1
|
Jing H, Song J, Sun J, Su S, Hu J, Zhang H, Bi Y, Wu B. METTL3 governs thymocyte development and thymic involution by regulating ferroptosis. NATURE AGING 2024:10.1038/s43587-024-00724-x. [PMID: 39443728 DOI: 10.1038/s43587-024-00724-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 09/16/2024] [Indexed: 10/25/2024]
Abstract
Given its central role in immune aging, it is important to identify the regulators of thymic involution. While conventional programmed cell death has a fundamental role in thymocyte development, how cell death pathways contribute to thymic involution are unclear. In this study, we found that CD4+CD8+ double-positive (DP) thymocytes acquired the characteristics of senescence in aged mice undergoing thymic involution, while expression of the m6A methyltransferase-like protein 3 (METTL3), which is enriched in DP cells from young mice, decreased with aging. By conditionally deleting METTL3 in T cells, we revealed a critical role for METTL3 in DP cell survival and in restraining the features of aging in DP thymocytes by preventing ferroptosis signaling through glutathione peroxidase 4. Mechanistically, glutathione peroxidase 4 was maintained by METTL3 at the translational level, independently of its methyltransferase activity. Furthermore, we found that pharmacological inhibition of ferroptosis promoted DP cell survival and attenuated the features of aging in DP thymocytes. These findings uncover a role for METTL3-regulated ferroptosis in thymic involution and identify strategies to restore thymic function.
Collapse
Affiliation(s)
- Huiru Jing
- Department of Urology, State Key Laboratory of Virology, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Jiayu Song
- Department of Urology, State Key Laboratory of Virology, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Jie Sun
- Department of Urology, State Key Laboratory of Virology, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Shaojun Su
- Department of Urology, State Key Laboratory of Virology, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Jin Hu
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Haojian Zhang
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Yanmin Bi
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China.
| | - Bing Wu
- Department of Urology, State Key Laboratory of Virology, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China.
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China.
| |
Collapse
|
2
|
Layzell BS, Barbarulo A, van Loo G, Beyaert R, Seddon B. NF-κB regulated expression of A20 controls IKK dependent repression of RIPK1 induced cell death in activated T cells. Cell Death Differ 2024:10.1038/s41418-024-01383-6. [PMID: 39327505 DOI: 10.1038/s41418-024-01383-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 09/16/2024] [Indexed: 09/28/2024] Open
Abstract
IKK signalling is essential for survival of thymocytes by repressing RIPK1 induced cell death rather than its canonical function of activating NF-κB. The role of IKK signalling in activated T cells is unclear. To investigate this, we analysed activation of IKK2 deficient T cells. While TCR triggering was normal, proliferation and expansion was profoundly impaired. This was not due to defective cell cycle progression, rather dividing T cells became sensitised to TNF induced cell death, since inhibition of RIPK1 kinase activity rescued cell survival. Gene expression analysis of activated IKK2 deficient T cells revealed defective expression of Tnfaip3, that encodes A20, a negative regulator of NF-κB. To test whether A20 expression was required to protect IKK2 deficient T cells from cell death, we generated mice with T cells lacking both A20 and IKK2. Doing this resulted in near complete loss of peripheral T cells, in contrast to mice lacking one or other gene. Strikingly, this phenotype was completely reversed by inactivation of RIPK1 kinase activity in vivo. Together, our data show that IKK signalling in activated T cells protects against RIPK1 dependent death, both by direct phosphorylation of RIPK1 and through NF-κB mediated induction of A20, that we identify for the first time as a key modulator of RIPK1 activity in T cells.
Collapse
Affiliation(s)
- By Scott Layzell
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, The Pears Building, Hampstead, London, UK
| | - Alessandro Barbarulo
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, The Pears Building, Hampstead, London, UK
| | - Geert van Loo
- VIB-UGent Center for Inflammation Research, UGent Department for Biomedical Molecular Biology, Unit of Molecular Signal Transduction in Inflammation, Gent, Belgium
| | - Rudi Beyaert
- VIB-UGent Center for Inflammation Research, UGent Department for Biomedical Molecular Biology, Unit of Molecular Signal Transduction in Inflammation, Gent, Belgium
| | - Benedict Seddon
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, The Pears Building, Hampstead, London, UK.
| |
Collapse
|
3
|
Sumanaweera D, Suo C, Cujba AM, Muraro D, Dann E, Polanski K, Steemers AS, Lee W, Oliver AJ, Park JE, Meyer KB, Dumitrascu B, Teichmann SA. Gene-level alignment of single-cell trajectories. Nat Methods 2024:10.1038/s41592-024-02378-4. [PMID: 39300283 DOI: 10.1038/s41592-024-02378-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 07/12/2024] [Indexed: 09/22/2024]
Abstract
Single-cell data analysis can infer dynamic changes in cell populations, for example across time, space or in response to perturbation, thus deriving pseudotime trajectories. Current approaches comparing trajectories often use dynamic programming but are limited by assumptions such as the existence of a definitive match. Here we describe Genes2Genes, a Bayesian information-theoretic dynamic programming framework for aligning single-cell trajectories. It is able to capture sequential matches and mismatches of individual genes between a reference and query trajectory, highlighting distinct clusters of alignment patterns. Across both real world and simulated datasets, it accurately inferred alignments and demonstrated its utility in disease cell-state trajectory analysis. In a proof-of-concept application, Genes2Genes revealed that T cells differentiated in vitro match an immature in vivo state while lacking expression of genes associated with TNF signaling. This demonstrates that precise trajectory alignment can pinpoint divergence from the in vivo system, thus guiding the optimization of in vitro culture conditions.
Collapse
Affiliation(s)
- Dinithi Sumanaweera
- Wellcome Sanger Institute; Wellcome Genome Campus, Hinxton, Cambridge, UK
- Theory of Condensed Matter, Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, UK
| | - Chenqu Suo
- Wellcome Sanger Institute; Wellcome Genome Campus, Hinxton, Cambridge, UK
- Department of Paediatrics, Cambridge University Hospitals; Hills Road, Cambridge, UK
| | - Ana-Maria Cujba
- Wellcome Sanger Institute; Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Daniele Muraro
- Wellcome Sanger Institute; Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Emma Dann
- Wellcome Sanger Institute; Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Krzysztof Polanski
- Wellcome Sanger Institute; Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Alexander S Steemers
- Wellcome Sanger Institute; Wellcome Genome Campus, Hinxton, Cambridge, UK
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Woochan Lee
- Wellcome Sanger Institute; Wellcome Genome Campus, Hinxton, Cambridge, UK
- Department of Biomedical Sciences, Seoul National University, Seoul, Korea
| | - Amanda J Oliver
- Wellcome Sanger Institute; Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Jong-Eun Park
- Wellcome Sanger Institute; Wellcome Genome Campus, Hinxton, Cambridge, UK
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Kerstin B Meyer
- Wellcome Sanger Institute; Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Bianca Dumitrascu
- Department of Statistics, Columbia University, New York, NY, USA
- Irving Institute for Cancer Dynamics, Columbia University, New York, NY, USA
| | - Sarah A Teichmann
- Wellcome Sanger Institute; Wellcome Genome Campus, Hinxton, Cambridge, UK.
- Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK.
- Department of Medicine, University of Cambridge, Cambridge, UK.
- Co-director of CIFAR Macmillan Research Program, Toronto, Ontario, Canada.
| |
Collapse
|
4
|
Ruiz Pérez M, Vandenabeele P, Tougaard P. The thymus road to a T cell: migration, selection, and atrophy. Front Immunol 2024; 15:1443910. [PMID: 39257583 PMCID: PMC11384998 DOI: 10.3389/fimmu.2024.1443910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/08/2024] [Indexed: 09/12/2024] Open
Abstract
The thymus plays a pivotal role in generating a highly-diverse repertoire of T lymphocytes while preventing autoimmunity. Thymus seeding progenitors (TSPs) are a heterogeneous group of multipotent progenitors that migrate to the thymus via CCR7 and CCR9 receptors. While NOTCH guides thymus progenitors toward T cell fate, the absence or disruption of NOTCH signaling renders the thymus microenvironment permissive to other cell fates. Following T cell commitment, developing T cells undergo multiple selection checkpoints by engaging with the extracellular matrix, and interacting with thymic epithelial cells (TECs) and other immune subsets across the different compartments of the thymus. The different selection checkpoints assess the T cell receptor (TCR) performance, with failure resulting in either repurposing (agonist selection), or cell death. Additionally, environmental cues such as inflammation and endocrine signaling induce acute thymus atrophy, contributing to the demise of most developing T cells during thymic selection. We discuss the occurrence of acute thymus atrophy in response to systemic inflammation. The thymus demonstrates high plasticity, shaping inflammation by abrogating T cell development and undergoing profound structural changes, and facilitating regeneration and restoration of T cell development once inflammation is resolved. Despite the challenges, thymic selection ensures a highly diverse T cell repertoire capable of discerning between self and non-self antigens, ultimately egressing to secondary lymphoid organs where they complete their maturation and exert their functions.
Collapse
Affiliation(s)
- Mario Ruiz Pérez
- Molecular Signaling and Cell Death Unit, VIB-UGent, Center for Inflammation Research, Flanders Institute for Biotechnology, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Peter Vandenabeele
- Molecular Signaling and Cell Death Unit, VIB-UGent, Center for Inflammation Research, Flanders Institute for Biotechnology, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Peter Tougaard
- Molecular Signaling and Cell Death Unit, VIB-UGent, Center for Inflammation Research, Flanders Institute for Biotechnology, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| |
Collapse
|
5
|
Dou Z, Bonacci TR, Shou P, Landoni E, Woodcock MG, Sun C, Savoldo B, Herring LE, Emanuele MJ, Song F, Baldwin AS, Wan Y, Dotti G, Zhou X. 4-1BB-encoding CAR causes cell death via sequestration of the ubiquitin-modifying enzyme A20. Cell Mol Immunol 2024; 21:905-917. [PMID: 38937625 PMCID: PMC11291893 DOI: 10.1038/s41423-024-01198-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 06/14/2024] [Indexed: 06/29/2024] Open
Abstract
CD28 and 4-1BB costimulatory endodomains included in chimeric antigen receptor (CAR) molecules play a critical role in promoting sustained antitumor activity of CAR-T cells. However, the molecular events associated with the ectopic and constitutive display of either CD28 or 4-1BB in CAR-T cells have been only partially explored. In the current study, we demonstrated that 4-1BB incorporated within the CAR leads to cell cluster formation and cell death in the forms of both apoptosis and necroptosis in the absence of CAR tonic signaling. Mechanistic studies illustrate that 4-1BB sequesters A20 to the cell membrane in a TRAF-dependent manner causing A20 functional deficiency that in turn leads to NF-κB hyperactivity, cell aggregation via ICAM-1 overexpression, and cell death including necroptosis via RIPK1/RIPK3/MLKL pathway. Genetic modulations obtained by either overexpressing A20 or releasing A20 from 4-1BB by deleting the TRAF-binding motifs of 4-1BB rescue cell cluster formation and cell death and enhance the antitumor ability of 4-1BB-costimulated CAR-T cells.
Collapse
Affiliation(s)
- Zhangqi Dou
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | | | - Peishun Shou
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Elisa Landoni
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Mark G Woodcock
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
- Division of Oncology, Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Chuang Sun
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Barbara Savoldo
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
- Department of Pediatrics, University of North Carolina, Chapel Hill, NC, USA
| | - Laura E Herring
- Michael Hooker Proteomics Center, Department of Pharmacology, University of North Carolina, Chapel Hill, NC, USA
| | - Michael J Emanuele
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Feifei Song
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Albert S Baldwin
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Yisong Wan
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, USA
| | - Gianpietro Dotti
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA.
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, USA.
| | - Xin Zhou
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA.
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
6
|
Lalle G, Lautraite R, Bouherrou K, Plaschka M, Pignata A, Voisin A, Twardowski J, Perrin-Niquet M, Stéphan P, Durget S, Tonon L, Ardin M, Degletagne C, Viari A, Belgarbi Dutron L, Davoust N, Postler TS, Zhao J, Caux C, Caramel J, Dalle S, Cassier PA, Klein U, Schmidt-Supprian M, Liblau R, Ghosh S, Grinberg-Bleyer Y. NF-κB subunits RelA and c-Rel selectively control CD4+ T cell function in multiple sclerosis and cancer. J Exp Med 2024; 221:e20231348. [PMID: 38563819 PMCID: PMC10986815 DOI: 10.1084/jem.20231348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 01/30/2024] [Accepted: 03/13/2024] [Indexed: 04/04/2024] Open
Abstract
The outcome of cancer and autoimmunity is often dictated by the effector functions of CD4+ conventional T cells (Tconv). Although activation of the NF-κB signaling pathway has long been implicated in Tconv biology, the cell-autonomous roles of the separate NF-κB transcription-factor subunits are unknown. Here, we dissected the contributions of the canonical NF-κB subunits RelA and c-Rel to Tconv function. RelA, rather than c-Rel, regulated Tconv activation and cytokine production at steady-state and was required for polarization toward the TH17 lineage in vitro. Accordingly, RelA-deficient mice were fully protected against neuroinflammation in a model of multiple sclerosis due to defective transition to a pathogenic TH17 gene-expression program. Conversely, Tconv-restricted ablation of c-Rel impaired their function in the microenvironment of transplanted tumors, resulting in enhanced cancer burden. Moreover, Tconv required c-Rel for the response to PD-1-blockade therapy. Our data reveal distinct roles for canonical NF-κB subunits in different disease contexts, paving the way for subunit-targeted immunotherapies.
Collapse
Affiliation(s)
- Guilhem Lalle
- Cancer Research Center of Lyon, Labex DEV2CAN, Institut Convergence Plascan, Centre Léon Bérard, UMR INSERM 1052, CNRS 5286, Université Claude Bernard Lyon 1, Lyon, France
| | - Raphaëlle Lautraite
- Cancer Research Center of Lyon, Labex DEV2CAN, Institut Convergence Plascan, Centre Léon Bérard, UMR INSERM 1052, CNRS 5286, Université Claude Bernard Lyon 1, Lyon, France
| | - Khaled Bouherrou
- Cancer Research Center of Lyon, Labex DEV2CAN, Institut Convergence Plascan, Centre Léon Bérard, UMR INSERM 1052, CNRS 5286, Université Claude Bernard Lyon 1, Lyon, France
| | - Maud Plaschka
- Cancer Research Center of Lyon, Labex DEV2CAN, Institut Convergence Plascan, Centre Léon Bérard, UMR INSERM 1052, CNRS 5286, Université Claude Bernard Lyon 1, Lyon, France
| | - Aurora Pignata
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), UMR INSERM 1291, CNRS 5051, Université Toulouse III, Toulouse, France
| | - Allison Voisin
- Cancer Research Center of Lyon, Labex DEV2CAN, Institut Convergence Plascan, Centre Léon Bérard, UMR INSERM 1052, CNRS 5286, Université Claude Bernard Lyon 1, Lyon, France
| | - Julie Twardowski
- Cancer Research Center of Lyon, Labex DEV2CAN, Institut Convergence Plascan, Centre Léon Bérard, UMR INSERM 1052, CNRS 5286, Université Claude Bernard Lyon 1, Lyon, France
| | - Marlène Perrin-Niquet
- Cancer Research Center of Lyon, Labex DEV2CAN, Institut Convergence Plascan, Centre Léon Bérard, UMR INSERM 1052, CNRS 5286, Université Claude Bernard Lyon 1, Lyon, France
| | - Pierre Stéphan
- Cancer Research Center of Lyon, Labex DEV2CAN, Institut Convergence Plascan, Centre Léon Bérard, UMR INSERM 1052, CNRS 5286, Université Claude Bernard Lyon 1, Lyon, France
| | - Sarah Durget
- Cancer Research Center of Lyon, Labex DEV2CAN, Institut Convergence Plascan, Centre Léon Bérard, UMR INSERM 1052, CNRS 5286, Université Claude Bernard Lyon 1, Lyon, France
| | - Laurie Tonon
- Cancer Research Center of Lyon, Labex DEV2CAN, Institut Convergence Plascan, Centre Léon Bérard, Gilles Thomas Bioinformatics Platform, UMR INSERM 1052, CNRS 5286, Université Claude Bernard Lyon 1, Lyon, France
| | - Maude Ardin
- Cancer Research Center of Lyon, Labex DEV2CAN, Institut Convergence Plascan, Centre Léon Bérard, Gilles Thomas Bioinformatics Platform, UMR INSERM 1052, CNRS 5286, Université Claude Bernard Lyon 1, Lyon, France
| | - Cyril Degletagne
- Cancer Research Center of Lyon, Labex DEV2CAN, Institut Convergence Plascan, Centre Léon Bérard, UMR INSERM 1052, CNRS 5286, Université Claude Bernard Lyon 1, Lyon, France
| | - Alain Viari
- Cancer Research Center of Lyon, Labex DEV2CAN, Institut Convergence Plascan, Centre Léon Bérard, Gilles Thomas Bioinformatics Platform, UMR INSERM 1052, CNRS 5286, Université Claude Bernard Lyon 1, Lyon, France
| | | | - Nathalie Davoust
- Laboratory of Biology and Modelling of the Cell, Ecole Normale Supérieure of Lyon, CNRS UMR 5239, INSERM U1293, Lyon, France
| | - Thomas S. Postler
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Jingyao Zhao
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Christophe Caux
- Cancer Research Center of Lyon, Labex DEV2CAN, Institut Convergence Plascan, Centre Léon Bérard, UMR INSERM 1052, CNRS 5286, Université Claude Bernard Lyon 1, Lyon, France
| | - Julie Caramel
- Cancer Research Center of Lyon, Labex DEV2CAN, Institut Convergence Plascan, Centre Léon Bérard, UMR INSERM 1052, CNRS 5286, Université Claude Bernard Lyon 1, Lyon, France
| | - Stéphane Dalle
- Cancer Research Center of Lyon, Labex DEV2CAN, Institut Convergence Plascan, Centre Léon Bérard, UMR INSERM 1052, CNRS 5286, Université Claude Bernard Lyon 1, Lyon, France
| | - Philippe A. Cassier
- Cancer Research Center of Lyon, Labex DEV2CAN, Institut Convergence Plascan, Centre Léon Bérard, UMR INSERM 1052, CNRS 5286, Université Claude Bernard Lyon 1, Lyon, France
| | - Ulf Klein
- Division of Haematology and Immunology, Leeds Institute of Medical Research at St. James’s, University of Leeds, Leeds, UK
| | - Marc Schmidt-Supprian
- Institute of Experimental Hematology, School of Medicine, Technical University of Munich, Munich, Germany
- Center for Translational Cancer Research, School of Medicine, Technical University of Munich, Munich, Germany
- German Cancer Consortium and German Cancer Research Center, Heidelberg, Germany
| | - Roland Liblau
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), UMR INSERM 1291, CNRS 5051, Université Toulouse III, Toulouse, France
| | - Sankar Ghosh
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Yenkel Grinberg-Bleyer
- Cancer Research Center of Lyon, Labex DEV2CAN, Institut Convergence Plascan, Centre Léon Bérard, UMR INSERM 1052, CNRS 5286, Université Claude Bernard Lyon 1, Lyon, France
| |
Collapse
|
7
|
Huysentruyt J, Steels W, Ruiz Perez M, Verstraeten B, Vadi M, Divert T, Flies K, Takahashi N, Lambrecht BN, Declercq W, Vanden Berghe T, Maelfait J, Vandenabeele P, Tougaard P. RIPK1 protects naive and regulatory T cells from TNFR1-induced apoptosis. Cell Death Differ 2024; 31:820-832. [PMID: 38734851 PMCID: PMC11164875 DOI: 10.1038/s41418-024-01301-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 05/13/2024] Open
Abstract
The T cell population size is stringently controlled before, during, and after immune responses, as improper cell death regulation can result in autoimmunity and immunodeficiency. RIPK1 is an important regulator of peripheral T cell survival and homeostasis. However, whether different peripheral T cell subsets show a differential requirement for RIPK1 and which programmed cell death pathway they engage in vivo remains unclear. In this study, we demonstrate that conditional ablation of Ripk1 in conventional T cells (Ripk1ΔCD4) causes peripheral T cell lymphopenia, as witnessed by a profound loss of naive CD4+, naive CD8+, and FoxP3+ regulatory T cells. Interestingly, peripheral naive CD8+ T cells in Ripk1ΔCD4 mice appear to undergo a selective pressure to retain RIPK1 expression following activation. Mixed bone marrow chimeras revealed a competitive survival disadvantage for naive, effector, and memory T cells lacking RIPK1. Additionally, tamoxifen-induced deletion of RIPK1 in CD4-expressing cells in adult life confirmed the importance of RIPK1 in post-thymic survival of CD4+ T cells. Ripk1K45A mice showed no change in peripheral T cell subsets, demonstrating that the T cell lymphopenia was due to the scaffold function of RIPK1 rather than to its kinase activity. Enhanced numbers of Ripk1ΔCD4 naive T cells expressed the proliferation marker Ki-67+ despite the peripheral lymphopenia and single-cell RNA sequencing revealed T cell-specific transcriptomic alterations that were reverted by additional caspase-8 deficiency. Furthermore, Ripk1ΔCD4Casp8 ΔCD4 and Ripk1ΔCD4Tnfr1-/- double-knockout mice rescued the peripheral T cell lymphopenia, revealing that RIPK1-deficient naive CD4+ and CD8+ cells and FoxP3+ regulatory T cells specifically die from TNF- and caspase-8-mediated apoptosis in vivo. Altogether, our findings emphasize the essential role of RIPK1 as a scaffold in maintaining the peripheral T cell compartment and preventing TNFR1-induced apoptosis.
Collapse
Affiliation(s)
- Jelle Huysentruyt
- Cell death and Inflammation Unit, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Wolf Steels
- Cell death and Inflammation Unit, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Mario Ruiz Perez
- Cell death and Inflammation Unit, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Bruno Verstraeten
- Cell death and Inflammation Unit, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Mike Vadi
- Cell death and Inflammation Unit, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Tatyana Divert
- Cell death and Inflammation Unit, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Kayleigh Flies
- Cell death and Inflammation Unit, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Nozomi Takahashi
- Cell death and Inflammation Unit, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Bart N Lambrecht
- Department of Internal Medicine and Pediatrics, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- Laboratory of Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent University, Ghent, Belgium
- Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
- Department of Pulmonary Medicine, Erasmus MC, Rotterdam, Netherlands
| | - Wim Declercq
- Cell death and Inflammation Unit, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Tom Vanden Berghe
- Cell death and Inflammation Unit, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Jonathan Maelfait
- Cell death and Inflammation Unit, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Peter Vandenabeele
- Cell death and Inflammation Unit, VIB-UGent Center for Inflammation Research, Ghent, Belgium.
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.
| | - Peter Tougaard
- Cell death and Inflammation Unit, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| |
Collapse
|
8
|
Steier Z, Kim EJY, Aylard DA, Robey EA. The CD4 Versus CD8 T Cell Fate Decision: A Multiomics-Informed Perspective. Annu Rev Immunol 2024; 42:235-258. [PMID: 38271641 DOI: 10.1146/annurev-immunol-083122-040929] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
The choice of developing thymocytes to become CD8+ cytotoxic or CD4+ helper T cells has been intensely studied, but many of the underlying mechanisms remain to be elucidated. Recent multiomics approaches have provided much higher resolution analysis of gene expression in developing thymocytes than was previously achievable, thereby offering a fresh perspective on this question. Focusing on our recent studies using CITE-seq (cellular indexing of transcriptomes and epitopes) analyses of mouse thymocytes, we present a detailed timeline of RNA and protein expression changes during CD8 versus CD4 T cell differentiation. We also revisit our current understanding of the links between T cell receptor signaling and expression of the lineage-defining transcription factors ThPOK and RUNX3. Finally, we propose a sequential selection model to explain the tight linkage between MHC-I versus MHC-II recognition and T cell lineage choice. This model incorporates key aspects of previously proposed kinetic signaling, instructive, and stochastic/selection models.
Collapse
Affiliation(s)
- Zoë Steier
- Department of Bioengineering and Center for Computational Biology, University of California, Berkeley, California, USA
- Graduate Program in Bioengineering, University of California, Berkeley, and University of California, San Francisco, Berkeley and San Francisco, California, USA
- Current affiliation: Institute for Medical Engineering and Science, Massachusetts Institute of Technology; Broad Institute of MIT and Harvard; and Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
| | - Esther Jeong Yoon Kim
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California, Berkeley, California, USA;
| | - Dominik A Aylard
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California, Berkeley, California, USA;
| | - Ellen A Robey
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California, Berkeley, California, USA;
| |
Collapse
|
9
|
Guo Q, Jin Y, Chen X, Ye X, Shen X, Lin M, Zeng C, Zhou T, Zhang J. NF-κB in biology and targeted therapy: new insights and translational implications. Signal Transduct Target Ther 2024; 9:53. [PMID: 38433280 PMCID: PMC10910037 DOI: 10.1038/s41392-024-01757-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 03/05/2024] Open
Abstract
NF-κB signaling has been discovered for nearly 40 years. Initially, NF-κB signaling was identified as a pivotal pathway in mediating inflammatory responses. However, with extensive and in-depth investigations, researchers have discovered that its role can be expanded to a variety of signaling mechanisms, biological processes, human diseases, and treatment options. In this review, we first scrutinize the research process of NF-κB signaling, and summarize the composition, activation, and regulatory mechanism of NF-κB signaling. We investigate the interaction of NF-κB signaling with other important pathways, including PI3K/AKT, MAPK, JAK-STAT, TGF-β, Wnt, Notch, Hedgehog, and TLR signaling. The physiological and pathological states of NF-κB signaling, as well as its intricate involvement in inflammation, immune regulation, and tumor microenvironment, are also explicated. Additionally, we illustrate how NF-κB signaling is involved in a variety of human diseases, including cancers, inflammatory and autoimmune diseases, cardiovascular diseases, metabolic diseases, neurological diseases, and COVID-19. Further, we discuss the therapeutic approaches targeting NF-κB signaling, including IKK inhibitors, monoclonal antibodies, proteasome inhibitors, nuclear translocation inhibitors, DNA binding inhibitors, TKIs, non-coding RNAs, immunotherapy, and CAR-T. Finally, we provide an outlook for research in the field of NF-κB signaling. We hope to present a stereoscopic, comprehensive NF-κB signaling that will inform future research and clinical practice.
Collapse
Affiliation(s)
- Qing Guo
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yizi Jin
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xinyu Chen
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Shanghai Cancer Institute & Department of Urology, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, PR China
| | - Xiaomin Ye
- Department of Cardiology, the First Affiliated Hospital of Sun Yat-Sen University, 58 Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Xin Shen
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mingxi Lin
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Cheng Zeng
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Teng Zhou
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jian Zhang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
10
|
Wang L, Zhang X, Zhang H, Lu K, Li M, Li X, Ou Y, Zhao X, Wu X, Wu X, Liu J, Xing M, Liu H, Zhang Y, Tan Y, Li F, Deng X, Deng J, Zhang X, Li J, Zhao Y, Ding Q, Wang H, Wang X, Luo Y, Zhou B, Zhang H. Excessive apoptosis of Rip1-deficient T cells leads to premature aging. EMBO Rep 2023; 24:e57925. [PMID: 37965894 PMCID: PMC10702839 DOI: 10.15252/embr.202357925] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/29/2023] [Accepted: 11/02/2023] [Indexed: 11/16/2023] Open
Abstract
In mammals, the most remarkable T cell variations with aging are the shrinking of the naïve T cell pool and the enlargement of the memory T cell pool, which are partially caused by thymic involution. However, the mechanism underlying the relationship between T-cell changes and aging remains unclear. In this study, we find that T-cell-specific Rip1 KO mice show similar age-related T cell changes and exhibit signs of accelerated aging-like phenotypes, including inflammation, multiple age-related diseases, and a shorter lifespan. Mechanistically, Rip1-deficient T cells undergo excessive apoptosis and promote chronic inflammation. Consistent with this, blocking apoptosis by co-deletion of Fadd in Rip1-deficient T cells significantly rescues lymphopenia, the imbalance between naïve and memory T cells, and aging-like phenotypes, and prolongs life span in T-cell-specific Rip1 KO mice. These results suggest that the reduction and hyperactivation of T cells can have a significant impact on organismal health and lifespan, underscoring the importance of maintaining T cell homeostasis for healthy aging and prevention or treatment of age-related diseases.
Collapse
Affiliation(s)
- Lingxia Wang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and HealthUniversity of Chinese Academy of Sciences, Chinese Academy of SciencesShanghaiChina
| | - Xixi Zhang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and HealthUniversity of Chinese Academy of Sciences, Chinese Academy of SciencesShanghaiChina
| | - Haiwei Zhang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and HealthUniversity of Chinese Academy of Sciences, Chinese Academy of SciencesShanghaiChina
| | - Kaili Lu
- Department of NeurologyShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Ming Li
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and HealthUniversity of Chinese Academy of Sciences, Chinese Academy of SciencesShanghaiChina
| | - Xiaoming Li
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and HealthUniversity of Chinese Academy of Sciences, Chinese Academy of SciencesShanghaiChina
| | - Yangjing Ou
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and HealthUniversity of Chinese Academy of Sciences, Chinese Academy of SciencesShanghaiChina
| | - Xiaoming Zhao
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and HealthUniversity of Chinese Academy of Sciences, Chinese Academy of SciencesShanghaiChina
| | - Xiaoxia Wu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and HealthUniversity of Chinese Academy of Sciences, Chinese Academy of SciencesShanghaiChina
| | - Xuanhui Wu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and HealthUniversity of Chinese Academy of Sciences, Chinese Academy of SciencesShanghaiChina
| | - Jianling Liu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and HealthUniversity of Chinese Academy of Sciences, Chinese Academy of SciencesShanghaiChina
| | - Mingyan Xing
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and HealthUniversity of Chinese Academy of Sciences, Chinese Academy of SciencesShanghaiChina
| | - Han Liu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and HealthUniversity of Chinese Academy of Sciences, Chinese Academy of SciencesShanghaiChina
| | - Yue Zhang
- Department of Anesthesiology, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yongchang Tan
- Department of Anesthesiology, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Fang Li
- Department of Anesthesiology, Shanghai First People's HospitalShanghai Jiaotong UniversityShanghaiChina
| | - Xiaoxue Deng
- CAS Key Laboratory of Molecular Virology and ImmunologyUniversity of Chinese Academy of Sciences, Chinese Academy of SciencesShanghaiChina
| | - Jiangshan Deng
- Department of NeurologyShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Xiaojie Zhang
- Department of NeurologyShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Jinbao Li
- Department of Anesthesiology, Shanghai First People's HospitalShanghai Jiaotong UniversityShanghaiChina
| | - Yuwu Zhao
- Department of NeurologyShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Qiurong Ding
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and HealthUniversity of Chinese Academy of Sciences, Chinese Academy of SciencesShanghaiChina
| | - Haikun Wang
- CAS Key Laboratory of Molecular Virology and ImmunologyUniversity of Chinese Academy of Sciences, Chinese Academy of SciencesShanghaiChina
| | - Xiuzhe Wang
- Department of NeurologyShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yan Luo
- Department of Anesthesiology, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Ben Zhou
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and HealthUniversity of Chinese Academy of Sciences, Chinese Academy of SciencesShanghaiChina
| | - Haibing Zhang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and HealthUniversity of Chinese Academy of Sciences, Chinese Academy of SciencesShanghaiChina
| |
Collapse
|
11
|
Hägglöf T, Parthasarathy R, Liendo N, Dudley EA, Leadbetter EA. RIPK1 deficiency prevents thymic NK1.1 expression and subsequent iNKT cell development. Front Immunol 2023; 14:1103591. [PMID: 37965338 PMCID: PMC10642909 DOI: 10.3389/fimmu.2023.1103591] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 10/16/2023] [Indexed: 11/16/2023] Open
Abstract
Receptor Interacting Protein Kinase 1 (RIPK1) and caspase-8 (Casp8) jointly orchestrate apoptosis, a key mechanism for eliminating developing T cells which have autoreactive or improperly arranged T cell receptors. Mutations in the scaffolding domain of Ripk1 gene have been identified in humans with autoinflammatory diseases like Cleavage Resistant RIPK1 Induced Autoinflammatory (CRIA) and Inflammatory Bowel Disease. RIPK1 protein also contributes to conventional T cell differentiation and peripheral T cell homeostasis through its scaffolding domain in a cell death independent context. Ripk1 deficient mice do not survive beyond birth, so we have studied the function of this kinase in vivo against a backdrop Ripk3 and Casp8 deficiency which allows the mice to survive to adulthood. These studies reveal a key role for RIPK1 in mediating NK1.1 expression, including on thymic iNKT cells, which is a key requirement for thymic stage 2 to stage 3 transition as well as iNKT cell precursor development. These results are consistent with RIPK1 mediating responses to TcR engagement, which influence NK1.1 expression and iNKT cell thymic development. We also used in vivo and in vitro stimulation assays to confirm a role for both Casp8 and RIPK1 in mediating iNKT cytokine effector responses. Finally, we also noted expanded and hyperactivated iNKT follicular helper (iNKTFH) cells in both DKO (Casp8-, Ripk3- deficient) and TKO mice (Ripk1-, Casp8-, Ripk3- deficient). Thus, while RIPK1 and Casp8 jointly facilitate iNKT effector function, RIPK1 uniquely influenced thymic iNKT cell development most likely by regulating molecular responses to T cell receptor engagement. iNKT developmental and functional aberrances were not evident in mice expressing a kinase-dead version of RIPK1 (RIPK1kd), indicating that the scaffolding function of this protein exerts the critical regulation of iNKT cells. Our findings suggest that small molecule inhibitors of RIPK1 could be used to regulate iNKT cell development and effector function to alleviate autoinflammatory conditions in humans.
Collapse
Affiliation(s)
- Thomas Hägglöf
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Health at San Antonio, San Antonio, TX, United States
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, United States
| | - Raksha Parthasarathy
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Health at San Antonio, San Antonio, TX, United States
| | - Nathaniel Liendo
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Health at San Antonio, San Antonio, TX, United States
- St Mary’s University, San Antonio, TX, United States
| | - Elizabeth A. Dudley
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Health at San Antonio, San Antonio, TX, United States
| | - Elizabeth A. Leadbetter
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Health at San Antonio, San Antonio, TX, United States
| |
Collapse
|
12
|
Carty F, Layzell S, Barbarulo A, Islam F, Webb LV, Seddon B. IKK promotes naïve T cell survival by repressing RIPK1-dependent apoptosis and activating NF-κB. Sci Signal 2023; 16:eabo4094. [PMID: 37368952 DOI: 10.1126/scisignal.abo4094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 06/07/2023] [Indexed: 06/29/2023]
Abstract
The inhibitor of κB kinase (IKK) complex regulates the activation of the nuclear factor κB (NF-κB) family of transcription factors. In addition, IKK represses extrinsic cell death pathways dependent on receptor-interacting serine/threonine-protein kinase 1 (RIPK1) by directly phosphorylating this kinase. Here, we showed that peripheral naïve T cells in mice required the continued expression of IKK1 and IKK2 for their survival; however, the loss of these cells was only partially prevented when extrinsic cell death pathways were blocked by either deleting Casp8 (which encodes the apoptosis-inducing caspase 8) or inhibiting the kinase activity of RIPK1. Inducible deletion of Rela (which encodes the NF-κB p65 subunit) in mature CD4+ T cells also resulted in loss of naïve CD4+ T cells and in reduced abundance of the interleukin-7 receptor (IL-7R) encoded by the NF-κB target Il7r, revealing an additional reliance upon NF-κB for the long-term survival of mature T cells. Together, these data indicate that the IKK-dependent survival of naïve CD4+ T cells depends on both repression of extrinsic cell death pathways and activation of an NF-κB-dependent survival program.
Collapse
Affiliation(s)
- Fiona Carty
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, Royal Free Hospital, London NW3 2PP, UK
| | - Scott Layzell
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, Royal Free Hospital, London NW3 2PP, UK
| | - Alessandro Barbarulo
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, Royal Free Hospital, London NW3 2PP, UK
| | - Farjana Islam
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, Royal Free Hospital, London NW3 2PP, UK
| | - Louise V Webb
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, Royal Free Hospital, London NW3 2PP, UK
| | - Benedict Seddon
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, Royal Free Hospital, London NW3 2PP, UK
| |
Collapse
|
13
|
Blanchett S, Dondelinger Y, Barbarulo A, Bertrand MJM, Seddon B. Phosphorylation of RIPK1 serine 25 mediates IKK dependent control of extrinsic cell death in T cells. Front Immunol 2022; 13:1067164. [PMID: 36532075 PMCID: PMC9756376 DOI: 10.3389/fimmu.2022.1067164] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/08/2022] [Indexed: 12/03/2022] Open
Abstract
The Inhibitor of Kappa B Kinase (IKK) complex is a critical regulator of NF-κB activation. More recently, IKK has also been shown to repress RIPK1 dependent extrinsic cell death pathways by directly phosphorylating RIPK1 at serine 25. In T cells, IKK expression is essential for normal development in the thymus, by promoting survival of thymocytes independently of NF-κB activation. RIPK1 undergoes extensive phosphorylation following TNF stimulation in T cells, though which targets are required to repress RIPK1 has not been defined. Here, we show that TNF induced phosphorylation of RIPK1 at S25 is IKK dependent. We test the relevance of this phosphorylation event in T cells using mice with a RIPK1S25D phosphomimetic point mutation to endogenous RIPK1. We find that this mutation protects T cells from TNF induced cell death when IKK activity is inhibited in vitro, and can rescues development of IKK deficient thymocytes in vivo to a degree comparable with kinase dead RIPK1D138N. Together, these data show that phosphorylation of RIPK1S25 by IKK represents a key regulatory event promoting survival of T cells by IKK.
Collapse
Affiliation(s)
- Sam Blanchett
- Institute of Immunity and Transplantation, The Pears Building, University College London, London, United Kingdom
| | - Yves Dondelinger
- Vlaams Instituut voor Biotechnologie (VIB) Center for Inflammation Research, Ghent, Belgium,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Alessandro Barbarulo
- Institute of Immunity and Transplantation, The Pears Building, University College London, London, United Kingdom
| | - Mathieu J. M. Bertrand
- Vlaams Instituut voor Biotechnologie (VIB) Center for Inflammation Research, Ghent, Belgium,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Benedict Seddon
- Institute of Immunity and Transplantation, The Pears Building, University College London, London, United Kingdom,*Correspondence: Benedict Seddon,
| |
Collapse
|
14
|
Liu J, Ji Q, Cheng F, Chen D, Geng T, Huang Y, Zhang J, He Y, Song T. The lncRNAs involved in regulating the RIG-I signaling pathway. Front Cell Infect Microbiol 2022; 12:1041682. [PMID: 36439216 PMCID: PMC9682092 DOI: 10.3389/fcimb.2022.1041682] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/21/2022] [Indexed: 09/23/2023] Open
Abstract
Understanding the targets and interactions of long non-coding RNAs (lncRNAs) related to the retinoic acid-inducible gene-I (RIG-I) signaling pathway is essential for developing interventions, which would enable directing the host inflammatory response regulation toward protective immunity. In the RIG-I signaling pathway, lncRNAs are involved in the important processes of ubiquitination, phosphorylation, and glycolysis, thus promoting the transport of the interferon regulatory factors 3 and 7 (IRF3 and IRF7) and the nuclear factor kappa B (NF-κB) into the nucleus, and activating recruitment of type I interferons (IFN-I) and inflammatory factors to the antiviral action site. In addition, the RIG-I signaling pathway has recently been reported to contain the targets of coronavirus disease-19 (COVID-19)-related lncRNAs. The molecules in the RIG-I signaling pathway are directly regulated by the lncRNA-microRNAs (miRNAs)-messenger RNA (mRNA) axis. Therefore, targeting this axis has become a novel strategy for the diagnosis and treatment of cancer. In this paper, the studies on the regulation of the RIG-I signaling pathway by lncRNAs during viral infections and cancer are comprehensively analyzed. The aim is to provide a solid foundation of information for conducting further detailed studies on lncRNAs and RIG-I in the future and also contribute to clinical drug development.
Collapse
Affiliation(s)
- Jing Liu
- Department of Immunology, Zunyi Medical University, Zunyi, China
| | - Qinglu Ji
- School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Feng Cheng
- Department of Immunology, Zunyi Medical University, Zunyi, China
| | - Dengwang Chen
- Department of Immunology, Zunyi Medical University, Zunyi, China
| | - Tingting Geng
- Department of Immunology, Zunyi Medical University, Zunyi, China
| | - Yueyue Huang
- Department of Immunology, Zunyi Medical University, Zunyi, China
| | - Jidong Zhang
- Department of Immunology, Zunyi Medical University, Zunyi, China
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi Medical University, Zunyi, China
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi, China
| | - Yuqi He
- School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Tao Song
- Department of Immunology, Zunyi Medical University, Zunyi, China
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi Medical University, Zunyi, China
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi, China
| |
Collapse
|
15
|
Teh CE, Preston SP, Robbins AK, Stutz MD, Cooney J, Clark MP, Policheni AN, Allison CC, Mackiewicz L, Arandjelovic P, Ebert G, Doerflinger M, Tan T, Rankin LC, Teh PP, Belz GT, Kallies A, Strasser A, Pellegrini M, Gray DHD. Caspase-8 has dual roles in regulatory T cell homeostasis balancing immunity to infection and collateral inflammatory damage. Sci Immunol 2022; 7:eabn8041. [PMID: 35333545 DOI: 10.1126/sciimmunol.abn8041] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Targeting the potent immunosuppressive properties of FOXP3+ regulatory T cells (Tregs) has substantial therapeutic potential for treating autoimmune and inflammatory diseases. Yet, the molecular mechanisms controlling Treg homeostasis, particularly during inflammation, remain unclear. We report that caspase-8 is a central regulator of Treg homeostasis in a context-specific manner that is decisive during immune responses. In mouse genetic models, targeting caspase-8 in Tregs led to accumulation of effector Tregs resistant to apoptotic cell death. Conversely, inflammation induced the MLKL-dependent necroptosis of caspase-8-deficient lymphoid and tissue Tregs, which enhanced immunity to a variety of chronic infections to promote clearance of viral or parasitic pathogens. However, improved immunity came at the risk of lethal inflammation in overwhelming infections. Caspase-8 inhibition using a clinical-stage compound revealed that human Tregs have heightened sensitivity to necroptosis compared with conventional T cells. These findings reveal a fundamental mechanism in Tregs that could be targeted to manipulate the balance between immune tolerance versus response for therapeutic benefit.
Collapse
Affiliation(s)
- Charis E Teh
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Simon P Preston
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Alissa K Robbins
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Michael D Stutz
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - James Cooney
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Michelle P Clark
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Antonia N Policheni
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Cody C Allison
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Liana Mackiewicz
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
| | - Philip Arandjelovic
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Gregor Ebert
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Marcel Doerflinger
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Tania Tan
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
| | - Lucille C Rankin
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Peggy P Teh
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia.,Department of Renal Medicine, Alfred Health, Melbourne, VIC, Australia.,Department of Nephrology, Western Health, Melbourne, VIC, Australia
| | - Gabrielle T Belz
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Axel Kallies
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Andreas Strasser
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Marc Pellegrini
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Daniel H D Gray
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
16
|
Rawle DJ, Le TT, Dumenil T, Bishop C, Yan K, Nakayama E, Bird PI, Suhrbier A. Widespread discrepancy in Nnt genotypes and genetic backgrounds complicates granzyme A and other knockout mouse studies. eLife 2022; 11:e70207. [PMID: 35119362 PMCID: PMC8816380 DOI: 10.7554/elife.70207] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 01/10/2022] [Indexed: 02/06/2023] Open
Abstract
Granzyme A (GZMA) is a serine protease secreted by cytotoxic lymphocytes, with Gzma-/- mouse studies having informed our understanding of GZMA's physiological function. We show herein that Gzma-/- mice have a mixed C57BL/6J and C57BL/6N genetic background and retain the full-length nicotinamide nucleotide transhydrogenase (Nnt) gene, whereas Nnt is truncated in C57BL/6J mice. Chikungunya viral arthritis was substantially ameliorated in Gzma-/- mice; however, the presence of Nnt and the C57BL/6N background, rather than loss of GZMA expression, was responsible for this phenotype. A new CRISPR active site mutant C57BL/6J GzmaS211A mouse provided the first insights into GZMA's bioactivity free of background issues, with circulating proteolytically active GZMA promoting immune-stimulating and pro-inflammatory signatures. Remarkably, k-mer mining of the Sequence Read Archive illustrated that ≈27% of Run Accessions and ≈38% of BioProjects listing C57BL/6J as the mouse strain had Nnt sequencing reads inconsistent with a C57BL/6J genetic background. Nnt and C57BL/6N background issues have clearly complicated our understanding of GZMA and may similarly have influenced studies across a broad range of fields.
Collapse
Affiliation(s)
- Daniel J Rawle
- QIMR Berghofer Medical Research InstituteBrisbaneAustralia
| | - Thuy T Le
- QIMR Berghofer Medical Research InstituteBrisbaneAustralia
| | - Troy Dumenil
- QIMR Berghofer Medical Research InstituteBrisbaneAustralia
| | - Cameron Bishop
- QIMR Berghofer Medical Research InstituteBrisbaneAustralia
| | - Kexin Yan
- QIMR Berghofer Medical Research InstituteBrisbaneAustralia
| | - Eri Nakayama
- QIMR Berghofer Medical Research InstituteBrisbaneAustralia
- Department of Virology I, National Institute of Infectious DiseasesTokyoJapan
| | - Phillip I Bird
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash UniversityMelbourneAustralia
| | - Andreas Suhrbier
- QIMR Berghofer Medical Research InstituteBrisbaneAustralia
- Australian Infectious Disease Research Centre, GVN Center of ExcellenceBrisbaneAustralia
| |
Collapse
|
17
|
IKK β mediates homeostatic function in inflammation via competitively phosphorylating AMPK and I κB α. Acta Pharm Sin B 2022; 12:651-664. [PMID: 35256937 PMCID: PMC8897026 DOI: 10.1016/j.apsb.2021.09.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/09/2021] [Accepted: 09/03/2021] [Indexed: 12/30/2022] Open
Abstract
Inhibitor of nuclear factor kappa-B kinase subunit beta (IKKβ) is one of important kinases in inflammation to phosphorylate inhibitor of nuclear factor kappa-B (IκBα) and then activate nuclear factor kappa-B (NF-κB). Inhibition of IKKβ has been a therapeutic strategy for inflammatory and autoimmune diseases. Here we report that IKKβ is constitutively activated in healthy donors and healthy IkkβC46A (cysteine 46 mutated to alanine) knock-in mice although they possess intensive IKKβ–IκBα–NF-κB signaling activation. These indicate that IKKβ activation probably plays homeostatic role instead of causing inflammation. Compared to IkkβWT littermates, lipopolysaccharides (LPS) could induce high mortality rate in IkkβC46A mice which is correlated to breaking the homeostasis by intensively activating p-IκBα–NF-κB signaling and inhibiting phosphorylation of 5ʹ adenosine monophosphate-activated protein kinase (p-AMPK) expression. We then demonstrated that IKKβ kinase domain (KD) phosphorylates AMPKα1 via interacting with residues Thr183, Ser184, and Thr388, while IKKβ helix–loop–helix motifs is essential to phosphorylate IκBα according to the previous reports. Kinase assay further demonstrated that IKKβ simultaneously catalyzes phosphorylation of AMPK and IκBα to mediate homeostasis. Accordingly, activation of AMPK rather than inhibition of IKKβ could substantially rescue LPS-induced mortality in IkkβC46A mice by rebuilding the homeostasis. We conclude that IKKβ activates AMPK to restrict inflammation and IKKβ mediates homeostatic function in inflammation via competitively phosphorylating AMPK and IκBα.
Collapse
|
18
|
Parthasarathy R, Hägglöf T, Hadley JT, McLennan A, Mattke A, Dudley EA, Kumagai A, Dong LQ, Leadbetter EA. Receptor Interacting Protein Kinase Pathways Regulate Innate B Cell Developmental Checkpoints But Not Effector Function in Mice. Front Immunol 2021; 12:758407. [PMID: 34956189 PMCID: PMC8696004 DOI: 10.3389/fimmu.2021.758407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 11/22/2021] [Indexed: 11/13/2022] Open
Abstract
Mutations in the scaffolding domain of Receptor Interacting Protein kinases (RIP) underlie the recently described human autoimmune syndrome, CRIA, characterized by lymphadenopathy, splenomegaly, and autoantibody production. While disease mechanisms for CRIA remain undescribed, RIP kinases work together with caspase-8 to regulate cell death, which is critical for normal differentiation of many cell types. Here, we describe a key role for RIP1 in facilitating innate B cell differentiation and subsequent activation. By comparing RIP1, RIP3, and caspase-8 triple deficient and RIP3, caspase-8 double deficient mice, we identified selective contributions of RIP1 to an accumulation of murine splenic Marginal Zone (MZ) B cells and B1-b cells. We used mixed bone-marrow chimeras to determine that innate B cell commitment required B cell-intrinsic RIP1, RIP3, and caspase-8 sufficiency. RIP1 regulated MZ B cell development rather than differentiation and RIP1 mediates its innate immune effects independent of the RIP1 kinase domain. NP-KLH/alum and NP-Ficoll vaccination of mice doubly deficient in both caspase-8 and RIP3 or deficient in all three proteins (RIP3, caspase-8, and RIP1) revealed uniquely delayed T-dependent and T-independent IgG responses, abnormal splenic germinal center architecture, and reduced extrafollicular plasmablast formation compared to WT mice. Thus, RIP kinases and caspase-8 jointly orchestrate B cell fate and delayed effector function through a B cell-intrinsic mechanism.
Collapse
Affiliation(s)
- Raksha Parthasarathy
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Health at San Antonio, San Antonio, TX, United States
| | - Thomas Hägglöf
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Health at San Antonio, San Antonio, TX, United States
| | - Jason T. Hadley
- Department of Cell Systems and Anatomy, University of Texas Health at San Antonio, San Antonio, TX, United States
| | - Alexandra McLennan
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Health at San Antonio, San Antonio, TX, United States
- Department of Engineering, St Mary’s University, San Antonio, TX, United States
| | - Aiden Mattke
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Health at San Antonio, San Antonio, TX, United States
| | - Elizabeth A. Dudley
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Health at San Antonio, San Antonio, TX, United States
| | - Abigail Kumagai
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Health at San Antonio, San Antonio, TX, United States
| | - Lily Q. Dong
- Department of Cell Systems and Anatomy, University of Texas Health at San Antonio, San Antonio, TX, United States
| | - Elizabeth A. Leadbetter
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Health at San Antonio, San Antonio, TX, United States
| |
Collapse
|
19
|
Jain R, Zhao K, Sheridan JM, Heinlein M, Kupresanin F, Abeysekera W, Hall C, Rickard J, Bouillet P, Walczak H, Strasser A, Silke J, Gray DHD. Dual roles for LUBAC signaling in thymic epithelial cell development and survival. Cell Death Differ 2021; 28:2946-2956. [PMID: 34381167 PMCID: PMC8481470 DOI: 10.1038/s41418-021-00850-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 07/26/2021] [Accepted: 08/02/2021] [Indexed: 01/08/2023] Open
Abstract
Thymic epithelial cells (TECs) form a unique microenvironment that orchestrates T cell differentiation and immunological tolerance. Despite the importance of TECs for adaptive immunity, there is an incomplete understanding of the signalling networks that support their differentiation and survival. We report that the linear ubiquitin chain assembly complex (LUBAC) is essential for medullary TEC (mTEC) differentiation, cortical TEC survival and prevention of premature thymic atrophy. TEC-specific loss of LUBAC proteins, HOIL-1 or HOIP, severely impaired expansion of the thymic medulla and AIRE-expressing cells. Furthermore, HOIL-1-deficiency caused early thymic atrophy due to Caspase-8/MLKL-dependent apoptosis/necroptosis of cortical TECs. By contrast, deficiency in the LUBAC component, SHARPIN, caused relatively mild defects only in mTECs. These distinct roles for LUBAC components in TECs correlate with their function in linear ubiquitination, NFκB activation and cell survival. Thus, our findings reveal dual roles for LUBAC signaling in TEC differentiation and survival.
Collapse
Affiliation(s)
- Reema Jain
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Kelin Zhao
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Julie M Sheridan
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Melanie Heinlein
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
- Department of Molecular Oncology, Genentech, Inc., South San Francisco, CA, USA
| | - Fiona Kupresanin
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- ANZAC Research Institute, Concord, Australia
| | - Waruni Abeysekera
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Cathrine Hall
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - James Rickard
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Philippe Bouillet
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Henning Walczak
- Centre for Cell Death, Cancer and Inflammation, UCL Cancer Institute, University College London, London, UK
- Centre for Biochemistry, University of Cologne, Cologne, Germany
| | - Andreas Strasser
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - John Silke
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Daniel H D Gray
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
20
|
Zhu Y, Lu Y, Yuan L, Ling W, Jiang X, Chen S, Hu B. LincRNA-Cox2 regulates IL6/JAK3/STAT3 and NF-κB P65 pathway activation in Listeria monocytogenes-infected RAW264.7 cells. Int J Med Microbiol 2021; 311:151515. [PMID: 34146956 DOI: 10.1016/j.ijmm.2021.151515] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 05/16/2021] [Accepted: 06/08/2021] [Indexed: 12/13/2022] Open
Abstract
Listeria monocytogenes (Lm) can lead to high mortality rates relative to other foodborne pathogens. Lm-induced inflammation is partly characterized by macrophage activation. Long non-coding RNAs (lncRNAs) have important roles in various biological processes. However, it is unknown how lncRNAs regulate the host response to Lm infection. To identify the role of lncRNA in Lm infection, we used in vitro and in vivo models. We found that lincRNA-Cox2 was highly expressed in Lm-infected RAW264.7 cells. LincRNA-Cox2 knockdown resulted in reduced proinflammatory cytokines, apoptosis, migration ability and enhanced phagocytosis of Lm. LincRNA-Cox2 knockdown also reduced the phosphorylation of Janus kinase 3 (JAK3) and signal transducer and activator of transcription (STAT3) and the nuclear translocation of nuclear factor (NF)-κB P65, which are known to be involved in inflammatory responses. Experimentally inhibiting the protein and phosphorylation levels of STAT3 resulted in reduced proinflammatory cytokines and enhanced phagocytosis of Lm by the RAW264.7 cells. Our research suggests that lincRNA-Cox2 plays important roles in inflammation, the phagocytic function and cell migration ability of RAW264.7 cells by activating interleukin (IL)-6/JAK3/STAT3 signaling, and lincRNA-Cox2 also regulates NF-κB P65 nuclear translocation. Our research provides new insights into the regulatory role of lincRNA-Cox2 in Lm infection.
Collapse
Affiliation(s)
- Yurong Zhu
- School of medicine, Jiangsu University, Zhenjiang, 212013, China; Department of Microbiology Laboratory, Linfen Central Hospital, Linfen, 041000, China
| | - Ye Lu
- School of medicine, Jiangsu University, Zhenjiang, 212013, China; Department of Clinical Laboratory, Yixing People's Hospital, Affiliated Jiangsu University, Wuxi, 214200, China
| | - Lin Yuan
- School of medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Wei Ling
- School of medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Xugan Jiang
- School of medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Shengxia Chen
- School of medicine, Jiangsu University, Zhenjiang, 212013, China.
| | - Bing Hu
- Department of Clinical Laboratory, Northern Jiangsu People' s Hospital, Yangzhou, 225001, China.
| |
Collapse
|
21
|
Cosway EJ, James KD, Lucas B, Anderson G, White AJ. The thymus medulla and its control of αβT cell development. Semin Immunopathol 2020; 43:15-27. [PMID: 33306154 PMCID: PMC7925449 DOI: 10.1007/s00281-020-00830-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 11/20/2020] [Indexed: 02/07/2023]
Abstract
αβT cells are an essential component of effective immune responses. The heterogeneity that lies within them includes subsets that express diverse self-MHC-restricted αβT cell receptors, which can be further subdivided into CD4+ helper, CD8+ cytotoxic, and Foxp3+ regulatory T cells. In addition, αβT cells also include invariant natural killer T cells that are very limited in αβT cell receptor repertoire diversity and recognise non-polymorphic CD1d molecules that present lipid antigens. Importantly, all αβT cell sublineages are dependent upon the thymus as a shared site of their development. Ongoing research has examined how the thymus balances the intrathymic production of multiple αβT cell subsets to ensure correct formation and functioning of the peripheral immune system. Experiments in both wild-type and genetically modified mice have been essential in revealing complex cellular and molecular mechanisms that regulate thymus function. In particular, studies have demonstrated the diverse and critical role that the thymus medulla plays in shaping the peripheral T cell pool. In this review, we summarise current knowledge on functional properties of the thymus medulla that enable the thymus to support the production of diverse αβT cell types.
Collapse
Affiliation(s)
- Emilie J Cosway
- Institute of Immunology and Immunotherapy, Floor 4 Institute for Biomedical Research, Medical School, University of Birmingham, Birmingham, B15 2TT, UK
| | - Kieran D James
- Institute of Immunology and Immunotherapy, Floor 4 Institute for Biomedical Research, Medical School, University of Birmingham, Birmingham, B15 2TT, UK
| | - Beth Lucas
- Institute of Immunology and Immunotherapy, Floor 4 Institute for Biomedical Research, Medical School, University of Birmingham, Birmingham, B15 2TT, UK
| | - Graham Anderson
- Institute of Immunology and Immunotherapy, Floor 4 Institute for Biomedical Research, Medical School, University of Birmingham, Birmingham, B15 2TT, UK.
| | - Andrea J White
- Institute of Immunology and Immunotherapy, Floor 4 Institute for Biomedical Research, Medical School, University of Birmingham, Birmingham, B15 2TT, UK
| |
Collapse
|
22
|
Blanchett S, Boal-Carvalho I, Layzell S, Seddon B. NF-κB and Extrinsic Cell Death Pathways - Entwined Do-or-Die Decisions for T cells. Trends Immunol 2020; 42:76-88. [PMID: 33246882 DOI: 10.1016/j.it.2020.10.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/09/2020] [Accepted: 10/27/2020] [Indexed: 12/23/2022]
Abstract
NF-κB signaling is required at multiple stages of T cell development and function. The NF-κB pathway integrates signals from many receptors and involves diverse adapters and kinases. Recent advances demonstrate that kinases controlling NF-κB activation, such as the IKK complex, serve dual independent functions because they also control cell death checkpoints. Survival functions previously attributed to NF-κB are in fact mediated by these upstream kinases by novel mechanisms. This new understanding has led to a refined view of how NF-κB and cell death signaling are interlinked and how they regulate cell fate. We discuss how NF-κB activation and control of cell death signaling by common upstream triggers cooperate to regulate different aspects of T cell development and function.
Collapse
Affiliation(s)
- Sam Blanchett
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, Royal Free Hospital, Rowland Hill Street, London NW3 2PF, UK
| | - Ines Boal-Carvalho
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, Royal Free Hospital, Rowland Hill Street, London NW3 2PF, UK
| | - Scott Layzell
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, Royal Free Hospital, Rowland Hill Street, London NW3 2PF, UK
| | - Benedict Seddon
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, Royal Free Hospital, Rowland Hill Street, London NW3 2PF, UK.
| |
Collapse
|
23
|
Liu L, Lalaoui N. 25 years of research put RIPK1 in the clinic. Semin Cell Dev Biol 2020; 109:86-95. [PMID: 32938551 DOI: 10.1016/j.semcdb.2020.08.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/17/2020] [Accepted: 08/17/2020] [Indexed: 01/09/2023]
Abstract
Receptor Interacting Protein Kinase 1 (RIPK1) is a key regulator of inflammation. To warrant cell survival and appropriate immune responses, RIPK1 is post-translationally regulated by ubiquitylations, phosphorylations and caspase-8-mediated cleavage. Dysregulations of these post-translational modifications switch on the pro-death function of RIPK1 and can cause inflammatory diseases in humans. Conversely, activation of RIPK1 cytotoxicity can be advantageous for cancer treatment. Small molecules targeting RIPK1 are under development for the treatment of cancer, inflammatory and neurogenerative disorders. We will discuss the molecular mechanisms controlling the functions of RIPK1, its pathologic role in humans and the therapeutic opportunities in targeting RIPK1, specifically in the context of inflammatory diseases and cancers.
Collapse
Affiliation(s)
- Lin Liu
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria 3050, Australia
| | - Najoua Lalaoui
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria 3050, Australia.
| |
Collapse
|
24
|
Liu Z, Chan FKM. Regulatory mechanisms of RIPK1 in cell death and inflammation. Semin Cell Dev Biol 2020; 109:70-75. [PMID: 32616439 DOI: 10.1016/j.semcdb.2020.06.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 06/19/2020] [Accepted: 06/24/2020] [Indexed: 10/24/2022]
Abstract
Receptor Interacting Protein Kinase 1 (RIPK1) and RIPK3 are key adaptors that play critical roles in inflammatory and cell death signaling. Work in recent years have shown that their activities are tightly regulated by ubiquitination, phosphorylation and proteolysis. In addition to these post-translational modifications, the expression and activities of these kinases can further be tuned by environmental changes in pH and oxygen content. Proper control of these regulatory processes is crucial for the RIP kinases to execute their functions in immune responses and tissue homeostasis. In this review, we discuss recent advance in our understanding of the molecular mechanisms that regulate the activities of the RIP kinases. We will also discuss how the different regulatory mechanisms contribute to the functions of RIPK1 and RIPK3 in different pathophysiological settings.
Collapse
Affiliation(s)
- Zhijun Liu
- Department of Immunology, Duke University School of Medicine, Durham, NC, 27710-3010, United States
| | - Francis Ka-Ming Chan
- Department of Immunology, Duke University School of Medicine, Durham, NC, 27710-3010, United States.
| |
Collapse
|
25
|
Delanghe T, Dondelinger Y, Bertrand MJM. RIPK1 Kinase-Dependent Death: A Symphony of Phosphorylation Events. Trends Cell Biol 2020; 30:189-200. [PMID: 31959328 DOI: 10.1016/j.tcb.2019.12.009] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 11/28/2019] [Accepted: 12/17/2019] [Indexed: 01/05/2023]
Abstract
The serine/threonine kinase RIPK1 has emerged as a crucial component of the inflammatory response activated downstream of several immune receptors, where it paradoxically functions as a scaffold to protect the cell from death or instead as an active kinase to promote the killing of the cell. While RIPK1 kinase-dependent cell death has revealed its physiological importance in the context of microbial infection, aberrant activation of RIPK1 is also demonstrated to promote cell death-driven inflammatory pathologies, highlighting the importance of fundamentally understanding proper RIPK1 regulation. Recent advances in the field demonstrated the crucial role of phosphorylation in the fine-tuning of RIPK1 activation and, additionally, question the exact mechanism by which RIPK1 enzymatic activity transmits the death signal.
Collapse
Affiliation(s)
- Tom Delanghe
- VIB Center for Inflammation Research, 9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| | - Yves Dondelinger
- VIB Center for Inflammation Research, 9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| | - Mathieu J M Bertrand
- VIB Center for Inflammation Research, 9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium.
| |
Collapse
|
26
|
Tsaouli G, Barbarulo A, Vacca A, Screpanti I, Felli MP. Molecular Mechanisms of Notch Signaling in Lymphoid Cell Lineages Development: NF-κB and Beyond. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1227:145-164. [PMID: 32072504 DOI: 10.1007/978-3-030-36422-9_10] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Notch is a ligand-receptor interaction-triggered signaling cascade highly conserved, that influences multiple lineage decisions within the hematopoietic and the immune system. It is a recognized model of intercellular communication that plays an essential role in embryonic as well as in adult immune cell development and homeostasis. Four members belong to the family of Notch receptors (Notch1-4), and each of them plays nonredundant functions at several developmental stages. Canonical and noncanonical pathways of Notch signaling are multifaceted drivers of immune cells biology. In fact, increasing evidence highlighted Notch as an important modulator of immune responses, also in cancer microenvironment. In these contexts, multiple transduction signals, including canonical and alternative NF-κB pathways, play a relevant role. In this chapter, we will first describe the critical role of Notch and NF-κB signals in lymphoid lineages developing in thymus: natural killer T cells, thymocytes, and thymic T regulatory cells. We will address also the role played by ligand expressing cells. Given the importance of Notch/NF-κB cross talk, its role in T-cell leukemia development and progression will be discussed.
Collapse
Affiliation(s)
- G Tsaouli
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - A Barbarulo
- Department of Immunology, Institute of Immunity and Transplantation, Royal Free Hospital, London, UK
| | - A Vacca
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - I Screpanti
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy.
| | - M P Felli
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
27
|
Hogan T, Nowicka M, Cownden D, Pearson CF, Yates AJ, Seddon B. Differential impact of self and environmental antigens on the ontogeny and maintenance of CD4 + T cell memory. eLife 2019; 8:e48901. [PMID: 31742553 PMCID: PMC6905650 DOI: 10.7554/elife.48901] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 11/17/2019] [Indexed: 11/13/2022] Open
Abstract
Laboratory mice develop populations of circulating memory CD4+ T cells in the absence of overt infection. We have previously shown that these populations are replenished from naive precursors at high levels throughout life (Gossel et al., 2017). However, the nature, relative importance and timing of the forces generating these cells remain unclear. Here, we tracked the generation of memory CD4+ T cell subsets in mice housed in facilities differing in their 'dirtiness'. We found evidence for sequential naive to central memory to effector memory development, and confirmed that both memory subsets are heterogeneous in their rates of turnover. We also inferred that early exposure to self and environmental antigens establishes persistent memory populations at levels determined largely, although not exclusively, by the dirtiness of the environment. After the first few weeks of life, however, these populations are continuously supplemented by new memory cells at rates that are independent of environment.
Collapse
Affiliation(s)
- Thea Hogan
- Institute of Immunity and Transplantation, Division of Infection and ImmunityUniversity College LondonLondonUnited Kingdom
| | - Maria Nowicka
- Department of Pathology and Cell BiologyColumbia University Medical CenterNew YorkUnited States
| | - Daniel Cownden
- Institute of Infection, Immunity and InflammationUniversity of GlasgowGlasgowUnited Kingdom
| | - Claire F Pearson
- Kennedy Institute of RheumatologyUniversity of OxfordOxfordUnited Kingdom
| | - Andrew J Yates
- Department of Pathology and Cell BiologyColumbia University Medical CenterNew YorkUnited States
| | - Benedict Seddon
- Institute of Immunity and Transplantation, Division of Infection and ImmunityUniversity College LondonLondonUnited Kingdom
| |
Collapse
|
28
|
Flip the coin: IL-7 and IL-7R in health and disease. Nat Immunol 2019; 20:1584-1593. [PMID: 31745336 DOI: 10.1038/s41590-019-0479-x] [Citation(s) in RCA: 196] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 07/26/2019] [Indexed: 12/14/2022]
Abstract
The cytokine IL-7 and its receptor, IL-7R, are critical for T cell and, in the mouse, B cell development, as well as differentiation and survival of naive T cells, and generation and maintenance of memory T cells. They are also required for innate lymphoid cell (ILC) development and maintenance, and consequently for generation of lymphoid structures and barrier defense. Here we discuss the central role of IL-7 and IL-7R in the lymphoid system and highlight the impact of their deregulation, placing a particular emphasis on their 'dark side' as promoters of cancer development. We also explore therapeutic implications and opportunities associated with either positive or negative modulation of the IL-7-IL-7R signaling axis.
Collapse
|