1
|
Luo X, Liang J, Lei X, Sun F, Gong M, Liu B, Zhou Z. C/EBPβ in Alzheimer's disease: An integrative regulator of pathological mechanisms. Brain Res Bull 2025; 221:111198. [PMID: 39788461 DOI: 10.1016/j.brainresbull.2025.111198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/22/2024] [Accepted: 01/06/2025] [Indexed: 01/12/2025]
Abstract
Alzheimer's disease (AD) stands as one of the most prevalent neurodegenerative disorders, characterized by a progressive decline in cognitive function, neuroinflammation, amyloid-beta (Aβ) plaques, and neurofibrillary tangles (NFTs). With the global aging population, the incidence of AD continues to rise, yet current therapeutic strategies remain limited in their ability to significantly alleviate cognitive impairments. Therefore, a deeper understanding of the molecular mechanisms underlying AD is imperative for the development of more effective treatments. In recent years, the transcription factor C/EBPβ has emerged as a pivotal regulator in several pathological processes of AD, including neuroinflammation, lipid metabolism, Aβ processing, and tau phosphorylation. Through intricate post-translational modifications, C/EBPβ modulates these processes and may influence the progression of AD on multiple fronts. This review systematically explores the multifaceted roles of C/EBPβ in the pathogenesis of AD, delving into its crucial involvement in neuroinflammation, Aβ production, tau pathology, and lipid metabolism dysregulation. Furthermore, we critically assess therapeutic strategies targeting C/EBPβ, examining the challenges and opportunities in regulating this factor. By synthesizing the latest research findings, we offer a more comprehensive understanding of the role of C/EBPβ in AD and discuss its potential as a therapeutic intervention target.
Collapse
Affiliation(s)
- Xiaoting Luo
- Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang, China
| | - Junyi Liang
- Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang, China
| | - Xue Lei
- The First Hospital Affiliated to Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang, China
| | - Fengqi Sun
- Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang, China
| | | | - Bin Liu
- Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang, China.
| | - Zhongguang Zhou
- Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang, China
| |
Collapse
|
2
|
Jiang C, Somavarapu S. Design and development of DSPE-PEG2000/DPPC disk-like micelles for targeted delivery of icariin phytochemical in pulmonary fibrosis. Int J Pharm 2024; 667:124837. [PMID: 39414183 DOI: 10.1016/j.ijpharm.2024.124837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/09/2024] [Accepted: 10/13/2024] [Indexed: 10/18/2024]
Abstract
Icariin (ICA)-loaded DSPE-PEG2000/DPPC disk-like micelles were synthesized utilizing the thin film hydration method to enhance the solubility and delivery of ICA to the lungs. The micellar formulation significantly improved the water solubility of ICA. This was attributed to the high encapsulation efficiency (95 %) and drug loading capacity (12 %) of the DSPE-PEG2000/DPPC micelles. Comprehensive characterization using Fourier-transform infrared spectroscopy (FT-IR) and X-ray diffraction (XRD). Particle size analysis through dynamic light scattering (DLS) and transmission electron microscopy (TEM) demonstrated the formation of stable micelles with an average particle size around 10 nm. In vitro aerosolization studies using the next-generation impactor (NGI) revealed that the fine particle fraction was 63.5 ± 4 %, which means that over 60 % of the aerosolized ICA/DSPE-PEG2000/DPPC micelles were capable of reaching and targeting the deep lung alveoli, indicating their potential efficacy for pulmonary delivery. Cytotoxicity assessments via the MTT assay showed IC50 values of ICA-loaded DSPE-PEG2000/DPPC micelles were 117 ± 8 μg/mL, 29 ± 3 μg/mL, and 21 ± 1 μg/mL at 24, 48, and 72 h, respectively, highlighting the time-dependent cytotoxic effects of the ICA-loaded micelles on A549 cells. However, the IC50 values of free ICA were > 500 μg/mL, 252 ± 3 μg/mL, and 109 ± 2 μg/mL, respectively at three different time points. That indicated that ICA-loaded nano micelles enhanced the cytotoxicity of ICA. Furthermore, the cellular uptake of the nano micelles by A549 cells was visualized and confirmed using EVOS fluorescence imaging and flow cytometry techniques. In addition, RAW 264.7 M2 polarization studies indicated ICA loaded DSPE-PEG2000/DPPC micelles have potential for treating pulmonary fibrosis. These findings suggest that DSPE-PEG2000/DPPC micelles significantly enhance the solubility and delivery of ICA, presenting a promising nanocarrier system for targeted pulmonary fibrosis therapy.
Collapse
Affiliation(s)
- Chengwei Jiang
- Department of Pharmaceutics, School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Satyanarayana Somavarapu
- Department of Pharmaceutics, School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK.
| |
Collapse
|
3
|
Jin H, Park SY, Lee JE, Park H, Jeong M, Lee H, Cho J, Lee YS. GTSE1-driven ZEB1 stabilization promotes pulmonary fibrosis through the epithelial-to-mesenchymal transition. Mol Ther 2024; 32:4138-4157. [PMID: 39342428 PMCID: PMC11573610 DOI: 10.1016/j.ymthe.2024.09.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 08/06/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024] Open
Abstract
G2 and S phase-expressed protein 1 (GTSE1) has been implicated in the development of pulmonary fibrosis (PF); however, its biological function, molecular mechanism, and potential clinical implications remain unknown. Here, we explored the genomic data of patients with idiopathic PF (IPF) and found that GTSE1 expression is elevated in their lung tissues, but rarely expressed in normal lung tissues. Thus, we explored the biological role and downstream events of GTSE1 using IPF patient tissues and PF mouse models. The comprehensive bioinformatics analyses suggested that the increase of GTSE1 in IPF is linked to the enhanced gene signature for the epithelial-to-mesenchymal transition (EMT), leading us to investigate the potential interaction between GTSE1 and EMT transcription factors. GTSE1 preferentially binds to the less stable form of zinc-finger E-box-binding homeobox 1 (ZEB1), the unphosphorylated form at Ser585, inhibiting ZEB1 degradation. Consistently, the ZEB1 protein level in IPF patient and PF mouse tissues correlates with the GTSE1 protein level and the amount of collagen accumulation, representing fibrosis severity. Collectively, our findings highlight the GTSE1-ZEB1 axis as a novel driver of the pathological EMT characteristic during PF development and progression, supporting further investigation into GTSE1-targeting approaches for PF treatment.
Collapse
Affiliation(s)
- Hee Jin
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - So-Yeon Park
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 120-750, Republic of Korea; Center for Genome Engineering, Institute for Basic Science, Daejeon 34126, Republic of Korea
| | - Ji Eun Lee
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - Hangyeol Park
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - Michaela Jeong
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - Hyukjin Lee
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - Jaeho Cho
- Department of Radiation Oncology, Yonsei University Health System, Seoul 120-749, Republic of Korea
| | - Yun-Sil Lee
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 120-750, Republic of Korea.
| |
Collapse
|
4
|
Lee HJ, Lee HY. Characterization of lung function impairment and pathological changes induced by chronic lead and cadmium inhalation: Insights from a mouse model study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 283:116776. [PMID: 39059344 DOI: 10.1016/j.ecoenv.2024.116776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/14/2024] [Accepted: 07/21/2024] [Indexed: 07/28/2024]
Abstract
Exposure to environmental heavy metals such as lead (Pb) and cadmium (Cd) is a global concern due to their widespread presence. However, the specific pulmonary effects of inhaled exposure, especially related to long-term effects, remain poorly understood. In this study, we developed a novel mouse model of Pb and Cd inhalation to mimic real-world conditions and investigate pulmonary effects. Mice were exposed to Pb and Cd inhalation for 6 months using a whole-body exposure system, resulting in decreased lung compliance and progression from emphysematous changes to fibrosis. In addition, the blood Pb/Cd levels of mice exposed to Pb/Cd for 6 months are like those of humans occupationally exposed to heavy metals. Histology revealed inflammation and collagen deposition. Transcriptomic analysis highlighted immune responses and macrophage activity in developing fibrosis. These results confirm an association between Pb/Cd exposure and emphysema and fibrosis, reflecting clinical findings. The study highlights the importance of long-term exposure assessment and time-course analysis for understanding Pb/Cd-induced lung disease. The relevance of the mouse model in replicating human exposure scenarios underscores its value in studying fibrosis and emphysema simultaneously. These findings provide a basis for targeted therapeutic interventions against heavy metal-induced lung injury.
Collapse
Affiliation(s)
- Ho Jin Lee
- College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Ho-Young Lee
- College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea; Natural Products Research Institute, Seoul National University, Seoul 08826, Republic of Korea; Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
5
|
Zhou X, Yang X, Huang S, Lin G, Lei K, Wang Q, Lin W, Li H, Qi X, Seriwatanachai D, Yang S, Shao B, Yuan Q. Inhibition of METTL3 Alleviates NLRP3 Inflammasome Activation via Increasing Ubiquitination of NEK7. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308786. [PMID: 38696610 PMCID: PMC11234428 DOI: 10.1002/advs.202308786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 04/06/2024] [Indexed: 05/04/2024]
Abstract
N6-methyladenosine (m6A) modification, installed by METTL3-METTL14 complex, is abundant and critical in eukaryotic mRNA. However, its role in oral mucosal immunity remains ambiguous. Periodontitis is a special but prevalent infectious disease characterized as hyperinflammation of oral mucosa and bone resorption. Here, it is reported that genetic deletion of Mettl3 alleviates periodontal destruction via suppressing NLRP3 inflammasome activation. Mechanistically, the stability of TNFAIP3 (also known as A20) transcript is significantly attenuated upon m6A modification. When silencing METTL3, accumulated TNFAIP3 functioning as a ubiquitin-editing enzyme facilitates the ubiquitination of NEK7 [NIMA (never in mitosis gene a)-related kinase 7], and subsequently impairs NLRP3 inflammasome assembly. Furtherly, Coptisine chloride, a natural small-molecule, is discovered as a novel METTL3 inhibitor and performs therapeutic effect on periodontitis. The study unveils a previously unknown pathogenic mechanism of METTL3-mediated m6A modifications in periodontitis and indicates METTL3 as a potential therapeutic target.
Collapse
Affiliation(s)
- Xinyi Zhou
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041China
- Department of ProsthodonticsShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineCollege of StomatologyNational Center for StomatologyNational Clinical Research Center for Oral DiseasesShanghai Key Laboratory of StomatologyShanghai Research Institute of StomatologyShanghai Jiao Tong UniversityShanghai200011China
| | - Xiaoyu Yang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041China
| | - Shenzhen Huang
- Henan Eye InstituteHenan Eye Hospital and Henan Key Laboratory of Ophthalmology and Visual ScienceHenan Provincial People's HospitalPeople's Hospital of Zhengzhou UniversityPeople's Hospital of Henan UniversityZhengzhou450003China
| | - Guifeng Lin
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduSichuan610041China
| | - Kexin Lei
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041China
| | - Qian Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041China
| | - Weimin Lin
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041China
| | - Hanwen Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041China
| | - Xingying Qi
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology & Department of oral implantologyStomatological Hospital and Dental SchoolTongji UniversityShanghai200072China
| | | | - Shengyong Yang
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduSichuan610041China
| | - Bin Shao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041China
| | - Quan Yuan
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041China
| |
Collapse
|
6
|
Hua X, Hongbing R, Juan X, Jizan L, Beibei Y. Dysregulation of TNF-induced protein 3 and CCAAT/enhancer-binding protein β in alveolar macrophages: Implications for systemic sclerosis-associated interstitial lung disease. Int J Rheum Dis 2024; 27:e15174. [PMID: 38720423 DOI: 10.1111/1756-185x.15174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/26/2024] [Accepted: 04/21/2024] [Indexed: 05/14/2024]
Abstract
OBJECTIVES This study investigates the role of TNF-induced protein 3 (TNFAIP3) and CCAAT/enhancer-binding protein β (C/EBPβ) in alveolar macrophages (AMs) of patients with systemic sclerosis-associated interstitial lung disease (SSc-ILD) and their influence on pulmonary fibrosis. METHODS Transfection of HEK293T cells and AMs with plasmids carrying TNFAIP3 and C/EBPβ was performed, followed by co-culturing AMs with pulmonary fibroblasts. Immunoblotting analysis was then utilized to assess the expression of TNFAIP3, C/EBPβ, and collagen type 1 (Col1). Quantitative PCR analysis was conducted to quantify the mRNA levels of C/EBPβ, IL-10, and TGF-β1. STRING database analysis, and immunoprecipitation assays were employed to investigate the interactions between TNFAIP3 and C/EBPβ. RESULTS TNFAIP3 expression was significantly reduced in SSc-ILD AMs, correlating with increased Col1 production in fibroblasts. Overexpression of TNFAIP3 inhibited this pro-fibrotic activity. Conversely, C/EBPβ expression was elevated in SSc-ILD AMs, and its reduction through TNFAIP3 restoration decreased pro-fibrotic cytokines IL-10 and TGFβ1 levels. Protein-protein interaction studies confirmed the regulatory relationship between TNFAIP3 and C/EBPβ. CONCLUSIONS This study highlights the important role of TNFAIP3 in regulating pulmonary fibrosis in SSc-ILD by modulating C/EBPβ expression in AMs. These findings suggest that targeting TNFAIP3 could be a potential therapeutic strategy for managing SSc-ILD patients.
Collapse
Affiliation(s)
- Xiao Hua
- Department of Rheumatology and immulology, The First Affiliated Hospital of FuJian Medical University, Fuzhou, China
- Department of Rheumatology and immulology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Rheumatology and immulology, The First Peoples' Hospital of Chenzhou, ChenZhou, Hunan, China
| | - Rui Hongbing
- Department of Rheumatology and immulology, The First Affiliated Hospital of FuJian Medical University, Fuzhou, China
- Department of Rheumatology and immulology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Xue Juan
- Department of Rheumatology and immulology, The First Affiliated Hospital of FuJian Medical University, Fuzhou, China
- Department of Rheumatology and immulology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Liu Jizan
- Department of Rheumatology and immulology, The First Affiliated Hospital of FuJian Medical University, Fuzhou, China
- Department of Rheumatology and immulology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Yang Beibei
- Department of Dermatology, Fujian Children's Hospital (Fujian Branch of Shanghai Children's Medical Center), College of Clinical Medicine for Obstetrics&Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China
| |
Collapse
|
7
|
Wang R, Shi Y, Lv Y, Xie C, Hu Y. The novel insights of epithelial-derived exosomes in various fibrotic diseases. Biomed Pharmacother 2024; 174:116591. [PMID: 38631144 DOI: 10.1016/j.biopha.2024.116591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 04/07/2024] [Accepted: 04/10/2024] [Indexed: 04/19/2024] Open
Abstract
The characteristics of fibrosis include the abnormal accumulation of extracellular matrix proteins and abnormal tissue repair caused by injury, infection, and inflammation, leading to a significant increase in organ failure and mortality. Effective and precise treatments are urgently needed to halt and reverse the progression of fibrotic diseases. Exosomes are tiny vesicles derived from endosomes, spanning from 40 to 160 nanometers in diameter, which are expelled into the extracellular matrix environment by various cell types. They play a crucial role in facilitating cell-to-cell communication by transporting a variety of cargoes, including proteins, RNA, and DNA. Epithelial cells serve as the primary barrier against diverse external stimuli that precipitate fibrotic diseases. Numerous research suggests that exosomes from epithelial cells have a significant impact on several fibrotic diseases. An in-depth comprehension of the cellular and molecular mechanisms of epithelial cell-derived exosomes in fibrosis holds promise for advancing the exploration of novel diagnostic biomarkers and clinical drug targets. In this review, we expand upon the pathogenic mechanisms of epithelium-derived exosomes and highlight their role in the fibrotic process by inducing inflammation and activating fibroblasts. In addition, we are particularly interested in the bioactive molecules carried by epithelial-derived exosomes and their potential value in the diagnosis and treatment of fibrosis and delineate the clinical utility of exosomes as an emerging therapeutic modality, highlighting their potential application in addressing various medical conditions.
Collapse
Affiliation(s)
- Rifu Wang
- Hunan Key Laboratory of Oral Health Research, Hunan 3D Printing Engineering Research Center of Oral Care, Academician Workstation for Oral-maxilofacial and Regenerative Medicine, Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Xiangya Stomatological Hospital, Xiangya School of Stomatology, Central South University, Changsha, Hunan, China
| | - Yuxin Shi
- Hunan Key Laboratory of Oral Health Research, Hunan 3D Printing Engineering Research Center of Oral Care, Academician Workstation for Oral-maxilofacial and Regenerative Medicine, Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Xiangya Stomatological Hospital, Xiangya School of Stomatology, Central South University, Changsha, Hunan, China
| | - Yonglin Lv
- Hunan Key Laboratory of Oral Health Research, Hunan 3D Printing Engineering Research Center of Oral Care, Academician Workstation for Oral-maxilofacial and Regenerative Medicine, Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Xiangya Stomatological Hospital, Xiangya School of Stomatology, Central South University, Changsha, Hunan, China
| | - Changqing Xie
- Hunan Key Laboratory of Oral Health Research, Hunan 3D Printing Engineering Research Center of Oral Care, Academician Workstation for Oral-maxilofacial and Regenerative Medicine, Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Xiangya Stomatological Hospital, Xiangya School of Stomatology, Central South University, Changsha, Hunan, China; NHC Key Laboratory of Carcinogenesis, Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan, China.
| | - Yanjia Hu
- Hunan Key Laboratory of Oral Health Research, Hunan 3D Printing Engineering Research Center of Oral Care, Academician Workstation for Oral-maxilofacial and Regenerative Medicine, Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Xiangya Stomatological Hospital, Xiangya School of Stomatology, Central South University, Changsha, Hunan, China.
| |
Collapse
|
8
|
Peng H, Zhang Y, Min J, Tan Y, Liu S. Loss of ZNF451 mediates fibroblast activation and promotes lung fibrosis. Respir Res 2024; 25:160. [PMID: 38600524 PMCID: PMC11008011 DOI: 10.1186/s12931-024-02781-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 03/19/2024] [Indexed: 04/12/2024] Open
Abstract
BACKGROUND No effective therapies for pulmonary fibrosis (PF) exist because of the unclear molecular pathogenesis and the lack of effective therapeutic targets. Zinc finger protein 451 (ZNF451), a transcriptional regulator, plays crucial roles in the pathogenesis of several diseases. However, its expression pattern and function in PF remain unknown. This study was designed to investigate the role of ZNF451 in the pathogenesis of lung fibrosis. METHODS GEO dataset analysis, RT‒PCR, and immunoblot assays were used to examine the expression of ZNF451 in PF; ZNF451 knockout mice and ZNF451-overexpressing lentivirus were used to determine the importance of ZNF451 in PF progression; and migration assays, immunofluorescence staining, and RNA-seq analysis were used for mechanistic studies. RESULTS ZNF451 is downregulated and negatively associated with disease severity in PF. Compared with wild-type (WT) mice, ZNF451 knockout mice exhibited much more serious PF changes. However, ZNF451 overexpression protects mice from BLM-induced pulmonary fibrosis. Mechanistically, ZNF451 downregulation triggers fibroblast activation by increasing the expression of PDGFB and subsequently activating PI3K/Akt signaling. CONCLUSION These findings uncover a critical role of ZNF451 in PF progression and introduce a novel regulatory mechanism of ZNF451 in fibroblast activation. Our study suggests that ZNF451 serves as a potential therapeutic target for PF and that strategies aimed at increasing ZNF451 expression may be promising therapeutic approaches for PF.
Collapse
Affiliation(s)
- Hong Peng
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Yu Zhang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Changsha, Hunan, 410011, China
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Jiali Min
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Changsha, Hunan, 410011, China
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Yuexin Tan
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Shanshan Liu
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Changsha, Hunan, 410011, China.
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China.
| |
Collapse
|
9
|
Nechanitzky R, Ramachandran P, Nechanitzky D, Li WY, Wakeham AC, Haight J, Saunders ME, Epelman S, Mak TW. CaSSiDI: novel single-cell "Cluster Similarity Scoring and Distinction Index" reveals critical functions for PirB and context-dependent Cebpb repression. Cell Death Differ 2024; 31:265-279. [PMID: 38383888 PMCID: PMC10923835 DOI: 10.1038/s41418-024-01268-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 01/15/2024] [Accepted: 02/07/2024] [Indexed: 02/23/2024] Open
Abstract
PirB is an inhibitory cell surface receptor particularly prominent on myeloid cells. PirB curtails the phenotypes of activated macrophages during inflammation or tumorigenesis, but its functions in macrophage homeostasis are obscure. To elucidate PirB-related functions in macrophages at steady-state, we generated and compared single-cell RNA-sequencing (scRNAseq) datasets obtained from myeloid cell subsets of wild type (WT) and PirB-deficient knockout (PirB KO) mice. To facilitate this analysis, we developed a novel approach to clustering parameter optimization called "Cluster Similarity Scoring and Distinction Index" (CaSSiDI). We demonstrate that CaSSiDI is an adaptable computational framework that facilitates tandem analysis of two scRNAseq datasets by optimizing clustering parameters. We further show that CaSSiDI offers more advantages than a standard Seurat analysis because it allows direct comparison of two or more independently clustered datasets, thereby alleviating the need for batch-correction while identifying the most similar and different clusters. Using CaSSiDI, we found that PirB is a novel regulator of Cebpb expression that controls the generation of Ly6Clo patrolling monocytes and the expansion properties of peritoneal macrophages. PirB's effect on Cebpb is tissue-specific since it was not observed in splenic red pulp macrophages (RPMs). However, CaSSiDI revealed a segregation of the WT RPM population into a CD68loIrf8+ "neuronal-primed" subset and an CD68hiFtl1+ "iron-loaded" subset. Our results establish the utility of CaSSiDI for single-cell assay analyses and the determination of optimal clustering parameters. Our application of CaSSiDI in this study has revealed previously unknown roles for PirB in myeloid cell populations. In particular, we have discovered homeostatic functions for PirB that are related to Cebpb expression in distinct macrophage subsets.
Collapse
Affiliation(s)
- Robert Nechanitzky
- Princess Margaret Cancer Centre, Ontario Cancer Institute, University Health Network, Toronto, ON, Canada.
- Providence Therapeutics Holdings Inc., Calgary, AB, Canada.
| | - Parameswaran Ramachandran
- Princess Margaret Cancer Centre, Ontario Cancer Institute, University Health Network, Toronto, ON, Canada
| | - Duygu Nechanitzky
- Princess Margaret Cancer Centre, Ontario Cancer Institute, University Health Network, Toronto, ON, Canada
| | - Wanda Y Li
- Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong SAR, China
| | - Andrew C Wakeham
- Princess Margaret Cancer Centre, Ontario Cancer Institute, University Health Network, Toronto, ON, Canada
| | - Jillian Haight
- Princess Margaret Cancer Centre, Ontario Cancer Institute, University Health Network, Toronto, ON, Canada
| | - Mary E Saunders
- Princess Margaret Cancer Centre, Ontario Cancer Institute, University Health Network, Toronto, ON, Canada
| | - Slava Epelman
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Ted Rogers Centre for Heart Research, Translational Biology and Engineering Program, Toronto, ON, Canada
- Peter Munk Cardiac Centre, UHN, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Departments of Immunology and Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Tak W Mak
- Princess Margaret Cancer Centre, Ontario Cancer Institute, University Health Network, Toronto, ON, Canada.
- Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong SAR, China.
- Department of Pathology Department of Pathology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
10
|
Li S, Guo L. The role of Sirtuin 2 in liver - An extensive and complex biological process. Life Sci 2024; 339:122431. [PMID: 38242495 DOI: 10.1016/j.lfs.2024.122431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 01/04/2024] [Accepted: 01/11/2024] [Indexed: 01/21/2024]
Abstract
Liver disease has become one of the main causes of health issue worldwide. Sirtuin (Sirt) 2 is a nicotinamide adenine dinucleotide (NAD+)-dependent deacetylase, and is expressed in multiple organs including liver, which plays important and complex roles by interacting with various substrates. Physiologically, Sirt2 can improve metabolic homeostasis. Pathologically, Sirt2 can alleviate inflammation, endoplasmic reticulum (ER) stress, promote liver regeneration, maintain iron homeostasis, aggravate fibrogenesis and regulate oxidative stress in liver. In liver diseases, Sirt2 can mitigate fatty liver disease (FLD) including non-alcoholic fatty liver disease (NAFLD) and alcoholic fatty liver disease (AFLD), but aggravate hepatitis B (HBV) and liver ischemia-reperfusion injury (LIRI). The role of Sirt2 in liver cancer and aging-related liver diseases, however, has not been fully elucidated. In this review, these biological processes regulated by Sirt2 in liver are summarized, which aims to update the function of Sirt2 in liver and to explore the potential role of Sirt2 as a therapeutic target for liver diseases.
Collapse
Affiliation(s)
- Shan Li
- School of Exercise and Health and Collaborative Innovation Center for Sports and Public Health, Shanghai University of Sport, Shanghai 200438, China; Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai 200438, China; Key Laboratory of Exercise and Health Sciences (Shanghai University of Sport), Ministry of Education, Shanghai 200438, China
| | - Liang Guo
- School of Exercise and Health and Collaborative Innovation Center for Sports and Public Health, Shanghai University of Sport, Shanghai 200438, China; Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai 200438, China; Key Laboratory of Exercise and Health Sciences (Shanghai University of Sport), Ministry of Education, Shanghai 200438, China.
| |
Collapse
|
11
|
Li J, Tan M, Yang T, Huang Q, Shan F. The paracrine isthmin1 transcriptionally regulated by C/EBPβ exacerbates pulmonary vascular leakage in murine sepsis. Am J Physiol Cell Physiol 2024; 326:C304-C316. [PMID: 38047305 DOI: 10.1152/ajpcell.00431.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/22/2023] [Accepted: 11/22/2023] [Indexed: 12/05/2023]
Abstract
It is known that pulmonary vascular leakage, a key pathological feature of sepsis-induced lung injury, is largely regulated by perivascular cells. However, the underlying mechanisms have not been fully uncovered. In the present study, we aimed to evaluate the role of isthmin1, a secretory protein originating from alveolar epithelium, in the pulmonary vascular leakage during sepsis and to investigate the regulatory mechanisms of isthmin1 gene transcription. We observed an elevated isthmin1 gene expression in the pulmonary tissue of septic mice induced by cecal ligation and puncture (CLP), as well as in primary murine alveolar type II epithelial cells (ATII) exposed to lipopolysaccharide (LPS). Furthermore, we confirmed that isthmin1 derived from ATII contributes to pulmonary vascular leakage during sepsis. Specifically, adenovirus-mediated isthmin1 disruption in ATII led to a significant attenuation of the increased pulmonary microvascular endothelial cell (PMVEC) hyperpermeability in a PMVEC/ATII coculture system when exposed to LPS. In addition, adeno-associated virus 9 (AAV9)-mediated knockdown of isthmin1 in the alveolar epithelium of septic mice significantly attenuated pulmonary vascular leakage. Finally, mechanistic studies unveiled that nuclear transcription factor CCAAT/enhancer binding protein (C/EBP)β participates in isthmin1 gene activation by binding directly to the cis-regulatory element of isthmin1 locus and may contribute to isthmin1 upregulation during sepsis. Collectively, the present study highlighted the impact of the paracrine protein isthmin1, derived from ATII, on the exacerbation of pulmonary vascular permeability in sepsis and revealed a new regulatory mechanism for isthmin1 gene transcription.NEW & NOTEWORTHY This article addresses the role of the alveolar epithelial-secreted protein isthmin1 on the exacerbation of pulmonary vascular permeability in sepsis and identified nuclear factor CCAAT/enhancer binding protein (C/EBP)β as a new regulator of isthmin1 gene transcription. Targeting the C/EBPβ-isthmin1 regulatory axis on the alveolar side would be of great value in the treatment of pulmonary vascular leakage and lung injury induced by sepsis.
Collapse
Affiliation(s)
- Junxia Li
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Department, Daping Hospital, Army Medical University, Chongqing, People's Republic of China
| | - Miaomiao Tan
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Army Occupational Disease, Daping Hospital, Army Medical University, Chongqing, People's Republic of China
| | - Tian Yang
- Department of Frigid Zone Medicine, College of High Altitude Military Medicine, Army Medical University, Chongqing, People's Republic of China
| | - Qingyuan Huang
- Department of Frigid Zone Medicine, College of High Altitude Military Medicine, Army Medical University, Chongqing, People's Republic of China
| | - Fabo Shan
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Army Occupational Disease, Daping Hospital, Army Medical University, Chongqing, People's Republic of China
| |
Collapse
|
12
|
Zhang S, Hu W, Lv C, Song X. Biogenesis and Function of circRNAs in Pulmonary Fibrosis. Curr Gene Ther 2024; 24:395-409. [PMID: 39005062 DOI: 10.2174/0115665232284076240207073542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 07/16/2024]
Abstract
Pulmonary fibrosis is a class of fibrosing interstitial lung diseases caused by many pathogenic factors inside and outside the lung, with unknown mechanisms and without effective treatment. Therefore, a comprehensive understanding of the molecular mechanism implicated in pulmonary fibrosis pathogenesis is urgently needed to develop new and effective measures. Although circRNAs have been widely acknowledged as new contributors to the occurrence and development of diseases, only a small number of circRNAs have been functionally characterized in pulmonary fibrosis. Here, we systematically review the biogenesis and functions of circRNAs and focus on how circRNAs participate in pulmonary fibrogenesis by influencing various cell fates. Meanwhile, we analyze the current exploration of circRNAs as a diagnostic biomarker, vaccine, and therapeutic target in pulmonary fibrosis and objectively discuss the challenges of circRNA- based therapy for pulmonary fibrosis. We hope that the review of the implication of circRNAs will provide new insights into the development circRNA-based approaches to treat pulmonary fibrosis.
Collapse
Affiliation(s)
- Songzi Zhang
- Department of Cellular and Genetic Medicine, Binzhou Medical University, Yantai, 264003, China
| | - Wenjie Hu
- Department of Cellular and Genetic Medicine, Binzhou Medical University, Yantai, 264003, China
| | - Changjun Lv
- Department of Cellular and Genetic Medicine, Binzhou Medical University, Yantai, 264003, China
- Department of Respiratory and Critical Care Medicine, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou 256603, China
| | - Xiaodong Song
- Department of Cellular and Genetic Medicine, Binzhou Medical University, Yantai, 264003, China
- Department of Respiratory and Critical Care Medicine, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou 256603, China
| |
Collapse
|
13
|
You Y, Yuan H, Min H, Li C, Chen J. Fibroblast-derived CXCL14 aggravates crystalline silica-induced pulmonary fibrosis by mediating polarization and recruitment of interstitial macrophages. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132489. [PMID: 37688871 DOI: 10.1016/j.jhazmat.2023.132489] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/29/2023] [Accepted: 09/03/2023] [Indexed: 09/11/2023]
Abstract
Exposure to crystalline silica (CS) particles in worksites and dwellings can lead to silicosis due to excessive fibroblast activation. Considering their immuno-regulatory activities, the contribution of pulmonary fibroblasts in the progression of silicosis has not been thoroughly characterized. Here, we demonstrate that exposure of the lung to CS particles leads to the upregulation of fibroblast-derived C-X-C motif chemokine ligand 14 (CXCL14). By employing an in vitro co-culture system, we demonstrated activated fibroblasts recruited bone marrow-derived macrophages (BMDMs) and favored alternative macrophage polarization (M2) mediated by CXCL14. Furthermore, in vivo studies echoed that systemic CXCL14 neutralizing or fibroblast-specific Cxcl14 knockout proved CXCL14 was indispensable for the recruitment and phenotype alteration of lung macrophages, especially interstitial macrophages (IMs), under stimulation by CS particles. Mechanistically, we showed that GLI2 and p21-mediated cellular senescence were mediators of CXCL14 production following CS exposure. Accordingly, GLI2 blockage and countering cellular senescence by reviving PINK1-mediated mitophagy may be efficient strategies to reduce CXCL14 expression in activated fibroblasts during silicosis. Our findings emphasize the immuno-regulatory function of fibroblasts in silicosis via CXCL14, providing intervention targets for CS-induced pulmonary fibrosis.
Collapse
Affiliation(s)
- Yichuan You
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, PR China; Department of Occupational and Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, PR China
| | - Haoyang Yuan
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, PR China; Department of Occupational and Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, PR China
| | - Hui Min
- Department of Immunology, College of Basic Medical Sciences, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, PR China
| | - Chao Li
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, PR China; Department of Occupational and Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, PR China.
| | - Jie Chen
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, PR China; Department of Occupational and Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, PR China.
| |
Collapse
|
14
|
Yuan H, You Y, He Y, Wei Y, Zhang Y, Min H, Li C, Chen J. Crystalline Silica-Induced Proinflammatory Interstitial Macrophage Recruitment through Notch3 Signaling Promotes the Pathogenesis of Silicosis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:14502-14514. [PMID: 37721423 DOI: 10.1021/acs.est.3c03980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Crystalline silica (CS) particles are ubiquitous in the environment, especially in occupational conditions, and exposure to respirable CS causes silicosis. The initial response to CS is mediated by innate immunity, where pulmonary macrophages act as central orchestrators. However, the repercussions of CS on functionally distinct macrophage subsets remain to be inconclusive. Herein, to study the effects of inhaled CS, we divided macrophages into three subsets: circulating monocytes, interstitial macrophages (IMs), and alveolar macrophages (AMs). CS-induced massive IMs increase in the lung, the phenotype and function of which differed from those of tissue-resident AMs and circulating monocytes. The augmented IMs were driven by recruitment of circulating macrophages rather than cell proliferation in situ. Moreover, the IMs predominantly exerted a classic activated (M1) phenotype and expressed proinflammatory cytokines, contributing to CS-induced lung injury. Notably, we demonstrated that IMs augmented Notch3 expression. Mechanistically, using myeloid-specific Notch3-knockout mice, we demonstrated that Notch3 signaling not only promoted IMs recruitment by regulating CCR2 expression but also manipulated the proinflammatory phenotype. Mice with conditional Notch3-knockout exhibited alleviation of CS-induced inflammation and fibrosis in lung. Overall, our study identifies IMs as critical mediators in response to CS and highlights the role of Notch3 in IMs recruitment and activation, providing new insights into CS toxicological effects in the lung.
Collapse
Affiliation(s)
- Haoyang Yuan
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, (China Medical University), Ministry of Education, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China
| | - Yichuan You
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, (China Medical University), Ministry of Education, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China
| | - Yangyang He
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, (China Medical University), Ministry of Education, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China
| | - Yungeng Wei
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, (China Medical University), Ministry of Education, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China
| | - Yuting Zhang
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, (China Medical University), Ministry of Education, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China
| | - Hui Min
- Department of Immunology, College of Basic Medical Sciences, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China
| | - Chao Li
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, (China Medical University), Ministry of Education, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China
| | - Jie Chen
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, (China Medical University), Ministry of Education, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China
| |
Collapse
|
15
|
Liu S, Zhang Z, Wang Y, Zhang Y, Min J, Li X, Liu S. The chemokine CCL1 facilitates pulmonary fibrosis by promoting macrophage migration and M2 polarization. Int Immunopharmacol 2023; 120:110343. [PMID: 37220693 DOI: 10.1016/j.intimp.2023.110343] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/05/2023] [Accepted: 05/12/2023] [Indexed: 05/25/2023]
Abstract
Macrophage M2 polarization has been identified in the pathogenesis of pulmonary fibrosis (PF), but the mediators that drive the macrophage M2 program in PF need to be clarified. We showed that the expression of AMFR and CCR8, two known receptors of CCL1, was increased in macrophages from lungs of mice with bleomycin (BLM)-induced PF. Deficiency in either AMFR or CCR8 in macrophages protected mice from BLM-induced PF. In vitro experiments revealed that CCL1 recruited macrophages by binding to its classical receptor CCR8 and drove the macrophage M2 phenotype via its interaction with the recently identified receptor AMFR. Mechanistic studies revealed that the CCL1-AMFR interaction enhanced CREB/C/EBPβ signaling to promote the macrophage M2 program. Together, our findings reveal that CCL1 acts as a mediator of macrophage M2 polarization and could be a therapeutic target in PF.
Collapse
Affiliation(s)
- Suosi Liu
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Ziying Zhang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Yu Wang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Yu Zhang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Jiali Min
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Xia Li
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China.
| | - Shanshan Liu
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China.
| |
Collapse
|
16
|
Wang QR, Liu SS, Min JL, Yin M, Zhang Y, Zhang Y, Tang XN, Li X, Liu SS. CCL17 drives fibroblast activation in the progression of pulmonary fibrosis by enhancing the TGF-β/Smad signaling. Biochem Pharmacol 2023; 210:115475. [PMID: 36870575 DOI: 10.1016/j.bcp.2023.115475] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/10/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023]
Abstract
Pulmonary fibrosis (PF) is a type of fatal respiratory diseases with limited therapeutic options and poor prognosis. The chemokine CCL17 plays crucial roles in the pathogenesis of immune diseases. Bronchoalveolar lavage fluid (BALF) CCL17 levels are significantly higher in patients with idiopathic PF (IPF) than in healthy volunteers. However, the source and function of CCL17 in PF remain unclear. Here, we demonstrated that the levels of CCL17 were increased in the lungs of IPF patients and mice with bleomycin (BLM)-induced PF. In particular, CCL17 were upregulated in alveolar macrophages (AMs) and antibody blockade of CCL17 protected mice against BLM-induced fibrosis and significantly reduced fibroblast activation. Mechanistic studies revealed that CCL17 interacted with its receptor CCR4 on fibroblasts, thereby activating the TGF-β/Smad signaling pathway to promote fibroblast activation and tissue fibrosis. Moreover, the knockdown of CCR4 by CCR4-siRNA or blockade by CCR4 antagonist C-021 was able to ameliorate PF pathology in mice. In summary, the CCL17-CCR4 axis is involved in the progression of PF, and targeting of CCL17 or CCR4 inhibits fibroblast activation and tissue fibrosis and may benefit patients with fibroproliferative lung diseases.
Collapse
Affiliation(s)
- Qian-Rong Wang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Suo-Si Liu
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Jia-Li Min
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Min Yin
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Yan Zhang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Yu Zhang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Xiang-Ning Tang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Xia Li
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Shan-Shan Liu
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China.
| |
Collapse
|
17
|
Islam MA, Kibria MK, Hossen MB, Reza MS, Tasmia SA, Tuly KF, Mosharof MP, Kabir SR, Kabir MH, Mollah MNH. Bioinformatics-based investigation on the genetic influence between SARS-CoV-2 infections and idiopathic pulmonary fibrosis (IPF) diseases, and drug repurposing. Sci Rep 2023; 13:4685. [PMID: 36949176 PMCID: PMC10031699 DOI: 10.1038/s41598-023-31276-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 03/09/2023] [Indexed: 03/24/2023] Open
Abstract
Some recent studies showed that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections and idiopathic pulmonary fibrosis (IPF) disease might stimulate each other through the shared genes. Therefore, in this study, an attempt was made to explore common genomic biomarkers for SARS-CoV-2 infections and IPF disease highlighting their functions, pathways, regulators and associated drug molecules. At first, we identified 32 statistically significant common differentially expressed genes (cDEGs) between disease (SARS-CoV-2 and IPF) and control samples of RNA-Seq profiles by using a statistical r-package (edgeR). Then we detected 10 cDEGs (CXCR4, TNFAIP3, VCAM1, NLRP3, TNFAIP6, SELE, MX2, IRF4, UBD and CH25H) out of 32 as the common hub genes (cHubGs) by the protein-protein interaction (PPI) network analysis. The cHubGs regulatory network analysis detected few key TFs-proteins and miRNAs as the transcriptional and post-transcriptional regulators of cHubGs. The cDEGs-set enrichment analysis identified some crucial SARS-CoV-2 and IPF causing common molecular mechanisms including biological processes, molecular functions, cellular components and signaling pathways. Then, we suggested the cHubGs-guided top-ranked 10 candidate drug molecules (Tegobuvir, Nilotinib, Digoxin, Proscillaridin, Simeprevir, Sorafenib, Torin 2, Rapamycin, Vancomycin and Hesperidin) for the treatment against SARS-CoV-2 infections with IFP diseases as comorbidity. Finally, we investigated the resistance performance of our proposed drug molecules compare to the already published molecules, against the state-of-the-art alternatives publicly available top-ranked independent receptors by molecular docking analysis. Molecular docking results suggested that our proposed drug molecules would be more effective compare to the already published drug molecules. Thus, the findings of this study might be played a vital role for diagnosis and therapies of SARS-CoV-2 infections with IPF disease as comorbidity risk.
Collapse
Affiliation(s)
- Md Ariful Islam
- Bioinformatics Lab(Dry), Department of Statistics, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Md Kaderi Kibria
- Bioinformatics Lab(Dry), Department of Statistics, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Md Bayazid Hossen
- Bioinformatics Lab(Dry), Department of Statistics, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Md Selim Reza
- Bioinformatics Lab(Dry), Department of Statistics, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Samme Amena Tasmia
- Bioinformatics Lab(Dry), Department of Statistics, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Khanis Farhana Tuly
- Bioinformatics Lab(Dry), Department of Statistics, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Md Parvez Mosharof
- Bioinformatics Lab(Dry), Department of Statistics, University of Rajshahi, Rajshahi, 6205, Bangladesh
- School of Business, University of Southern Queensland, Toowoomba, QLD, 4350, Australia
| | - Syed Rashel Kabir
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Md Hadiul Kabir
- Bioinformatics Lab(Dry), Department of Statistics, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Md Nurul Haque Mollah
- Bioinformatics Lab(Dry), Department of Statistics, University of Rajshahi, Rajshahi, 6205, Bangladesh.
| |
Collapse
|
18
|
Li X, Meng X, Chen H, Fu X, Wang P, Chen X, Gu C, Zhou J. Integration of single sample and population analysis for understanding immune evasion mechanisms of lung cancer. NPJ Syst Biol Appl 2023; 9:4. [PMID: 36765073 PMCID: PMC9918494 DOI: 10.1038/s41540-023-00267-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 01/24/2023] [Indexed: 02/12/2023] Open
Abstract
A deep understanding of the complex interaction mechanism between the various cellular components in tumor microenvironment (TME) of lung adenocarcinoma (LUAD) is a prerequisite for understanding its drug resistance, recurrence, and metastasis. In this study, we proposed two complementary computational frameworks for integrating multi-source and multi-omics data, namely ImmuCycReg framework (single sample level) and L0Reg framework (population or subtype level), to carry out difference analysis between the normal population and different LUAD subtypes. Then, we aimed to identify the possible immune escape pathways adopted by patients with different LUAD subtypes, resulting in immune deficiency which may occur at different stages of the immune cycle. More importantly, combining the research results of the single sample level and population level can improve the credibility of the regulatory network analysis results. In addition, we also established a prognostic scoring model based on the risk factors identified by Lasso-Cox method to predict survival of LUAD patients. The experimental results showed that our frameworks could reliably identify transcription factor (TF) regulating immune-related genes and could analyze the dominant immune escape pathways adopted by each LUAD subtype or even a single sample. Note that the proposed computational framework may be also applicable to the immune escape mechanism analysis of pan-cancer.
Collapse
Affiliation(s)
- Xiong Li
- School of Software, East China Jiaotong University, Nanchang, 330013, China.
| | - Xu Meng
- grid.440711.7School of Software, East China Jiaotong University, Nanchang, 330013 China
| | - Haowen Chen
- grid.67293.39College of Computer Science and Electronic Engineering, Hunan University, Changsha, China
| | - Xiangzheng Fu
- grid.67293.39College of Computer Science and Electronic Engineering, Hunan University, Changsha, China
| | - Peng Wang
- grid.67293.39College of Computer Science and Electronic Engineering, Hunan University, Changsha, China
| | - Xia Chen
- grid.67293.39College of Computer Science and Electronic Engineering, Hunan University, Changsha, China
| | - Changlong Gu
- grid.67293.39College of Computer Science and Electronic Engineering, Hunan University, Changsha, China
| | - Juan Zhou
- grid.440711.7School of Software, East China Jiaotong University, Nanchang, 330013 China
| |
Collapse
|
19
|
Gu Y, Hsu ACY, Zuo X, Guo X, Zhou Z, Jiang S, Ouyang Z, Wang F. Chronic exposure to low-level lipopolysaccharide dampens influenza-mediated inflammatory response via A20 and PPAR network. Front Immunol 2023; 14:1119473. [PMID: 36726689 PMCID: PMC9886269 DOI: 10.3389/fimmu.2023.1119473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 01/02/2023] [Indexed: 01/18/2023] Open
Abstract
Influenza A virus (IAV) infection leads to severe inflammation, and while epithelial-driven inflammatory responses occur via activation of NF-κB, the factors that modulate inflammation, particularly the negative regulators are less well-defined. In this study we show that A20 is a crucial molecular switch that dampens IAV-induced inflammatory responses. Chronic exposure to low-dose LPS environment can restrict this excessive inflammation. The mechanisms that this environment provides to suppress inflammation remain elusive. Here, our evidences show that chronic exposure to low-dose LPS suppressed IAV infection or LPS stimulation-induced inflammation in vitro and in vivo. Chronic low-dose LPS environment increases A20 expression, which in turn positively regulates PPAR-α and -γ, thus dampens the NF-κB signaling pathway and NLRP3 inflammasome activation. Knockout of A20 abolished the inhibitory effect on inflammation. Thus, A20 and its induced PPAR-α and -γ play a key role in suppressing excessive inflammatory responses in the chronic low-dose LPS environment.
Collapse
Affiliation(s)
- Yinuo Gu
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Alan Chen-Yu Hsu
- Signature Research Program in Emerging Infectious Diseases, Duke - National University of Singapore (NUS) Graduate Medical School, Singapore, Singapore,School of Medicine and Public Health, The University of Newcastle, Newcastle, NSW, Australia,Viruses, Infections/Immunity, Vaccines and Asthma, Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Xu Zuo
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Xiaoping Guo
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Zhengjie Zhou
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Shengyu Jiang
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Zhuoer Ouyang
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Fang Wang
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun, China,*Correspondence: Fang Wang,
| |
Collapse
|
20
|
Liu Y, Zhou J, Wu J, Zhang X, Guo J, Xing Y, Xie J, Bai Y, Hu D. Construction and Validation of a Novel Immune-Related Gene Pairs-Based Prognostic Model in Lung Adenocarcinoma. Cancer Control 2023; 30:10732748221150227. [PMID: 36625357 PMCID: PMC9834935 DOI: 10.1177/10732748221150227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
OBJECT Focus on immune-related gene pairs (IRGPs) and develop a prognostic model to predict the prognosis of patients with lung adenocarcinoma (LUAD). METHODS First, the LUAD patient dataset was downloaded from The Cancer Genome Atlas database, and paired analysis of immune-related genes was subsequently conducted. Then, LASSO regression was used to screen prognostic IRGPs for building a risk prediction model. Meanwhile, the Gene Expression Omnibus database was used for external validation of the model. Next, the clinical predictive power of IRGPs features was assessed by uni-multivariate Cox regression analysis, the infiltration of key immune cells in high and low IRGPs risk groups was analyzed with CIBERSORT, quanTIseq, and Timer, and the key pathways enriched for IRGPs were assessed using the Kyoto Encyclopedia of Genes and Genomes. Finally, the expression and related functions of key immune cells and genes were verified by immunofluorescence and cell experiments of tissue samples. RESULTS It was revealed that the risk score of 19 IRGPs could be used as accurate indicators to evaluate the prognosis of LUAD patients, and the risk score was mainly related to T cell infiltration based on CIBERSORT analysis. Two genes of IRGPs, IL6, and CCL2, were found to be closely associated with the expression of PD-1/PD-L1 and the function of T-cells. Depending on the results of tissue immunofluorescence, IL6, CCL2, and T cells were highly expressed in the LUAD tissues of patients. Furthermore, IL6 and CCL2 were positively correlated with the expression of T cells. Besides, qRT-PCR assay in four different LUAD cells proved that IL6 and CCL2 were positively correlated with the expression of PD-L1 (P < .001). CONCLUSIONS Based on 19 IRGPs, an effective prognosis model was established to predict the prognosis of LUAD patients. In addition, IL6 and CCL2 are closely related to the function of T-cells.
Collapse
Affiliation(s)
- Yafeng Liu
- School of Medicine, Anhui University of Science and
Technology, Huainan, China,Anhui Province Engineering
Laboratory of Occupational Health and Safety, Anhui University of Science and
Technology, Huainan, China,Affiliated Cancer Hospital, Anhui University of Science and
Technology, Huainan, China
| | - Jiawei Zhou
- School of Medicine, Anhui University of Science and
Technology, Huainan, China,Anhui Province Engineering
Laboratory of Occupational Health and Safety, Anhui University of Science and
Technology, Huainan, China
| | - Jing Wu
- School of Medicine, Anhui University of Science and
Technology, Huainan, China,Anhui Province Engineering
Laboratory of Occupational Health and Safety, Anhui University of Science and
Technology, Huainan, China,Key Laboratory of Industrial Dust
Deep Reduction and Occupational Health and Safety of Anhui Higher Education
Institutes, Anhui University of Science and
Technology, Huainan, China,Jing Wu, School of Medicine, Anhui
University of Science and Technology, Chongren Building, No 168, Taifeng St,
Huainan 232001, China.
| | - Xin Zhang
- School of Medicine, Anhui University of Science and
Technology, Huainan, China,Anhui Province Engineering
Laboratory of Occupational Health and Safety, Anhui University of Science and
Technology, Huainan, China
| | - Jianqiang Guo
- School of Medicine, Anhui University of Science and
Technology, Huainan, China,Anhui Province Engineering
Laboratory of Occupational Health and Safety, Anhui University of Science and
Technology, Huainan, China
| | - Yingru Xing
- School of Medicine, Anhui University of Science and
Technology, Huainan, China,Department of Clinical Laboratory, Anhui Zhongke Gengjiu
Hospital, Hefei, China
| | - Jun Xie
- Affiliated Cancer Hospital, Anhui University of Science and
Technology, Huainan, China
| | - Ying Bai
- School of Medicine, Anhui University of Science and
Technology, Huainan, China,Anhui Province Engineering
Laboratory of Occupational Health and Safety, Anhui University of Science and
Technology, Huainan, China
| | - Dong Hu
- School of Medicine, Anhui University of Science and
Technology, Huainan, China,Anhui Province Engineering
Laboratory of Occupational Health and Safety, Anhui University of Science and
Technology, Huainan, China,Key Laboratory of Industrial Dust
Deep Reduction and Occupational Health and Safety of Anhui Higher Education
Institutes, Anhui University of Science and
Technology, Huainan, China
| |
Collapse
|
21
|
GPSM1 impairs metabolic homeostasis by controlling a pro-inflammatory pathway in macrophages. Nat Commun 2022; 13:7260. [PMID: 36434066 PMCID: PMC9700814 DOI: 10.1038/s41467-022-34998-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 11/15/2022] [Indexed: 11/27/2022] Open
Abstract
G-protein-signaling modulator 1 (GPSM1) exhibits strong genetic association with Type 2 diabetes (T2D) and Body Mass Index in population studies. However, how GPSM1 carries out such control and in which types of cells are poorly understood. Here, we demonstrate that myeloid GPSM1 promotes metabolic inflammation to accelerate T2D and obesity development. Mice with myeloid-specific GPSM1 ablation are protected against high fat diet-induced insulin resistance, glucose dysregulation, and liver steatosis via repression of adipose tissue pro-inflammatory states. Mechanistically, GPSM1 deficiency mainly promotes TNFAIP3 transcription via the Gαi3/cAMP/PKA/CREB axis, thus inhibiting TLR4-induced NF-κB signaling in macrophages. In addition, we identify a small-molecule compound, AN-465/42243987, which suppresses the pro-inflammatory phenotype by inhibiting GPSM1 function, which could make it a candidate for metabolic therapy. Furthermore, GPSM1 expression is upregulated in visceral fat of individuals with obesity and is correlated with clinical metabolic traits. Overall, our findings identify macrophage GPSM1 as a link between metabolic inflammation and systemic homeostasis.
Collapse
|
22
|
Wang L, Feng J, Deng Y, Yang Q, Wei Q, Ye D, Rong X, Guo J. CCAAT/Enhancer-Binding Proteins in Fibrosis: Complex Roles Beyond Conventional Understanding. RESEARCH (WASHINGTON, D.C.) 2022; 2022:9891689. [PMID: 36299447 PMCID: PMC9575473 DOI: 10.34133/2022/9891689] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/18/2022] [Indexed: 07/29/2023]
Abstract
CCAAT/enhancer-binding proteins (C/EBPs) are a family of at least six identified transcription factors that contain a highly conserved basic leucine zipper domain and interact selectively with duplex DNA to regulate target gene expression. C/EBPs play important roles in various physiological processes, and their abnormal function can lead to various diseases. Recently, accumulating evidence has demonstrated that aberrant C/EBP expression or activity is closely associated with the onset and progression of fibrosis in several organs and tissues. During fibrosis, various C/EBPs can exert distinct functions in the same organ, while the same C/EBP can exert distinct functions in different organs. Modulating C/EBP expression or activity could regulate various molecular processes to alleviate fibrosis in multiple organs; therefore, novel C/EBPs-based therapeutic methods for treating fibrosis have attracted considerable attention. In this review, we will explore the features of C/EBPs and their critical functions in fibrosis in order to highlight new avenues for the development of novel therapies targeting C/EBPs.
Collapse
Affiliation(s)
- Lexun Wang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China
- Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jiaojiao Feng
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China
- Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yanyue Deng
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China
- Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Qianqian Yang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China
- Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Quxing Wei
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China
- Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Dewei Ye
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China
- Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xianglu Rong
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China
- Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jiao Guo
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China
- Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
23
|
Zheng W, Li S, Huang J, Dong Y, Zhang H, Zheng J. Down-Regulation of Ubiquitin-Specific Peptidase 9X Inhibited Proliferation, Migration and Invasion of Osteosarcoma <i>via</i> ERK1/2 and PI3K/Akt Signaling Pathways. Biol Pharm Bull 2022; 45:1283-1290. [DOI: 10.1248/bpb.b22-00198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Wendi Zheng
- Department of Orthopedics, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital
| | - Shuang Li
- Department of Pathology, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital
| | - Jincheng Huang
- Department of Orthopedics, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital
| | - Yonghui Dong
- Department of Orthopedics, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital
| | - Hongjun Zhang
- Department of Orthopedics, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital
| | - Jia Zheng
- Department of Orthopedics, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital
| |
Collapse
|
24
|
Lin C, Jiang Z, Cao L, Zou H, Zhu X. Role of NLRP3 inflammasome in systemic sclerosis. Arthritis Res Ther 2022; 24:196. [PMID: 35974386 PMCID: PMC9380340 DOI: 10.1186/s13075-022-02889-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/29/2022] [Indexed: 11/10/2022] Open
Abstract
Systemic sclerosis (SSc) is an autoimmune rheumatic disease with high mortality, which is featured by inflammation, vascular damage, and aggressive fibrosis. To date, the pathogenesis of SSc remains unclear and effective treatments are still under research. Active NLRP3 recruits downstream proteins such as ASC and caspase-1 and assembles into inflammasome, resulting in excretion of inflammatory cytokines including IL-1β and IL-18, as well as in pyroptosis mediated by gasdermin D. Various studies demonstrated that NLRP3 inflammasome might be involved in the mechanism of tenosynovitis, arthritis, fibrosis, and vascular damage. The pathophysiological changes might be due to the activation of proinflammatory Th2 cells, profibrotic M2 macrophages, B cells, fibroblasts, and endothelial cells. Here, we review the studies focused on NLRP3 inflammasome activation, its association with innate and adaptive immune cells, endothelium injury, and differentiation of fibroblasts in SSc. Furthermore, we summarize the prospect of therapy targeting NLRP3 pathway.
Collapse
Affiliation(s)
- Cong Lin
- Division of Rheumatology, Huashan Hospital, Fudan University, 12 Wulumuqizhong Road, Shanghai, 200040, China.,Institute of Rheumatology, Immunology and Allergy, Fudan University, Shanghai, China
| | - Zhixing Jiang
- Division of Rheumatology, Huashan Hospital, Fudan University, 12 Wulumuqizhong Road, Shanghai, 200040, China.,Institute of Rheumatology, Immunology and Allergy, Fudan University, Shanghai, China
| | - Ling Cao
- Division of Rheumatology, Huashan Hospital, Fudan University, 12 Wulumuqizhong Road, Shanghai, 200040, China.,Institute of Rheumatology, Immunology and Allergy, Fudan University, Shanghai, China
| | - Hejian Zou
- Division of Rheumatology, Huashan Hospital, Fudan University, 12 Wulumuqizhong Road, Shanghai, 200040, China.,Institute of Rheumatology, Immunology and Allergy, Fudan University, Shanghai, China
| | - Xiaoxia Zhu
- Division of Rheumatology, Huashan Hospital, Fudan University, 12 Wulumuqizhong Road, Shanghai, 200040, China. .,Institute of Rheumatology, Immunology and Allergy, Fudan University, Shanghai, China.
| |
Collapse
|
25
|
Zhou X, Liu Y, Xiong X, Chen J, Tang W, He L, Zhang Z, Yin Y, Li F. Intestinal accumulation of microbiota-produced succinate caused by loss of microRNAs leads to diarrhea in weanling piglets. Gut Microbes 2022; 14:2091369. [PMID: 35758253 PMCID: PMC9235893 DOI: 10.1080/19490976.2022.2091369] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Diarrheal disease is a common health problem with complex causality. Although diarrhea is accompanied by disturbances in microbial diversity, how gut microbes are involved in the occurrence of diarrhea remains largely unknown. Here, using a pig model of post-weaning stress-induced diarrhea, we aim to elucidate and enrich the mechanistic basis of diarrhea. We found significant alterations in fecal microbiome, their metabolites, and microRNAs levels in piglets with diarrhea. Specifically, loss of ssc-miRNA-425-5p and ssc-miRNA-423-3p, which inhibit the gene expression of fumarate reductase (frd) in Prevotella genus, caused succinate accumulation in piglets, which resulted in diarrhea. Single-cell RNA sequencing indicated impaired epithelial function and increased immune response in the colon of piglet with diarrhea. Notably, the accumulated succinate increased colonic fluid secretion by regulating transepithelial Cl-secretion in the epithelial cells. Meanwhile, succinate promoted colonic inflammatory responses by activating MyD88-dependent TLR4 signaling in the macrophages. Overall, our findings expand the mechanistic basis of diarrhea and suggest that colonic accumulation of microbiota-produced succinate caused by loss of miRNAs leads to diarrhea in weanling piglets.
Collapse
Affiliation(s)
- Xihong Zhou
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, the Chinese Academy of Sciences, Changsha, Hunan, China
| | - Yonghui Liu
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, the Chinese Academy of Sciences, Changsha, Hunan, China,Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Xia Xiong
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, the Chinese Academy of Sciences, Changsha, Hunan, China
| | - Jingqing Chen
- Laboratory Animal Center of the Academy of Military Medical Sciences, Beijing, China
| | - Wenjie Tang
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, Sichuan, China
| | - Liuqin He
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, the Chinese Academy of Sciences, Changsha, Hunan, China,Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China,CONTACT Liuqin He
| | - Zhigang Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, Yunnan, China
| | - Yulong Yin
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, the Chinese Academy of Sciences, Changsha, Hunan, China,Yulong Yin
| | - Fengna Li
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, the Chinese Academy of Sciences, Changsha, Hunan, China,Fengna Li No 644, Yuanda 2nd Road, Furong District, Changsha, China
| |
Collapse
|
26
|
Doke T, Abedini A, Aldridge DL, Yang YW, Park J, Hernandez CM, Balzer MS, Shrestra R, Coppock G, Rico JMI, Han SY, Kim J, Xin S, Piliponsky AM, Angelozzi M, Lefebvre V, Siracusa MC, Hunter CA, Susztak K. Single-cell analysis identifies the interaction of altered renal tubules with basophils orchestrating kidney fibrosis. Nat Immunol 2022; 23:947-959. [PMID: 35552540 DOI: 10.1038/s41590-022-01200-7] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 04/01/2022] [Indexed: 02/06/2023]
Abstract
Inflammation is an important component of fibrosis but immune processes that orchestrate kidney fibrosis are not well understood. Here we apply single-cell sequencing to a mouse model of kidney fibrosis. We identify a subset of kidney tubule cells with a profibrotic-inflammatory phenotype characterized by the expression of cytokines and chemokines associated with immune cell recruitment. Receptor-ligand interaction analysis and experimental validation indicate that CXCL1 secreted by profibrotic tubules recruits CXCR2+ basophils. In mice, these basophils are an important source of interleukin-6 and recruitment of the TH17 subset of helper T cells. Genetic deletion or antibody-based depletion of basophils results in reduced renal fibrosis. Human kidney single-cell, bulk gene expression and immunostaining validate a function for basophils in patients with kidney fibrosis. Collectively, these studies identify basophils as contributors to the development of renal fibrosis and suggest that targeting these cells might be a useful clinical strategy to manage chronic kidney disease.
Collapse
Affiliation(s)
- Tomohito Doke
- Department of Medicine, Renal Electrolyte and Hypertension Division, University of Pennsylvania, Philadelphia, PA, USA
| | - Amin Abedini
- Department of Medicine, Renal Electrolyte and Hypertension Division, University of Pennsylvania, Philadelphia, PA, USA
| | - Daniel L Aldridge
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, USA
| | - Ya-Wen Yang
- Department of Medicine, Renal Electrolyte and Hypertension Division, University of Pennsylvania, Philadelphia, PA, USA
| | - Jihwan Park
- Department of Medicine, Renal Electrolyte and Hypertension Division, University of Pennsylvania, Philadelphia, PA, USA
| | - Christina M Hernandez
- Center for Immunity and Inflammation, Department of Medicine, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, USA
| | - Michael S Balzer
- Department of Medicine, Renal Electrolyte and Hypertension Division, University of Pennsylvania, Philadelphia, PA, USA
| | - Rojesh Shrestra
- Department of Medicine, Renal Electrolyte and Hypertension Division, University of Pennsylvania, Philadelphia, PA, USA
| | - Gaia Coppock
- Department of Medicine, Renal Electrolyte and Hypertension Division, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, USA
| | - Juan M Inclan Rico
- Center for Immunity and Inflammation, Department of Medicine, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, USA
| | - Seung Yub Han
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Junhyong Kim
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Sheng Xin
- Department of Medicine, Renal Electrolyte and Hypertension Division, University of Pennsylvania, Philadelphia, PA, USA
| | - Adrian M Piliponsky
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA, USA
| | - Marco Angelozzi
- Division of Orthopaedic Surgery, Department of Surgery, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Veronique Lefebvre
- Division of Orthopaedic Surgery, Department of Surgery, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Mark C Siracusa
- Center for Immunity and Inflammation, Department of Medicine, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, USA
| | - Christopher A Hunter
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, USA
| | - Katalin Susztak
- Department of Medicine, Renal Electrolyte and Hypertension Division, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
27
|
Min J, Li Q, Liu S, Wang Q, Yin M, Zhang Y, Yan J, Cui B, Liu S. TRAF6 Suppresses the Development of Pulmonary Fibrosis by Attenuating the Activation of Fibroblasts. Front Pharmacol 2022; 13:911945. [PMID: 35668944 PMCID: PMC9163739 DOI: 10.3389/fphar.2022.911945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 05/03/2022] [Indexed: 11/13/2022] Open
Abstract
Pulmonary fibrosis (PF) has a high mortality rate, and its pathogenesis is unknown. TNF receptor-associated factor 6 (TRAF6), a signal transducer for inflammatory signaling, plays crucial roles in the pathogenesis of immune diseases. However, its function in PF remains unknown. Herein, we demonstrated that lungs from mice with bleomycin (BLM)-induced PF were characterized by decreased expression of TRAF6 in lung fibroblasts. Enhancing TRAF6 expression protected mice from BLM-induced PF coupled with a significant reduction in fibroblast differentiation. Furthermore, we demonstrated that overexpression of TRAF6 reversed the activation of myofibroblasts from PF mice by reducing the expression of Wnt3a and subsequently suppressing Wnt/β-catenin signaling. Additionally, the abundance of Tribbles pseudokinase 3 (TRIB3), a stress sensor, was negatively correlated with the abundance of TRAF6 in lung fibroblasts. TRIB3 overexpression decreased TRAF6 abundance by reducing TRAF6 stability in lung fibroblasts during PF. Mechanistic studies revealed that TRIB3 bound to TRAF6 and accelerated basal TRAF6 ubiquitination and degradation. Collectively, our data indicate that reduced TRAF6 expression in fibroblasts is essential for the progression of PF, and therefore, genetically increasing TRAF6 expression or disrupting the TRIB3-TRAF6 interaction could be potential therapeutic strategies for fibroproliferative lung diseases in clinical settings.
Collapse
Affiliation(s)
- Jiali Min
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Qiao Li
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Suosi Liu
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Qianrong Wang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Min Yin
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yan Zhang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jun Yan
- Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| | - Bing Cui
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shanshan Liu
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
- *Correspondence: Shanshan Liu,
| |
Collapse
|
28
|
Lv X, Liu C, Liu S, Li Y, Wang W, Li K, Hua F, Cui B, Zhang X, Yu J, Yu J, Hu Z. The cell cycle inhibitor P21 promotes the development of pulmonary fibrosis by suppressing lung alveolar regeneration. Acta Pharm Sin B 2022; 12:735-746. [PMID: 35256943 PMCID: PMC8897021 DOI: 10.1016/j.apsb.2021.07.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/20/2021] [Accepted: 07/09/2021] [Indexed: 01/10/2023] Open
Abstract
The cell cycle inhibitor P21 has been implicated in cell senescence and plays an important role in the injury–repair process following lung injury. Pulmonary fibrosis (PF) is a fibrotic lung disorder characterized by cell senescence in lung alveolar epithelial cells. In this study, we report that P21 expression was increased in alveolar epithelial type 2 cells (AEC2s) in a time-dependent manner following multiple bleomycin-induced PF. Repeated injury of AEC2s resulted in telomere shortening and triggered P21-dependent cell senescence. AEC2s with elevated expression of P21 lost their self-renewal and differentiation abilities. In particular, elevated P21 not only induced cell cycle arrest in AEC2s but also bound to P300 and β-catenin and inhibited AEC2 differentiation by disturbing the P300–β-catenin interaction. Meanwhile, senescent AEC2s triggered myofibroblast activation by releasing profibrotic cytokines. Knockdown of P21 restored AEC2-mediated lung alveolar regeneration in mice with chronic PF. The results of our study reveal a mechanism of P21-mediated lung regeneration failure during PF development, which suggests a potential strategy for the treatment of fibrotic lung diseases.
Collapse
|
29
|
Gao T, Gao C, Liu Z, Wang Y, Jia X, Tian H, Lu Q, Guo L. Inhibition of Noncanonical Ca 2+ Oscillation/Calcineurin/GSK-3β Pathway Contributes to Anti-Inflammatory Effect of Sigma-1 Receptor Activation. Neurochem Res 2022; 47:264-278. [PMID: 34468932 DOI: 10.1007/s11064-021-03439-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/23/2021] [Accepted: 08/26/2021] [Indexed: 11/29/2022]
Abstract
Further understanding the mechanism for microglia activation is necessary for developing novel anti-inflammatory strategies. Our previous study found that the activation of sigma-1 receptor can effectively inhibit the neuroinflammation, independent of the canonical mechanisms, such as NF-κB, JNK and ERK inflammatory pathways. Thus, it is reasonable that an un-identified, non-canonical pathway contributes to the activation of microglia. In the present study, we found that a sigma-1 receptor agonist of 2-morpholin-4-ylethyl 1-phenylcyclohexane-1-carboxylate (PRE-084) suppressed lipopolysaccharide (LPS) elevated nitric oxide (NO) content in BV-2 microglia culture supernatant and LPS-raised mRNA levels of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), inducible nitric oxide synthase (iNOS) in BV-2 microglia. Moreover, PRE-084 alleviated LPS-increased Ser 9 de-phosphorylation of glycogen synthase kinase-3 beta (GSK-3β), LPS-elevated catalytic activity of calcineurin, and LPS-raised percent and frequency of Ca2+ oscillatory BV-2 cells. We further found that the inhibitory effect of PRE-084 was reversed by a calcineurin activator of chlorogenic acid and a GSK-3β activator of pyrvinium. Moreover, an IP3 receptor inhibitor of 2-aminoethoxydiphenyl borate mimicked the anti-inflammatory activity of PRE-084. Thus, we identified a noncanonical pro-neuroinflammary pathway of Ca2+ oscillation/Calcineurin/GSK-3β and the inhibition of this pathway is necessary for the anti-inflammatory activity of sigma-1 receptor activation.
Collapse
Affiliation(s)
- Tianyu Gao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221000, Jiangsu Province, China
- Department of Pharmacy, The Affiliated Hospital of Xuzhou Medical University, 99 West Huai-hai Road, Xuzhou, 221004, Jiangsu Province, China
| | - Ce Gao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221000, Jiangsu Province, China
- Department of Pharmacy, The Affiliated Hospital of Xuzhou Medical University, 99 West Huai-hai Road, Xuzhou, 221004, Jiangsu Province, China
| | - Zhidong Liu
- Department of Pharmacy, The Affiliated Hospital of Xuzhou Medical University, 99 West Huai-hai Road, Xuzhou, 221004, Jiangsu Province, China
| | - Yun Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221000, Jiangsu Province, China
| | - Xiaoxia Jia
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221000, Jiangsu Province, China
| | - Hao Tian
- Agro-Products Processing Research Institute, Yunnan Academy of Agricultural Sciences, 2238 Beijing Road, Kunming, 650000, Yunnan Province, China
| | - Qian Lu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221000, Jiangsu Province, China.
| | - Lin Guo
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221000, Jiangsu Province, China.
- Department of Pharmacy, The Affiliated Hospital of Xuzhou Medical University, 99 West Huai-hai Road, Xuzhou, 221004, Jiangsu Province, China.
| |
Collapse
|
30
|
Wang Y, Sang X, Shao R, Qin H, Chen X, Xue Z, Li L, Wang Y, Zhu Y, Chang Y, Gao X, Zhang B, Zhang H, Yang J. Xuanfei Baidu Decoction protects against macrophages induced inflammation and pulmonary fibrosis via inhibiting IL-6/STAT3 signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2022; 283:114701. [PMID: 34606948 PMCID: PMC9715986 DOI: 10.1016/j.jep.2021.114701] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 09/25/2021] [Accepted: 09/28/2021] [Indexed: 05/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Xuanfei Baidu Decoction (XFBD), one of the "three medicines and three prescriptions" for the clinically effective treatment of COVID-19 in China, plays an important role in the treatment of mild and/or common patients with dampness-toxin obstructing lung syndrome. AIM OF THE STUDY The present work aims to elucidate the protective effects and the possible mechanism of XFBD against the acute inflammation and pulmonary fibrosis. METHODS We use TGF-β1 induced fibroblast activation model and LPS/IL-4 induced macrophage inflammation model as in vitro cell models. The mice model of lung fibrosis was induced by BLM via endotracheal drip, and then XFBD (4.6 g/kg, 9.2 g/kg) were administered orally respectively. The efficacy and molecular mechanisms in the presence or absence of XFBD were investigated. RESULTS The results proved that XFBD can effectively inhibit fibroblast collagen deposition, down-regulate the level of α-SMA and inhibit the migration of fibroblasts. IL-4 induced macrophage polarization was also inhibited and the secretions of the inflammatory factors including IL6, iNOS were down-regulated. In vivo experiments, the results proved that XFBD improved the weight loss and survival rate of the mice. The XFBD high-dose administration group had a significant effect in inhibiting collagen deposition and the expression of α-SMA in the lungs of mice. XFBD can reduce bleomycin-induced pulmonary fibrosis by inhibiting IL-6/STAT3 activation and related macrophage infiltration. CONCLUSIONS Xuanfei Baidu Decoction protects against macrophages induced inflammation and pulmonary fibrosis via inhibiting IL-6/STAT3 signaling pathway.
Collapse
Affiliation(s)
- Yuying Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Xiaoqing Sang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Rui Shao
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Honglin Qin
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Xuanhao Chen
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Zhifeng Xue
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Lin Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Ministry of Education, Tianjin, 301617, China
| | - Yu Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yan Zhu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yanxu Chang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Xiumei Gao
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Ministry of Education, Tianjin, 301617, China
| | - Boli Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Ministry of Education, Tianjin, 301617, China
| | - Han Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Ministry of Education, Tianjin, 301617, China.
| | - Jian Yang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
31
|
The Inhibitory Effects of Naringin in a Rat Model of Postoperative Intraperitoneal Adhesion Formation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:5331537. [PMID: 35069760 PMCID: PMC8767403 DOI: 10.1155/2022/5331537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 12/16/2021] [Accepted: 12/24/2021] [Indexed: 11/21/2022]
Abstract
Background Many attempts have been made to inhibit the formation of postoperative intraperitoneal adhesions, but the results have been discouraging. Therefore, the identification of effective preventative measures or treatments is of great importance. In this study, the substantial potential of naringin (NG) to reduce peritoneal adhesions was validated in a rat model. Materials and Methods A rat peritoneal adhesion model was established by abrasion of the cecum and its opposite intraperitoneal region under aseptic surgical conditions. After the operation, three groups of NG-treated rats were given 2 mL of NG by gavage at different concentrations (40, 60, or 80 mg/kg/d). The sham, control, and hyaluronan (HA) groups were given equal volumes of normal saline daily. On the 8th day, all rats were sacrificed 30 min after the administration of an activated carbon solution (10 mL/kg) by oral gavage. Intraperitoneal adhesion formation was adequately evaluated by necropsy, hematoxylin and eosin (HE) staining, Sirius red staining, immunofluorescence staining, enzyme-linked immunosorbent assays, and reactive oxygen species (ROS) probes. The gastrointestinal dynamics of the rats were assessed on the basis of a small intestinal charcoal powder propulsion test and the detection of motilin and gastrin levels in serum. Results Intraperitoneal adhesions were markedly reduced in the group of rats receiving high-dose NG. Compared with the control group, the high-dose NG group showed clear reductions in inflammatory reactions, oxidative stress, collagen deposition, and fibroblast formation in the adhesion tissue and enhanced gastrointestinal dynamics (P < 0.05). Conclusion NG alleviated the severity of intraperitoneal adhesions in a rat model by reducing inflammation, oxidative stress, collagen deposition, and fibroblast formation, highlighting the potential of NG as a drug candidate to prevent postoperative peritoneal adhesion formation.
Collapse
|
32
|
Zhao P, Cai Z, Tian Y, Li J, Li K, Li M, Bai Y, Li J. Effective-compound combination inhibits the M2-like polarization of macrophages and attenuates the development of pulmonary fibrosis by increasing autophagy through mTOR signaling. Int Immunopharmacol 2021; 101:108360. [PMID: 34801418 DOI: 10.1016/j.intimp.2021.108360] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 10/31/2021] [Accepted: 11/08/2021] [Indexed: 01/22/2023]
Abstract
BACKGROUND AND PURPOSE The M2 polarization of macrophages substantially contributes to the progression of pulmonary fibrosis (PF). Effective-compound combination (ECC), which is composed of isoliquiritigenin, icariin, nobiletin, peimine, and paeoniflorin, ameliorated bleomycin-induced PF in rats. Hence, we investigated the anti-PF mechanism of ECC with a focus on the suppression of M2 polarization in macrophages in vivo and in vitro. METHODS The PF rat model was generated via the intratracheal instillation of bleomycin. Histological changes, M2 macrophages, and profibrotic mediators were detected. The M2 polarization model was generated by incubating macrophages with IL-4. Quantitative PCR and Western blotting were used to measure mRNA and protein levels, respectively. RESULTS ECC attenuated bleomycin-induced PF in rats, which might be associated with reduced macrophage infiltration, M2 polarization, and profibrotic mediator expression. Furthermore, ECC significantly suppressed M2 polarization in IL-4-treated macrophages, which was accompanied by the upregulation of autophagy. An autophagy inhibitor abrogated the inhibitory effect of ECC on M2 polarization. In addition, ECC decreased the levels of p-p70S6K/p-4EBP and p-AKT473/p-GSK3β, which are critical regulators of autophagy. CONCLUSION ECC can ameliorate PF, which might be associated with the inhibition of M2 polarization through the promotion of autophagy via mTOR signaling suppression.
Collapse
Affiliation(s)
- Peng Zhao
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, Henan Province 450046, China; Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-constructed by Henan Province & Education Ministry of P.R. China, Zhengzhou, Henan Province 450046, China; Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450000, China
| | - Zehui Cai
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, Henan Province 450046, China; Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-constructed by Henan Province & Education Ministry of P.R. China, Zhengzhou, Henan Province 450046, China
| | - Yange Tian
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, Henan Province 450046, China; Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-constructed by Henan Province & Education Ministry of P.R. China, Zhengzhou, Henan Province 450046, China; Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450000, China
| | - Junzi Li
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, Henan Province 450046, China; Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-constructed by Henan Province & Education Ministry of P.R. China, Zhengzhou, Henan Province 450046, China; Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450000, China
| | - Kangchen Li
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, Henan Province 450046, China; Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-constructed by Henan Province & Education Ministry of P.R. China, Zhengzhou, Henan Province 450046, China
| | - Minyan Li
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, Henan Province 450046, China; Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-constructed by Henan Province & Education Ministry of P.R. China, Zhengzhou, Henan Province 450046, China
| | - Yunping Bai
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, Henan Province 450046, China; Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-constructed by Henan Province & Education Ministry of P.R. China, Zhengzhou, Henan Province 450046, China; Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450000, China
| | - Jiansheng Li
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, Henan Province 450046, China; Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-constructed by Henan Province & Education Ministry of P.R. China, Zhengzhou, Henan Province 450046, China; Department of Respiratory Diseases, the First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450000, China.
| |
Collapse
|
33
|
Zhang Y, Long X, Ruan X, Wei Q, Zhang L, Wo L, Huang D, Lin L, Wang D, Xia L, Zhao Q, Liu J, Zhao Q, He M. SIRT2-mediated deacetylation and deubiquitination of C/EBPβ prevents ethanol-induced liver injury. Cell Discov 2021; 7:93. [PMID: 34642310 PMCID: PMC8511299 DOI: 10.1038/s41421-021-00326-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 08/24/2021] [Indexed: 02/06/2023] Open
Abstract
Protein acetylation has emerged to play pivotal roles in alcoholic liver disease (ALD). Sirutin 2 (SIRT2) is a nicotinamide adenine dinucleotide (NAD+)-dependent deacetylase involved in the regulation of aging, metabolism, and stress. However, the role of SIRT2 in ALD remains unclear. Here, we report that the SIRT2-mediated deacetylation-deubiquitination switch of CCAAT/enhancer-binding protein beta (C/EBPβ) prevents ALD. Our results showed that hepatic SIRT2 protein expression was negatively correlated with the severity of alcoholic liver injury in ALD patients. Liver-specific SIRT2 deficiency sensitized mice to ALD, whereas transgenic SIRT2 overexpression in hepatocytes significantly prevented ethanol-induced liver injury via normalization of hepatic steatosis, lipid peroxidation, and hepatocyte apoptosis. Mechanistically, we identified C/EBPβ as a critical substrate of SIRT2 implicated in ALD. SIRT2-mediated deacetylation at lysines 102 and 211 decreased C/EBPβ ubiquitination, resulting in enhanced protein stability and subsequently increased transcription of C/EBPβ-target gene LCN2. Importantly, hepatic deacetylated C/EBPβ and LCN2 compensation reversed SIRT2 deletion-induced ALD aggravation in mice. Furthermore, C/EBPβ protein expression was positively correlated with SIRT2 and LCN2 expression in the livers of ALD patients and was inversely correlated with ALD development. Therefore, activating SIRT2-C/EBPβ-LCN2 signaling pathway is a potential therapy for ALD.
Collapse
Affiliation(s)
- Yingting Zhang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xidai Long
- Department of Pathology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, China
| | - Xin Ruan
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qian Wei
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lin Zhang
- Department of Biochemistry and Molecular Cell Biology, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lulu Wo
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dongdong Huang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Longshuai Lin
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Difei Wang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Xia
- Department of Core Facility of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qinghua Zhao
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Junling Liu
- Department of Biochemistry and Molecular Cell Biology, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qian Zhao
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Ming He
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
34
|
Liu S, Lv X, Wei X, Liu C, Li Q, Min J, Hua F, Zhang X, Li K, Li P, Xiao Y, Hu Z, Cui B. TRIB3‒GSK-3 β interaction promotes lung fibrosis and serves as a potential therapeutic target. Acta Pharm Sin B 2021; 11:3105-3119. [PMID: 34729304 PMCID: PMC8546892 DOI: 10.1016/j.apsb.2021.06.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 05/10/2021] [Accepted: 05/13/2021] [Indexed: 11/15/2022] Open
Abstract
Pulmonary fibrosis (PF) is a chronic, progressive, fatal interstitial lung disease with limited available therapeutic strategies. We recently reported that the protein kinase glycogen synthase kinase-3β (GSK-3β) interacts with and inactivates the ubiquitin-editing enzyme A20 to suppress the degradation of the transcription factor CCAAT/enhancer-binding protein beta (C/EBPβ) in alveolar macrophages (AMs), resulting in a profibrotic phenotype of AMs and promoting the development of PF. Here, we showed that chronic lung injury upregulated the stress response protein tribbles homolog 3 (TRIB3), which interacted with GSK-3β and stabilized GSK-3β from ubiquitination and degradation. Elevated GSK-3β expression phosphorylated A20 to inhibit its ubiquitin-editing activity, causing the accumulation of C/EBPβ and the production of several profibrotic factors in AMs and promoting PF development. Activated C/EBPβ, in turn, increased the transcription of TRIB3 and GSK-3β, thereby establishing a positive feedback loop in AMs. The knockdown of TRIB3 expression or the pharmacologic disruption of the TRIB3‒GSK-3β interaction was an effective PF treatment. Our study reveals an intact profibrotic axis of TRIB3‒GSK-3β‒A20‒C/EBPβ in AMs, which represents a target that may provide a promising treatment strategy for PF.
Collapse
|
35
|
The chemokine CCL1 triggers an AMFR-SPRY1 pathway that promotes differentiation of lung fibroblasts into myofibroblasts and drives pulmonary fibrosis. Immunity 2021; 54:2042-2056.e8. [PMID: 34407391 DOI: 10.1016/j.immuni.2021.06.008] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 02/20/2021] [Accepted: 06/11/2021] [Indexed: 12/28/2022]
Abstract
Recruitment of immune cells to the site of inflammation by the chemokine CCL1 is important in the pathology of inflammatory diseases. Here, we examined the role of CCL1 in pulmonary fibrosis (PF). Bronchoalveolar lavage fluid from PF mouse models contained high amounts of CCL1, as did lung biopsies from PF patients. Immunofluorescence analyses revealed that alveolar macrophages and CD4+ T cells were major producers of CCL1 and targeted deletion of Ccl1 in these cells blunted pathology. Deletion of the CCL1 receptor Ccr8 in fibroblasts limited migration, but not activation, in response to CCL1. Mass spectrometry analyses of CCL1 complexes identified AMFR as a CCL1 receptor, and deletion of Amfr impaired fibroblast activation. Mechanistically, CCL1 binding triggered ubiquitination of the ERK inhibitor Spry1 by AMFR, thus activating Ras-mediated profibrotic protein synthesis. Antibody blockade of CCL1 ameliorated PF pathology, supporting the therapeutic potential of targeting this pathway for treating fibroproliferative lung diseases.
Collapse
|
36
|
He X, Tan S, Shao Z, Wang X. Latitudinal and longitudinal regulation of tissue macrophages in inflammatory diseases. Genes Dis 2021; 9:1194-1207. [PMID: 35873033 PMCID: PMC9293718 DOI: 10.1016/j.gendis.2021.06.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 01/09/2023] Open
Abstract
Macrophages are dominant innate immune cells. They demonstrate remarkable heterogeneity and plasticity that are essential for homeostasis and host defense. The heterogeneity of tissue macrophages is shaped by the ontogeny, tissue factors, and environmental signals, a pattern in a tissue-associated latitudinal manner. At the same time, macrophages have long been considered as mainly plastic cells. These cells respond to stimulation quickly and in a stimulus-specific way by utilizing a longitudinal cascaded activation, including coordination of signal transducer, epigenetic elements, and transcription factors, conclusively determine the macrophage phenotypes and functions. With the development of cutting-edge technologies, such as fate-mapping, single-cell transcriptomics, ipsc platform, nanotherapeutic materials, etc., our understanding of macrophage biology and the roles in the pathogenesis of diseases is much advanced. This review summarizes recent progress on the latitudinal and longitudinal regulation of tissue macrophages in inflammatory diseases. The latitudinal regulation covers the tissue macrophage origins, tissue factors, and environmental signals, reflecting the macrophage heterogeneity. The longitudinal regulation focuses on how multiple factors shape the phenotypes and functions of macrophage subsets to gain plasticity in inflammatory diseases (i.e., inflammatory bowel disease). In addition, how to target macrophages as a potential therapeutic approach and cutting edge-technologies for tissue macrophage study are also discussed in this review.
Collapse
Affiliation(s)
- XiaoYi He
- Department of Neurology, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning 116001, PR China
| | - Stephanie Tan
- Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA,Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Zhong Shao
- The Third Hospital of Fushun, Fushun, Liaoning 113004, PR China
| | - Xiao Wang
- Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA,Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA,Corresponding author. Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago 225 E. Chicago Avenue, Chicago, IL 60611, USA. Fax: +(312) 503 7177.
| |
Collapse
|
37
|
Feng Z, Zhou J, Liu Y, Xia R, Li Q, Yan L, Chen Q, Chen X, Jiang Y, Chao G, Wang M, Zhou G, Zhang Y, Wang Y, Xia H. Epithelium- and endothelium-derived exosomes regulate the alveolar macrophages by targeting RGS1 mediated calcium signaling-dependent immune response. Cell Death Differ 2021; 28:2238-2256. [PMID: 33753901 PMCID: PMC8257848 DOI: 10.1038/s41418-021-00750-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 01/26/2021] [Accepted: 02/04/2021] [Indexed: 02/01/2023] Open
Abstract
Alveolar macrophages (AM) maintain airway immune balance; however, the regulation of heterogeneity of AMs is incompletely understood. We demonstrate that RGS1 coregulates the immunophenotype of AM subpopulations, including pro- and anti-inflammatory, injury- and repair-associated, and pro- and antifibrotic phenotypes, through the PLC-IP3R signal-dependent intracellular Ca2+ response. Flt3+ AMs and Tie2+ AMs had different immune properties, and RGS1 expression in the cells was targeted by exosomes (EXOs) containing miR-223 and miR-27b-3p that were derived from vascular endothelial cells (EnCs) and type II alveolar epithelial cells (EpCs-II), respectively. Imbalance of AMs was correlated with acute lung injury/acute respiratory distress syndrome (ALI/ARDS) and pulmonary fibrosis (PF) caused a lack of secretion of CD31+ and CD74+ EXOs derived from EnCs and EpCs-II. Timely treatment with EXOs significantly improved endotoxin-induced ALI/ARDS and bleomycin-induced PF in mice. Thus, EnC- and EpC-II-derived EXOs regulate the immune balance of AMs and can be used as potential therapeutic drugs.
Collapse
Affiliation(s)
- Zunyong Feng
- grid.89957.3a0000 0000 9255 8984Department of Pathology, School of Basic Medical Sciences & Sir Run Run Hospital & State Key Laboratory of Reproductive Medicine & Key Laboratory of Antibody Technique of National Health Commission, Nanjing Medical University, Nanjing, China ,grid.443626.10000 0004 1798 4069Department of Pathology, The First Affiliated Yijishan Hospital of Wannan Medical College & Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institutes, Wannan Medical College, Wuhu, China ,grid.89957.3a0000 0000 9255 8984Interdisciplinary Innovation Institute for Medicine and Engineering, Southeast University-Nanjing Medical University, Nanjing, China
| | - Jing Zhou
- grid.443626.10000 0004 1798 4069Department of Pathology, The First Affiliated Yijishan Hospital of Wannan Medical College & Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institutes, Wannan Medical College, Wuhu, China
| | - Yinhua Liu
- grid.443626.10000 0004 1798 4069Department of Pathology, The First Affiliated Yijishan Hospital of Wannan Medical College & Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institutes, Wannan Medical College, Wuhu, China
| | - Ruixue Xia
- grid.459620.cDepartment of Respiratory and Critical Care Medicine, Henan University Huaihe Hospital, Kaifeng, China
| | - Qiang Li
- grid.443626.10000 0004 1798 4069Department of Anatomy, Wannan Medical College, Wuhu, China
| | - Liang Yan
- grid.443626.10000 0004 1798 4069Department of Biochemistry and Molecular Biology, Wannan Medical College, Wuhu, China
| | - Qun Chen
- grid.452929.1Department of Intensive Care Unit, Affiliated Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Xiaobing Chen
- grid.414008.90000 0004 1799 4638Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuxin Jiang
- grid.411870.b0000 0001 0063 8301Department of Pathogenic Biology and Immunology, School of Medicine, Jiaxing University, Jiaxing, China
| | - Gao Chao
- grid.43169.390000 0001 0599 1243Department of Microsurgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Ming Wang
- grid.216417.70000 0001 0379 7164Department of Neurosurgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Guoren Zhou
- grid.452509.f0000 0004 1764 4566Jiangsu Cancer Hospital, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Institute of Cancer Research, Nanjing, China
| | - Yijie Zhang
- grid.459620.cDepartment of Respiratory and Critical Care Medicine, Henan University Huaihe Hospital, Kaifeng, China
| | - Yongsheng Wang
- grid.428392.60000 0004 1800 1685Department of Respiratory Medicine, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Hongping Xia
- grid.89957.3a0000 0000 9255 8984Department of Pathology, School of Basic Medical Sciences & Sir Run Run Hospital & State Key Laboratory of Reproductive Medicine & Key Laboratory of Antibody Technique of National Health Commission, Nanjing Medical University, Nanjing, China ,grid.443626.10000 0004 1798 4069Department of Pathology, The First Affiliated Yijishan Hospital of Wannan Medical College & Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institutes, Wannan Medical College, Wuhu, China ,grid.89957.3a0000 0000 9255 8984Interdisciplinary Innovation Institute for Medicine and Engineering, Southeast University-Nanjing Medical University, Nanjing, China ,grid.459620.cDepartment of Respiratory and Critical Care Medicine, Henan University Huaihe Hospital, Kaifeng, China ,grid.452509.f0000 0004 1764 4566Jiangsu Cancer Hospital, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Institute of Cancer Research, Nanjing, China
| |
Collapse
|
38
|
Wang L, Li S, Yao Y, Yin W, Ye T. The role of natural products in the prevention and treatment of pulmonary fibrosis: a review. Food Funct 2021; 12:990-1007. [PMID: 33459740 DOI: 10.1039/d0fo03001e] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Pulmonary fibrosis is an incurable end-stage lung disease and remains a global public health problem. Although there have been some breakthroughs in understanding the pathogenesis of pulmonary fibrosis, effective intervention methods are still limited. Natural products have the advantages of multiple biological activities and high levels of safety, which are important factors for preventing and treating pulmonary fibrosis. In this review, we summarized the mechanisms and health benefits of natural products against pulmonary fibrosis. These natural products target oxidative stress, inflammatory injury, epithelial-mesenchymal transition (EMT), fibroblast activation, extracellular matrix accumulation and metabolic regulation, and the mechanisms involve the NF-κB, TGF-β1/Smad, PI3K/Akt, p38 MAPK, Nrf2-Nox4, and AMPK signaling pathways. We hope to provide new ideas for pulmonary fibrosis prevention and treatment strategies.
Collapse
Affiliation(s)
- Liqun Wang
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China. and West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Sha Li
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Yuqin Yao
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Wenya Yin
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Tinghong Ye
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
39
|
Patel S, Werstuck GH. Macrophage Function and the Role of GSK3. Int J Mol Sci 2021; 22:ijms22042206. [PMID: 33672232 PMCID: PMC7926541 DOI: 10.3390/ijms22042206] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 01/18/2023] Open
Abstract
Macrophages are present in nearly all vertebrate tissues, where they respond to a complex variety of regulatory signals to coordinate immune functions involved in tissue development, metabolism, homeostasis, and repair. Glycogen synthase kinase 3 (GSK3) is a ubiquitously expressed protein kinase that plays important roles in multiple pathways involved in cell metabolism. Dysregulation of GSK3 has been implicated in several prevalent metabolic disorders, and recent findings have highlighted the importance of GSK3 activity in the regulation of macrophages, especially with respect to the initiation of specific pathologies. This makes GSK3 a potential therapeutic target for the development of novel drugs to modulate immunometabolic responses. Here, we summarize recent findings that have contributed to our understanding of how GSK3 regulates macrophage function, and we discuss the role of GSK3 in the development of metabolic disorders and diseases.
Collapse
Affiliation(s)
- Sarvatit Patel
- Thrombosis and Atherosclerosis Research Institute, 237 Barton Street E, Hamilton, ON L9L 2X2, Canada;
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main St W, Hamilton, ON L8S 4L8, Canada
| | - Geoff H. Werstuck
- Thrombosis and Atherosclerosis Research Institute, 237 Barton Street E, Hamilton, ON L9L 2X2, Canada;
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main St W, Hamilton, ON L8S 4L8, Canada
- Department of Medicine, McMaster University, 1280 Main St W, Hamilton, ON L8S 4L8, Canada
- Correspondence: ; Tel.: +1-905-521-2100 (ext. 40747)
| |
Collapse
|
40
|
Sang X, Wang Y, Xue Z, Qi D, Fan G, Tian F, Zhu Y, Yang J. Macrophage-Targeted Lung Delivery of Dexamethasone Improves Pulmonary Fibrosis Therapy via Regulating the Immune Microenvironment. Front Immunol 2021; 12:613907. [PMID: 33679754 PMCID: PMC7935565 DOI: 10.3389/fimmu.2021.613907] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 02/01/2021] [Indexed: 12/18/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is serious chronic lung disease with limited therapeutic approaches. Inflammation and immune disorders are considered as the main factors in the initiation and development of pulmonary fibrosis. Inspired by the key roles of macrophages during the processes of inflammation and immune disorders, here, we report a new method for direct drug delivery into the in-situ fibrotic tissue sites in vitro and in vivo. First, liposomes containing dexamethasone (Dex-L) are prepared and designed to entry into the macrophages in the early hours, forming the macrophages loaded Dex-L delivery system (Dex-L-MV). Chemokine and cytokine factors such as IL-6, IL-10, Arg-1 are measured to show the effect of Dex-L to the various subtypes of macrophages. Next, we mimic the inflammatory and anti-inflammatory microenvironment by co-culture of polarized/inactive macrophage and fibroblast cells to show the acute inflammation response of Dex-L-MV. Further, we confirm the targeted delivery of Dex-L-MV into the inflammatory sites in vivo, and surprisingly found that injected macrophage containing Dex can reduce the level of macrophage infiltration and expression of the markers of collagen deposition during the fibrotic stage, while causing little systematic toxicity. These data demonstrated the suitability and immune regulation effect of Dex-L-MV for the anti-pulmonary process. It is envisaged that these findings are a step forward toward endogenous immune targeting systems as a tool for clinical drug delivery.
Collapse
Affiliation(s)
- Xiaoqing Sang
- Tianjin Key Laboratory of Chinese Medicine Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuanyuan Wang
- Tianjin Key Laboratory of Chinese Medicine Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhifeng Xue
- Tianjin Key Laboratory of Chinese Medicine Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Dawei Qi
- Medcity Research Laboratory, University of Turku, Turku, Finland
| | - Guanwei Fan
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin Key Laboratory of Translational Research of Traditional Chinese Medicine Prescription and Syndrome, Tianjin, China
| | - Fei Tian
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin Key Laboratory of Traditional Chinese Medicine Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yan Zhu
- Tianjin Key Laboratory of Chinese Medicine Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jian Yang
- Tianjin Key Laboratory of Chinese Medicine Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
41
|
Cui H, Xie N, Banerjee S, Ge J, Jiang D, Dey T, Matthews QL, Liu RM, Liu G. Lung Myofibroblasts Promote Macrophage Profibrotic Activity through Lactate-induced Histone Lactylation. Am J Respir Cell Mol Biol 2021; 64:115-125. [PMID: 33074715 DOI: 10.1165/rcmb.2020-0360oc] [Citation(s) in RCA: 146] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Augmented glycolysis due to metabolic reprogramming in lung myofibroblasts is critical to their profibrotic phenotype. The primary glycolysis byproduct, lactate, is also secreted into the extracellular milieu, together with which myofibroblasts and macrophages form a spatially restricted site usually described as fibrotic niche. Therefore, we hypothesized that myofibroblast glycolysis might have a non-cell autonomous effect through lactate regulating the pathogenic phenotype of alveolar macrophages. Here, we demonstrated that there was a markedly increased lactate in the conditioned media of TGF-β1 (transforming growth factor-β1)-induced lung myofibroblasts and in the BAL fluids (BALFs) from mice with TGF-β1- or bleomycin-induced lung fibrosis. Importantly, the media and BALFs promoted profibrotic mediator expression in macrophages. Mechanistically, lactate induced histone lactylation in the promoters of the profibrotic genes in macrophages, consistent with the upregulation of this epigenetic modification in these cells in the fibrotic lungs. The lactate inductions of the histone lactylation and profibrotic gene expression were mediated by p300, as evidenced by their diminished concentrations in p300-knockdown macrophages. Collectively, our study establishes that in addition to protein, lipid, and nucleic acid molecules, a metabolite can also mediate intercellular regulations in the setting of lung fibrosis. Our findings shed new light on the mechanism underlying the key contribution of myofibroblast glycolysis to the pathogenesis of lung fibrosis.
Collapse
Affiliation(s)
- Huachun Cui
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Na Xie
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Sami Banerjee
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jing Ge
- Department of Geriatrics and Institute of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dingyuan Jiang
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, National Clinical Research Center for Respiratory Diseases, Beijing, China; and
| | - Tapan Dey
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Qiana L Matthews
- Department of Biological Sciences, Alabama State University, Montgomery, Alabama
| | - Rui-Ming Liu
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Gang Liu
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
42
|
Bale S, Varga J, Bhattacharyya S. Role of RP105 and A20 in negative regulation of toll-like receptor activity in fibrosis: potential targets for therapeutic intervention. AIMS ALLERGY AND IMMUNOLOGY 2021. [DOI: 10.3934/allergy.2021009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
43
|
Liu Y, Lv J, Liu J, Li M, Xie J, Lv Q, Deng W, Zhou N, Zhou Y, Song J, Wang P, Qin C, Tong WM, Huang B. Mucus production stimulated by IFN-AhR signaling triggers hypoxia of COVID-19. Cell Res 2020; 30:1078-1087. [PMID: 33159154 PMCID: PMC7646495 DOI: 10.1038/s41422-020-00435-z] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 10/21/2020] [Indexed: 11/29/2022] Open
Abstract
Silent hypoxia has emerged as a unique feature of coronavirus disease 2019 (COVID-19). In this study, we show that mucins are accumulated in the bronchoalveolar lavage fluid (BALF) of COVID-19 patients and are upregulated in the lungs of severe respiratory syndrome coronavirus 2 (SARS-CoV-2)-infected mice and macaques. We find that induction of either interferon (IFN)-β or IFN-γ upon SARS-CoV-2 infection results in activation of aryl hydrocarbon receptor (AhR) signaling through an IDO-Kyn-dependent pathway, leading to transcriptional upregulation of the expression of mucins, both the secreted and membrane-bound, in alveolar epithelial cells. Consequently, accumulated alveolar mucus affects the blood-gas barrier, thus inducing hypoxia and diminishing lung capacity, which can be reversed by blocking AhR activity. These findings potentially explain the silent hypoxia formation in COVID-19 patients, and suggest a possible intervention strategy by targeting the AhR pathway.
Collapse
Affiliation(s)
- Yuying Liu
- Department of Immunology & National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College, Beijing, 100005, China.,Clinical Immunology Center, CAMS, Beijing, 100005, China
| | - Jiadi Lv
- Department of Immunology & National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College, Beijing, 100005, China
| | - Jiangning Liu
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, CAMS and Comparative Medicine Center, Peking Union Medical College, Beijing, 100021, China
| | - Man Li
- Department of Pathology, Beijing Ditan Hospital, Capital Medical University, No.8 Jing Shun East Street, Chaoyang District, Beijing, 100015, China
| | - Jing Xie
- Department of Immunology & National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College, Beijing, 100005, China
| | - Qi Lv
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, CAMS and Comparative Medicine Center, Peking Union Medical College, Beijing, 100021, China
| | - Wei Deng
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, CAMS and Comparative Medicine Center, Peking Union Medical College, Beijing, 100021, China
| | - Nannan Zhou
- Department of Immunology & National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College, Beijing, 100005, China
| | - Yabo Zhou
- Department of Immunology & National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College, Beijing, 100005, China
| | - Jiangping Song
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, CAMS and Peking Union Medical College, 167A Beilishi Road, Xi Cheng District, Beijing, 100037, China
| | - Peng Wang
- Department of Pathology, Beijing Ditan Hospital, Capital Medical University, No.8 Jing Shun East Street, Chaoyang District, Beijing, 100015, China
| | - Chuan Qin
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, CAMS and Comparative Medicine Center, Peking Union Medical College, Beijing, 100021, China
| | - Wei-Min Tong
- Department of Pathology, Institute of Basic Medical Sciences, CAMS and Peking Union Medical College, Beijing, 100005, China
| | - Bo Huang
- Department of Immunology & National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College, Beijing, 100005, China. .,Clinical Immunology Center, CAMS, Beijing, 100005, China. .,Department of Biochemistry & Molecular Biology, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei, 430030, China.
| |
Collapse
|
44
|
Wei Z, Li C, Zhang Y, Lin C, Zhang Y, Shu L, Luo L, Zhuo J, Li L. Macrophage-Derived IL-1β Regulates Emergency Myelopoiesis via the NF-κB and C/ebpβ in Zebrafish. THE JOURNAL OF IMMUNOLOGY 2020; 205:2694-2706. [PMID: 33077646 DOI: 10.4049/jimmunol.2000473] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 09/14/2020] [Indexed: 12/21/2022]
Abstract
Myeloid phagocytes, neutrophils in particular, are easily consumed when they fight against a large number of invading microbes. Hence, they require efficient and constant replenishment from their progenitors via the well-orchestrated emergency myelopoiesis in the hematopoietic organs. The cellular and molecular details of the danger-sensing and warning processes to activate the emergency myelopoiesis are still under debate. In this study, we set up a systemic infection model in zebrafish (Danio rerio) larvae via circulative administration of LPS. We focused on the cross-talk of macrophages with myeloid progenitors in the caudal hematopoietic tissue. We revealed that macrophages first detected LPS and sent out the emergency message via il1β The myeloid progenitors, rather than hematopoietic stem and progenitor cells, responded and fulfilled the demand to adapt myeloid expansion through the synergistic cooperation of NF-κB and C/ebpβ. Our study unveiled a critical role of macrophages as the early "whistle blowers" to initiate emergency myelopoiesis.
Collapse
Affiliation(s)
- Zongfang Wei
- Institute of Developmental Biology and Regenerative Medicine, Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Southwest University, Chongqing 400715, People's Republic of China
| | - Chenzheng Li
- Institute of Developmental Biology and Regenerative Medicine, Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Southwest University, Chongqing 400715, People's Republic of China
| | - Yangping Zhang
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou 510006, People's Republic of China
| | - Chenyu Lin
- Institute of Developmental Biology and Regenerative Medicine, Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Southwest University, Chongqing 400715, People's Republic of China
| | - Yiyue Zhang
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou 510006, People's Republic of China
| | - Liping Shu
- Key Laboratory of Adult Stem Cell Transformation Research, Chinese Academy of Medical Science, Guizhou Medical University, Guiyang 550025, People's Republic of China; and
| | - Lingfei Luo
- Institute of Developmental Biology and Regenerative Medicine, Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Southwest University, Chongqing 400715, People's Republic of China
| | - Jian Zhuo
- Department of Urology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, People's Republic of China
| | - Li Li
- Institute of Developmental Biology and Regenerative Medicine, Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Southwest University, Chongqing 400715, People's Republic of China
| |
Collapse
|
45
|
Chang X, Xing L, Wang Y, Zhou TJ, Shen LJ, Jiang HL. Nanoengineered immunosuppressive therapeutics modulating M1/M2 macrophages into the balanced status for enhanced idiopathic pulmonary fibrosis therapy. NANOSCALE 2020; 12:8664-8678. [PMID: 32227023 DOI: 10.1039/d0nr00750a] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Effective treatment in clinic for idiopathic pulmonary fibrosis (IPF) remains a challenge due to low drug accumulation in lungs and imbalanced polarization of pro/anti-inflammatory macrophages (M1/M2 macrophages). Herein, a novel endogenous cell-targeting nanoplatform (PNCE) is developed for enhanced IPF treatment efficacy through modulating M1/M2 macrophages into the balanced status to suppress fibroblast over-activation. Notably, PNCE loaded with nintedanib (NIN) and colchicine (COL) can firstly target endogenous monocyte-derived multipotent cells (MOMCs) and then be effectively delivered into IPF lungs due to the homing ability of MOMCs, and detached sensitively from MOMCs by matrix metalloproteinases-2 (MMP-2) over-expressed in IPF lungs. After PNCE selectively accumulated within fibrosis foci, COL can mildly modulate the polarization of M1 macrophages into M2 macrophages to balance innate immune responses, which can enhance the suppressing effect of NIN on fibroblast activation, further improving the IPF therapy. Altogether, PNCE has two collaborative steps including the inhibition of innate immune responses accompanied by the decrease of fibroblast populations in IPF lungs, achieving a stronger and excellent anti-fibrotic efficacy both in vitro and in vivo. This endogenous cell-based engineered liposomal nanoplatform not only allows therapeutic drugs to take effect selectively in vivo, but also provides an alternative strategy for an enhanced curative effect by modulating innate immune responses in IPF therapy.
Collapse
Affiliation(s)
- Xin Chang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009, China.
| | | | | | | | | | | |
Collapse
|
46
|
Lear TB, Lockwood KC, Larsen M, Tuncer F, Kennerdell JR, Morse C, Valenzi E, Tabib T, Jurczak MJ, Kass DJ, Evankovich JW, Finkel T, Lafyatis R, Liu Y, Chen BB. Kelch-like protein 42 is a profibrotic ubiquitin E3 ligase involved in systemic sclerosis. J Biol Chem 2020; 295:4171-4180. [PMID: 32071084 PMCID: PMC7105301 DOI: 10.1074/jbc.ac119.012066] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/07/2020] [Indexed: 01/08/2023] Open
Abstract
Systemic scleroderma (SSc) is an autoimmune disease that affects over 2.5 million people globally. SSc results in dysfunctional connective tissues with excessive profibrotic signaling, affecting skin, cardiovascular, and particularly lung tissue. Over three-quarters of individuals with SSc develop pulmonary fibrosis within 5 years, the main cause of SSc mortality. No approved medicines to manage lung SSc currently exist. Recent research suggests that profibrotic signaling by transforming growth factor β (TGF-β) is directly tied to SSc. Previous studies have also shown that ubiquitin E3 ligases potently control TGF-β signaling through targeted degradation of key regulatory proteins; however, the roles of these ligases in SSc-TGF-β signaling remain unclear. Here we utilized primary SSc patient lung cells for high-throughput screening of TGF-β signaling via high-content imaging of nuclear translocation of the profibrotic transcription factor SMAD family member 2/3 (SMAD2/3). We screened an RNAi library targeting ubiquitin E3 ligases and observed that knockdown of the E3 ligase Kelch-like protein 42 (KLHL42) impairs TGF-β-dependent profibrotic signaling. KLHL42 knockdown reduced fibrotic tissue production and decreased TGF-β-mediated SMAD activation. Using unbiased ubiquitin proteomics, we identified phosphatase 2 regulatory subunit B'ϵ (PPP2R5ϵ) as a KLHL42 substrate. Mechanistic experiments validated ubiquitin-mediated control of PPP2R5ϵ stability through KLHL42. PPP2R5ϵ knockdown exacerbated TGF-β-mediated profibrotic signaling, indicating a role of PPP2R5ϵ in SSc. Our findings indicate that the KLHL42-PPP2R5ϵ axis controls profibrotic signaling in SSc lung fibroblasts. We propose that future studies could investigate whether chemical inhibition of KLHL42 may ameliorate profibrotic signaling in SSc.
Collapse
Affiliation(s)
- Travis B Lear
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15261; Aging Institute, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | - Karina C Lockwood
- Aging Institute, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | - Mads Larsen
- Aging Institute, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | - Ferhan Tuncer
- Aging Institute, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | - Jason R Kennerdell
- Aging Institute, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | - Christina Morse
- Division of Rheumatology and Clinical Immunology, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | - Eleanor Valenzi
- Division of Rheumatology and Clinical Immunology, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | - Tracy Tabib
- Division of Rheumatology and Clinical Immunology, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | - Michael J Jurczak
- Division of Endocrinology and Metabolism, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | - Daniel J Kass
- Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | - John W Evankovich
- Aging Institute, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15213; Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | - Toren Finkel
- Aging Institute, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15213; Division of Cardiology, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | - Robert Lafyatis
- Division of Rheumatology and Clinical Immunology, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | - Yuan Liu
- Aging Institute, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15213; Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15213.
| | - Bill B Chen
- Aging Institute, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15213; Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15213; Vascular Medicine Institute, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15213.
| |
Collapse
|
47
|
El Ayadi A, Jay JW, Prasai A. Current Approaches Targeting the Wound Healing Phases to Attenuate Fibrosis and Scarring. Int J Mol Sci 2020; 21:ijms21031105. [PMID: 32046094 PMCID: PMC7037118 DOI: 10.3390/ijms21031105] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 01/20/2020] [Accepted: 02/04/2020] [Indexed: 02/06/2023] Open
Abstract
Cutaneous fibrosis results from suboptimal wound healing following significant tissue injury such as severe burns, trauma, and major surgeries. Pathologic skin fibrosis results in scars that are disfiguring, limit normal movement, and prevent patient recovery and reintegration into society. While various therapeutic strategies have been used to accelerate wound healing and decrease the incidence of scarring, recent studies have targeted the molecular regulators of each phase of wound healing, including the inflammatory, proliferative, and remodeling phases. Here, we reviewed the most recent literature elucidating molecular pathways that can be targeted to reduce fibrosis with a particular focus on post-burn scarring. Current research targeting inflammatory mediators, the epithelial to mesenchymal transition, and regulators of myofibroblast differentiation shows promising results. However, a multimodal approach addressing all three phases of wound healing may provide the best therapeutic outcome.
Collapse
|