provide historical and emerging findings of the significance of Bregs in autoimmunity and transplantation, and how these insights have translated into the cancer field.
Collapse
Affiliation(s)
- Hannah F Bradford
- Division of Infection and Immunity and Institute of Immunity and Transplantation, Royal Free Hospital, University College London, London, United Kingdom
| | - Claudia Mauri
- Division of Infection and Immunity and Institute of Immunity and Transplantation, Royal Free Hospital, University College London, London, United Kingdom
| |
Collapse
|
8
|
Erdő-Bonyár S, Rapp J, Subicz R, Filipánits K, Minier T, Kumánovics G, Czirják L, Berki T, Simon D. Toll-like Receptor Homologue CD180 Ligation of B Cells Upregulates Type I IFN Signature in Diffuse Cutaneous Systemic Sclerosis. Int J Mol Sci 2024; 25:7933. [PMID: 39063175 PMCID: PMC11277506 DOI: 10.3390/ijms25147933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/07/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Type I interferon (IFN-I) signaling has been shown to be upregulated in systemic sclerosis (SSc). Dysregulated B-cell functions, including antigen presentation, as well as antibody and cytokine production, all of which may be affected by IFN-I signaling, play an important role in the pathogenesis of the disease. We investigated the IFN-I signature in 71 patients with the more severe form of the disease, diffuse cutaneous SSc (dcSSc), and 33 healthy controls (HCs). Activation via Toll-like receptors (TLRs) can influence the IFN-I signaling cascade; thus, we analyzed the effects of the TLR homologue CD180 ligation on the IFN-I signature in B cells. CD180 stimulation augmented the phosphorylation of signal transducer and activator of transcription 1 (STAT1) in dcSSc B cells (p = 0.0123). The expression of IFN-I receptor (IFNAR1) in non-switched memory B cells producing natural autoantibodies was elevated in dcSSc (p = 0.0109), which was enhanced following anti-CD180 antibody treatment (p = 0.0125). Autoantibodies to IFN-Is (IFN-alpha and omega) correlated (dcSSc p = 0.0003, HC p = 0.0192) and were present at similar levels in B cells from dcSSc and HC, suggesting their regulatory role as natural autoantibodies. It can be concluded that factors other than IFN-alpha may contribute to the elevated IFN-I signature of dcSSc B cells, and one possible candidate is B-cell activation via CD180.
Collapse
Affiliation(s)
- Szabina Erdő-Bonyár
- Department of Immunology and Biotechnology, Clinical Center, Medical School, University of Pécs, H-7624 Pécs, Hungary; (S.E.-B.); (R.S.); (T.B.); (D.S.)
| | - Judit Rapp
- Department of Immunology and Biotechnology, Clinical Center, Medical School, University of Pécs, H-7624 Pécs, Hungary; (S.E.-B.); (R.S.); (T.B.); (D.S.)
| | - Rovéna Subicz
- Department of Immunology and Biotechnology, Clinical Center, Medical School, University of Pécs, H-7624 Pécs, Hungary; (S.E.-B.); (R.S.); (T.B.); (D.S.)
| | - Kristóf Filipánits
- Department of Rheumatology and Immunology, Clinical Center, Medical School, University of Pécs, H-7632 Pécs, Hungary; (K.F.); (T.M.); (G.K.); (L.C.)
| | - Tünde Minier
- Department of Rheumatology and Immunology, Clinical Center, Medical School, University of Pécs, H-7632 Pécs, Hungary; (K.F.); (T.M.); (G.K.); (L.C.)
| | - Gábor Kumánovics
- Department of Rheumatology and Immunology, Clinical Center, Medical School, University of Pécs, H-7632 Pécs, Hungary; (K.F.); (T.M.); (G.K.); (L.C.)
| | - László Czirják
- Department of Rheumatology and Immunology, Clinical Center, Medical School, University of Pécs, H-7632 Pécs, Hungary; (K.F.); (T.M.); (G.K.); (L.C.)
| | - Tímea Berki
- Department of Immunology and Biotechnology, Clinical Center, Medical School, University of Pécs, H-7624 Pécs, Hungary; (S.E.-B.); (R.S.); (T.B.); (D.S.)
| | - Diána Simon
- Department of Immunology and Biotechnology, Clinical Center, Medical School, University of Pécs, H-7624 Pécs, Hungary; (S.E.-B.); (R.S.); (T.B.); (D.S.)
| |
Collapse
|
9
|
Bradford HF, McDonnell TCR, Stewart A, Skelton A, Ng J, Baig Z, Fraternali F, Dunn-Walters D, Isenberg DA, Khan AR, Mauro C, Mauri C. Thioredoxin is a metabolic rheostat controlling regulatory B cells. Nat Immunol 2024; 25:873-885. [PMID: 38553615 PMCID: PMC11065695 DOI: 10.1038/s41590-024-01798-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 02/28/2024] [Indexed: 05/04/2024]
Abstract
Metabolic programming is important for B cell fate, but the bioenergetic requirement for regulatory B (Breg) cell differentiation and function is unknown. Here we show that Breg cell differentiation, unlike non-Breg cells, relies on mitochondrial electron transport and homeostatic levels of reactive oxygen species (ROS). Single-cell RNA sequencing analysis revealed that TXN, encoding the metabolic redox protein thioredoxin (Trx), is highly expressed by Breg cells, unlike Trx inhibitor TXNIP which was downregulated. Pharmacological inhibition or gene silencing of TXN resulted in mitochondrial membrane depolarization and increased ROS levels, selectively suppressing Breg cell differentiation and function while favoring pro-inflammatory B cell differentiation. Patients with systemic lupus erythematosus (SLE), characterized by Breg cell deficiencies, present with B cell mitochondrial membrane depolarization, elevated ROS and fewer Trx+ B cells. Exogenous Trx stimulation restored Breg cells and mitochondrial membrane polarization in SLE B cells to healthy B cell levels, indicating Trx insufficiency underlies Breg cell impairment in patients with SLE.
Collapse
Affiliation(s)
- Hannah F Bradford
- Institute of Immunity and Transplantation, Pears Building, UCL Division of Infection and Immunity, University College London, London, UK.
| | | | - Alexander Stewart
- School of Biosciences and Medicine, University of Surrey, Guildford, UK
| | | | - Joseph Ng
- Institute of Structural and Molecular Biology, University College London, London, UK
| | - Zara Baig
- Institute of Immunity and Transplantation, Pears Building, UCL Division of Infection and Immunity, University College London, London, UK
| | - Franca Fraternali
- Institute of Structural and Molecular Biology, University College London, London, UK
| | | | - David A Isenberg
- Centre for Rheumatology, Division of Medicine, University College London, London, UK
| | | | - Claudio Mauro
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Claudia Mauri
- Institute of Immunity and Transplantation, Pears Building, UCL Division of Infection and Immunity, University College London, London, UK.
| |
Collapse
|
10
|
Elias C, Chen C, Cherukuri A. Regulatory B Cells in Solid Organ Transplantation: From Immune Monitoring to Immunotherapy. Transplantation 2024; 108:1080-1089. [PMID: 37779239 PMCID: PMC10985051 DOI: 10.1097/tp.0000000000004798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Regulatory B cells (Breg) modulate the immune response in diverse disease settings including transplantation. Despite the lack of a specific phenotypic marker or transcription factor, their significance in transplantation is underscored by their ability to prolong experimental allograft survival, the possibility for their clinical use as immune monitoring tools, and the exciting prospect for them to form the basis for cell therapy. Interleukin (IL)-10 expression remains the most widely used marker for Breg. Several Breg subsets with distinct phenotypes that express this "signature Breg cytokine" have been described in mice and humans. Although T-cell immunoglobulin and mucin family-1 is the most inclusive and functional marker that accounts for murine Breg with disparate mechanisms of action, the significance of T-cell immunoglobulin and mucin family-1 as a marker for Breg in humans still needs to be explored. Although the primary focus of this review is the role of Breg in clinical transplantation, the net modulatory effect of B cells on the immune response and clinical outcomes is the result of the balancing functions of both Breg and effector B cells. Supporting this notion, B-cell IL-10/tumor necrosis factor α ratio is shown to predict immunologic reactivity and clinical outcomes in kidney and liver transplantation. Assessment of Breg:B effector balance using their IL-10/tumor necrosis factor α ratio may identify patients that require more immunosuppression and provide mechanistic insights into potential therapies. In summary, current advances in our understanding of murine and human Breg will pave way for future definitive clinical studies aiming to test them for immune monitoring and as therapeutic targets.
Collapse
Affiliation(s)
- Charbel Elias
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Chuxiao Chen
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Organ Transplant Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Aravind Cherukuri
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Renal and Electrolyte Division, Department of Internal Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
11
|
Jin XY, Li DD, Quan W, Chao Y, Zhang B. Leaky gut, circulating immune complexes, arthralgia, and arthritis in IBD: coincidence or inevitability? Front Immunol 2024; 15:1347901. [PMID: 38571963 PMCID: PMC10987687 DOI: 10.3389/fimmu.2024.1347901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/07/2024] [Indexed: 04/05/2024] Open
Abstract
Most host-microbiota interactions occur within the intestinal barrier, which is essential for separating the intestinal epithelium from toxins, microorganisms, and antigens in the gut lumen. Gut inflammation allows pathogenic bacteria to enter the blood stream, forming immune complexes which may deposit on organs. Despite increased circulating immune complexes (CICs) in patients with inflammatory bowel disease (IBD) and discussions among IBD experts regarding their potential pathogenic role in extra-intestinal manifestations, this phenomenon is overlooked because definitive evidence demonstrating CIC-induced extra-intestinal manifestations in IBD animal models is lacking. However, clinical observations of elevated CICs in newly diagnosed, untreated patients with IBD have reignited research into their potential pathogenic implications. Musculoskeletal symptoms are the most prevalent extra-intestinal IBD manifestations. CICs are pivotal in various arthritis forms, including reactive, rheumatoid, and Lyme arthritis and systemic lupus erythematosus. Research indicates that intestinal barrier restoration during the pre-phase of arthritis could inhibit arthritis development. In the absence of animal models supporting extra-intestinal IBD manifestations, this paper aims to comprehensively explore the relationship between CICs and arthritis onset via a multifaceted analysis to offer a fresh perspective for further investigation and provide novel insights into the interplay between CICs and arthritis development in IBD.
Collapse
Affiliation(s)
- Xi-ya Jin
- Department of Gastroenterology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Dan-dan Li
- Department of Gastroenterology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Wei Quan
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yang Chao
- Department of Gastroenterology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Bin Zhang
- Department of Gastroenterology, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
12
|
Xie T, Rui H, Liu H, Liu X, Liu X, Li P. Celastrol ameliorates lupus by promoting apoptosis of autoimmune T cells and preventing autoimmune response in MRL/lpr mice. Lupus Sci Med 2024; 11:e001057. [PMID: 38471722 DOI: 10.1136/lupus-2023-001057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 02/03/2024] [Indexed: 03/14/2024]
Abstract
OBJECTIVE Celastrol is a bioactive constituent extracted from Tripterygium wilfordii (thunder god vine). It has been demonstrated to have a therapeutic effect on experimental disease models for chronic inflammatory and immune disorders. In the present study, we investigated whether and how celastrol exerts a regulatory effect on the autoimmune response in MRL/lpr mice. METHODS We performed an in vivo study to determine the therapeutic effects of celastrol in MRL/lpr mice and then further investigated the underlying mechanism of celastrol in the regulation of the autoimmune response in MRL/lpr mice. RESULTS Celastrol showed a therapeutic effect in MRL/lpr mice by preventing the enlargement of the spleen and lymph nodes, alleviating renal injury, and reducing the levels of ANA and anti-double-stranded DNA antibodies. Furthermore, celastrol suppressed the in vivo inflammatory response in MRL/lpr mice by reducing the serum levels of multiple cytokines, including interleukin (IL)-6, tumour necrosis factor (TNF) and interferon (IFN)-γ, and the production of multiple antibody subsets, including total IgG, IgG1 and IgG2b. In vitro, celastrol reduced anti-CD3 antibody stimulation-induced T helper 1 and TNF-producing cells in CD4+ T cells of MRL/lpr mice. In addition, celastrol significantly affected B cell differentiation and prevented the generation of plasma cells from B cells in MRL/lpr mice by reducing the frequency of activated and germinal centre B cells. Celastrol treatment also affected T cell differentiation and significantly reduced central memory T cell frequencies in MRL/lpr mice. Importantly, celastrol treatment specifically promoted apoptosis of CD138+ but not CD138- T cells to suppress autoimmune T cell accumulation in MRL/lpr mice. CONCLUSIONS Celastrol exerted therapeutic effects on lupus by specifically promoting apoptosis of autoimmune T cells and preventing the progression of autoimmune response.
Collapse
Affiliation(s)
- Tianhong Xie
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Chinese Medicine, Beijing, China
- Department of Dermatology, Hebei Province Hospital of Chinese Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Hongliang Rui
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Chinese Medicine, Beijing, China
| | - Huiqiang Liu
- Department of Pathology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Xin Liu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Chinese Medicine, Beijing, China
| | - Xiang Liu
- Department of Dermatology, Hebei Province Hospital of Chinese Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Ping Li
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Chinese Medicine, Beijing, China
| |
Collapse
|
13
|
Veh J, Ludwig C, Schrezenmeier H, Jahrsdörfer B. Regulatory B Cells-Immunopathological and Prognostic Potential in Humans. Cells 2024; 13:357. [PMID: 38391970 PMCID: PMC10886933 DOI: 10.3390/cells13040357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/05/2024] [Accepted: 02/10/2024] [Indexed: 02/24/2024] Open
Abstract
The aim of the following review is to shed light on the putative role of regulatory B cells (Bregs) in various human diseases and highlight their potential prognostic and therapeutic relevance in humans. Regulatory B cells are a heterogeneous group of B lymphocytes capable of suppressing inflammatory immune reactions. In this way, Bregs contribute to the maintenance of tolerance and immune homeostasis by limiting ongoing immune reactions temporally and spatially. Bregs play an important role in attenuating pathological inflammatory reactions that can be associated with transplant rejection, graft-versus-host disease, autoimmune diseases and allergies but also with infectious, neoplastic and metabolic diseases. Early studies of Bregs identified IL-10 as an important functional molecule, so the IL-10-secreting murine B10 cell is still considered a prototype Breg, and IL-10 has long been central to the search for human Breg equivalents. However, over the past two decades, other molecules that may contribute to the immunosuppressive function of Bregs have been discovered, some of which are only present in human Bregs. This expanded arsenal includes several anti-inflammatory cytokines, such as IL-35 and TGF-β, but also enzymes such as CD39/CD73, granzyme B and IDO as well as cell surface proteins including PD-L1, CD1d and CD25. In summary, the present review illustrates in a concise and comprehensive manner that although human Bregs share common functional immunosuppressive features leading to a prominent role in various human immunpathologies, they are composed of a pool of different B cell types with rather heterogeneous phenotypic and transcriptional properties.
Collapse
Affiliation(s)
- Johanna Veh
- Institute for Transfusion Medicine, Ulm University Hospitals and Clinics, 89081 Ulm, Germany
- Institute for Clinical Transfusion Medicine and Immunogenetics, German Red Cross Blood Donation Service Baden-Württemberg-Hessen, 89081 Ulm, Germany
| | - Carolin Ludwig
- Institute for Transfusion Medicine, Ulm University Hospitals and Clinics, 89081 Ulm, Germany
- Institute for Clinical Transfusion Medicine and Immunogenetics, German Red Cross Blood Donation Service Baden-Württemberg-Hessen, 89081 Ulm, Germany
| | - Hubert Schrezenmeier
- Institute for Transfusion Medicine, Ulm University Hospitals and Clinics, 89081 Ulm, Germany
| | - Bernd Jahrsdörfer
- Institute for Transfusion Medicine, Ulm University Hospitals and Clinics, 89081 Ulm, Germany
- Institute for Clinical Transfusion Medicine and Immunogenetics, German Red Cross Blood Donation Service Baden-Württemberg-Hessen, 89081 Ulm, Germany
| |
Collapse
|
14
|
Lian SL, Lu YT, Lu YJ, Yao YL, Wang XL, Jiang RQ. Tumor-associated macrophages promoting PD-L1 expression in infiltrating B cells through the CXCL12/CXCR4 axis in human hepatocellular carcinoma. Am J Cancer Res 2024; 14:832-853. [PMID: 38455420 PMCID: PMC10915331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 02/04/2024] [Indexed: 03/09/2024] Open
Abstract
The inflammation-related tumor microenvironment (TME) is one of the major driving forces of hepatocarcinogenesis. We aimed to investigate cell-to-cell communication among Hepatocellular Carcinoma (HCC) through re-analyzing HCC single-cell RNA-seq data, and to confirm such cellular interaction through in vitro and in vivo study. We found a subset of Regulatory B cells with PD-L1 expression (PD-L1+ Bregs), mainly located in adjacent HCC tissues. In co-localization with PD-L1+ Bregs, a subset of Tumor Associated Macrophages with high expression of CXCL12 (CXCL12+ TAMs) was also mainly located in adjacent HCC tissues. Moreover, CXCL12+ TAMs can be stimulated in vitro using an HCC conditional medium. Using CellChat analysis and Multiplex Immunohistochemistry staining (mIHC), CXCL12+ TAMs were found to be first recruited by Cancer-Associated Fibroblasts (CAFs) through a CD74/macrophage migration inhibitory factor (MIF) pattern, and further differentiated into TGF-β-enriched tissues. Furthermore, CXCL12+ TAMs recruited PD-L1+ Bregs via the CXCL12/CXCR4 axis, and CXCR4 expression was significantly positively correlated to PD-L1 expression in PD-L1+ Bregs. At last, we confirmed the communications among CAFs, Macrophages and B cells and their tumor-promoting effects by using an orthotopic mouse model of HCC. Immunosuppressive HCC TME involving cell-to-cell communications comprised MIF-secreting CAFs, CXCL12-secreting TAMs, and PD-L1-producing Bregs, and their regulation could be promising therapeutic targets in future immunotherapy for human HCC.
Collapse
Affiliation(s)
- Sen-Lin Lian
- Medical School, Nanjing UniversityNanjing 210093, Jiangsu, The People’s Republic of China
| | - Yun-Tao Lu
- Medical School, Nanjing UniversityNanjing 210093, Jiangsu, The People’s Republic of China
| | - Yi-Jun Lu
- Medical School, Nanjing UniversityNanjing 210093, Jiangsu, The People’s Republic of China
| | - Yong-Liang Yao
- Department of Clinical Laboratory, Kunshan First People’s Hospital, Affiliated to Jiangsu UniversityKunshan 215300, Jiangsu, The People’s Republic of China
| | - Xiao-Lin Wang
- Department of Thoracic Surgery, Northern Jiangsu People’s Hospital and Clinical Medical College of Yangzhou UniversityYangzhou 225001, Jiangsu, The People’s Republic of China
| | - Run-Qiu Jiang
- Medical School, Nanjing UniversityNanjing 210093, Jiangsu, The People’s Republic of China
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing UniversityNanjing 210093, Jiangsu, The People’s Republic of China
- Jiangsu Laboratory of Molecular Medicine, Medical School, Nanjing UniversityNanjing 210093, Jiangsu, The People’s Republic of China
| |
Collapse
|
15
|
Kliem CV, Schaub B. The role of regulatory B cells in immune regulation and childhood allergic asthma. Mol Cell Pediatr 2024; 11:1. [PMID: 38172451 PMCID: PMC10764675 DOI: 10.1186/s40348-023-00174-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 12/03/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND As the most common chronic disease in childhood, asthma displays a major public health problem worldwide with the incidence of those affected rising. As there is currently no cure for allergic asthma, it is mandatory to get a better understanding of the underlying molecular mechanism. MAIN BODY By producing IgE antibodies upon allergen contact, B cells play a pivotal role in allergic asthma. Besides that, IL-10-secreting B cell subsets, namely regulatory B cells (Bregs), are reported in mice and humans to play a role in allergic asthma. In humans, several Breg subsets with distinct phenotypic and functional properties are identified among B cells at different maturational and differentiation stages that exert anti-inflammatory functions by expressing several suppressor molecules. Emerging research has focused on the role of Bregs in allergic asthma as well as their role for future diagnostic and preventive strategies. CONCLUSION Knowledge about the exact function of human Bregs in allergic asthma is still very limited. This review aims to summarize the current knowledge on Bregs. We discuss different human Breg subsets, several ways of Breg induction as well as the mechanisms through which they exert immunoregulatory functions, and their role in (childhood) allergic asthma.
Collapse
Affiliation(s)
- Caroline Vanessa Kliem
- Pediatric Allergology, Department of Pediatrics, Dr. Von Hauner Children´S Hospital, University Hospital, Lindwurmstraße 4, 80337, LMU, Munich, Germany
| | - Bianca Schaub
- Pediatric Allergology, Department of Pediatrics, Dr. Von Hauner Children´S Hospital, University Hospital, Lindwurmstraße 4, 80337, LMU, Munich, Germany.
- Member of German Center for Lung Research - DZL, LMU, Munich, Germany.
- Member of German Center for Child and Adolescent Health-DZKJ, LMU, Munich, Germany.
| |
Collapse
|
16
|
Zheremyan EA, Ustiugova AS, Karamushka NM, Uvarova AN, Stasevich EM, Bogolyubova AV, Kuprash DV, Korneev KV. Breg-Mediated Immunoregulation in the Skin. Int J Mol Sci 2024; 25:583. [PMID: 38203754 PMCID: PMC10778726 DOI: 10.3390/ijms25010583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/19/2023] [Accepted: 12/23/2023] [Indexed: 01/12/2024] Open
Abstract
Wound healing is a complex process involving a coordinated series of events aimed at restoring tissue integrity and function. Regulatory B cells (Bregs) are a subset of B lymphocytes that play an essential role in fine-tuning immune responses and maintaining immune homeostasis. Recent studies have suggested that Bregs are important players in cutaneous immunity. This review summarizes the current understanding of the role of Bregs in skin immunity in health and pathology, such as diabetes, psoriasis, systemic sclerosis, cutaneous lupus erythematosus, cutaneous hypersensitivity, pemphigus, and dermatomyositis. We discuss the mechanisms by which Bregs maintain tissue homeostasis in the wound microenvironment through the promotion of angiogenesis, suppression of effector cells, and induction of regulatory immune cells. We also mention the potential clinical applications of Bregs in promoting wound healing, such as the use of adoptive Breg transfer.
Collapse
Affiliation(s)
- Elina A. Zheremyan
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Alina S. Ustiugova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Nina M. Karamushka
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Aksinya N. Uvarova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Ekaterina M. Stasevich
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | | | - Dmitry V. Kuprash
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Kirill V. Korneev
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- National Research Center for Hematology, 125167 Moscow, Russia
| |
Collapse
|
17
|
Matsuoka T, Araki M, Lin Y, Okamoto T, Gold R, Chihara N, Sato W, Kimura A, Tachimori H, Miyamoto K, Kusunoki S, Yamamura T. Long-term Effects of IL-6 Receptor Blockade Therapy on Regulatory Lymphocytes and Neutrophils in Neuromyelitis Optica Spectrum Disorder. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2024; 11:e200173. [PMID: 37863660 PMCID: PMC10691226 DOI: 10.1212/nxi.0000000000200173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 08/29/2023] [Indexed: 10/22/2023]
Abstract
BACKGROUND AND OBJECTIVES Neuromyelitis optica spectrum disorder (NMOSD) is a disabling autoimmune neurologic disease. Anti-IL-6 receptor (IL-6R) therapy prevents relapses in patients with anti-aquaporin 4 (AQP4)-IgG-positive NMOSD; however, it remains unclear how cellular immune components are altered by anti-IL-6R therapy. In this study, we examined the long-term effects of the anti-IL-6R monoclonal antibody tocilizumab (TCZ) on immune cell profiles in patients with NMOSD. METHODS Monthly IV injections of TCZ (8 mg/kg) were administered as an add-on therapy to 19 anti-AQP4-IgG-positive patients, who had been refractory to corticosteroids and immunosuppressive drugs. Peripheral blood was collected before infusion of TCZ for flow cytometry analysis of lymphocyte subsets. Seven patients provided whole blood samples for gene expression profiles. RESULTS Patients with NMOSD had reduced numbers of lymphocyte subsets with regulatory functions, including transitional B cells, CD56high NK cells, and CD45RA-FoxP3high regulatory T cells. However, after initiating TCZ therapy, the numbers increased to normal levels within 1 year. Gene expression analysis revealed that neutrophil granule-related genes, predominated by those related to azurophil granules, were significantly upregulated in patients with NMOSD. Such alterations suggestive of accelerated myeloid turnover were not observed 1 year after TCZ therapy, and the effects of TCZ on some neutrophil genes were observed as early as 5 days after starting TCZ. In vitro analysis demonstrated that naïve T-cell division was impaired in the enrolled patients, which was fully recovered after 18 months of therapy. DISCUSSION In patients with active NMOSD not treated with molecular targeting drugs, we observed reduction or deficiency in lymphocytes with regulatory potentials and activation of neutrophils. However, introduction of anti-IL-6R therapy accompanied by tapering concomitant drugs corrected such abnormalities, which might contribute to persistent relapse prevention. The recovery in the naïve T-cell division after starting TCZ may underlie the relatively low risk of infection in patients under anti-IL-6R therapy. TRIAL REGISTRATION INFORMATION University Hospital Medical Information Network Clinical Trials Registry: UMIN000005889 (July 8, 2011) and UMIN000007866 (May 1, 2012) (umin.ac.jp/ctr/index.htm). The first participant was enrolled on November 2, 2011.
Collapse
Affiliation(s)
- Takako Matsuoka
- From the Department of Immunology (T.M., W.S., A.K., T.Y.), National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira; Department of Pediatrics (T.M.), Graduate School of Medicine, The University of Tokyo, Bunkyo; Multiple Sclerosis Center (M.A., Y.L., T.O., W.S., T.Y.), National Center of Neurology and Psychiatry, Kodaira; Department of Neurology (M.A.), Kawakita General Hospital, Suginami; Department of Neurology (Y.L., T.O.), National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan; Department of Neurology (R.G.), Ruhr University, Bochum, Germany; Division of Neurology (N.C.), Kobe University Graduate School of Medicine; Department of Clinical Epidemiology (H.T.), Translational Medical Center, National Institute of Mental Health, National Center of Neurology and Psychiatry, Kodaira; Bureau of International Health Cooperation (H.T.), National Center for Global Health and Medicine, Shinjuku, Tokyo; Department of Neurology (K.M., S.K.), Kindai University Faculty of Medicine, Osakasayama, Osaka; and Department of Neurology (K.M.), Wakayama Medical University, Japan
| | - Manabu Araki
- From the Department of Immunology (T.M., W.S., A.K., T.Y.), National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira; Department of Pediatrics (T.M.), Graduate School of Medicine, The University of Tokyo, Bunkyo; Multiple Sclerosis Center (M.A., Y.L., T.O., W.S., T.Y.), National Center of Neurology and Psychiatry, Kodaira; Department of Neurology (M.A.), Kawakita General Hospital, Suginami; Department of Neurology (Y.L., T.O.), National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan; Department of Neurology (R.G.), Ruhr University, Bochum, Germany; Division of Neurology (N.C.), Kobe University Graduate School of Medicine; Department of Clinical Epidemiology (H.T.), Translational Medical Center, National Institute of Mental Health, National Center of Neurology and Psychiatry, Kodaira; Bureau of International Health Cooperation (H.T.), National Center for Global Health and Medicine, Shinjuku, Tokyo; Department of Neurology (K.M., S.K.), Kindai University Faculty of Medicine, Osakasayama, Osaka; and Department of Neurology (K.M.), Wakayama Medical University, Japan
| | - Youwei Lin
- From the Department of Immunology (T.M., W.S., A.K., T.Y.), National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira; Department of Pediatrics (T.M.), Graduate School of Medicine, The University of Tokyo, Bunkyo; Multiple Sclerosis Center (M.A., Y.L., T.O., W.S., T.Y.), National Center of Neurology and Psychiatry, Kodaira; Department of Neurology (M.A.), Kawakita General Hospital, Suginami; Department of Neurology (Y.L., T.O.), National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan; Department of Neurology (R.G.), Ruhr University, Bochum, Germany; Division of Neurology (N.C.), Kobe University Graduate School of Medicine; Department of Clinical Epidemiology (H.T.), Translational Medical Center, National Institute of Mental Health, National Center of Neurology and Psychiatry, Kodaira; Bureau of International Health Cooperation (H.T.), National Center for Global Health and Medicine, Shinjuku, Tokyo; Department of Neurology (K.M., S.K.), Kindai University Faculty of Medicine, Osakasayama, Osaka; and Department of Neurology (K.M.), Wakayama Medical University, Japan
| | - Tomoko Okamoto
- From the Department of Immunology (T.M., W.S., A.K., T.Y.), National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira; Department of Pediatrics (T.M.), Graduate School of Medicine, The University of Tokyo, Bunkyo; Multiple Sclerosis Center (M.A., Y.L., T.O., W.S., T.Y.), National Center of Neurology and Psychiatry, Kodaira; Department of Neurology (M.A.), Kawakita General Hospital, Suginami; Department of Neurology (Y.L., T.O.), National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan; Department of Neurology (R.G.), Ruhr University, Bochum, Germany; Division of Neurology (N.C.), Kobe University Graduate School of Medicine; Department of Clinical Epidemiology (H.T.), Translational Medical Center, National Institute of Mental Health, National Center of Neurology and Psychiatry, Kodaira; Bureau of International Health Cooperation (H.T.), National Center for Global Health and Medicine, Shinjuku, Tokyo; Department of Neurology (K.M., S.K.), Kindai University Faculty of Medicine, Osakasayama, Osaka; and Department of Neurology (K.M.), Wakayama Medical University, Japan
| | - Ralf Gold
- From the Department of Immunology (T.M., W.S., A.K., T.Y.), National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira; Department of Pediatrics (T.M.), Graduate School of Medicine, The University of Tokyo, Bunkyo; Multiple Sclerosis Center (M.A., Y.L., T.O., W.S., T.Y.), National Center of Neurology and Psychiatry, Kodaira; Department of Neurology (M.A.), Kawakita General Hospital, Suginami; Department of Neurology (Y.L., T.O.), National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan; Department of Neurology (R.G.), Ruhr University, Bochum, Germany; Division of Neurology (N.C.), Kobe University Graduate School of Medicine; Department of Clinical Epidemiology (H.T.), Translational Medical Center, National Institute of Mental Health, National Center of Neurology and Psychiatry, Kodaira; Bureau of International Health Cooperation (H.T.), National Center for Global Health and Medicine, Shinjuku, Tokyo; Department of Neurology (K.M., S.K.), Kindai University Faculty of Medicine, Osakasayama, Osaka; and Department of Neurology (K.M.), Wakayama Medical University, Japan
| | - Norio Chihara
- From the Department of Immunology (T.M., W.S., A.K., T.Y.), National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira; Department of Pediatrics (T.M.), Graduate School of Medicine, The University of Tokyo, Bunkyo; Multiple Sclerosis Center (M.A., Y.L., T.O., W.S., T.Y.), National Center of Neurology and Psychiatry, Kodaira; Department of Neurology (M.A.), Kawakita General Hospital, Suginami; Department of Neurology (Y.L., T.O.), National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan; Department of Neurology (R.G.), Ruhr University, Bochum, Germany; Division of Neurology (N.C.), Kobe University Graduate School of Medicine; Department of Clinical Epidemiology (H.T.), Translational Medical Center, National Institute of Mental Health, National Center of Neurology and Psychiatry, Kodaira; Bureau of International Health Cooperation (H.T.), National Center for Global Health and Medicine, Shinjuku, Tokyo; Department of Neurology (K.M., S.K.), Kindai University Faculty of Medicine, Osakasayama, Osaka; and Department of Neurology (K.M.), Wakayama Medical University, Japan
| | - Wakiro Sato
- From the Department of Immunology (T.M., W.S., A.K., T.Y.), National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira; Department of Pediatrics (T.M.), Graduate School of Medicine, The University of Tokyo, Bunkyo; Multiple Sclerosis Center (M.A., Y.L., T.O., W.S., T.Y.), National Center of Neurology and Psychiatry, Kodaira; Department of Neurology (M.A.), Kawakita General Hospital, Suginami; Department of Neurology (Y.L., T.O.), National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan; Department of Neurology (R.G.), Ruhr University, Bochum, Germany; Division of Neurology (N.C.), Kobe University Graduate School of Medicine; Department of Clinical Epidemiology (H.T.), Translational Medical Center, National Institute of Mental Health, National Center of Neurology and Psychiatry, Kodaira; Bureau of International Health Cooperation (H.T.), National Center for Global Health and Medicine, Shinjuku, Tokyo; Department of Neurology (K.M., S.K.), Kindai University Faculty of Medicine, Osakasayama, Osaka; and Department of Neurology (K.M.), Wakayama Medical University, Japan
| | - Atsuko Kimura
- From the Department of Immunology (T.M., W.S., A.K., T.Y.), National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira; Department of Pediatrics (T.M.), Graduate School of Medicine, The University of Tokyo, Bunkyo; Multiple Sclerosis Center (M.A., Y.L., T.O., W.S., T.Y.), National Center of Neurology and Psychiatry, Kodaira; Department of Neurology (M.A.), Kawakita General Hospital, Suginami; Department of Neurology (Y.L., T.O.), National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan; Department of Neurology (R.G.), Ruhr University, Bochum, Germany; Division of Neurology (N.C.), Kobe University Graduate School of Medicine; Department of Clinical Epidemiology (H.T.), Translational Medical Center, National Institute of Mental Health, National Center of Neurology and Psychiatry, Kodaira; Bureau of International Health Cooperation (H.T.), National Center for Global Health and Medicine, Shinjuku, Tokyo; Department of Neurology (K.M., S.K.), Kindai University Faculty of Medicine, Osakasayama, Osaka; and Department of Neurology (K.M.), Wakayama Medical University, Japan
| | - Hisateru Tachimori
- From the Department of Immunology (T.M., W.S., A.K., T.Y.), National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira; Department of Pediatrics (T.M.), Graduate School of Medicine, The University of Tokyo, Bunkyo; Multiple Sclerosis Center (M.A., Y.L., T.O., W.S., T.Y.), National Center of Neurology and Psychiatry, Kodaira; Department of Neurology (M.A.), Kawakita General Hospital, Suginami; Department of Neurology (Y.L., T.O.), National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan; Department of Neurology (R.G.), Ruhr University, Bochum, Germany; Division of Neurology (N.C.), Kobe University Graduate School of Medicine; Department of Clinical Epidemiology (H.T.), Translational Medical Center, National Institute of Mental Health, National Center of Neurology and Psychiatry, Kodaira; Bureau of International Health Cooperation (H.T.), National Center for Global Health and Medicine, Shinjuku, Tokyo; Department of Neurology (K.M., S.K.), Kindai University Faculty of Medicine, Osakasayama, Osaka; and Department of Neurology (K.M.), Wakayama Medical University, Japan
| | - Katsuichi Miyamoto
- From the Department of Immunology (T.M., W.S., A.K., T.Y.), National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira; Department of Pediatrics (T.M.), Graduate School of Medicine, The University of Tokyo, Bunkyo; Multiple Sclerosis Center (M.A., Y.L., T.O., W.S., T.Y.), National Center of Neurology and Psychiatry, Kodaira; Department of Neurology (M.A.), Kawakita General Hospital, Suginami; Department of Neurology (Y.L., T.O.), National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan; Department of Neurology (R.G.), Ruhr University, Bochum, Germany; Division of Neurology (N.C.), Kobe University Graduate School of Medicine; Department of Clinical Epidemiology (H.T.), Translational Medical Center, National Institute of Mental Health, National Center of Neurology and Psychiatry, Kodaira; Bureau of International Health Cooperation (H.T.), National Center for Global Health and Medicine, Shinjuku, Tokyo; Department of Neurology (K.M., S.K.), Kindai University Faculty of Medicine, Osakasayama, Osaka; and Department of Neurology (K.M.), Wakayama Medical University, Japan
| | - Susumu Kusunoki
- From the Department of Immunology (T.M., W.S., A.K., T.Y.), National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira; Department of Pediatrics (T.M.), Graduate School of Medicine, The University of Tokyo, Bunkyo; Multiple Sclerosis Center (M.A., Y.L., T.O., W.S., T.Y.), National Center of Neurology and Psychiatry, Kodaira; Department of Neurology (M.A.), Kawakita General Hospital, Suginami; Department of Neurology (Y.L., T.O.), National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan; Department of Neurology (R.G.), Ruhr University, Bochum, Germany; Division of Neurology (N.C.), Kobe University Graduate School of Medicine; Department of Clinical Epidemiology (H.T.), Translational Medical Center, National Institute of Mental Health, National Center of Neurology and Psychiatry, Kodaira; Bureau of International Health Cooperation (H.T.), National Center for Global Health and Medicine, Shinjuku, Tokyo; Department of Neurology (K.M., S.K.), Kindai University Faculty of Medicine, Osakasayama, Osaka; and Department of Neurology (K.M.), Wakayama Medical University, Japan
| | - Takashi Yamamura
- From the Department of Immunology (T.M., W.S., A.K., T.Y.), National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira; Department of Pediatrics (T.M.), Graduate School of Medicine, The University of Tokyo, Bunkyo; Multiple Sclerosis Center (M.A., Y.L., T.O., W.S., T.Y.), National Center of Neurology and Psychiatry, Kodaira; Department of Neurology (M.A.), Kawakita General Hospital, Suginami; Department of Neurology (Y.L., T.O.), National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan; Department of Neurology (R.G.), Ruhr University, Bochum, Germany; Division of Neurology (N.C.), Kobe University Graduate School of Medicine; Department of Clinical Epidemiology (H.T.), Translational Medical Center, National Institute of Mental Health, National Center of Neurology and Psychiatry, Kodaira; Bureau of International Health Cooperation (H.T.), National Center for Global Health and Medicine, Shinjuku, Tokyo; Department of Neurology (K.M., S.K.), Kindai University Faculty of Medicine, Osakasayama, Osaka; and Department of Neurology (K.M.), Wakayama Medical University, Japan.
| |
Collapse
|
18
|
Abdelaziz MM, Fathi N, Hetta HF, Abdel-Galeel A, Zidan M, Shawky EM, Gamal RM. Regulatory B Cells Evaluation in Systemic Lupus Erythematosus Patients with Subclinical Atherosclerosis and Secondary Antiphospholipid Syndrome. Mediterr J Rheumatol 2023; 34:486-494. [PMID: 38282951 PMCID: PMC10815535 DOI: 10.31138/mjr.03823.rbc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/22/2023] [Accepted: 02/28/2023] [Indexed: 01/30/2024] Open
Abstract
Objectives The current knowledge of human studies that address B cells in Systemic Lupus Erythematosus (SLE) patients with subclinical atherosclerosis remains insufficient. We aimed to evaluate the contribution of Breg cells in SLE and secondary antiphospholipid syndrome (APS) patients taking into consideration its relation to subclinical atherosclerosis and the disease activity. Methods Thirty SLE patients and 23 controls were included. Systemic Lupus Erythematosus Disease Activity Index-2000 was estimated. Evaluation of Breg cells percentage using flow cytometry was done. All participants underwent carotid doppler ultrasound examination for measurements of the intima-media thickness of the common carotid artery (cIMT). The coronary artery calcium scoring was calculated using the Agatston method. Results The mean± SD of age was 32.60±8.34 years, while of the age of onset was 28.27±7.60 years. Twenty-three patients (76.7%) had subclinical atherosclerosis. There was a highly significant difference in Breg cells between SLE and APS patients with subclinical atherosclerosis and controls (P= 0.001, 0.005). SLE and APS patients had significantly higher mean cIMT than control (P=0.01, 0.050). Breg cells had 70% sensitivity and 87% specificity for diagnosing of SLE (P=0.01). Multivariate regression analysis indicated that low Breg cells were predictive for the disease activity (OR=1.76, 95% CI=1.21- 2.85; P= 0.01). Conclusion SLE patients had a high frequency of subclinical atherosclerosis, those and patients with secondary APS had a high risk of plaque formation. We found a contribution of Breg cells in SLE patients with subclinical atherosclerosis. Breg cells are considered a good predictor of diagnosis of SLE.
Collapse
Affiliation(s)
- Marwa Mahmoud Abdelaziz
- Rheumatology and Rehabilitation Department, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Nihal Fathi
- Rheumatology and Rehabilitation Department, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Helal F. Hetta
- Medical Microbiology and Immunology Department, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Ahmed Abdel-Galeel
- Cardiovascular Medicine Department, Heart Hospital, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Mohamed Zidan
- Diagnostic Radiology Department, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Eman M. Shawky
- Rheumatology and Rehabilitation Department, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Rania M. Gamal
- Rheumatology and Rehabilitation Department, Faculty of Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
19
|
Xie T, Liu X, Li P. CD138 promotes the accumulation and activation of autoreactive T cells in autoimmune MRL/lpr mice. Exp Ther Med 2023; 26:568. [PMID: 37954119 PMCID: PMC10632966 DOI: 10.3892/etm.2023.12267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 09/22/2023] [Indexed: 11/14/2023] Open
Abstract
Autoreactive T cells, specifically CD138+ (syndecan-1) T cells produced in Fas-deficient systemic lupus erythematosus (SLE) mouse models, were shown to significantly promote the generation of autoantibodies. In the present study, Murphy Roths Large lymphoproliferative (MRL/lpr) lupus mice were used to investigate the role of CD138 protein expression in T cells in the progression of SLE. Measurement of flow cytometry, immunofluorescence and Luminex were performed to determine the effect of CD138 on T cells in MRL/lpr mice. The results demonstrate that CD138+ T cells induce apoptosis via a Fas-dependent pathway. CD138 protein expression in T cells of MRL/lpr mice significantly reduced T cell apoptosis and contributed to the accumulation of T cells and double negative (DN) T cells, whilst simultaneously promoting T cell activation in Fas-deficient lupus mice. CD138 protein expression in DN T cells also significantly increased the protein expression of Fas ligand to enhance the cytotoxicity of DN T cells. Furthermore, phorbol 12-myristate 13-acetate and ionomycin (PI) stimulation reduced CD138 protein expression in CD3+ T cells and prevented CD138+ T cell accumulation by inducing specific apoptosis. PI stimulation also activated T cells in MRL/lpr mice to increase CD69 protein expression. CD69 protein expression in CD138+ T cells significantly increased the frequency of apoptotic CD138+ T cells. In addition, results from the present study demonstrated that CD138- T cells of MRL/lpr lupus mice had an activation defect. CD138 protein expression in T cells significantly reversed the defective activation and activating T cells could significantly reduce CD138 protein expression in CD3+ T cells of MRL/lpr mice. This suggests that CD138 protein expression in CD3+CD138- T cells of MRL/lpr mice may be a consequence of the impaired activation in autoreactive T cells prior to exposure to self-antigens by the immune system. CD138 expression in autoreactive T cells has a central role in promoting the progression and development of autoimmune response in MRL/lpr mice.
Collapse
Affiliation(s)
- Tianhong Xie
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Chinese Medicine, Beijing 100010, P.R. China
- Department of Dermatology, Hebei Province Hospital of Chinese Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050000, P.R. China
| | - Xin Liu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Chinese Medicine, Beijing 100010, P.R. China
| | - Ping Li
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Chinese Medicine, Beijing 100010, P.R. China
| |
Collapse
|
20
|
Wan M, Ma Z, Han J, Rao M, Hu F, Gao P, Wang X. 5-HT induces regulatory B cells in fighting against inflammation-driven ulcerative colitis. Int Immunopharmacol 2023; 125:111042. [PMID: 37866311 DOI: 10.1016/j.intimp.2023.111042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 10/07/2023] [Accepted: 10/08/2023] [Indexed: 10/24/2023]
Abstract
Serotonin (5-hydroxytryptamine or 5-HT) is a neuroendocrine peptide endowed with immunomodulatory functions. Regulatory B cells (Bregs) play an important role in maintaining intestinal immune homeostasis. We analyzed the differences of 5-HT and Bregs between peripheral blood of ulcerative colitis (UC) and healthy controls (HC). Besides, 5-HT-treated B cells were adoptively transferred into colitis mice to elucidate the role of 5-HT in regulating Bregs. The level of serum 5-HT and IL-10 in UC patients was lower and both were negatively correlated with disease activity. 5-HT7 receptor (5-HT7R) was higher expressed on Bregs in UC. 5-HT promoted IL-10 production in Bregs through the activation of STAT3. And adoptive transfer of 5-HT-treated B cells alleviated intestinal inflammation via inducing IL-10-producing B cells in mice. Our results suggest that 5-HT/5-HT7R signaling pathway facilitate functional Bregs in constraining inflammation in UC, which may be a new potential prospect in the treatment of UC.
Collapse
Affiliation(s)
- Minjie Wan
- Department of Hepatology, The First Hospital of Jilin University, Jilin University, Changchun, Jilin, China; Department of Hepatology and Gastroenterology, Lequn Branch, Jilin University, Changchun, Jilin, China
| | - Zhanchuan Ma
- Central Laboratory, Lequn Branch, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Jiawen Han
- Central Laboratory, Lequn Branch, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Min Rao
- Department of Hepatology and Gastroenterology, Lequn Branch, Jilin University, Changchun, Jilin, China
| | - Feng Hu
- Department of Hepatology and Gastroenterology, Lequn Branch, Jilin University, Changchun, Jilin, China
| | - Pujun Gao
- Department of Hepatology, The First Hospital of Jilin University, Jilin University, Changchun, Jilin, China
| | - Xiaocong Wang
- Department of Echocardiography, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
21
|
Luo Y, Acevedo D, Vlagea A, Codina A, García-García A, Deyà-Martínez A, Martí-Castellote C, Esteve-Solé A, Alsina L. Changes in Treg and Breg cells in a healthy pediatric population. Front Immunol 2023; 14:1283981. [PMID: 38077340 PMCID: PMC10704817 DOI: 10.3389/fimmu.2023.1283981] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 10/31/2023] [Indexed: 12/18/2023] Open
Abstract
The interpretation of clinical diagnostic results in suspected inborn errors of immunity, including Tregopathies, is hampered by the lack of age-stratified reference values for regulatory T cells (Treg) in the pediatric population and a consensus on which Treg immunophenotype to use. Regulatory B cells (Breg) are an important component of the regulatory system that have been poorly studied in the pediatric population. We analyzed (1) the correlation between the three immunophenotypic definitions of Treg (CD4+CD25hiCD127low, CD4+CD25hiCD127lowFoxP3+, CD4+CD25hiFoxP3+), and with CD4+CD25hi and (2) the changes in Treg and Breg frequencies and their maturation status with age. We performed peripheral blood immunophenotyping of Treg and Breg (CD19+CD24hiCD38hi) by flow cytometry in 55 healthy pediatric controls. We observed that Treg numbers varied depending on the definition used, and the frequency ranged between 3.3-9.7% for CD4+CD25hiCD127low, 0.07-1.6% for CD4+CD25hiCD127lowFoxP3+, and 0.24-2.83% for CD4+CD25hiFoxP3+. The correlation between the three definitions of Treg was positive for most age ranges, especially between the two intracellular panels and with CD4+CD25hi vs CD4+CD25hiCD127low. Treg and Breg frequencies tended to decline after 7 and 3 years onwards, respectively. Treg's maturation status increased with age, with a decline of naïve Treg and an increase in memory/effector Treg from age 7 onwards. Memory Breg increased progressively from age 3 onwards. In conclusion, the number of Treg frequencies spans a wide range depending on the immunophenotypic definition used despite a good level of correlation exists between them. The decline in numbers and maturation process with age occurs earlier in Breg than in Treg.
Collapse
Affiliation(s)
- Yiyi Luo
- Clinical Immunology and Primary Immunodeficiencies Unit, Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, Barcelona, Spain
- Clinical Immunology Unit, Hospital Sant Joan de Déu-Hospital Clínic, Barcelona, Spain
- Study Group for Immune Dysfunction Diseases in Children (GEMDIP), Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Daniel Acevedo
- Clinical Immunology and Primary Immunodeficiencies Unit, Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, Barcelona, Spain
- Clinical Immunology Unit, Hospital Sant Joan de Déu-Hospital Clínic, Barcelona, Spain
- Study Group for Immune Dysfunction Diseases in Children (GEMDIP), Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Alexandru Vlagea
- Clinical Immunology Unit, Hospital Sant Joan de Déu-Hospital Clínic, Barcelona, Spain
- Biomedic Diagnostic Center (CDB), Hospital Clínic of Barcelona, Clinical Immunology Unit Hospital Sant Joan de Déu-Hospital Clínic de Barcelona, Barcelona, Spain
| | - Anna Codina
- Biobanco Pediátrico para la Investigación Hospital Sant Joan de Déu, Barcelona, Spain
| | - Ana García-García
- Clinical Immunology and Primary Immunodeficiencies Unit, Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, Barcelona, Spain
- Clinical Immunology Unit, Hospital Sant Joan de Déu-Hospital Clínic, Barcelona, Spain
- Study Group for Immune Dysfunction Diseases in Children (GEMDIP), Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Angela Deyà-Martínez
- Clinical Immunology and Primary Immunodeficiencies Unit, Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, Barcelona, Spain
- Clinical Immunology Unit, Hospital Sant Joan de Déu-Hospital Clínic, Barcelona, Spain
- Study Group for Immune Dysfunction Diseases in Children (GEMDIP), Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Celia Martí-Castellote
- Clinical Immunology and Primary Immunodeficiencies Unit, Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, Barcelona, Spain
- Clinical Immunology Unit, Hospital Sant Joan de Déu-Hospital Clínic, Barcelona, Spain
- Study Group for Immune Dysfunction Diseases in Children (GEMDIP), Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Ana Esteve-Solé
- Clinical Immunology and Primary Immunodeficiencies Unit, Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, Barcelona, Spain
- Clinical Immunology Unit, Hospital Sant Joan de Déu-Hospital Clínic, Barcelona, Spain
- Study Group for Immune Dysfunction Diseases in Children (GEMDIP), Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Laia Alsina
- Clinical Immunology and Primary Immunodeficiencies Unit, Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, Barcelona, Spain
- Clinical Immunology Unit, Hospital Sant Joan de Déu-Hospital Clínic, Barcelona, Spain
- Study Group for Immune Dysfunction Diseases in Children (GEMDIP), Institut de Recerca Sant Joan de Déu, Barcelona, Spain
- Department of Surgery and Medical Specializations, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
22
|
Neziraj T, Siewert L, Pössnecker E, Pröbstel AK. Therapeutic targeting of gut-originating regulatory B cells in neuroinflammatory diseases. Eur J Immunol 2023; 53:e2250033. [PMID: 37624875 DOI: 10.1002/eji.202250033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/29/2023] [Accepted: 08/23/2023] [Indexed: 08/27/2023]
Abstract
Regulatory B cells (Bregs) are immunosuppressive cells that support immunological tolerance by the production of IL-10, IL-35, and TGF-β. Bregs arise from different developmental stages in response to inflammatory stimuli. In that regard, mounting evidence points towards a direct influence of gut microbiota on mucosal B cell development, activation, and regulation in health and disease. While an increasing number of diseases are associated with alterations in gut microbiome (dysbiosis), little is known about the role of microbiota on Breg development and induction in neuroinflammatory disorders. Notably, gut-originating, IL-10- and IgA-producing regulatory plasma cells have recently been demonstrated to egress from the gut to suppress inflammation in the CNS raising fundamental questions about the triggers and functions of mucosal-originating Bregs in systemic inflammation. Advancing our understanding of Bregs in neuroinflammatory diseases could lead to novel therapeutic approaches. Here, we summarize the main aspects of Breg differentiation and functions and evidence about their involvement in neuroinflammatory diseases. Further, we highlight current data of gut-originating Bregs and their microbial interactions and discuss future microbiota-regulatory B cell-targeted therapies in immune-mediated diseases.
Collapse
Affiliation(s)
- Tradite Neziraj
- Department of Neurology, University Hospital of Basel and University of Basel, Basel, Switzerland
- Departments of Biomedicine and Clinical Research, University Hospital of Basel and University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital of Basel and University of Basel, Basel, Switzerland
| | - Lena Siewert
- Department of Neurology, University Hospital of Basel and University of Basel, Basel, Switzerland
- Departments of Biomedicine and Clinical Research, University Hospital of Basel and University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital of Basel and University of Basel, Basel, Switzerland
| | - Elisabeth Pössnecker
- Department of Neurology, University Hospital of Basel and University of Basel, Basel, Switzerland
- Departments of Biomedicine and Clinical Research, University Hospital of Basel and University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital of Basel and University of Basel, Basel, Switzerland
| | - Anne-Katrin Pröbstel
- Department of Neurology, University Hospital of Basel and University of Basel, Basel, Switzerland
- Departments of Biomedicine and Clinical Research, University Hospital of Basel and University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital of Basel and University of Basel, Basel, Switzerland
| |
Collapse
|
23
|
Bao J, Betzler AC, Hess J, Brunner C. Exploring the dual role of B cells in solid tumors: implications for head and neck squamous cell carcinoma. Front Immunol 2023; 14:1233085. [PMID: 37868967 PMCID: PMC10586314 DOI: 10.3389/fimmu.2023.1233085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 09/06/2023] [Indexed: 10/24/2023] Open
Abstract
In the tumor milieu of head and neck squamous cell carcinoma (HNSCC), distinct B cell subpopulations are present, which exert either pro- or anti-tumor activities. Multiple factors, including hypoxia, cytokines, interactions with tumor cells, and other immune infiltrating lymphocytes (TILs), alter the equilibrium between the dual roles of B cells leading to cancerogenesis. Certain B cell subsets in the tumor microenvironment (TME) exhibit immunosuppressive function. These cells are known as regulatory B (Breg) cells. Breg cells suppress immune responses by secreting a series of immunosuppressive cytokines, including IL-10, IL-35, TGF-β, granzyme B, and adenosine or dampen effector TILs by intercellular contacts. Multiple Breg phenotypes have been discovered in human and mouse cancer models. However, when compartmentalized within a tertiary lymphoid structure (TLS), B cells predominantly play anti-tumor effects. A mature TLS contains a CD20+ B cell zone with several important types of B cells, including germinal-center like B cells, antibody-secreting plasma cells, and memory B cells. They kill tumor cells via antibody-dependent cytotoxicity and phagocytosis, and local complement activation effects. TLSs are also privileged sites for local T and B cell coordination and activation. Nonetheless, in some cases, TLSs may serve as a niche for hidden tumor cells and indicate a bad prognosis. Thus, TIL-B cells exhibit bidirectional immune-modulatory activity and are responsive to a variety of immunotherapies. In this review, we discuss the functional distinctions between immunosuppressive Breg cells and immunogenic effector B cells that mature within TLSs with the focus on tumors of HNSCC patients. Additionally, we review contemporary immunotherapies that aim to target TIL-B cells. For the development of innovative therapeutic approaches to complement T-cell-based immunotherapy, a full understanding of either effector B cells or Breg cells is necessary.
Collapse
Affiliation(s)
- Jiantong Bao
- Department of Otorhinolaryngology and Head & Neck Surgery, University Medical Center Ulm, Head & Neck Cancer Center of the Comprehensive Cancer Center Ulm, Ulm, Germany
- School of Medicine, Southeast University, Nanjing, China
| | - Annika C. Betzler
- Department of Otorhinolaryngology and Head & Neck Surgery, University Medical Center Ulm, Head & Neck Cancer Center of the Comprehensive Cancer Center Ulm, Ulm, Germany
| | - Jochen Hess
- Department of Otorhinolaryngology, Head and Neck Surgery, Heidelberg University Hospital, Heidelberg, Germany
- Molecular Mechanisms of Head and Neck Tumors, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Cornelia Brunner
- Department of Otorhinolaryngology and Head & Neck Surgery, University Medical Center Ulm, Head & Neck Cancer Center of the Comprehensive Cancer Center Ulm, Ulm, Germany
| |
Collapse
|
24
|
Valeff NJ, Ventimiglia MS, Diao L, Jensen F. Lupus and recurrent pregnancy loss: the role of female sex hormones and B cells. Front Endocrinol (Lausanne) 2023; 14:1233883. [PMID: 37859991 PMCID: PMC10584304 DOI: 10.3389/fendo.2023.1233883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 09/08/2023] [Indexed: 10/21/2023] Open
Abstract
Systemic lupus erythematosus is a debilitating autoimmune disease characterized by uncontrolled activation of adaptive immunity, particularly B cells, which predominantly affects women in a 9 to 1 ratio compared to men. This stark sex disparity strongly suggests a role for female sex hormones in the disease's onset and progression. Indeed, it is widely recognized that estradiol not only enhances the survival of autoreactive B cells but also stimulates the production of autoantibodies associated with systemic lupus erythematosus, such as anti-nuclear antibodies and anti-dsDNA antibodies. Clinical manifestations of systemic lupus erythematosus typically emerge after puberty and persist throughout reproductive life. Furthermore, symptoms often exacerbate during the premenstrual period and pregnancy, as increased levels of estradiol can contribute to disease flares. Despite being fertile, women with lupus face a heightened risk of pregnancy-related complications, including pregnancy loss and stillbirth, which significantly surpass the rates observed in the healthy population. Therefore, this review aims to summarize and discuss the existing literature on the influence of female sex hormones on B-cell activation in patients with systemic lupus erythematosus, with a particular emphasis on their impact on pregnancy loss.
Collapse
Affiliation(s)
- Natalin Jimena Valeff
- Center for Pharmacological and Botanical Studies (CEFYBO-UBA-CONICET), Medical Faculty, Buenos Aires University, Buenos Aires, Argentina
| | - Maria Silvia Ventimiglia
- Center for Pharmacological and Botanical Studies (CEFYBO-UBA-CONICET), Medical Faculty, Buenos Aires University, Buenos Aires, Argentina
| | - Lianghui Diao
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Fertility Center, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
| | - Federico Jensen
- Center for Pharmacological and Botanical Studies (CEFYBO-UBA-CONICET), Medical Faculty, Buenos Aires University, Buenos Aires, Argentina
- Centro Integrativo de Biología Y Química Aplicada. Universidad Bernardo O’Higgins, Santiago, Chile
| |
Collapse
|
25
|
Parodis I, Long X, Karlsson MCI, Huang X. B Cell Tolerance and Targeted Therapies in SLE. J Clin Med 2023; 12:6268. [PMID: 37834911 PMCID: PMC10573616 DOI: 10.3390/jcm12196268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/02/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
Systemic Lupus Erythematosus (SLE) is a chronic systemic autoimmune disease of high clinical and molecular heterogeneity, and a relapsing-remitting pattern. The disease is currently without cure and more prevalent in women. B cell tolerance and production of autoantibodies are critical mechanisms that drive SLE pathophysiology. However, how the balance of the immune system is broken and how the innate and adaptive immune systems are interacting during lupus-specific autoimmune responses are still largely unknown. Here, we review the latest knowledge on B cell development, maturation, and central versus peripheral tolerance in connection to SLE and treatment options. We also discuss the regulation of B cells by conventional T cells, granulocytes, and unconventional T cells, and how effector B cells exert their functions in SLE. We also discuss mechanisms of action of B cell-targeted therapies, as well as possible future directions based on current knowledge of B cell biology.
Collapse
Affiliation(s)
- Ioannis Parodis
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, 17177 Stockholm, Sweden;
- Department of Gastroenterology, Dermatology and Rheumatology, Karolinska University Hospital, 17176 Stockholm, Sweden
- Department of Rheumatology, Faculty of Medicine and Health, Örebro University, 70281 Örebro, Sweden
| | - Xuan Long
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha 410011, China;
| | - Mikael C. I. Karlsson
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177 Stockholm, Sweden;
| | - Xin Huang
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha 410011, China;
| |
Collapse
|
26
|
Zheng H, Cao P, Su Z, Xia L. Insights into the roles of IL-10-producing regulatory B cells in cardiovascular disorders: recent advances and future perspectives. J Leukoc Biol 2023; 114:315-324. [PMID: 37284816 DOI: 10.1093/jleuko/qiad066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 05/22/2023] [Accepted: 05/26/2023] [Indexed: 06/08/2023] Open
Abstract
Interleukin-10-producing regulatory B (B10) cells mediate the immunomodulatory functions of biosystems by secreting anti-inflammatory factors, thus playing vital roles in cardiovascular diseases such as viral myocarditis, myocardial infarction, and ischemia-reperfusion injury. However, several challenges hinder B10 cells from regulating the immunoreactivity of organisms in specific cardiovascular diseases, such as atherosclerotic disease. Regarding the regulatory mechanisms of B10 cells, the interplay between B10 cells and the cardiovascular and immune systems is complex and requires clarification. In this study, we summarize the roles of B10 cells in bacterial and aseptic heart injuries, address their regulatory functions in different stages of cardiovascular disorders, and discuss their challenges and opportunities in addressing cardiovascular diseases from bench to bedside.
Collapse
Affiliation(s)
- Huiqin Zheng
- Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, No. 438 Jiefang Road, Zhenjiang 212001, China
- International Genome Center, Jiangsu University, No.301 Xuefu Road, Zhenjiang 212013, China
| | - Pei Cao
- International Genome Center, Jiangsu University, No.301 Xuefu Road, Zhenjiang 212013, China
| | - Zhaoliang Su
- International Genome Center, Jiangsu University, No.301 Xuefu Road, Zhenjiang 212013, China
- Institute of Medical Immunology, Jiangsu University, No. 438 Jiefang Road, Zhenjiang 212001, China
| | - Lin Xia
- Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, No. 438 Jiefang Road, Zhenjiang 212001, China
- Institute of Hematological Disease, Jiangsu University, No. 438 Jiefang Road, Zhenjiang 212001, China
| |
Collapse
|
27
|
Tsai YG, Liao PF, Hsiao KH, Wu HM, Lin CY, Yang KD. Pathogenesis and novel therapeutics of regulatory T cell subsets and interleukin-2 therapy in systemic lupus erythematosus. Front Immunol 2023; 14:1230264. [PMID: 37771588 PMCID: PMC10522836 DOI: 10.3389/fimmu.2023.1230264] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 08/15/2023] [Indexed: 09/30/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is a heterogeneous multisystem inflammatory disease with wide variability in clinical manifestations. Natural arising CD4+ regulatory T cells (Tregs) play a critical role in maintaining peripheral tolerance by suppressing inflammation and preventing autoimmune responses in SLE. Additionally, CD8+ regulatory T cells, type 1 regulatory T cells (Tr1), and B regulatory cells also have a less well-defined role in the pathogenesis of SLE. Elucidation of the roles of various Treg subsets dedicated to immune homeostasis will provide a novel therapeutic approach that governs immune tolerance for the remission of active lupus. Diminished interleukin (IL)-2 production is associated with a depleted Treg cell population, and its reversibility by IL-2 therapy provides important reasons for the treatment of lupus. This review focuses on the pathogenesis and new therapeutics of human Treg subsets and low-dose IL-2 therapy in clinical benefits with SLE.
Collapse
Affiliation(s)
- Yi-Giien Tsai
- Department of Pediatrics, Changhua Christian Children’s Hospital, Changhua, Taiwan
- School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Pei-Fen Liao
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Division of Allergy, Asthma and Rheumatology, Department of Pediatrics, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Kai-Hung Hsiao
- Department of Allergy, Immunology and Rheumatology, Changhua Christian Hospital, Changhua, Taiwan
| | - Hung-Ming Wu
- Department of Neurology, Changhua Christian Hospital, Changhua, Taiwan
| | - Ching-Yuang Lin
- Division of Pediatric Nephrology, Children’s Hospital, China Medical University Hospital, Taichung, Taiwan
| | - Kuender D. Yang
- Department of Pediatrics, Mackay Memorial Hospital, New Taipei City, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
28
|
Deng B, Deng L, Liu M, Zhao Z, Huang H, Tu X, Liang E, Tian R, Wang X, Wang R, Lin H, Yu Y, Peng A, Xu P, Bao K, He M. Elevated circulating CD19 +CD24 hiCD38 hi B cells display pro-inflammatory phenotype in idiopathic membranous nephropathy. Immunol Lett 2023; 261:58-65. [PMID: 37553031 DOI: 10.1016/j.imlet.2023.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 07/13/2023] [Accepted: 08/03/2023] [Indexed: 08/10/2023]
Abstract
CD19+CD24hiCD38hi regulatory B cells exert immunosuppressive functions by producing IL-10, but their role in idiopathic membranous nephropathy (IMN) remains elusive. Here, we investigated the frequency and functional changes of circulating CD19+CD24hiCD38hi B cells and evaluated the correlation of CD19+CD24hiCD38hi B cells with clinical features and T helper cell subsets in IMN patients. Compared with healthy controls (HCs), IMN patients showed an increased frequency of CD19+CD24hiCD38hi B cells, but a significant reduction in the percentage of CD19+CD24hiCD38hi B cells was observed 4 weeks after cyclophosphamide treatment. The frequency of CD19+CD24hiCD38hi B cells was positively correlated with the levels of 24h urinary protein, but negatively correlated with serum total protein and serum albumin, respectively. CD19+CD24hiCD38hi B cells in IMN patients displayed a skewed pro-inflammatory cytokine profile with a higher level of IL-6 and IL-12, but a lower concentration of IL-10 than their healthy counterparts. Accompanied by upregulation of Th2 and Th17 cells in IMN patients, the percentage of CD19+CD24hiCD38hi B cell subset was positively associated with Th17 cell frequency. In conclusion, CD19+CD24hiCD38hi B cells were expanded but functionally impaired in IMN patients. Their altered pro-inflammatory cytokine profile may contribute to the pathogenesis of IMN.
Collapse
Affiliation(s)
- Bishun Deng
- Department of Laboratory Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Li Deng
- Department of Laboratory Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Miao Liu
- Department of Laboratory Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ziling Zhao
- Department of Laboratory Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Huijie Huang
- Department of Laboratory Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaoxin Tu
- Department of Laboratory Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Enyu Liang
- Department of Laboratory Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ruimin Tian
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Nephrology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaowan Wang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Nephrology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Rongrong Wang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Nephrology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Haibiao Lin
- Department of Laboratory Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yongyi Yu
- Department of Laboratory Medicine, Kaiping Central Hospital, JiangMen, China
| | - Anping Peng
- Department of Laboratory Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Peng Xu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Nephrology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Kun Bao
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Nephrology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Min He
- Department of Laboratory Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
29
|
Li HY, Huang LF, Huang XR, Wu D, Chen XC, Tang JX, An N, Liu HF, Yang C. Endoplasmic Reticulum Stress in Systemic Lupus Erythematosus and Lupus Nephritis: Potential Therapeutic Target. J Immunol Res 2023; 2023:7625817. [PMID: 37692838 PMCID: PMC10484658 DOI: 10.1155/2023/7625817] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 07/20/2023] [Accepted: 08/10/2023] [Indexed: 09/12/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is a complex autoimmune disease. Approximately one-third to two-thirds of the patients with SLE progress to lupus nephritis (LN). The pathogenesis of SLE and LN has not yet been fully elucidated, and effective treatment for both conditions is lacking. The endoplasmic reticulum (ER) is the largest intracellular organelle and is a site of protein synthesis, lipid metabolism, and calcium storage. Under stress, the function of ER is disrupted, and the accumulation of unfolded or misfolded proteins occurs in ER, resulting in an ER stress (ERS) response. ERS is involved in the dysfunction of B cells, macrophages, T cells, dendritic cells, neutrophils, and other immune cells, causing immune system disorders, such as SLE. In addition, ERS is also involved in renal resident cell injury and contributes to the progression of LN. The molecular chaperones, autophagy, and proteasome degradation pathways inhibit ERS and restore ER homeostasis to improve the dysfunction of immune cells and renal resident cell injury. This may be a therapeutic strategy for SLE and LN. In this review, we summarize advances in this field.
Collapse
Affiliation(s)
- Hui-Yuan Li
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Li-Feng Huang
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Xiao-Rong Huang
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Dan Wu
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Xiao-Cui Chen
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Ji-Xin Tang
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Ning An
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Hua-Feng Liu
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Chen Yang
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| |
Collapse
|
30
|
Hamkour S, van der Heijden EH, Lopes AP, Blokland SLM, Bekker CPJ, Van Helden-Meeuwsen CG, Versnel MA, Kruize AA, Radstake TR, Leavis HL, Hillen MR, van Roon JA. Leflunomide/hydroxychloroquine combination therapy targets type I IFN-associated proteins in patients with Sjögren's syndrome that show potential to predict and monitor clinical response. RMD Open 2023; 9:e002979. [PMID: 37532471 PMCID: PMC10401261 DOI: 10.1136/rmdopen-2023-002979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 05/24/2023] [Indexed: 08/04/2023] Open
Abstract
OBJECTIVES To assess to what extent leflunomide (LEF) and hydroxychloroquine (HCQ) therapy in patients with primary Sjögren's syndrome (RepurpSS-I) targets type I IFN-associated responses and to study the potential of several interferon associated RNA-based and protein-based biomarkers to predict and monitor treatment. METHODS In 21 patients treated with LEF/HCQ and 8 patients treated with placebo, blood was drawn at baseline, 8, 16 and 24 weeks. IFN-signatures based on RNA expression of five IFN-associated genes were quantified in circulating mononuclear cells and in whole blood. MxA protein levels were measured in whole blood, and protein levels of CXCL10 and Galectin-9 were quantified in serum. Differences between responders and non-responders were assessed and receiver operating characteristic analysis was used to determine the capacity of baseline expression and early changes (after 8 weeks of treatment) in biomarkers to predict treatment response at the clinical endpoint. RESULTS IFN-signatures in peripheral blood mononuclear cell and whole blood decreased after 24 weeks of LEF/HCQ treatment, however, changes in IFN signatures only poorly correlated with changes in disease activity. In contrast to baseline IFN signatures, baseline protein concentrations of galectin-9 and decreases in circulating MxA and Galectin-9 were robustly associated with clinical response. Early changes in serum Galectin-9 best predicted clinical response at 24 weeks (area under the curve 0.90). CONCLUSIONS LEF/HCQ combination therapy targets type-I IFN-associated proteins that are associated with strongly decreased B cell hyperactivity and disease activity. IFN-associated Galectin-9 is a promising biomarker for treatment prediction and monitoring in pSS patients treated with LEF/HCQ.
Collapse
Affiliation(s)
- Safae Hamkour
- Department of Rheumatology and Clinical Immunology, Laboratory of Translational Immunology, UMC, Utrecht, The Netherlands
| | - Eefje Hm van der Heijden
- Department of Rheumatology and Clinical Immunology, Laboratory of Translational Immunology, UMC, Utrecht, The Netherlands
| | - Ana P Lopes
- Department of Rheumatology and Clinical Immunology, Laboratory of Translational Immunology, UMC, Utrecht, The Netherlands
| | - Sofie L M Blokland
- Department of Rheumatology and Clinical Immunology, Laboratory of Translational Immunology, UMC, Utrecht, The Netherlands
| | - Cornelis P J Bekker
- Department of Rheumatology and Clinical Immunology, Laboratory of Translational Immunology, UMC, Utrecht, The Netherlands
| | | | | | - Aike A Kruize
- Department of Rheumatology and Clinical Immunology, Utrecht University, Utrecht, The Netherlands
| | - Timothy Rdj Radstake
- Department of Rheumatology and Clinical Immunology, Laboratory of Translational Immunology, UMC, Utrecht, The Netherlands
| | - Helen L Leavis
- Department of Rheumatology and Clinical Immunology, Laboratory of Translational Immunology, UMC, Utrecht, The Netherlands
| | - Maarten R Hillen
- Department of Rheumatology and Clinical Immunology, Laboratory of Translational Immunology, UMC, Utrecht, The Netherlands
| | - Joel Ag van Roon
- Department of Rheumatology and Clinical Immunology, Laboratory of Translational Immunology, UMC, Utrecht, The Netherlands
| |
Collapse
|
31
|
Lee BW, Kwok SK. Mesenchymal Stem/Stromal Cell-Based Therapies in Systemic Rheumatic Disease: From Challenges to New Approaches for Overcoming Restrictions. Int J Mol Sci 2023; 24:10161. [PMID: 37373308 PMCID: PMC10299481 DOI: 10.3390/ijms241210161] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/10/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Systemic rheumatic diseases, such as rheumatoid arthritis, systemic lupus erythematosus, and systemic sclerosis, are chronic autoimmune diseases affecting multiple organs and tissues. Despite recent advances in treatment, patients still experience significant morbidity and disability. Mesenchymal stem/stromal cell (MSC)-based therapy is promising for treating systemic rheumatic diseases due to the regenerative and immunomodulatory properties of MSCs. However, several challenges need to be overcome to use MSCs in clinical practice effectively. These challenges include MSC sourcing, characterization, standardization, safety, and efficacy issues. In this review, we provide an overview of the current state of MSC-based therapies in systemic rheumatic diseases, highlighting the challenges and limitations associated with their use. We also discuss emerging strategies and novel approaches that can help overcome the limitations. Finally, we provide insights into the future directions of MSC-based therapies for systemic rheumatic diseases and their potential clinical applications.
Collapse
Affiliation(s)
| | - Seung-Ki Kwok
- Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea;
| |
Collapse
|
32
|
Iwata S, Hajime Sumikawa M, Tanaka Y. B cell activation via immunometabolism in systemic lupus erythematosus. Front Immunol 2023; 14:1155421. [PMID: 37256149 PMCID: PMC10225689 DOI: 10.3389/fimmu.2023.1155421] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/27/2023] [Indexed: 06/01/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is an inflammatory autoimmune disease involving multiple organs in which B cells perform important functions such as antibody and cytokine production and antigen presentation. B cells are activated and differentiated by the primary B cell receptor, co-stimulatory molecule signals-such as CD40/CD40L-, the Toll-like receptors 7,9, and various cytokine signals. The importance of immunometabolism in the activation, differentiation, and exerting functions of B cells and other immune cells has been widely reported in recent years. However, the regulatory mechanism of immunometabolism in B cells and its involvement in SLE pathogenesis remain elusive. Similarly, the importance of the PI3K-Akt-mTOR signaling pathway, glycolytic system, and oxidative phosphorylation has been demonstrated in the mechanisms of B cell immunometabolic activation, mainly in mouse studies. However, the activation of the mTOR pathway in B cells in patients with SLE, the induction of plasmablast differentiation through metabolic and transcription factor regulation by mTOR, and the involvement of this phenomenon in SLE pathogenesis are unclear. In our studies using activated B cells derived from healthy donors and from patients with SLE, we observed that methionine, an essential amino acid, is important for mTORC1 activation. Further, we observed that splenic tyrosine kinase and mTORC1 activation synergistically induce EZH2 expression and plasmablasts by suppressing BACH2 expression through epigenomic modification. Additionally, we identified another mechanism by which the glutaminolysis-induced enhancement of mitochondrial function promotes plasmablast differentiation in SLE. In this review, we focused on the SLE exacerbation mechanisms related to the activation of immune cells-especially B cells-and immunometabolism and reported the latest findings in the field.
Collapse
Affiliation(s)
- Shigeru Iwata
- Department of Rheumatology and Clinical Immunology, Wakayama Medical University, Wakayama, Japan
- First Department of Internal Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Maiko Hajime Sumikawa
- First Department of Internal Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Yoshiya Tanaka
- First Department of Internal Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| |
Collapse
|
33
|
Wilkinson MGL, Moulding D, McDonnell TCR, Orford M, Wincup C, Ting JYJ, Otto GW, Restuadi R, Kelberman D, Papadopoulou C, Castellano S, Eaton S, Deakin CT, Rosser EC, Wedderburn LR. Role of CD14+ monocyte-derived oxidised mitochondrial DNA in the inflammatory interferon type 1 signature in juvenile dermatomyositis. Ann Rheum Dis 2023; 82:658-669. [PMID: 36564154 PMCID: PMC10176342 DOI: 10.1136/ard-2022-223469] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 12/01/2022] [Indexed: 12/25/2022]
Abstract
OBJECTIVES To define the host mechanisms contributing to the pathological interferon (IFN) type 1 signature in Juvenile dermatomyositis (JDM). METHODS RNA-sequencing was performed on CD4+, CD8+, CD14+ and CD19+ cells sorted from pretreatment and on-treatment JDM (pretreatment n=10, on-treatment n=11) and age/sex-matched child healthy-control (CHC n=4) peripheral blood mononuclear cell (PBMC). Mitochondrial morphology and superoxide were assessed by fluorescence microscopy, cellular metabolism by 13C glucose uptake assays, and oxidised mitochondrial DNA (oxmtDNA) content by dot-blot. Healthy-control PBMC and JDM pretreatment PBMC were cultured with IFN-α, oxmtDNA, cGAS-inhibitor, TLR-9 antagonist and/or n-acetyl cysteine (NAC). IFN-stimulated gene (ISGs) expression was measured by qPCR. Total numbers of patient and controls for functional experiments, JDM n=82, total CHC n=35. RESULTS Dysregulated mitochondrial-associated gene expression correlated with increased ISG expression in JDM CD14+ monocytes. Altered mitochondrial-associated gene expression was paralleled by altered mitochondrial biology, including 'megamitochondria', cellular metabolism and a decrease in gene expression of superoxide dismutase (SOD)1. This was associated with enhanced production of oxidised mitochondrial (oxmt)DNA. OxmtDNA induced ISG expression in healthy PBMC, which was blocked by targeting oxidative stress and intracellular nucleic acid sensing pathways. Complementary experiments showed that, under in vitro experimental conditions, targeting these pathways via the antioxidant drug NAC, TLR9 antagonist and to a lesser extent cGAS-inhibitor, suppressed ISG expression in pretreatment JDM PBMC. CONCLUSIONS These results describe a novel pathway where altered mitochondrial biology in JDM CD14+ monocytes lead to oxmtDNA production and stimulates ISG expression. Targeting this pathway has therapeutical potential in JDM and other IFN type 1-driven autoimmune diseases.
Collapse
Affiliation(s)
- Meredyth G Ll Wilkinson
- Infection, Immunity and Inflammation Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, London, UK
- Centre for Adolescent Rheumatology Versus Arthritis at UCL UCLH and GOSH, UCL, London, UK
- NIHR Biomedical Research Centre, Great Ormond Street Hospital, London, UK
| | - Dale Moulding
- NIHR Biomedical Research Centre, Great Ormond Street Hospital, London, UK
- Developmental Biology and Cancer Research & Teaching Department, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Thomas C R McDonnell
- Centre for Rheumatology Research, Division of Medicine, University College London, London, UK
| | - Michael Orford
- Developmental Biology and Cancer Research & Teaching Department, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Chris Wincup
- Centre for Rheumatology Research, Division of Medicine, University College London, London, UK
| | - Joanna Y J Ting
- Infection, Immunity and Inflammation Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Georg W Otto
- NIHR Biomedical Research Centre, Great Ormond Street Hospital, London, UK
- Experimental and Personalised Medicine, Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, London, UK
- Genetics and Genomic Medicine Research & Teaching Department, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Restuadi Restuadi
- Infection, Immunity and Inflammation Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, London, UK
- Centre for Adolescent Rheumatology Versus Arthritis at UCL UCLH and GOSH, UCL, London, UK
- NIHR Biomedical Research Centre, Great Ormond Street Hospital, London, UK
| | - Daniel Kelberman
- NIHR Biomedical Research Centre, Great Ormond Street Hospital, London, UK
- Experimental and Personalised Medicine, Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, London, UK
- Genetics and Genomic Medicine Research & Teaching Department, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Charalampia Papadopoulou
- Infection, Immunity and Inflammation Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, London, UK
- Rheumatology, Great Ormond Street Hospital NHS Trust, London, UK
| | - Sergi Castellano
- NIHR Biomedical Research Centre, Great Ormond Street Hospital, London, UK
- Genetics and Genomic Medicine Research & Teaching Department, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Simon Eaton
- NIHR Biomedical Research Centre, Great Ormond Street Hospital, London, UK
- Developmental Biology and Cancer Research & Teaching Department, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Claire T Deakin
- Infection, Immunity and Inflammation Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, London, UK
- Centre for Adolescent Rheumatology Versus Arthritis at UCL UCLH and GOSH, UCL, London, UK
- NIHR Biomedical Research Centre, Great Ormond Street Hospital, London, UK
| | - Elizabeth C Rosser
- Centre for Adolescent Rheumatology Versus Arthritis at UCL UCLH and GOSH, UCL, London, UK
- Centre for Rheumatology Research, Division of Medicine, University College London, London, UK
| | - Lucy R Wedderburn
- Infection, Immunity and Inflammation Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, London, UK
- Centre for Adolescent Rheumatology Versus Arthritis at UCL UCLH and GOSH, UCL, London, UK
- NIHR Biomedical Research Centre, Great Ormond Street Hospital, London, UK
| |
Collapse
|
34
|
Inaba A, Tuong ZK, Zhao TX, Stewart AP, Mathews R, Truman L, Sriranjan R, Kennet J, Saeb-Parsy K, Wicker L, Waldron-Lynch F, Cheriyan J, Todd JA, Mallat Z, Clatworthy MR. Low-dose IL-2 enhances the generation of IL-10-producing immunoregulatory B cells. Nat Commun 2023; 14:2071. [PMID: 37045832 PMCID: PMC10097719 DOI: 10.1038/s41467-023-37424-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 03/16/2023] [Indexed: 04/14/2023] Open
Abstract
Dysfunction of interleukin-10 producing regulatory B cells has been associated with the pathogenesis of autoimmune diseases, but whether regulatory B cells can be therapeutically induced in humans is currently unknown. Here we demonstrate that a subset of activated B cells expresses CD25, and the addition of low-dose recombinant IL-2 to in vitro stimulated peripheral blood and splenic human B cells augments IL-10 secretion. Administration of low dose IL-2, aldesleukin, to patients increases IL-10-producing B cells. Single-cell RNA sequencing of circulating immune cells isolated from low dose IL2-treated patients reveals an increase in plasmablast and plasma cell populations that are enriched for a regulatory B cell gene signature. The transcriptional repressor BACH2 is significantly down-regulated in plasma cells from IL-2-treated patients, BACH2 binds to the IL-10 gene promoter, and Bach2 depletion or genetic deficiency increases B cell IL-10, implicating BACH2 suppression as an important mechanism by which IL-2 may promote an immunoregulatory phenotype in B cells.
Collapse
Affiliation(s)
- Akimichi Inaba
- Molecular Immunity Unit, University of Cambridge Department of Medicine, Cambridge, UK
| | - Zewen Kelvin Tuong
- Molecular Immunity Unit, University of Cambridge Department of Medicine, Cambridge, UK
- Cellular Genetics, Wellcome Sanger Institute, Hinxton, UK
| | - Tian X Zhao
- Department of Medicine, Division of Cardiovascular Medicine, University of Cambridge, Cambridge, UK
| | - Andrew P Stewart
- Molecular Immunity Unit, University of Cambridge Department of Medicine, Cambridge, UK
| | - Rebeccah Mathews
- Molecular Immunity Unit, University of Cambridge Department of Medicine, Cambridge, UK
| | - Lucy Truman
- Ear, Nose Throat Department, West Suffolk Hospital, Bury St Edmunds, UK
| | - Rouchelle Sriranjan
- Division of Experimental Medicine and Immunotherapeutics, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Jane Kennet
- Wellcome-MRC Institute of Metabolic Science-Metabolic Research Laboratories and Medical Research Council Metabolic Diseases Unit, University of Cambridge, Cambridge, UK
| | - Kourosh Saeb-Parsy
- Department of Surgery, University of Cambridge, Cambridge, UK
- National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, UK
| | - Linda Wicker
- Medical Sciences Division, University of Oxford, Oxford, UK
| | - Frank Waldron-Lynch
- Novartis Institutes for BioMedical Research, Autoimmunity Transplantation Inflammation, Basel, Switzerland
| | - Joseph Cheriyan
- Division of Experimental Medicine and Immunotherapeutics, Department of Medicine, University of Cambridge, Cambridge, UK
| | - John A Todd
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Ziad Mallat
- Department of Medicine, Division of Cardiovascular Medicine, University of Cambridge, Cambridge, UK
- Universite de Paris and INSERM, Paris, France
| | - Menna R Clatworthy
- Molecular Immunity Unit, University of Cambridge Department of Medicine, Cambridge, UK.
- Cellular Genetics, Wellcome Sanger Institute, Hinxton, UK.
| |
Collapse
|
35
|
Accapezzato D, Caccavale R, Paroli MP, Gioia C, Nguyen BL, Spadea L, Paroli M. Advances in the Pathogenesis and Treatment of Systemic Lupus Erythematosus. Int J Mol Sci 2023; 24:6578. [PMID: 37047548 PMCID: PMC10095030 DOI: 10.3390/ijms24076578] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/24/2023] [Accepted: 03/28/2023] [Indexed: 04/05/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is a genetically predisposed, female-predominant disease, characterized by multiple organ damage, that in its most severe forms can be life-threatening. The pathogenesis of SLE is complex and involves cells of both innate and adaptive immunity. The distinguishing feature of SLE is the production of autoantibodies, with the formation of immune complexes that precipitate at the vascular level, causing organ damage. Although progress in understanding the pathogenesis of SLE has been slower than in other rheumatic diseases, new knowledge has recently led to the development of effective targeted therapies, that hold out hope for personalized therapy. However, the new drugs available to date are still an adjunct to conventional therapy, which is known to be toxic in the short and long term. The purpose of this review is to summarize recent advances in understanding the pathogenesis of the disease and discuss the results obtained from the use of new targeted drugs, with a look at future therapies that may be used in the absence of the current standard of care or may even cure this serious systemic autoimmune disease.
Collapse
Affiliation(s)
- Daniele Accapezzato
- Division of Clinical Immunology, Department of Clinical, Anesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Rosalba Caccavale
- Division of Clinical Immunology, Department of Clinical, Anesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Maria Pia Paroli
- Eye Clinic, Department of Sense Organs, Sapienza University of Rome, 00185 Rome, Italy
| | - Chiara Gioia
- Division of Clinical Immunology, Department of Clinical, Anesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Bich Lien Nguyen
- Division of Clinical Immunology, Department of Clinical, Anesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Luca Spadea
- Post Graduate School of Public Health, University of Siena, 53100 Siena, Italy
| | - Marino Paroli
- Division of Clinical Immunology, Department of Clinical, Anesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
36
|
Xia G, Sun S, Zhou S, Li L, Li X, Zou G, Huang C, Li J, Zhang Z. A new model for predicting the outcome and effectiveness of drug therapy in patients with severe fever with thrombocytopenia syndrome: A multicenter Chinese study. PLoS Negl Trop Dis 2023; 17:e0011158. [PMID: 36877734 PMCID: PMC10019728 DOI: 10.1371/journal.pntd.0011158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 03/16/2023] [Accepted: 03/01/2023] [Indexed: 03/07/2023] Open
Abstract
BACKGROUND There are a few models for predicting the outcomes of patients with severe fever with thrombocytopenia syndrome (SFTS) based on single-center data, but clinicians need more reliable models based on multicenter data to predict the clinical outcomes and effectiveness of drug therapy. METHODOLOGY/PRINCIPAL FINDINGS This retrospective multicenter study analyzed data from 377 patients with SFTS, including a modeling group and a validation group. In the modeling group, the presence of neurologic symptoms was a strong predictor of mortality (odds ratio: 168). Based on neurologic symptoms and the joint indices score, which included age, gastrointestinal bleeding, and the SFTS virus viral load, patients were divided into double-positive, single-positive, and double-negative groups, which had mortality rates of 79.3%, 6.8%, and 0%, respectively. Validation using data on 216 cases from two other hospitals yielded similar results. A subgroup analysis revealed that ribavirin had a significant effect on mortality in the single-positive group (P = 0.006), but not in the double-positive or double-negative group. In the single-positive group, prompt antibiotic use was associated with reduced mortality (7.2% vs 47.4%, P < 0.001), even in individuals without significant granulocytopenia and infection, and early prophylaxis was associated with reduced mortality (9.0% vs. 22.8%, P = 0.008). The infected group included SFTS patients with pneumonia or sepsis, while the noninfected group included patients with no signs of infection. The white blood cell count and levels of C-reactive protein and procalcitonin differed significantly between the infection and non-infection groups (P = 0.020, P = 0.011, and P = 0.003, respectively), although the absolute difference in the medians were small. CONCLUSIONS/SIGNIFICANCE We developed a simple model to predict mortality in patients with SFTS. Our model may help to evaluate the effectiveness of drugs in these patients. In patients with severe SFTS, ribavirin and antibiotics may reduce mortality.
Collapse
Affiliation(s)
- Guomei Xia
- Institute of Clinical Virology, Department of Infectious Diseases, The Second Hospital of Anhui Medical University, Hefei, China
| | - Shanshan Sun
- Institute of Clinical Virology, Department of Infectious Diseases, The Second Hospital of Anhui Medical University, Hefei, China
| | - Shijun Zhou
- Institute of Clinical Virology, Department of Infectious Diseases, The Second Hospital of Anhui Medical University, Hefei, China
| | - Lei Li
- Department of Infectious Diseases, Anhui Provincial Hospital of Anhui Medical University, Hefei, China
| | - Xu Li
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Guizhou Zou
- Institute of Clinical Virology, Department of Infectious Diseases, The Second Hospital of Anhui Medical University, Hefei, China
| | - Cheng Huang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Jun Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Zhenhua Zhang
- Institute of Clinical Virology, Department of Infectious Diseases, The Second Hospital of Anhui Medical University, Hefei, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
- * E-mail:
| |
Collapse
|
37
|
The role of non-coding RNA in lupus nephritis. Hum Cell 2023; 36:923-936. [PMID: 36840837 DOI: 10.1007/s13577-023-00883-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 02/16/2023] [Indexed: 02/26/2023]
Abstract
Systemic lupus erythematosus (SLE) is a common autoimmune disease with multiple manifestations. The renal implication, also called lupus nephritis (LN) is the most regular type of complication and results in adverse outcomes. Multiple studies revealed the importance of non-coding RNA in diseases, likewise observed in nephropathies, particularly LN. Long-non-coding RNA (lncRNA) is a group of RNA that are more than 200 nucleotides in length. And in circular RNA (circRNA), the head and tail of RNA are connected by a 3' → 5' phosphodiester bond. Both two types of non-coding RNA play important roles in LN pathogenesis through the competitive endogenous RNA (ceRNA) effect. LncRNAs and circRNAs can sponge miRNAs and consequently act on downstream signaling pathways, which are capable to influence various aspects of LN, including cell proliferation, inflammation, and oxidative stress. And lncRNAs and circRNAs have the potential to act as biomarkers to diagnose LN and distinguish whether SLE patients with LN or not. In the future, lncRNAs and circRNAs may be accessible therapeutic targets.
Collapse
|
38
|
A single-cell map of peripheral alterations after FMT treatment in patients with systemic lupus erythematosus. J Autoimmun 2023; 135:102989. [PMID: 36610264 DOI: 10.1016/j.jaut.2022.102989] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 12/16/2022] [Indexed: 01/07/2023]
Abstract
Systemic lupus erythematosus (SLE) is characterized by loss of self-tolerance and persistent self-aggression, sustained chronic inflammation, production of autoantibodies and multi-system damage, and is largely incurable to date. The gut microbiota and its metabolites, now recognized as crucial environmental triggers of local/systemic immune reactions, have been implicated in the development and progression of SLE. Fecal microbiota transplantation (FMT) is restoration of disturbed microbiota by transplanting foreign gut microbiota from healthy individuals into the gastrointestinal tract of diseased individuals. Our previous clinical trial suggests that FMT is a potentially safe and effective treatment for SLE. In order to elucidate the potential effect of FMT on peripheral immune cells of patients with SLE, we collected PBMCs (n = 30) of 13 SLE patients who participated in the clinical trial before and after the FMT-treatment, and performed single-cell RNA sequencing. The results first revealed that peripheral T lymphocytes of SLE patients decreased and NK cells increased after the FMT treatment. Then, sub-clustering analysis discovered that total CD4+ T cells highly expressed genes of IL7R, CD28, and CD8+ T cells highly expressed genes of GZMH and NKG7 after FMT treatment. Moreover, FMT treatment reduced the expression of interferon-related genes (IRGs) in CD4+ T, CD8+ T, DP, NK, and B cells of SLE patients. More importantly, interferon-related pathways were more enriched in cells of the FMT non-responder group, and further the interferon genes expression of lymphocytes and myeloid cells was negatively correlated with the efficiency of FMT treatment. Collectively, our data identified various immunophenotypic and associated gene set changes following FMT treatment, illustrating the heterogeneity of response to FMT treatment in SLE.
Collapse
|
39
|
Zhang P, Zhao L, Li H, Shen J, Li H, Xing Y. Novel diagnostic biomarkers related to immune infiltration in Parkinson's disease by bioinformatics analysis. Front Neurosci 2023; 17:1083928. [PMID: 36777638 PMCID: PMC9909419 DOI: 10.3389/fnins.2023.1083928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 01/09/2023] [Indexed: 01/27/2023] Open
Abstract
Background Parkinson's disease (PD) is Pengfei Zhang Liwen Zhao Pengfei Zhang Liwen Zhao a common neurological disorder involving a complex relationship with immune infiltration. Therefore, we aimed to explore PD immune infiltration patterns and identify novel immune-related diagnostic biomarkers. Materials and methods Three substantia nigra expression microarray datasets were integrated with elimination of batch effects. Differentially expressed genes (DEGs) were screened using the "limma" package, and functional enrichment was analyzed. Weighted gene co-expression network analysis (WGCNA) was performed to explore the key module most significantly associated with PD; the intersection of DEGs and the key module in WGCNA were considered common genes (CGs). The CG protein-protein interaction (PPI) network was constructed to identify candidate hub genes by cytoscape. Candidate hub genes were verified by another two datasets. Receiver operating characteristic curve analysis was used to evaluate the hub gene diagnostic ability, with further gene set enrichment analysis (GSEA). The immune infiltration level was evaluated by ssGSEA and CIBERSORT methods. Spearman correlation analysis was used to evaluate the hub genes association with immune cells. Finally, a nomogram model and microRNA-TF-mRNA network were constructed based on immune-related biomarkers. Results A total of 263 CGs were identified by the intersection of 319 DEGs and 1539 genes in the key turquoise module. Eleven candidate hub genes were screened by the R package "UpSet." We verified the candidate hub genes based on two validation sets and identified six (SYT1, NEFM, NEFL, SNAP25, GAP43, and GRIA1) that distinguish the PD group from healthy controls. Both CIBERSORT and ssGSEA revealed a significantly increased proportion of neutrophils in the PD group. Correlation between immune cells and hub genes showed SYT1, NEFM, GAP43, and GRIA1 to be significantly related to immune cells. Moreover, the microRNA-TFs-mRNA network revealed that the microRNA-92a family targets all four immune-related genes in PD pathogenesis. Finally, a nomogram exhibited a reliable capability of predicting PD based on the four immune-related genes (AUC = 0.905). Conclusion By affecting immune infiltration, SYT1, NEFM, GAP43, and GRIA1, which are regulated by the microRNA-92a family, were identified as diagnostic biomarkers of PD. The correlation of these four genes with neutrophils and the microRNA-92a family in PD needs further investigation.
Collapse
Affiliation(s)
- Pengfei Zhang
- Department of Neurosurgery, Beichen Traditional Chinese Medical Hospital Tianjin, Tianjin, China
| | - Liwen Zhao
- Department of Neurosurgery, Tianjin Medical University General Hospital Airport Site, Tianjin, China
| | - Hongbin Li
- Department of Neurology, Beichen Traditional Chinese Medical Hospital Tianjin, Tianjin, China
| | - Jie Shen
- Department of Neurology, Beichen Traditional Chinese Medical Hospital Tianjin, Tianjin, China
| | - Hui Li
- Department of Neurosurgery, Beichen Traditional Chinese Medical Hospital Tianjin, Tianjin, China
| | - Yongguo Xing
- Department of Neurosurgery, Beichen Traditional Chinese Medical Hospital Tianjin, Tianjin, China,*Correspondence: Yongguo Xing,
| |
Collapse
|
40
|
Bradford HF, Haljasmägi L, Menon M, McDonnell TCR, Särekannu K, Vanker M, Peterson P, Wincup C, Abida R, Gonzalez RF, Bondet V, Duffy D, Isenberg DA, Kisand K, Mauri C. Inactive disease in patients with lupus is linked to autoantibodies to type I interferons that normalize blood IFNα and B cell subsets. Cell Rep Med 2023; 4:100894. [PMID: 36652906 PMCID: PMC9873953 DOI: 10.1016/j.xcrm.2022.100894] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/28/2022] [Accepted: 12/13/2022] [Indexed: 01/18/2023]
Abstract
Systemic lupus erythematosus (SLE) is characterized by increased expression of type I interferon (IFN)-regulated genes in 50%-75% of patients. We report that out of 501 patients with SLE analyzed, 73 (14%) present autoantibodies against IFNα (anti-IFN-Abs). The presence of neutralizing-anti-IFN-Abs in 4.2% of patients inversely correlates with low circulating IFNα protein levels, inhibition of IFN-I downstream gene signatures, and inactive global disease score. Hallmarks of SLE pathogenesis, including increased immature, double-negative plasmablast B cell populations and reduction in regulatory B cell (Breg) frequencies, were normalized in patients with neutralizing anti-IFN-Abs compared with other patient groups. Immunoglobulin G (IgG) purified from sera of patients with SLE with neutralizing anti-IFN-Abs impedes CpGC-driven IFNα-dependent differentiation of B cells into immature B cells and plasmablasts, thus recapitulating the neutralizing effect of anti-IFN-Abs on B cell differentiation in vitro. Our findings highlight a role for neutralizing anti-IFN-Abs in controlling SLE pathogenesis and support the use of IFN-targeting therapies in patients with SLE lacking neutralizing-anti-IFN-Abs.
Collapse
Affiliation(s)
- Hannah F Bradford
- Division of Infection and Immunity and Institute of Immunity and Transplantation, Royal Free Hospital, University College London, London NW3 2PP, UK; Centre for Rheumatology, Division of Medicine, University College London, London WC1E 6JF, UK.
| | - Liis Haljasmägi
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Madhvi Menon
- Lydia Becker Institute of Immunology and Inflammation, Division of Infection, Immunity & Respiratory Medicine, School of Biological Sciences, University of Manchester, Manchester M13 9PL, UK.
| | - Thomas C R McDonnell
- Department of Biochemical Engineering, University College London, London WC1E 6BT, UK
| | - Karita Särekannu
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Martti Vanker
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Pärt Peterson
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Chris Wincup
- Centre for Rheumatology, Division of Medicine, University College London, London WC1E 6JF, UK
| | - Rym Abida
- Centre for Rheumatology, Division of Medicine, University College London, London WC1E 6JF, UK
| | | | - Vincent Bondet
- Translational Immunology Unit, Institut Pasteur, Université Paris Cité, Paris, France
| | - Darragh Duffy
- Translational Immunology Unit, Institut Pasteur, Université Paris Cité, Paris, France
| | - David A Isenberg
- Centre for Rheumatology, Division of Medicine, University College London, London WC1E 6JF, UK
| | - Kai Kisand
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia.
| | - Claudia Mauri
- Division of Infection and Immunity and Institute of Immunity and Transplantation, Royal Free Hospital, University College London, London NW3 2PP, UK; Centre for Rheumatology, Division of Medicine, University College London, London WC1E 6JF, UK.
| |
Collapse
|
41
|
Alba G, Dakhaoui H, Santa-Maria C, Palomares F, Cejudo-Guillen M, Geniz I, Sobrino F, Montserrat-de la Paz S, Lopez-Enriquez S. Nutraceuticals as Potential Therapeutic Modulators in Immunometabolism. Nutrients 2023; 15:411. [PMID: 36678282 PMCID: PMC9865834 DOI: 10.3390/nu15020411] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/04/2023] [Accepted: 01/06/2023] [Indexed: 01/14/2023] Open
Abstract
Nutraceuticals act as cellular and functional modulators, contributing to the homeostasis of physiological processes. In an inflammatory microenvironment, these functional foods can interact with the immune system by modulating or balancing the exacerbated proinflammatory response. In this process, immune cells, such as antigen-presenting cells (APCs), identify danger signals and, after interacting with T lymphocytes, induce a specific effector response. Moreover, this conditions their change of state with phenotypical and functional modifications from the resting state to the activated and effector state, supposing an increase in their energy requirements that affect their intracellular metabolism, with each immune cell showing a unique metabolic signature. Thus, nutraceuticals, such as polyphenols, vitamins, fatty acids, and sulforaphane, represent an active option to use therapeutically for health or the prevention of different pathologies, including obesity, metabolic syndrome, and diabetes. To regulate the inflammation associated with these pathologies, intervention in metabolic pathways through the modulation of metabolic energy with nutraceuticals is an attractive strategy that allows inducing important changes in cellular properties. Thus, we provide an overview of the link between metabolism, immune function, and nutraceuticals in chronic inflammatory processes associated with obesity and diabetes, paying particular attention to nutritional effects on APC and T cell immunometabolism, as well as the mechanisms required in the change in energetic pathways involved after their activation.
Collapse
Affiliation(s)
- Gonzalo Alba
- Department of Medical Biochemistry and Molecular Biology, and Immunology, School of Medicine, University of Seville. Av. Sanchez Pizjuan s/n, 41009 Seville, Spain
| | - Hala Dakhaoui
- Department of Medical Biochemistry and Molecular Biology, and Immunology, School of Medicine, University of Seville. Av. Sanchez Pizjuan s/n, 41009 Seville, Spain
| | - Consuelo Santa-Maria
- Department of Biochemistry and Molecular Biology, School of Pharmacy, University of Seville, 41012 Seville, Spain
| | - Francisca Palomares
- Department of Medical Biochemistry and Molecular Biology, and Immunology, School of Medicine, University of Seville. Av. Sanchez Pizjuan s/n, 41009 Seville, Spain
| | - Marta Cejudo-Guillen
- Department of Pharmacology, Pediatry, and Radiology, School of Medicine, University of Seville. Av. Sanchez Pizjuan s/n, 41009 Seville, Spain
| | - Isabel Geniz
- Distrito Sanitario Seville Norte y Aljarafe, Servicio Andaluz de Salud, 41008 Seville, Spain
| | - Francisco Sobrino
- Department of Medical Biochemistry and Molecular Biology, and Immunology, School of Medicine, University of Seville. Av. Sanchez Pizjuan s/n, 41009 Seville, Spain
| | - Sergio Montserrat-de la Paz
- Department of Medical Biochemistry and Molecular Biology, and Immunology, School of Medicine, University of Seville. Av. Sanchez Pizjuan s/n, 41009 Seville, Spain
| | - Soledad Lopez-Enriquez
- Department of Medical Biochemistry and Molecular Biology, and Immunology, School of Medicine, University of Seville. Av. Sanchez Pizjuan s/n, 41009 Seville, Spain
| |
Collapse
|
42
|
Wen L, Zhang B, Wu X, Liu R, Fan H, Han L, Zhang Z, Ma X, Chu CQ, Shi X. Toll-like receptors 7 and 9 regulate the proliferation and differentiation of B cells in systemic lupus erythematosus. Front Immunol 2023; 14:1093208. [PMID: 36875095 PMCID: PMC9975558 DOI: 10.3389/fimmu.2023.1093208] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 02/02/2023] [Indexed: 02/17/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune illness marked by the loss of immune tolerance and the production of autoantibodies against nucleic acids and other nuclear antigens (Ags). B lymphocytes are important in the immunopathogenesis of SLE. Multiple receptors control abnormal B-cell activation in SLE patients, including intrinsic Toll-like receptors (TLRs), B-cell receptors (BCRs), and cytokine receptors. The role of TLRs, notably TLR7 and TLR9, in the pathophysiology of SLE has been extensively explored in recent years. When endogenous or exogenous nucleic acid ligands are recognized by BCRs and internalized into B cells, they bind TLR7 or TLR9 to activate related signalling pathways and thus govern the proliferation and differentiation of B cells. Surprisingly, TLR7 and TLR9 appear to play opposing roles in SLE B cells, and the interaction between them is still poorly understood. In addition, other cells can enhance TLR signalling in B cells of SLE patients by releasing cytokines that accelerate the differentiation of B cells into plasma cells. Therefore, the delineation of how TLR7 and TLR9 regulate the abnormal activation of B cells in SLE may aid the understanding of the mechanisms of SLE and provide directions for TLR-targeted therapies for SLE.
Collapse
Affiliation(s)
- Luyao Wen
- Department of Rheumatology and Immunology, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Bei Zhang
- Department of Rheumatology and Immunology, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Xinfeng Wu
- Department of Rheumatology and Immunology, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Rongzeng Liu
- Department of Immunology, School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, China
| | - Hua Fan
- Office of Research & Innovation, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Lei Han
- Department of Rheumatology and Immunology, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Zhibo Zhang
- Department of Rheumatology and Immunology, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Xin Ma
- Department of Rheumatology and Immunology, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Cong-Qiu Chu
- Division of Arthritis and Rheumatic Diseases, Oregon Health & Science University and VA Portland Health Care System, Portland, OR, United States
| | - Xiaofei Shi
- Department of Rheumatology and Immunology, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
43
|
Oleinika K, Slisere B, Catalán D, Rosser EC. B cell contribution to immunometabolic dysfunction and impaired immune responses in obesity. Clin Exp Immunol 2022; 210:263-272. [PMID: 35960996 PMCID: PMC9384752 DOI: 10.1093/cei/uxac079] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/15/2022] [Accepted: 08/09/2022] [Indexed: 11/14/2022] Open
Abstract
Obesity increases the risk of type 2 diabetes mellitus, cardiovascular disease, fatty liver disease, and cancer. It is also linked with more severe complications from infections, including COVID-19, and poor vaccine responses. Chronic, low-grade inflammation and associated immune perturbations play an important role in determining morbidity in people living with obesity. The contribution of B cells to immune dysregulation and meta-inflammation associated with obesity has been documented by studies over the past decade. With a focus on human studies, here we consolidate the observations demonstrating that there is altered B cell subset composition, differentiation, and function both systemically and in the adipose tissue of individuals living with obesity. Finally, we discuss the potential factors that drive B cell dysfunction in obesity and propose a model by which altered B cell subset composition in obesity underlies dysfunctional B cell responses to novel pathogens.
Collapse
Affiliation(s)
- Kristine Oleinika
- Correspondence: Kristine Oleinika, Department of Internal Diseases, Riga Stradins University, Riga, Latvia.
| | - Baiba Slisere
- Department of Doctoral Studies, Riga Stradins University, Riga, Latvia
- Joint Laboratory, Pauls Stradins Clinical University Hospital, Riga, Latvia
| | - Diego Catalán
- Programa Disciplinario de Inmunología, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Elizabeth C Rosser
- Centre for Adolescent Rheumatology Versus Arthritis at UCL, UCLH and GOSH and Department of Rheumatology, Division of Medicine, University College London, London, UK
| |
Collapse
|
44
|
Karayama M, Mizoguchi Y, Inoue Y, Hozumi H, Suzuki Y, Furuhashi K, Fujisawa T, Enomoto N, Nakamura Y, Inui N, Suda T, Kitano S, Aoki K, Yamada Y. Association between increased peripheral blood CD86-positive plasmacytoid dendritic cells and immune-related adverse events in patients with non-small cell lung cancer. Glob Health Med 2022; 4:301-308. [PMID: 36589213 PMCID: PMC9773226 DOI: 10.35772/ghm.2022.01052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 11/05/2022] [Accepted: 11/15/2022] [Indexed: 11/21/2022]
Abstract
The occurrence of immune-related adverse events (irAEs) after immune checkpoint inhibitors (ICIs) is unpredictable. Profiles of peripheral blood mononuclear cells (PBMCs) represent the host immune system and have the potential to predict irAEs. We analyzed PBMC subsets using multicolor flow cytometry before and at weeks 2 and 8 after the start of ICIs in patients with non-small cell lung cancer. Sixteen eligible patients were evaluated. The irAEs occurred in 6 patients (37.5%): diarrhea in 2, diarrhea and a rash in 1, pituitary dysfunction in 1, cholangitis in 1, and pneumonitis in 1. Patients experiencing irAEs had higher levels of CD86+plasmacytoid dendritic cells (pDCs) at the baseline and weeks 2 and 8 after the ICIs than those not experiencing irAEs (p = 0.005, 0.038, and 0.050, respectively). In patients experiencing irAEs, the levels of CD86+pDCs significantly decreased at weeks 2 and 8 compared to the baseline (p = 0 .034 and 0.025, respectively) but did not change in those not experiencing irAEs. The levels of other PBMC subsets were not significantly associated with irAEs. Higher levels of natural killer (NK) cells were significantly associated with an overall objective response (p = 0.024). In conclusion, higher levels of CD86+pDCs at the baseline and a reduction in those levels 2 and 8 weeks after ICIs were associated with the occurrence of irAEs. Higher levels of NK cells were associated with an objective response to ICIs. Evaluation of PBMCs may help to predict the efficacy and safety of ICIs.
Collapse
Affiliation(s)
- Masato Karayama
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan;,Department of Medical Oncology, Hamamatsu University School of Medicine, Hamamatsu, Japan;,Address correspondence to:Masato Karayama, Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu, Japan 431-3192. E-mail:
| | - Yukihiro Mizoguchi
- Department of Immune Medicine, National Cancer Center Research Institute, Tokyo, Japan
| | - Yusuke Inoue
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Hironao Hozumi
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yuzo Suzuki
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Kazuki Furuhashi
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Tomoyuki Fujisawa
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Noriyuki Enomoto
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yutaro Nakamura
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Naoki Inui
- Department of Clinical Pharmacology and Therapeutics, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Takafumi Suda
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Shigehisa Kitano
- Division of Cancer Immunotherapy Development, Advanced Medical Development Center, The Cancer Institute Hospital of JFCR, Tokyo, Japan
| | - Kazunori Aoki
- Department of Immune Medicine, National Cancer Center Research Institute, Tokyo, Japan
| | - Yasuhide Yamada
- Department of Medical Oncology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| |
Collapse
|
45
|
Velounias RL, Tull TJ. Human B-cell subset identification and changes in inflammatory diseases. Clin Exp Immunol 2022; 210:201-216. [PMID: 36617261 PMCID: PMC9985170 DOI: 10.1093/cei/uxac104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/19/2022] [Accepted: 11/15/2022] [Indexed: 01/09/2023] Open
Abstract
Our understanding of the B-cell subsets found in human blood and their functional significance has advanced greatly in the past decade. This has been aided by the evolution of high dimensional phenotypic tools such as mass cytometry and single-cell RNA sequencing which have revealed heterogeneity in populations that were previously considered homogenous. Despite this, there is still uncertainty and variation between studies as to how B-cell subsets are identified and named. This review will focus on the most commonly encountered subsets of B cells in human blood and will describe gating strategies for their identification by flow and mass cytometry. Important changes to population frequencies and function in common inflammatory and autoimmune diseases will also be described.
Collapse
Affiliation(s)
- Rebekah L Velounias
- Department of Immunobiology, King’s College London, Guy’s Hospital Campus, London, UK
| | - Thomas J Tull
- St John’s Institute of Dermatology, King’s College London, Guy’s Hospital Campus, London, UK
| |
Collapse
|
46
|
de Gruijter NM, Jebson B, Rosser EC. Cytokine production by human B cells: role in health and autoimmune disease. Clin Exp Immunol 2022; 210:253-262. [PMID: 36179248 PMCID: PMC9985175 DOI: 10.1093/cei/uxac090] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/01/2022] [Accepted: 09/29/2022] [Indexed: 02/06/2023] Open
Abstract
B cells are classically considered solely as antibody-producing cells driving humoral immune responses to foreign antigens in infections and vaccinations as well as self-antigens in pathological settings such as autoimmunity. However, it has now become clear that B cells can also secrete a vast array of cytokines, which influence both pro- and anti-inflammatory immune responses. Indeed, similarly to T cells, there is significant heterogeneity in cytokine-driven responses by B cells, ranging from the production of pro-inflammatory effector cytokines such as IL-6, through to the release of immunosuppressive cytokines such as IL-10. In this review, focusing on human B cells, we summarize the key findings that have revealed that cytokine-producing B cell subsets have critical functions in healthy immune responses and contribute to the pathophysiology of autoimmune diseases.
Collapse
Affiliation(s)
- Nina M de Gruijter
- Centre for Adolescent Rheumatology Versus Arthritis at University College London, University College London Hospital and Great Ormond Street Hospital, London, UK
- Centre for Rheumatology Research, Division of Medicine, University College London, London, UK
| | - Bethany Jebson
- Centre for Adolescent Rheumatology Versus Arthritis at University College London, University College London Hospital and Great Ormond Street Hospital, London, UK
- University College London Great Ormond Street Institute of Child Health, London, UK
| | - Elizabeth C Rosser
- Centre for Adolescent Rheumatology Versus Arthritis at University College London, University College London Hospital and Great Ormond Street Hospital, London, UK
- Centre for Rheumatology Research, Division of Medicine, University College London, London, UK
| |
Collapse
|
47
|
B-Cells and BAFF in Primary Antiphospholipid Syndrome, Targets for Therapy? J Clin Med 2022; 12:jcm12010018. [PMID: 36614819 PMCID: PMC9821657 DOI: 10.3390/jcm12010018] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/04/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Primary antiphospholipid syndrome (PAPS) is a systemic autoimmune disease characterized by thrombosis, pregnancy morbidity, and the presence of antiphospholipid antibodies (aPL). Anticoagulants form the mainstay of treatment in PAPS. A growing number of studies suggest a previously underappreciated role of the immune system in the pathophysiology of PAPS. Although B-cells are strongly implicated in the pathophysiology of other autoimmune diseases such as systemic lupus erythematosus (SLE), little is known about the role of B-cells in PAPS. Shifts in B-cell subsets including increases in plasmablasts and higher levels of BAFF are present in patients with PAPS. However, while treatment with rituximab and belimumab may ameliorate thrombotic and non-thrombotic manifestations of PAPS, these treatments do not reduce aPL serum levels, suggesting that B-cells contribute to the pathophysiology of APS beyond the production of autoantibodies.
Collapse
|
48
|
Ghobadinezhad F, Ebrahimi N, Mozaffari F, Moradi N, Beiranvand S, Pournazari M, Rezaei-Tazangi F, Khorram R, Afshinpour M, Robino RA, Aref AR, Ferreira LMR. The emerging role of regulatory cell-based therapy in autoimmune disease. Front Immunol 2022; 13:1075813. [PMID: 36591309 PMCID: PMC9795194 DOI: 10.3389/fimmu.2022.1075813] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Autoimmune disease, caused by unwanted immune responses to self-antigens, affects millions of people each year and poses a great social and economic burden to individuals and communities. In the course of autoimmune disorders, including rheumatoid arthritis, systemic lupus erythematosus, type 1 diabetes mellitus, and multiple sclerosis, disturbances in the balance between the immune response against harmful agents and tolerance towards self-antigens lead to an immune response against self-tissues. In recent years, various regulatory immune cells have been identified. Disruptions in the quality, quantity, and function of these cells have been implicated in autoimmune disease development. Therefore, targeting or engineering these cells is a promising therapeutic for different autoimmune diseases. Regulatory T cells, regulatory B cells, regulatory dendritic cells, myeloid suppressor cells, and some subsets of innate lymphoid cells are arising as important players among this class of cells. Here, we review the roles of each suppressive cell type in the immune system during homeostasis and in the development of autoimmunity. Moreover, we discuss the current and future therapeutic potential of each one of these cell types for autoimmune diseases.
Collapse
Affiliation(s)
- Farbod Ghobadinezhad
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran,Universal Scientific Education and Research Network (USERN) Office, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Nasim Ebrahimi
- Division of Genetics, Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Fatemeh Mozaffari
- Department of Nutrition, School of Medicine, Zabol University of Medical Sciences, Zabol, Iran
| | - Neda Moradi
- Division of Biotechnology, Department of Cell and Molecular Biology and Microbiology, Nourdanesh Institute of Higher Education, University of Meymeh, Isfahan, Iran
| | - Sheida Beiranvand
- Department of Biology, Faculty of Basic Sciences, Islamic Azad University, Shahrekord, Iran
| | - Mehran Pournazari
- Clinical Research Development Center, Imam Reza Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Fatemeh Rezaei-Tazangi
- Department of Anatomy, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Roya Khorram
- Bone and Joint Diseases Research Center, Department of Orthopedic Surgery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maral Afshinpour
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, SD, United States
| | - Rob A. Robino
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States,Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, United States,Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States
| | - Amir Reza Aref
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States,Xsphera Biosciences, Boston, MA, United States,*Correspondence: Leonardo M. R. Ferreira, ; Amir Reza Aref,
| | - Leonardo M. R. Ferreira
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States,Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, United States,Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States,*Correspondence: Leonardo M. R. Ferreira, ; Amir Reza Aref,
| |
Collapse
|
49
|
Li Y, Ma C, Liao S, Qi S, Meng S, Cai W, Dai W, Cao R, Dong X, Krämer BK, Yun C, Hocher B, Hong X, Liu D, Tang D, He J, Yin L, Dai Y. Combined proteomics and single cell RNA-sequencing analysis to identify biomarkers of disease diagnosis and disease exacerbation for systemic lupus erythematosus. Front Immunol 2022; 13:969509. [PMID: 36524113 PMCID: PMC9746895 DOI: 10.3389/fimmu.2022.969509] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 11/15/2022] [Indexed: 12/02/2022] Open
Abstract
Introduction Systemic lupus erythematosus (SLE) is a chronic autoimmune disease for which there is no cure. Effective diagnosis and precise assessment of disease exacerbation remains a major challenge. Methods We performed peripheral blood mononuclear cell (PBMC) proteomics of a discovery cohort, including patients with active SLE and inactive SLE, patients with rheumatoid arthritis (RA), and healthy controls (HC). Then, we performed a machine learning pipeline to identify biomarker combinations. The biomarker combinations were further validated using enzyme-linked immunosorbent assays (ELISAs) in another cohort. Single-cell RNA sequencing (scRNA-seq) data from active SLE, inactive SLE, and HC PBMC samples further elucidated the potential immune cellular sources of each of these PBMC biomarkers. Results Screening of the PBMC proteome identified 1023, 168, and 124 proteins that were significantly different between SLE vs. HC, SLE vs. RA, and active SLE vs. inactive SLE, respectively. The machine learning pipeline identified two biomarker combinations that accurately distinguished patients with SLE from controls and discriminated between active and inactive SLE. The validated results of ELISAs for two biomarker combinations were in line with the discovery cohort results. Among them, the six-protein combination (IFIT3, MX1, TOMM40, STAT1, STAT2, and OAS3) exhibited good performance for SLE disease diagnosis, with AUC of 0.723 and 0.815 for distinguishing SLE from HC and RA, respectively. Nine-protein combination (PHACTR2, GOT2, L-selectin, CMC4, MAP2K1, CMPK2, ECPAS, SRA1, and STAT2) showed a robust performance in assessing disease exacerbation (AUC=0.990). Further, the potential immune cellular sources of nine PBMC biomarkers, which had the consistent changes with the proteomics data, were elucidated by PBMC scRNAseq. Discussion Unbiased proteomic quantification and experimental validation of PBMC samples from two cohorts of patients with SLE were identified as biomarker combinations for diagnosis and activity monitoring. Furthermore, the immune cell subtype origin of the biomarkers in the transcript expression level was determined using PBMC scRNAseq. These findings present valuable PBMC biomarkers associated with SLE and may reveal potential therapeutic targets.
Collapse
Affiliation(s)
- Yixi Li
- Institute of Nephrology and Blood Purification, the First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China,Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, Shenzhen People’s Hospital, Jinan University, Shenzhen, China
| | - Chiyu Ma
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, Shenzhen People’s Hospital, Jinan University, Shenzhen, China
| | - Shengyou Liao
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, Shenzhen People’s Hospital, Jinan University, Shenzhen, China
| | - Suwen Qi
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, Shenzhen People’s Hospital, Jinan University, Shenzhen, China
| | - Shuhui Meng
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, Shenzhen People’s Hospital, Jinan University, Shenzhen, China
| | - Wanxia Cai
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, Shenzhen People’s Hospital, Jinan University, Shenzhen, China
| | - Weier Dai
- College of Natural Science, University of Texas at Austin, Austin, TX, United States
| | - Rui Cao
- Institute of Nephrology and Blood Purification, the First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Xiangnan Dong
- Institute of Nephrology and Blood Purification, the First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Bernhard K. Krämer
- Fifth Department of Medicine, University Medical Centre Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Chen Yun
- Department of Nephrology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Berthold Hocher
- Fifth Department of Medicine, University Medical Centre Mannheim, University of Heidelberg, Heidelberg, Germany,Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China,Reproductive and Genetic Hospital of China International Trust and Investment Corporation (CITIC)-Xiangya, Changsha, China,Institute of Medical Diagnostics (IMD), Berlin, Germany
| | - Xiaoping Hong
- Department of Rheumatology and Immunology, The Second Clinical Medical College of Jinan University, Shenzhen People’s Hospital, Jinan University, Shenzhen, China
| | - Dongzhou Liu
- Department of Rheumatology and Immunology, The Second Clinical Medical College of Jinan University, Shenzhen People’s Hospital, Jinan University, Shenzhen, China
| | - Donge Tang
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, Shenzhen People’s Hospital, Jinan University, Shenzhen, China,*Correspondence: Yong Dai, ; Lianghong Yin, ; Jingquan He, ; Donge Tang,
| | - Jingquan He
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, Shenzhen People’s Hospital, Jinan University, Shenzhen, China,*Correspondence: Yong Dai, ; Lianghong Yin, ; Jingquan He, ; Donge Tang,
| | - Lianghong Yin
- Institute of Nephrology and Blood Purification, the First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China,Guangzhou Enttxs Medical Products Co., Ltd, Guangzhou, Guangzhou, China,*Correspondence: Yong Dai, ; Lianghong Yin, ; Jingquan He, ; Donge Tang,
| | - Yong Dai
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, Shenzhen People’s Hospital, Jinan University, Shenzhen, China,*Correspondence: Yong Dai, ; Lianghong Yin, ; Jingquan He, ; Donge Tang,
| |
Collapse
|
50
|
Pieren DKJ, Boer MC, de Wit J. The adaptive immune system in early life: The shift makes it count. Front Immunol 2022; 13:1031924. [PMID: 36466865 PMCID: PMC9712958 DOI: 10.3389/fimmu.2022.1031924] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/31/2022] [Indexed: 10/13/2023] Open
Abstract
Respiratory infectious diseases encountered early in life may result in life-threatening disease in neonates, which is primarily explained by the relatively naive neonatal immune system. Whereas vaccines are not readily available for all infectious diseases, vaccinations have greatly reduced childhood mortality. However, repeated vaccinations are required to reach protective immunity in infants and not all vaccinations are effective at young age. Moreover, protective adaptive immunity elicited by vaccination wanes more rapidly at young age compared to adulthood. The infant adaptive immune system has previously been considered immature but this paradigm has changed during the past years. Recent evidence shows that the early life adaptive immune system is equipped with a strong innate-like effector function to eliminate acute pathogenic threats. These strong innate-like effector capacities are in turn kept in check by a tolerogenic counterpart of the adaptive system that may have evolved to maintain balance and to reduce collateral damage. In this review, we provide insight into these aspects of the early life's adaptive immune system by addressing recent literature. Moreover, we speculate that this shift from innate-like and tolerogenic adaptive immune features towards formation of immune memory may underlie different efficacy of infant vaccination in these different phases of immune development. Therefore, presence of innate-like and tolerogenic features of the adaptive immune system may be used as a biomarker to improve vaccination strategies against respiratory and other infections in early life.
Collapse
Affiliation(s)
| | | | - Jelle de Wit
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| |
Collapse
|