1
|
Scott MC, Steier Z, Pierson MJ, Stolley JM, O'Flanagan SD, Soerens AG, Wijeyesinghe SP, Beura LK, Dileepan G, Burbach BJ, Künzli M, Quarnstrom CF, Ghirardelli Smith OC, Weyu E, Hamilton SE, Vezys V, Shalek AK, Masopust D. Deep profiling deconstructs features associated with memory CD8 + T cell tissue residence. Immunity 2024:S1074-7613(24)00522-3. [PMID: 39708817 DOI: 10.1016/j.immuni.2024.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/19/2024] [Accepted: 11/06/2024] [Indexed: 12/23/2024]
Abstract
Tissue-resident memory CD8+ T (Trm) cells control infections and cancer and are defined by their lack of recirculation. Because migration is difficult to assess, residence is usually inferred by putative residence-defining phenotypic and gene signature proxies. We assessed the validity and universality of residence proxies by integrating mouse parabiosis, multi-organ sampling, intravascular staining, acute and chronic infection models, dirty mice, and single-cell multi-omics. We report that memory T cells integrate a constellation of inputs-location, stimulation history, antigen persistence, and environment-resulting in myriad differentiation states. Thus, current Trm-defining methodologies have implicit limitations, and a universal residence-specific signature may not exist. However, we define genes and phenotypes that more robustly correlate with tissue residence across the broad range of conditions that we tested. This study reveals broad adaptability of T cells to diverse stimulatory and environmental inputs and provides practical recommendations for evaluating Trm cells.
Collapse
Affiliation(s)
- Milcah C Scott
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455, USA; Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Zoë Steier
- Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Mark J Pierson
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA; Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
| | - J Michael Stolley
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455, USA; Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Stephen D O'Flanagan
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455, USA; Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Andrew G Soerens
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455, USA; Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Sathi P Wijeyesinghe
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455, USA; Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Lalit K Beura
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455, USA; Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Gayathri Dileepan
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455, USA; Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Brandon J Burbach
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455, USA; Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Marco Künzli
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455, USA; Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Clare F Quarnstrom
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455, USA; Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Olivia C Ghirardelli Smith
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455, USA; Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Eyob Weyu
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455, USA; Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Sara E Hamilton
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA; Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Vaiva Vezys
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455, USA; Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Alex K Shalek
- Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA; Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - David Masopust
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455, USA; Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
2
|
Zhao Y, Wucherpfennig KW. Tissue-Resident T Cells in Clinical Response and Immune-Related Adverse Events of Immune Checkpoint Blockade. Clin Cancer Res 2024; 30:5527-5534. [PMID: 39404858 DOI: 10.1158/1078-0432.ccr-23-3296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/09/2024] [Accepted: 09/23/2024] [Indexed: 10/25/2024]
Abstract
T-cell surveillance of tissues is spatially organized: circulating memory T cells perform surveillance of secondary lymphoid organs, whereas tissue-resident memory T cells act as sentinels in barrier tissues. In the context of infection, tissue-resident memory T cells survive long term in barrier tissues and are poised to respond to re-encounter of infectious agents. The activity of such tissue-resident T cells is regulated by the PD-1 and cytotoxic T-lymphocyte-associated protein 4 inhibitory receptors targeted by cancer immunotherapies. This review investigates the hypothesis that T cells with a tissue residency program play an important role in both protective antitumor immunity and immune-related adverse events (irAE) of immune checkpoint blockade (ICB). A series of translational studies have demonstrated that a higher density of tissue-resident T cells within tumors is associated with favorable survival outcomes in a diverse range of cancer types. Tissue-resident T cells have also been implicated in clinical response to ICB, and dynamic tracking of T-cell populations in pre- and on-treatment tumor samples demonstrated that T cells with a tissue residency program responded early to ICB. Investigation of colitis and dermatitis as examples of irAEs demonstrated that tissue-resident memory T cells were reactivated at these epithelial sites, resulting in a highly cytotoxic state and secretion of inflammatory cytokines IFNγ and TNFα. It will therefore be important to consider how a tissue residency program can be enhanced to promote T-cell-mediated tumor immunity while preventing the development of irAEs.
Collapse
Affiliation(s)
- Ye Zhao
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Kai W Wucherpfennig
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Immunology, Harvard Medical School, Boston, Massachusetts
- Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts
| |
Collapse
|
3
|
Bongrand P. Should Artificial Intelligence Play a Durable Role in Biomedical Research and Practice? Int J Mol Sci 2024; 25:13371. [PMID: 39769135 PMCID: PMC11676049 DOI: 10.3390/ijms252413371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/26/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
During the last decade, artificial intelligence (AI) was applied to nearly all domains of human activity, including scientific research. It is thus warranted to ask whether AI thinking should be durably involved in biomedical research. This problem was addressed by examining three complementary questions (i) What are the major barriers currently met by biomedical investigators? It is suggested that during the last 2 decades there was a shift towards a growing need to elucidate complex systems, and that this was not sufficiently fulfilled by previously successful methods such as theoretical modeling or computer simulation (ii) What is the potential of AI to meet the aforementioned need? it is suggested that recent AI methods are well-suited to perform classification and prediction tasks on multivariate systems, and possibly help in data interpretation, provided their efficiency is properly validated. (iii) Recent representative results obtained with machine learning suggest that AI efficiency may be comparable to that displayed by human operators. It is concluded that AI should durably play an important role in biomedical practice. Also, as already suggested in other scientific domains such as physics, combining AI with conventional methods might generate further progress and new applications, involving heuristic and data interpretation.
Collapse
Affiliation(s)
- Pierre Bongrand
- Laboratory Adhesion and Inflammation (LAI), Inserm UMR 1067, Cnrs Umr 7333, Aix-Marseille Université UM 61, 13009 Marseille, France
| |
Collapse
|
4
|
Min D, Fiedler J, Anandasabapathy N. Tissue-resident memory cells in antitumoral immunity and cancer immunotherapy. Curr Opin Immunol 2024; 91:102499. [PMID: 39486215 PMCID: PMC11609010 DOI: 10.1016/j.coi.2024.102499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/26/2024] [Accepted: 10/05/2024] [Indexed: 11/04/2024]
Abstract
As cancer immunotherapy evolves, tissue-resident memory (TRM) cells remain key contributors to the antitumoral immune response due to their ability to mediate local tumor control, high expression of immune checkpoints, potential to respond to immunotherapy, and location across tissue sites where distal tumor metastases occur. This review synthesizes recent findings on the biology of TRM cells, their role in cancer, and their interactions with the tumor microenvironment. We also identify several critical research gaps, such as how mechanistic interrogation of TRM cell function is required for integration into therapeutics, proposing a focused research agenda to better exploit their potential.
Collapse
Affiliation(s)
- Daniel Min
- Department of Dermatology, Weill Cornell Medicine, New York, NY 10026, USA; Immunology & Microbial Pathogenesis Program, Weill Cornell Medicine, New York, NY, USA
| | - Jacob Fiedler
- Department of Dermatology, Weill Cornell Medicine, New York, NY 10026, USA
| | - Niroshana Anandasabapathy
- Department of Dermatology, Weill Cornell Medicine, New York, NY 10026, USA; Immunology & Microbial Pathogenesis Program, Weill Cornell Medicine, New York, NY, USA; Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, New York, USA; Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, New York, USA; Department of Microbiology and Immunology, Weill Cornell Medicine, New York, New York, USA.
| |
Collapse
|
5
|
Obers A, Poch T, Rodrigues G, Christo SN, Gandolfo LC, Fonseca R, Zaid A, Kuai JEY, Lai H, Zareie P, Yakou MH, Dryburgh L, Burn TN, Dosser J, Buquicchio FA, Lareau CA, Walsh C, Judd L, Theodorou MR, Gutbrod K, Dörmann P, Kingham J, Stinear T, Kallies A, Schroeder J, Mueller SN, Park SL, Speed TP, Satpathy AT, Phan TG, Wilhelm C, Zaph C, Evrard M, Mackay LK. Retinoic acid and TGF-β orchestrate organ-specific programs of tissue residency. Immunity 2024; 57:2615-2633.e10. [PMID: 39406245 DOI: 10.1016/j.immuni.2024.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/23/2024] [Accepted: 09/21/2024] [Indexed: 11/15/2024]
Abstract
Tissue-resident memory T (TRM) cells are integral to tissue immunity, persisting in diverse anatomical sites where they adhere to a common transcriptional framework. How these cells integrate distinct local cues to adopt the common TRM cell fate remains poorly understood. Here, we show that whereas skin TRM cells strictly require transforming growth factor β (TGF-β) for tissue residency, those in other locations utilize the metabolite retinoic acid (RA) to drive an alternative differentiation pathway, directing a TGF-β-independent tissue residency program in the liver and synergizing with TGF-β to drive TRM cells in the small intestine. We found that RA was required for the long-term maintenance of intestinal TRM populations, in part by impeding their retrograde migration. Moreover, enhanced RA signaling modulated TRM cell phenotype and function, a phenomenon mirrored in mice with increased microbial diversity. Together, our findings reveal RA as a fundamental component of the host-environment interaction that directs immunosurveillance in tissues.
Collapse
Affiliation(s)
- Andreas Obers
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Tobias Poch
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Grace Rodrigues
- Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Susan N Christo
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Luke C Gandolfo
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia; School of Mathematics and Statistics, The University of Melbourne, Melbourne, VIC, Australia; Walter and Eliza Hall Institute for Medical Research, Parkville, VIC, Australia
| | - Raissa Fonseca
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Ali Zaid
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Joey En Yu Kuai
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Hongjin Lai
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia; Department of Thoracic Surgery and Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Pirooz Zareie
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Marina H Yakou
- Olivia Newton-John Cancer Research Institute, LaTrobe University School of Cancer Medicine, Heidelberg, VIC, Australia
| | - Lachlan Dryburgh
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Thomas N Burn
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - James Dosser
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Frank A Buquicchio
- Department of Pathology, Stanford University, Stanford, CA, USA; Program in Immunology, Stanford University, Stanford, CA, USA
| | - Caleb A Lareau
- Department of Pathology, Stanford University, Stanford, CA, USA; Program in Immunology, Stanford University, Stanford, CA, USA
| | - Calum Walsh
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Louise Judd
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Maria Rafailia Theodorou
- Immunopathology Unit, Institute of Clinical Chemistry and Clinical Pharmacology, University of Bonn, Bonn, Germany
| | - Katharina Gutbrod
- Institute for Molecular Physiology and Biotechnology of Plants, University of Bonn, Bonn, Germany
| | - Peter Dörmann
- Institute for Molecular Physiology and Biotechnology of Plants, University of Bonn, Bonn, Germany
| | - Jenny Kingham
- Australian BioResources Pty Ltd, Moss Vale, NSW, Australia; Animal Services, Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW, Australia
| | - Tim Stinear
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Axel Kallies
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Jan Schroeder
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Scott N Mueller
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Simone L Park
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia; Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Terence P Speed
- School of Mathematics and Statistics, The University of Melbourne, Melbourne, VIC, Australia; Walter and Eliza Hall Institute for Medical Research, Parkville, VIC, Australia
| | - Ansuman T Satpathy
- Department of Pathology, Stanford University, Stanford, CA, USA; Program in Immunology, Stanford University, Stanford, CA, USA; Parker Institute for Cancer Immunotherapy, Stanford University, Stanford, CA, USA; Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
| | - Tri Giang Phan
- Precision Immunology Program, Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW, Australia; St Vincent's Healthcare Clinical Campus, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
| | - Christoph Wilhelm
- Immunopathology Unit, Institute of Clinical Chemistry and Clinical Pharmacology, University of Bonn, Bonn, Germany
| | - Colby Zaph
- Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Maximilien Evrard
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia.
| | - Laura K Mackay
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia.
| |
Collapse
|
6
|
Cheng L, Becattini S. Local antigen encounter promotes generation of tissue-resident memory T cells in the large intestine. Mucosal Immunol 2024; 17:810-824. [PMID: 38782240 DOI: 10.1016/j.mucimm.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024]
Abstract
Upon infection, CD8+ T cells that have been primed in the draining lymph nodes migrate to the invaded tissue, where they receive cues prompting their differentiation into tissue-resident memory cells (Trm), which display niche-specific transcriptional features. Despite the importance of these cells, our understanding of their molecular landscape and the signals that dictate their development remains limited, particularly in specific anatomical niches such as the large intestine (LI). Here, we report that LI Trm-generated following oral infection exhibits a distinct transcriptional profile compared to Trm in other tissues. Notably, we observe that local cues play a crucial role in the preferential establishment of LI Trm, favoring precursors that migrate to the tissue early during infection. Our investigations identify cognate antigen recognition as a major driver of Trm differentiation at this anatomical site. Local antigen presentation not only promotes the proliferation of effector cells and memory precursors but also facilitates the acquisition of transcriptional features characteristic of gut Trm. Thus, antigen recognition in the LI favors the establishment of Trm by impacting T cell expansion and gene expression.
Collapse
Affiliation(s)
- Liqing Cheng
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland; Geneva Centre for Inflammation Research, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Simone Becattini
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland; Geneva Centre for Inflammation Research, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
7
|
Lopez-Scarim J, Mendoza D, Nambiar SM, Billerbeck E. CD4+ T cell help during early acute hepacivirus infection is critical for viral clearance and the generation of a liver-homing CD103+CD49a+ effector CD8+ T cell subset. PLoS Pathog 2024; 20:e1012615. [PMID: 39392861 PMCID: PMC11498735 DOI: 10.1371/journal.ppat.1012615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 10/23/2024] [Accepted: 09/25/2024] [Indexed: 10/13/2024] Open
Abstract
In hepatitis C virus (HCV) infection, CD4+ and CD8+ T cells are crucial for viral control. However, a detailed understanding of the kinetic of CD4+ T cell help and its role in the generation of different CD8+ T cell subsets during acute infection is lacking. The absence of a small HCV animal model has impeded mechanistic studies of hepatic antiviral T cell immunity and HCV vaccine development. In this study, we used a recently developed HCV-related rodent hepacivirus infection mouse model to investigate the impact of CD4+ T cell help on the hepatic CD8+ T cell response and viral clearance during hepacivirus infection in vivo. Our results revealed a specific kinetic of CD4+ T cell dependency during acute infection. Early CD4+ T cell help was essential for CD8+ T cell priming and viral clearance, while CD4+ T cells became dispensable during later stages of acute infection. Effector CD8+ T cells directly mediated timely hepacivirus clearance. An analysis of hepatic CD8+ T cells specific for two different viral epitopes revealed the induction of subsets of liver-homing CD103+CD49a+ and CD103-CD49a+ effector CD8+ T cells with elevated IFN-γ and TNF-α production. CD103+CD49a+ T cells further persisted as tissue-resident memory subsets. A lack of CD4+ T cell help and CD40L-CD40 interactions resulted in reduced effector functions and phenotypical changes in effector CD8+ T cells and a specific loss of the CD103+CD49a+ subset. In summary, our study shows that early CD4+ T cell help through CD40L signaling is essential for priming functional effector CD8+ T cell subsets, including unique liver-homing subsets, and hepacivirus clearance.
Collapse
Affiliation(s)
- Jarrett Lopez-Scarim
- Division of Hepatology, Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Dustyn Mendoza
- Division of Hepatology, Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Shashank M. Nambiar
- Division of Hepatology, Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Eva Billerbeck
- Division of Hepatology, Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| |
Collapse
|
8
|
Buquicchio FA, Fonseca R, Yan PK, Wang F, Evrard M, Obers A, Gutierrez JC, Raposo CJ, Belk JA, Daniel B, Zareie P, Yost KE, Qi Y, Yin Y, Nico KF, Tierney FM, Howitt MR, Lareau CA, Satpathy AT, Mackay LK. Distinct epigenomic landscapes underlie tissue-specific memory T cell differentiation. Immunity 2024; 57:2202-2215.e6. [PMID: 39043184 DOI: 10.1016/j.immuni.2024.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 05/07/2024] [Accepted: 06/27/2024] [Indexed: 07/25/2024]
Abstract
The memory CD8+ T cell pool contains phenotypically and transcriptionally heterogeneous subsets with specialized functions and recirculation patterns. Here, we examined the epigenetic landscape of CD8+ T cells isolated from seven non-lymphoid organs across four distinct infection models, alongside their circulating T cell counterparts. Using single-cell transposase-accessible chromatin sequencing (scATAC-seq), we found that tissue-resident memory T (TRM) cells and circulating memory T (TCIRC) cells develop along distinct epigenetic trajectories. We identified organ-specific transcriptional regulators of TRM cell development, including FOSB, FOS, FOSL1, and BACH2, and defined an epigenetic signature common to TRM cells across organs. Finally, we found that although terminal TEX cells share accessible regulatory elements with TRM cells, they are defined by TEX-specific epigenetic features absent from TRM cells. Together, this comprehensive data resource shows that TRM cell development is accompanied by dynamic transcriptome alterations and chromatin accessibility changes that direct tissue-adapted and functionally distinct T cell states.
Collapse
Affiliation(s)
- Frank A Buquicchio
- Department of Pathology, Stanford University, Stanford, CA 94305, USA; Program in Immunology, Stanford University, Stanford, CA 94304, USA; Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA 94158, USA
| | - Raissa Fonseca
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Patrick K Yan
- Department of Pathology, Stanford University, Stanford, CA 94305, USA; Program in Immunology, Stanford University, Stanford, CA 94304, USA
| | - Fangyi Wang
- Department of Pathology, Stanford University, Stanford, CA 94305, USA; Program in Immunology, Stanford University, Stanford, CA 94304, USA
| | - Maximilien Evrard
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Andreas Obers
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Jacob C Gutierrez
- Department of Pathology, Stanford University, Stanford, CA 94305, USA; Program in Immunology, Stanford University, Stanford, CA 94304, USA
| | - Colin J Raposo
- Department of Pathology, Stanford University, Stanford, CA 94305, USA; Program in Immunology, Stanford University, Stanford, CA 94304, USA
| | - Julia A Belk
- Department of Pathology, Stanford University, Stanford, CA 94305, USA; Department of Computer Science, Stanford University, Stanford, CA 94305, USA
| | - Bence Daniel
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Pirooz Zareie
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Kathryn E Yost
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Yanyan Qi
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Yajie Yin
- Department of Pathology, Stanford University, Stanford, CA 94305, USA; Program in Immunology, Stanford University, Stanford, CA 94304, USA
| | - Katherine F Nico
- Department of Pathology, Stanford University, Stanford, CA 94305, USA; Program in Immunology, Stanford University, Stanford, CA 94304, USA
| | - Flora M Tierney
- Department of Pathology, Stanford University, Stanford, CA 94305, USA; Program in Immunology, Stanford University, Stanford, CA 94304, USA
| | - Michael R Howitt
- Department of Pathology, Stanford University, Stanford, CA 94305, USA; Program in Immunology, Stanford University, Stanford, CA 94304, USA
| | - Caleb A Lareau
- Department of Pathology, Stanford University, Stanford, CA 94305, USA; Program in Immunology, Stanford University, Stanford, CA 94304, USA; Parker Institute for Cancer Immunotherapy, Stanford University, Stanford, CA 94129, USA; Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA 94158, USA
| | - Ansuman T Satpathy
- Department of Pathology, Stanford University, Stanford, CA 94305, USA; Program in Immunology, Stanford University, Stanford, CA 94304, USA; Parker Institute for Cancer Immunotherapy, Stanford University, Stanford, CA 94129, USA; Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA 94158, USA.
| | - Laura K Mackay
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia.
| |
Collapse
|
9
|
Gavil NV, Cheng K, Masopust D. Resident memory T cells and cancer. Immunity 2024; 57:1734-1751. [PMID: 39142275 PMCID: PMC11529779 DOI: 10.1016/j.immuni.2024.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/04/2024] [Accepted: 06/28/2024] [Indexed: 08/16/2024]
Abstract
Tissue-resident memory T (TRM) cells positively correlate with cancer survival, but the anti-tumor mechanisms underlying this relationship are not understood. This review reconciles these observations, summarizing concepts of T cell immunosurveillance, fundamental TRM cell biology, and clinical observations on the role of TRM cells in cancer and immunotherapy outcomes. We also discuss emerging strategies that utilize TRM-phenotype cells for patient diagnostics, staging, and therapy. Current challenges are highlighted, including a lack of standardized T cell nomenclature and our limited understanding of relationships between T cell markers and underlying tumor biology. Existing findings are integrated into a summary of the field while emphasizing opportunities for future research.
Collapse
Affiliation(s)
- Noah Veis Gavil
- Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, MN 55455, USA; Center for Immunology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Katarina Cheng
- Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, MN 55455, USA; Center for Immunology, University of Minnesota Medical School, Minneapolis, MN 55455, USA; Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - David Masopust
- Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, MN 55455, USA; Center for Immunology, University of Minnesota Medical School, Minneapolis, MN 55455, USA.
| |
Collapse
|
10
|
Burton OT, Bricard O, Tareen S, Gergelits V, Andrews S, Biggins L, Roca CP, Whyte C, Junius S, Brajic A, Pasciuto E, Ali M, Lemaitre P, Schlenner SM, Ishigame H, Brown BD, Dooley J, Liston A. The tissue-resident regulatory T cell pool is shaped by transient multi-tissue migration and a conserved residency program. Immunity 2024; 57:1586-1602.e10. [PMID: 38897202 DOI: 10.1016/j.immuni.2024.05.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 02/27/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024]
Abstract
The tissues are the site of many important immunological reactions, yet how the immune system is controlled at these sites remains opaque. Recent studies have identified Foxp3+ regulatory T (Treg) cells in non-lymphoid tissues with unique characteristics compared with lymphoid Treg cells. However, tissue Treg cells have not been considered holistically across tissues. Here, we performed a systematic analysis of the Treg cell population residing in non-lymphoid organs throughout the body, revealing shared phenotypes, transient residency, and common molecular dependencies. Tissue Treg cells from different non-lymphoid organs shared T cell receptor (TCR) sequences, with functional capacity to drive multi-tissue Treg cell entry and were tissue-agnostic on tissue homing. Together, these results demonstrate that the tissue-resident Treg cell pool in most non-lymphoid organs, other than the gut, is largely constituted by broadly self-reactive Treg cells, characterized by transient multi-tissue migration. This work suggests common regulatory mechanisms may allow pan-tissue Treg cells to safeguard homeostasis across the body.
Collapse
Affiliation(s)
- Oliver T Burton
- Department of Pathology, University of Cambridge, Cambridge, UK; VIB Center for Brain and Disease Research, Leuven, Belgium; KU Leuven, University of Leuven, Department of Microbiology and Immunology, Leuven, Belgium; Babraham Institute, Babraham Research Campus, Cambridge, UK
| | - Orian Bricard
- Babraham Institute, Babraham Research Campus, Cambridge, UK
| | - Samar Tareen
- Babraham Institute, Babraham Research Campus, Cambridge, UK
| | - Vaclav Gergelits
- Department of Pathology, University of Cambridge, Cambridge, UK; Babraham Institute, Babraham Research Campus, Cambridge, UK
| | - Simon Andrews
- Babraham Institute, Babraham Research Campus, Cambridge, UK
| | - Laura Biggins
- Babraham Institute, Babraham Research Campus, Cambridge, UK
| | - Carlos P Roca
- Babraham Institute, Babraham Research Campus, Cambridge, UK
| | - Carly Whyte
- Babraham Institute, Babraham Research Campus, Cambridge, UK
| | - Steffie Junius
- VIB Center for Brain and Disease Research, Leuven, Belgium; KU Leuven, University of Leuven, Department of Microbiology and Immunology, Leuven, Belgium
| | - Aleksandra Brajic
- VIB Center for Brain and Disease Research, Leuven, Belgium; KU Leuven, University of Leuven, Department of Microbiology and Immunology, Leuven, Belgium
| | - Emanuela Pasciuto
- VIB Center for Brain and Disease Research, Leuven, Belgium; KU Leuven, University of Leuven, Department of Microbiology and Immunology, Leuven, Belgium; University of Antwerp, Center of Molecular Neurology, Antwerp, Belgium
| | - Magda Ali
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Pierre Lemaitre
- VIB Center for Brain and Disease Research, Leuven, Belgium; KU Leuven, University of Leuven, Department of Microbiology and Immunology, Leuven, Belgium
| | - Susan M Schlenner
- KU Leuven, University of Leuven, Department of Microbiology and Immunology, Leuven, Belgium
| | - Harumichi Ishigame
- Laboratory for Tissue Dynamics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan; Near-InfraRed Photo-Immunotherapy Research Institute, Kansai Medical University, Hirakata, Osaka 573-1010, Japan
| | - Brian D Brown
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - James Dooley
- Department of Pathology, University of Cambridge, Cambridge, UK; VIB Center for Brain and Disease Research, Leuven, Belgium; KU Leuven, University of Leuven, Department of Microbiology and Immunology, Leuven, Belgium; Babraham Institute, Babraham Research Campus, Cambridge, UK
| | - Adrian Liston
- Department of Pathology, University of Cambridge, Cambridge, UK; VIB Center for Brain and Disease Research, Leuven, Belgium; KU Leuven, University of Leuven, Department of Microbiology and Immunology, Leuven, Belgium; Babraham Institute, Babraham Research Campus, Cambridge, UK.
| |
Collapse
|
11
|
Burgos J, Benítez-Martínez A, Mancebo C, Massana N, Astorga-Gamaza A, Castellvi J, Landolfi S, Curran A, Garcia-Perez JN, Falcó V, Buzón MJ, Genescà M. Intraepithelial CD15 infiltration identifies high-grade anal dysplasia in people with HIV. JCI Insight 2024; 9:e175251. [PMID: 38900571 PMCID: PMC11383605 DOI: 10.1172/jci.insight.175251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 06/13/2024] [Indexed: 06/22/2024] Open
Abstract
Men who have sex with men (MSM) with HIV are at high risk for squamous intraepithelial lesion (SIL) and anal cancer. Identifying local immunological mechanisms involved in the development of anal dysplasia could aid treatment and diagnostics. Here, we studied 111 anal biopsies obtained from 101 MSM with HIV, who participated in an anal screening program. We first assessed multiple immune subsets by flow cytometry, in addition to histological examination, in a discovery cohort. Selected molecules were further evaluated by immunohistochemistry in a validation cohort. Pathological samples were characterized by the presence of resident memory T cells with low expression of CD103 and by changes in natural killer cell subsets, affecting residency and activation. Furthermore, potentially immunosuppressive subsets, including CD15+CD16+ mature neutrophils, gradually increased as the anal lesion progressed. Immunohistochemistry verified the association between the presence of CD15 in the epithelium and SIL diagnosis for the correlation with high-grade SIL. A complex immunological environment with imbalanced proportions of resident effectors and immune-suppressive subsets characterized pathological samples. Neutrophil infiltration, determined by CD15 staining, may represent a valuable pathological marker associated with the grade of dysplasia.
Collapse
Affiliation(s)
- Joaquín Burgos
- Infectious Diseases Department, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Aleix Benítez-Martínez
- Infectious Diseases Department, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Cristina Mancebo
- Infectious Diseases Department, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Núria Massana
- Infectious Diseases Department, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Antonio Astorga-Gamaza
- Infectious Diseases Department, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Josep Castellvi
- Pathology Department, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
- Departament de Ciències Morfològiques, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Stefania Landolfi
- Pathology Department, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
- Departament de Ciències Morfològiques, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Adrià Curran
- Infectious Diseases Department, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Jorge N Garcia-Perez
- Infectious Diseases Department, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Vicenç Falcó
- Infectious Diseases Department, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - María J Buzón
- Infectious Diseases Department, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Meritxell Genescà
- Infectious Diseases Department, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| |
Collapse
|
12
|
Heim TA, Schultz AC, Delclaux I, Cristaldi V, Churchill MJ, Ventre KS, Lund AW. Lymphatic vessel transit seeds cytotoxic resident memory T cells in skin draining lymph nodes. Sci Immunol 2024; 9:eadk8141. [PMID: 38848340 DOI: 10.1126/sciimmunol.adk8141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 05/14/2024] [Indexed: 06/09/2024]
Abstract
Lymphatic transport shapes the homeostatic immune repertoire of lymph nodes (LNs). LN-resident memory T cells (TRMs) play an important role in site-specific immune memory, yet how LN TRMs form de novo after viral infection remains unclear. Here, we tracked the anatomical distribution of antiviral CD8+ T cells as they seeded skin and LN TRMs using a model of vaccinia virus-induced skin infection. LN TRMs localized to the draining LNs (dLNs) of infected skin, and their formation depended on the lymphatic egress of effector CD8+ T cells from the skin, already poised for residence. Effector CD8+ T cell transit through skin was required to populate LN TRMs in dLNs, a process reinforced by antigen encounter in skin. Furthermore, LN TRMs were protective against viral rechallenge in the absence of circulating memory T cells. These data suggest that a subset of tissue-infiltrating CD8+ T cells egress from tissues during viral clearance and establish a layer of regional protection in the dLN basin.
Collapse
Affiliation(s)
- Taylor A Heim
- Ronald O. Perelman Department of Dermatology, NYU Grossman School of Medicine, New York, NY, USA
| | - Austin C Schultz
- Ronald O. Perelman Department of Dermatology, NYU Grossman School of Medicine, New York, NY, USA
| | - Ines Delclaux
- Ronald O. Perelman Department of Dermatology, NYU Grossman School of Medicine, New York, NY, USA
| | - Vanessa Cristaldi
- Ronald O. Perelman Department of Dermatology, NYU Grossman School of Medicine, New York, NY, USA
| | - Madeline J Churchill
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR, USA
| | - Katherine S Ventre
- Ronald O. Perelman Department of Dermatology, NYU Grossman School of Medicine, New York, NY, USA
| | - Amanda W Lund
- Ronald O. Perelman Department of Dermatology, NYU Grossman School of Medicine, New York, NY, USA
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY, USA
| |
Collapse
|
13
|
Murakami M. Tissue-resident memory T cells: decoding intra-organ diversity with a gut perspective. Inflamm Regen 2024; 44:19. [PMID: 38632596 PMCID: PMC11022361 DOI: 10.1186/s41232-024-00333-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/05/2024] [Indexed: 04/19/2024] Open
Abstract
Tissue-resident memory T cells (TRM) serve as the frontline of host defense, playing a critical role in protection against invading pathogens. This emphasizes their role in providing rapid on-site immune responses across various organs. The physiological significance of TRM is not just confined to infection control; accumulating evidence has revealed that TRM also determine the pathology of diseases such as autoimmune disorders, inflammatory bowel disease, and cancer. Intensive studies on the origin, mechanisms of formation and maintenance, and physiological significance of TRM have elucidated the transcriptional and functional diversity of these cells, which are often affected by local cues associated with their presence. These were further confirmed by the recent remarkable advancements of next-generation sequencing and single-cell technologies, which allow the transcriptional and phenotypic characterization of each TRM subset induced in different microenvironments. This review first overviews the current knowledge of the cell fate, molecular features, transcriptional and metabolic regulation, and biological importance of TRM in health and disease. Finally, this article presents a variety of recent studies on disease-associated TRM, particularly focusing and elaborating on the TRM in the gut, which constitute the largest and most intricate immune network in the body, and their pathological relevance to gut inflammation in humans.
Collapse
Affiliation(s)
- Mari Murakami
- Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, 2-2 Yamada-Oka, Suita, Osaka, 565-0871, Japan.
- Immunology Frontier Research Center, Osaka University, Osaka, 565-0871, Japan.
| |
Collapse
|
14
|
Reina-Campos M, Monell A, Ferry A, Luna V, Cheung KP, Galletti G, Scharping NE, Takehara KK, Quon S, Boland B, Lin YH, Wong WH, Indralingam CS, Yeo GW, Chang JT, Heeg M, Goldrath AW. Functional Diversity of Memory CD8 T Cells is Spatiotemporally Imprinted. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.20.585130. [PMID: 38585842 PMCID: PMC10996520 DOI: 10.1101/2024.03.20.585130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Tissue-resident memory CD8 T cells (TRM) kill infected cells and recruit additional immune cells to limit pathogen invasion at barrier sites. Small intestinal (SI) TRM cells consist of distinct subpopulations with higher expression of effector molecules or greater memory potential. We hypothesized that occupancy of diverse anatomical niches imprints these distinct TRM transcriptional programs. We leveraged human samples and a murine model of acute systemic viral infection to profile the location and transcriptome of pathogen-specific TRM cell differentiation at single-transcript resolution. We developed computational approaches to capture cellular locations along three anatomical axes of the small intestine and to visualize the spatiotemporal distribution of cell types and gene expression. TRM populations were spatially segregated: with more effector- and memory-like TRM preferentially localized at the villus tip or crypt, respectively. Modeling ligand-receptor activity revealed patterns of key cellular interactions and cytokine signaling pathways that initiate and maintain TRM differentiation and functional diversity, including different TGFβ sources. Alterations in the cellular networks induced by loss of TGFβRII expression revealed a model consistent with TGFβ promoting progressive TRM maturation towards the villus tip. Ultimately, we have developed a framework for the study of immune cell interactions with the spectrum of tissue cell types, revealing that T cell location and functional state are fundamentally intertwined.
Collapse
Affiliation(s)
- Miguel Reina-Campos
- Division of Biological Sciences, Department of Molecular Biology, University of California San Diego, La Jolla, CA, USA
| | - Alexander Monell
- Division of Biological Sciences, Department of Molecular Biology, University of California San Diego, La Jolla, CA, USA
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Amir Ferry
- Division of Biological Sciences, Department of Molecular Biology, University of California San Diego, La Jolla, CA, USA
| | - Vida Luna
- Division of Biological Sciences, Department of Molecular Biology, University of California San Diego, La Jolla, CA, USA
| | - Kitty P. Cheung
- Division of Biological Sciences, Department of Molecular Biology, University of California San Diego, La Jolla, CA, USA
| | - Giovanni Galletti
- Division of Biological Sciences, Department of Molecular Biology, University of California San Diego, La Jolla, CA, USA
| | - Nicole E. Scharping
- Division of Biological Sciences, Department of Molecular Biology, University of California San Diego, La Jolla, CA, USA
| | - Kennidy K. Takehara
- Division of Biological Sciences, Department of Molecular Biology, University of California San Diego, La Jolla, CA, USA
| | - Sara Quon
- Division of Biological Sciences, Department of Molecular Biology, University of California San Diego, La Jolla, CA, USA
| | - Brigid Boland
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Yun Hsuan Lin
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - William H. Wong
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | | | - Gene W. Yeo
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - John T. Chang
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Maximilian Heeg
- Division of Biological Sciences, Department of Molecular Biology, University of California San Diego, La Jolla, CA, USA
| | - Ananda W. Goldrath
- Division of Biological Sciences, Department of Molecular Biology, University of California San Diego, La Jolla, CA, USA
- Allen Institute for Immunology, 615 Westlake Avenue N, Seattle, WA 98109, USA
| |
Collapse
|
15
|
Foo IJH, Chua BY, Clemens EB, Chang SY, Jia X, McQuilten HA, Yap AHY, Cabug AF, Ashayeripanah M, McWilliam HEG, Villadangos JA, Evrard M, Mackay LK, Wakim LM, Fazakerley JK, Kedzierska K, Kedzierski L. Prior infection with unrelated neurotropic virus exacerbates influenza disease and impairs lung T cell responses. Nat Commun 2024; 15:2619. [PMID: 38521764 PMCID: PMC10960853 DOI: 10.1038/s41467-024-46822-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 03/07/2024] [Indexed: 03/25/2024] Open
Abstract
Immunity to infectious diseases is predominantly studied by measuring immune responses towards a single pathogen, although co-infections are common. In-depth mechanisms on how co-infections impact anti-viral immunity are lacking, but are highly relevant to treatment and prevention. We established a mouse model of co-infection with unrelated viruses, influenza A (IAV) and Semliki Forest virus (SFV), causing disease in different organ systems. SFV infection eight days before IAV infection results in prolonged IAV replication, elevated cytokine/chemokine levels and exacerbated lung pathology. This is associated with impaired lung IAV-specific CD8+ T cell responses, stemming from suboptimal CD8+ T cell activation and proliferation in draining lymph nodes, and dendritic cell paralysis. Prior SFV infection leads to increased blood brain barrier permeability and presence of IAV RNA in brain, associated with increased trafficking of IAV-specific CD8+ T cells and establishment of long-term tissue-resident memory. Relative to lung IAV-specific CD8+ T cells, brain memory IAV-specific CD8+ T cells have increased TCR repertoire diversity within immunodominant DbNP366+CD8+ and DbPA224+CD8+ responses, featuring suboptimal TCR clonotypes. Overall, our study demonstrates that infection with an unrelated neurotropic virus perturbs IAV-specific immune responses and exacerbates IAV disease. Our work provides key insights into therapy and vaccine regimens directed against unrelated pathogens.
Collapse
Affiliation(s)
- Isabelle Jia-Hui Foo
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
- Department of Veterinary Biosciences, Faculty of Science, The University of Melbourne, Melbourne, VIC 3000, Australia
| | - Brendon Y Chua
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - E Bridie Clemens
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - So Young Chang
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Xiaoxiao Jia
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Hayley A McQuilten
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Ashley Huey Yiing Yap
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Aira F Cabug
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Mitra Ashayeripanah
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Hamish E G McWilliam
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Jose A Villadangos
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
- Department of Biochemistry and Pharmacology; Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Maximilien Evrard
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Laura K Mackay
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Linda M Wakim
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - John K Fazakerley
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
- Department of Veterinary Biosciences, Faculty of Science, The University of Melbourne, Melbourne, VIC 3000, Australia
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia.
| | - Lukasz Kedzierski
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia.
| |
Collapse
|
16
|
van der Heide V, Davenport B, Cubitt B, Roudko V, Choo D, Humblin E, Jhun K, Angeliadis K, Dawson T, Furtado G, Kamphorst A, Ahmed R, de la Torre JC, Homann D. Functional impairment of "helpless" CD8 + memory T cells is transient and driven by prolonged but finite cognate antigen presentation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.22.576725. [PMID: 38328184 PMCID: PMC10849538 DOI: 10.1101/2024.01.22.576725] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Generation of functional CD8 + T cell memory typically requires engagement of CD4 + T cells. However, in certain scenarios, such as acutely-resolving viral infections, effector (T E ) and subsequent memory (T M ) CD8 + T cell formation appear impervious to a lack of CD4 + T cell help during priming. Nonetheless, such "helpless" CD8 + T M respond poorly to pathogen rechallenge. At present, the origin and long-term evolution of helpless CD8 + T cell memory remain incompletely understood. Here, we demonstrate that helpless CD8 + T E differentiation is largely normal but a multiplicity of helpless CD8 T M defects, consistent with impaired memory maturation, emerge as a consequence of prolonged yet finite exposure to cognate antigen. Importantly, these defects resolve over time leading to full restoration of CD8 + T M potential and recall capacity. Our findings provide a unified explanation for helpless CD8 + T cell memory and emphasize an unexpected CD8 + T M plasticity with implications for vaccination strategies and beyond.
Collapse
|
17
|
Torcellan T, Friedrich C, Doucet-Ladevèze R, Ossner T, Solé VV, Riedmann S, Ugur M, Imdahl F, Rosshart SP, Arnold SJ, Gomez de Agüero M, Gagliani N, Flavell RA, Backes S, Kastenmüller W, Gasteiger G. Circulating NK cells establish tissue residency upon acute infection of skin and mediate accelerated effector responses to secondary infection. Immunity 2024; 57:124-140.e7. [PMID: 38157853 PMCID: PMC10783803 DOI: 10.1016/j.immuni.2023.11.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 09/25/2023] [Accepted: 11/28/2023] [Indexed: 01/03/2024]
Abstract
Natural killer (NK) cells are present in the circulation and can also be found residing in tissues, and these populations exhibit distinct developmental requirements and are thought to differ in terms of ontogeny. Here, we investigate whether circulating conventional NK (cNK) cells can develop into long-lived tissue-resident NK (trNK) cells following acute infections. We found that viral and bacterial infections of the skin triggered the recruitment of cNK cells and their differentiation into Tcf1hiCD69hi trNK cells that share transcriptional similarity with CD56brightTCF1hi NK cells in human tissues. Skin trNK cells arose from interferon (IFN)-γ-producing effector cells and required restricted expression of the transcriptional regulator Blimp1 to optimize Tcf1-dependent trNK cell formation. Upon secondary infection, trNK cells rapidly gained effector function and mediated an accelerated NK cell response. Thus, cNK cells redistribute and permanently position at sites of previous infection via a mechanism promoting tissue residency that is distinct from Hobit-dependent developmental paths of NK cells and ILC1 seeding tissues during ontogeny.
Collapse
Affiliation(s)
- Tommaso Torcellan
- Würzburg Institute of Systems Immunology, Max Planck Research Group at the Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Christin Friedrich
- Würzburg Institute of Systems Immunology, Max Planck Research Group at the Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Rémi Doucet-Ladevèze
- Würzburg Institute of Systems Immunology, Max Planck Research Group at the Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Thomas Ossner
- Würzburg Institute of Systems Immunology, Max Planck Research Group at the Julius-Maximilians-Universität Würzburg, Würzburg, Germany; International Max Planck Research School for Immunobiology, Epigenetics, and Metabolism (IMPRS-IEM), 79108 Freiburg, Germany; Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Virgínia Visaconill Solé
- Würzburg Institute of Systems Immunology, Max Planck Research Group at the Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Sofie Riedmann
- Würzburg Institute of Systems Immunology, Max Planck Research Group at the Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Milas Ugur
- Würzburg Institute of Systems Immunology, Max Planck Research Group at the Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Fabian Imdahl
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Center for Infection Research (HZI), 97078 Würzburg, Germany
| | - Stephan P Rosshart
- Department of Microbiome Research, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany; Department of Medicine II, Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Sebastian J Arnold
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; Signaling Research Centers BIOSS and CIBSS, University of Freiburg, 79104 Freiburg, Germany
| | - Mercedes Gomez de Agüero
- Würzburg Institute of Systems Immunology, Max Planck Research Group at the Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Nicola Gagliani
- Section of Molecular Immunology und Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Richard A Flavell
- Department of Immunobiology, School of Medicine, Yale University, New Haven, CT 06520, USA; Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Simone Backes
- Institute for Virology and Immunobiology, University of Würzburg, 97078 Würzburg, Germany
| | - Wolfgang Kastenmüller
- Würzburg Institute of Systems Immunology, Max Planck Research Group at the Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Georg Gasteiger
- Würzburg Institute of Systems Immunology, Max Planck Research Group at the Julius-Maximilians-Universität Würzburg, Würzburg, Germany.
| |
Collapse
|
18
|
Butic AB, Spencer SA, Shaheen SK, Lukacher AE. Polyomavirus Wakes Up and Chooses Neurovirulence. Viruses 2023; 15:2112. [PMID: 37896889 PMCID: PMC10612099 DOI: 10.3390/v15102112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
JC polyomavirus (JCPyV) is a human-specific polyomavirus that establishes a silent lifelong infection in multiple peripheral organs, predominantly those of the urinary tract, of immunocompetent individuals. In immunocompromised settings, however, JCPyV can infiltrate the central nervous system (CNS), where it causes several encephalopathies of high morbidity and mortality. JCPyV-induced progressive multifocal leukoencephalopathy (PML), a devastating demyelinating brain disease, was an AIDS-defining illness before antiretroviral therapy that has "reemerged" as a complication of immunomodulating and chemotherapeutic agents. No effective anti-polyomavirus therapeutics are currently available. How depressed immune status sets the stage for JCPyV resurgence in the urinary tract, how the virus evades pre-existing antiviral antibodies to become viremic, and where/how it enters the CNS are incompletely understood. Addressing these questions requires a tractable animal model of JCPyV CNS infection. Although no animal model can replicate all aspects of any human disease, mouse polyomavirus (MuPyV) in mice and JCPyV in humans share key features of peripheral and CNS infection and antiviral immunity. In this review, we discuss the evidence suggesting how JCPyV migrates from the periphery to the CNS, innate and adaptive immune responses to polyomavirus infection, and how the MuPyV-mouse model provides insights into the pathogenesis of JCPyV CNS disease.
Collapse
Affiliation(s)
| | | | | | - Aron E. Lukacher
- Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, PA 17033, USA; (A.B.B.); (S.A.S.); (S.K.S.)
| |
Collapse
|
19
|
Mellman I, Chen DS, Powles T, Turley SJ. The cancer-immunity cycle: Indication, genotype, and immunotype. Immunity 2023; 56:2188-2205. [PMID: 37820582 DOI: 10.1016/j.immuni.2023.09.011] [Citation(s) in RCA: 186] [Impact Index Per Article: 93.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 09/18/2023] [Accepted: 09/18/2023] [Indexed: 10/13/2023]
Abstract
The cancer-immunity cycle provides a framework to understand the series of events that generate anti-cancer immune responses. It emphasizes the iterative nature of the response where the killing of tumor cells by T cells initiates subsequent rounds of antigen presentation and T cell stimulation, maintaining active immunity and adapting it to tumor evolution. Any step of the cycle can become rate-limiting, rendering the immune system unable to control tumor growth. Here, we update the cancer-immunity cycle based on the remarkable progress of the past decade. Understanding the mechanism of checkpoint inhibition has evolved, as has our view of dendritic cells in sustaining anti-tumor immunity. We additionally account for the role of the tumor microenvironment in facilitating, not just suppressing, the anti-cancer response, and discuss the importance of considering a tumor's immunological phenotype, the "immunotype". While these new insights add some complexity to the cycle, they also provide new targets for research and therapeutic intervention.
Collapse
Affiliation(s)
| | - Daniel S Chen
- Engenuity Life Sciences, Burlingame, CA, USA; Synthetic Design Lab, Burlingame, CA, USA
| | | | | |
Collapse
|
20
|
Heim TA, Schultz AC, Delclaux I, Cristaldi V, Churchill MJ, Lund AW. Lymphatic vessel transit seeds precursors to cytotoxic resident memory T cells in skin draining lymph nodes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.29.555369. [PMID: 37693469 PMCID: PMC10491166 DOI: 10.1101/2023.08.29.555369] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Resident memory T cells (TRM) provide rapid, localized protection in peripheral tissues to pathogens and cancer. While TRM are also found in lymph nodes (LN), how they develop during primary infection and their functional significance remains largely unknown. Here, we track the anatomical distribution of anti-viral CD8+ T cells as they simultaneously seed skin and LN TRM using a model of skin infection with restricted antigen distribution. We find exquisite localization of LN TRM to the draining LN of infected skin. LN TRM formation depends on lymphatic transport and specifically egress of effector CD8+ T cells that appear poised for residence as early as 12 days post infection. Effector CD8+ T cell transit through skin is necessary and sufficient to populate LN TRM in draining LNs, a process reinforced by antigen encounter in skin. Importantly, we demonstrate that LN TRM are sufficient to provide protection against pathogenic rechallenge. These data support a model whereby a subset of tissue infiltrating CD8+ T cells egress during viral clearance, and establish regional protection in the draining lymphatic basin as a mechanism to prevent pathogen spread.
Collapse
Affiliation(s)
- Taylor A. Heim
- Ronald O. Perelman Department of Dermatology, NYU Grossman School of Medicine, New York, NY, USA
| | - Austin C. Schultz
- Ronald O. Perelman Department of Dermatology, NYU Grossman School of Medicine, New York, NY, USA
| | - Ines Delclaux
- Ronald O. Perelman Department of Dermatology, NYU Grossman School of Medicine, New York, NY, USA
| | - Vanessa Cristaldi
- Ronald O. Perelman Department of Dermatology, NYU Grossman School of Medicine, New York, NY, USA
| | - Madeline J. Churchill
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR
| | - Amanda W. Lund
- Ronald O. Perelman Department of Dermatology, NYU Grossman School of Medicine, New York, NY, USA
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY, USA
| |
Collapse
|
21
|
Schlaak AE, Bengsch B. Of tenants and nomads: The faces of memory T cells. Immunity 2023; 56:1439-1442. [PMID: 37437536 DOI: 10.1016/j.immuni.2023.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 06/14/2023] [Indexed: 07/14/2023]
Abstract
Memory T cells comprise circulating and tissue-resident subsets. In this issue of Immunity, Evrard et al. generate an imputed high-dimensional, single-cell protein expression atlas of memory CD8+ T cells, providing insights into stable differentiation markers and organ-specific expression patterns.
Collapse
Affiliation(s)
- Alexandra Emilia Schlaak
- Faculty of Medicine, Clinic for Internal Medicine II, Gastroenterology, Hepatology, Endocrinology, and Infectious Disease, University Medical Center Freiburg, Freiburg, Germany
| | - Bertram Bengsch
- Faculty of Medicine, Clinic for Internal Medicine II, Gastroenterology, Hepatology, Endocrinology, and Infectious Disease, University Medical Center Freiburg, Freiburg, Germany; Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany.
| |
Collapse
|