1
|
Martin DE, Van Assche K, Cervantes L, Forsythe JLR, Muller T, Perez-Blanco A, Trias E, Bengochea M, Capron AM, Fadhil RAS, Forsberg A, Gracious N, Herson MR, Kazancioğlu R, Noel L, Padilla B, Lopez-Fraga M. Toward Equity in Global Access to SoHO-based Therapies: Recommendations for Action. Transplantation 2025; 109:60-72. [PMID: 39437368 DOI: 10.1097/tp.0000000000005106] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Therapies derived from substances of human origin (SoHOs) such as organs, cells, and tissues provide life-saving or life-changing treatment for millions of people worldwide each year. However, many people lack timely access to SoHO-based therapies because of insufficient supplies of these exceptional health resources and/or broader barriers in access to healthcare. Despite well-established governmental commitments to promote health equity in general and equity of access to SoHOs in particular, information about inequities in access to most SoHO-based therapies is scarce. Furthermore, the issue of equitable allocation of SoHO-based therapies has received little attention from policymakers and ethicists, except in the context of organ allocation for transplantation. Consequently, the extent and nature of potential inequities within and between countries are largely unknown, and few sources of guidance are available to support progress toward equity in global access to SoHO-based therapies. We present here the findings of an international ethics working group convened in preparation for the 2023 Global Summit on Convergence in Transplantation, organized in Santander, Spain. The group sought to assess potential gaps in knowledge about inequities involving SoHO-based therapies, to elucidate systemic factors that may influence access to these therapies, and to consider how policies and frameworks governing access to and allocation of SoHO-based therapies may promote equity when it is necessary to define boundaries in access because of insufficiency of supply. In discussing these challenges, we also outline several recommendations for action by governments and health authorities.
Collapse
Affiliation(s)
| | - Kristof Van Assche
- Research Group Personal Rights and Property Rights, Antwerp University, Antwerp, Belgium
| | - Lilia Cervantes
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | | | - Thomas Muller
- Division of Nephrology, University Hospital Zurich, Zurich, Switzerland
| | | | - Esteve Trias
- Hospital Clinic Barcelona, Barcelona, Spain
- Leitat Technological Center, Barcelona, Spain
| | - Milka Bengochea
- Instituto Nacional de Donación y Trasplante, Montevideo, Uruguay
| | - Alexander M Capron
- Gould School of Law and Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Riadh A S Fadhil
- Hamad Medical Corporation, Doha, Qatar
- Weill Cornell College of Medicine, Doha, Qatar
| | - Anna Forsberg
- Department of Health Sciences, Lund University, Lund, Sweden
| | - Noble Gracious
- Kerala State Organ and Tissue Transplant Organisation, Thiruvananthapuram, Kerala, India
- Department of Nephrology, Government Medical College, Thiruvananthapuram, Kerala, India
| | - Marisa R Herson
- School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Rumeyza Kazancioğlu
- Division of Nephrology, School of Medicine, Bezmialem Vakif University, Istanbul, Turkey
| | | | - Benita Padilla
- National Kidney and Transplant Institute, Manila, the Philippines
| | - Marta Lopez-Fraga
- European Directorate for the Quality of Medicines and HealthCare (EDQM), Council of Europe, Strasbourg, France
| |
Collapse
|
2
|
Finnegan YE, Neill HR, Prpa EJ, Pot B. "Gut" to grips with the science of the microbiome - a symposium report. GUT MICROBIOME (CAMBRIDGE, ENGLAND) 2024; 5:e11. [PMID: 39703540 PMCID: PMC11658944 DOI: 10.1017/gmb.2024.8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 06/18/2024] [Indexed: 12/21/2024]
Abstract
The latest Yakult Science Study Day was held virtually on 2 November 2023. Aimed at healthcare professionals, researchers, and students, a variety of experts explored the latest gut microbiome research and what it means in practice. The morning sessions discussed the role of the microbiome in health and disease, the rapid advancements in DNA sequencing and implications for personalised nutrition, the current state of evidence on health benefits associated with fermented foods, prebiotics and probiotics and the challenges involved in interpreting research in this area. The afternoon session considered the emerging research on the microbiota-gut-brain axis in mediating effects of food on mood, the bidirectional impact of menopause on the gut microbiota, and the interplay between the gut and skin with implications for the treatment of rare and common skin disorders. The session ended with an update on the use of faecal microbiota transplant in both research and clinical practice. Undoubtedly, the gut microbiome is emerging as a key conductor of human health, both in relation to gastrointestinal and non-gastrointestinal outcomes. As research continues to elucidate mechanisms of action and confirm their effects in human trials, the gut microbiome should be a key consideration within a holistic approach to health moving forward.
Collapse
Affiliation(s)
- Yvonne E. Finnegan
- Yvonne Finnegan FINNE Nutrition & Regulatory Consultancy, Kilkenny, Ireland
| | | | | | - Bruno Pot
- Yakult Europe BV, Science Department, Almere, The Netherlands
| |
Collapse
|
3
|
Al-Habsi N, Al-Khalili M, Haque SA, Elias M, Olqi NA, Al Uraimi T. Health Benefits of Prebiotics, Probiotics, Synbiotics, and Postbiotics. Nutrients 2024; 16:3955. [PMID: 39599742 PMCID: PMC11597603 DOI: 10.3390/nu16223955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/13/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024] Open
Abstract
The trillions of microbes that constitute the human gut microbiome play a crucial role in digestive health, immune response regulation, and psychological wellness. Maintaining gut microbiota is essential as metabolic diseases are associated with it. Functional food ingredients potentially improving gut health include prebiotics, probiotics, synbiotics, and postbiotics (PPSPs). While probiotics are living bacteria that provide health advantages when ingested sufficiently, prebiotics are non-digestible carbohydrates that support good gut bacteria. Synbiotics work together to improve immunity and intestinal health by combining probiotics and prebiotics. Postbiotics have also demonstrated numerous health advantages, such as bioactive molecules created during probiotic fermentation. According to a recent study, PPSPs can regulate the synthesis of metabolites, improve the integrity of the intestinal barrier, and change the gut microbiota composition to control metabolic illnesses. Additionally, the use of fecal microbiota transplantation (FMT) highlights the potential for restoring gut health through microbiota modulation, reinforcing the benefits of PPSPs in enhancing overall well-being. Research has shown that PPSPs provide several health benefits, such as improved immunological function, alleviation of symptoms associated with irritable bowel disease (IBD), decreased severity of allergies, and antibacterial and anti-inflammatory effects. Despite encouraging results, many unanswered questions remain about the scope of PPSPs' health advantages. Extensive research is required to fully realize the potential of these functional food components in enhancing human health and well-being. Effective therapeutic and prophylactic measures require further investigation into the roles of PPSPs, specifically their immune-system-modulating, cholesterol-lowering, antioxidant, and anti-inflammatory characteristics.
Collapse
Affiliation(s)
- Nasser Al-Habsi
- Department of Food Science and Nutrition, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khodh 123, Muscat P.O. Box 34, Oman; (M.A.-K.); (M.E.); (N.A.O.); (T.A.U.)
| | - Maha Al-Khalili
- Department of Food Science and Nutrition, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khodh 123, Muscat P.O. Box 34, Oman; (M.A.-K.); (M.E.); (N.A.O.); (T.A.U.)
| | - Syed Ariful Haque
- Department of Marine Science and Fisheries, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khodh 123, Muscat P.O. Box 34, Oman
- Department of Fisheries, Bangamata Sheikh Fojilatunnesa Mujib Science and Technology University, Melandah, Jamalpur 2012, Bangladesh
| | - Moussa Elias
- Department of Food Science and Nutrition, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khodh 123, Muscat P.O. Box 34, Oman; (M.A.-K.); (M.E.); (N.A.O.); (T.A.U.)
| | - Nada Al Olqi
- Department of Food Science and Nutrition, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khodh 123, Muscat P.O. Box 34, Oman; (M.A.-K.); (M.E.); (N.A.O.); (T.A.U.)
| | - Tasnim Al Uraimi
- Department of Food Science and Nutrition, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khodh 123, Muscat P.O. Box 34, Oman; (M.A.-K.); (M.E.); (N.A.O.); (T.A.U.)
| |
Collapse
|
4
|
Naz F, Hagspiel N, Young MK, Uddin J, Tyus D, Boone R, Brown AC, Ramakrishnan G, Rigo I, Madden GR, Petri WA. IL-33 protects from recurrent C. difficile infection by restoration of humoral immunity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.16.623943. [PMID: 39605647 PMCID: PMC11601440 DOI: 10.1101/2024.11.16.623943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Clostridioides difficile infection (CDI) recurs in one of five patients. Monoclonal antibodies targeting the virulence factor TcdB reduce disease recurrence, suggesting that an inadequate anti-TcdB response to CDI leads to recurrence. In patients with CDI, we discovered that IL-33 measured at diagnosis predicts future recurrence, leading us to test the role of IL-33 signaling in the induction of humoral immunity during CDI. Using a mouse recurrence model, IL-33 was demonstrated to be integral for anti-TcdB antibody production. IL-33 acted via ST2+ ILC2 cells, facilitating germinal center T follicular helper (GC-Tfh) cell generation of antibodies. IL-33 protection from reinfection was antibody-dependent, as μMT KO mice and mice treated with anti-CD20 mAb were not protected. These findings demonstrate the critical role of IL-33 in generating humoral immunity to prevent recurrent CDI.
Collapse
Affiliation(s)
- Farha Naz
- Department of Medicine, Division of Infectious Diseases and International Health, Charlottesville, Virginia, USA
| | - Nicholas Hagspiel
- Department of Medicine, Division of Infectious Diseases and International Health, Charlottesville, Virginia, USA
| | - Mary K. Young
- Department of Medicine, Division of Infectious Diseases and International Health, Charlottesville, Virginia, USA
| | - Jashim Uddin
- Department of Medicine, Division of Infectious Diseases and International Health, Charlottesville, Virginia, USA
| | - David Tyus
- Department of Medicine, Division of Infectious Diseases and International Health, Charlottesville, Virginia, USA
| | - Rachel Boone
- Department of Microbiology, Immunology and Cancer Biology, Charlottesville, Virginia, USA
| | - Audrey C. Brown
- Department of Medicine, Division of Infectious Diseases and International Health, Charlottesville, Virginia, USA
| | - Girija Ramakrishnan
- Department of Medicine, Division of Infectious Diseases and International Health, Charlottesville, Virginia, USA
| | - Isaura Rigo
- Department of Medicine, Division of Infectious Diseases and International Health, Charlottesville, Virginia, USA
| | - Gregory R. Madden
- Department of Medicine, Division of Infectious Diseases and International Health, Charlottesville, Virginia, USA
| | - William A. Petri
- Department of Medicine, Division of Infectious Diseases and International Health, Charlottesville, Virginia, USA
- Department of Microbiology, Immunology and Cancer Biology, Charlottesville, Virginia, USA
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| |
Collapse
|
5
|
Laperrousaz B, Levast B, Fontaine M, Nancey S, Dechelotte P, Doré J, Lehert P. Safety comparison of single-donor and pooled fecal microbiota transfer product preparation in ulcerative colitis: systematic review and meta-analysis. BMC Gastroenterol 2024; 24:402. [PMID: 39528920 PMCID: PMC11552227 DOI: 10.1186/s12876-024-03487-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Multiple studies have evaluated fecal microbiota transfer (FMT) in patients with ulcerative colitis (UC) using single-donor (SDN) and multidonor (MDN) products. Systematic review and meta-analysis were performed to compare the safety of SDN and MDN products. METHODS Systematic searches were performed in Web of Science, Scopus, PubMed, and Orbit Intelligence to identify studies that compared FMT products manufactured using SDN or MDN strategies against control treatment in patients with UC. Fifteen controlled studies were selected for meta-analysis (11 randomized controlled trials and 4 controlled cohort trials). Safety of each treatment type was assessed using the counts of adverse events and serious adverse events using fixed- and random-effects models. Significance of the indirect difference between FMT preparations was assessed using a network approach. Benefit-risk ratios were calculated by multiplicative utility model, incorporating geometric mean of risk ratios (RRs) of efficacy and safety. RESULTS Safety data was collected for a total of 587 patients (193 exposed to SDN products, 114 exposed to MDN products and 280 exposed to control treatment). The 12 studies showed similar overall safety event counts for MDN and SDN versus placebo (RRs: 0.90 and 1.09, respectively [P = 0.206 and P = 0.420, respectively]). Results indicated similar risk of safety events for MDN compared to SDN (RR: 0.83, P = 0.159). Positive benefit-risk ratios were demonstrated for MDN and SDN versus placebo (RRs: 1.70 and 1.16, respectively [P = 0.003 and P = 0.173, respectively]). MDN had a greater benefit-risk ratio compared to SDN (RR: 1.46, P = 0.072). CONCLUSION Similar safety profiles were observed for MDN and SDN strategies. Alongside previously described superior efficacy, treatment with MDN has greater benefit-risk ratio than SDN in patients with UC. Further development of MDN FMT treatment for UC should be considered.
Collapse
Affiliation(s)
| | | | | | - Stéphane Nancey
- Department of Gastroenterology, Lyon-Sud Hospital, CHU de Lyon, University Claude Bernard Lyon 1 and CIRI-INSERM U1111, Lyon, France
| | | | - Joël Doré
- Université Paris-Saclay, INRAE, MetaGenoPolis, AgroParis Tech, MICALIS, Jouy-en-Josas, 78350, France
| | - Philippe Lehert
- Faculty of Management, UCL, Louvain, Belgium
- Faculty of Medicine, University of Melbourne, Melbourne, Australia
| |
Collapse
|
6
|
Acevedo-Román A, Pagán-Zayas N, Velázquez-Rivera LI, Torres-Ventura AC, Godoy-Vitorino F. Insights into Gut Dysbiosis: Inflammatory Diseases, Obesity, and Restoration Approaches. Int J Mol Sci 2024; 25:9715. [PMID: 39273662 PMCID: PMC11396321 DOI: 10.3390/ijms25179715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/30/2024] [Accepted: 09/07/2024] [Indexed: 09/15/2024] Open
Abstract
The gut microbiota is one of the most critical factors in human health. It involves numerous physiological processes impacting host health, mainly via immune system modulation. A balanced microbiome contributes to the gut's barrier function, preventing the invasion of pathogens and maintaining the integrity of the gut lining. Dysbiosis, or an imbalance in the gut microbiome's composition and function, disrupts essential processes and contributes to various diseases. This narrative review summarizes key findings related to the gut microbiota in modern multifactorial inflammatory conditions such as ulcerative colitis or Crohn's disease. It addresses the challenges posed by antibiotic-driven dysbiosis, particularly in the context of C. difficile infections, and the development of novel therapies like fecal microbiota transplantation and biotherapeutic drugs to combat these infections. An emphasis is given to restoration of the healthy gut microbiome through dietary interventions, probiotics, prebiotics, and novel approaches for managing gut-related diseases.
Collapse
Affiliation(s)
- Andy Acevedo-Román
- Microbiology Department, University of Puerto Rico Medical Sciences Campus, San Juan 00936, Puerto Rico
| | - Natalia Pagán-Zayas
- Microbiology Department, University of Puerto Rico Medical Sciences Campus, San Juan 00936, Puerto Rico
| | - Liz I Velázquez-Rivera
- Microbiology Department, University of Puerto Rico Medical Sciences Campus, San Juan 00936, Puerto Rico
| | - Aryanne C Torres-Ventura
- Microbiology Department, University of Puerto Rico Medical Sciences Campus, San Juan 00936, Puerto Rico
| | - Filipa Godoy-Vitorino
- Microbiology Department, University of Puerto Rico Medical Sciences Campus, San Juan 00936, Puerto Rico
| |
Collapse
|
7
|
Bui TPN. The Human Microbiome as a Therapeutic Target for Metabolic Diseases. Nutrients 2024; 16:2322. [PMID: 39064765 PMCID: PMC11280041 DOI: 10.3390/nu16142322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
The human microbiome functions as a separate organ in a symbiotic relationship with the host. Disruption of this host-microbe symbiosis can lead to serious health problems. Modifications to the composition and function of the microbiome have been linked to changes in host metabolic outcomes. Industrial lifestyles with high consumption of processed foods, alcoholic beverages and antibiotic use have significantly altered the gut microbiome in unfavorable ways. Therefore, understanding the causal relationship between the human microbiome and host metabolism will provide important insights into how we can better intervene in metabolic health. In this review, I will discuss the potential use of the human microbiome as a therapeutic target to improve host metabolism.
Collapse
Affiliation(s)
- Thi Phuong Nam Bui
- Department of Experimental Vascular Medicine, Amsterdam University Medical Center, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
8
|
Bredon M, Danne C, Pham HP, Ruffié P, Bessede A, Rolhion N, Creusot L, Brot L, Alonso I, Langella P, Derosa L, Cortot AB, Routy B, Zitvogel L, Segata N, Sokol H. Faecalibaterium prausnitzii strain EXL01 boosts efficacy of immune checkpoint inhibitors. Oncoimmunology 2024; 13:2374954. [PMID: 38957477 PMCID: PMC11218805 DOI: 10.1080/2162402x.2024.2374954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/27/2024] [Indexed: 07/04/2024] Open
Abstract
Gut microbiota impacts responses to immune checkpoint inhibitors (ICI). A high level of Faecalibacterium prausnitzii have been associated with a positive response to ICI in multiple cancer types. Here, based on fecal shotgun metagenomics data, we show in two independent cohorts of patients with non-small cell lung cancer and advanced melanoma that a high level of F. prausnitzii at baseline is positively associated with a better clinical response to ICI. In MCA205 tumor-bearing mice, administration of F. prausnitzii strain EXL01, already in clinical development for Inflammatory Bowel Disease, restores the anti-tumor response to ICI in the context of antibiotic-induced microbiota perturbation at clinical and tumor transcriptomics level. In vitro, EXL01 strain enhances T cell activation in the presence of ICI. Interestingly, oral administration of EXL01 strain did not induce any change in fecal microbiota diversity or composition, suggesting a direct effect on immune cells in the small intestine. F. prausnitzii strain EXL01 will be evaluated as an adjuvant to ICI in multiple cancers in the near future.
Collapse
Affiliation(s)
- Marius Bredon
- Gastroenterology Department, Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Saint-Antoine Hospital, Paris, France
- Paris Center for Microbiome Medicine (PaCeMM) FHU, Paris, France
| | - Camille Danne
- Gastroenterology Department, Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Saint-Antoine Hospital, Paris, France
- Paris Center for Microbiome Medicine (PaCeMM) FHU, Paris, France
| | | | | | | | - Nathalie Rolhion
- Gastroenterology Department, Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Saint-Antoine Hospital, Paris, France
- Paris Center for Microbiome Medicine (PaCeMM) FHU, Paris, France
| | - Laura Creusot
- Gastroenterology Department, Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Saint-Antoine Hospital, Paris, France
- Paris Center for Microbiome Medicine (PaCeMM) FHU, Paris, France
| | - Loic Brot
- Gastroenterology Department, Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Saint-Antoine Hospital, Paris, France
- Paris Center for Microbiome Medicine (PaCeMM) FHU, Paris, France
| | - Iria Alonso
- Gastroenterology Department, Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Saint-Antoine Hospital, Paris, France
- Paris Center for Microbiome Medicine (PaCeMM) FHU, Paris, France
| | - Philippe Langella
- Micalis Institute, Université Paris-Saclay, INRAE, AgroParisTech, Jouy-en-Josas, France
| | - Lisa Derosa
- UMR1015 Gustave Roussy Cancer Campus, Villejuif, France
- Département de Médecine Oncologique, Gustave Roussy Cancer Campus, Villejuif, France
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicetre, France
| | - Alexis B. Cortot
- Université de Lille, CHU Lille, Thoracic Oncology Department, Centre National de la Recherche Scientifique, INSERM, Institut Pasteur de Lille, UMR9020-UMR-S 1277-Canther, Lille, France
| | - Bertrand Routy
- Department of Medicine, Hematology-Oncology Division, University of Montreal Healthcare Centre (CHUM), Montreal, QC, Canada
- University of Montreal Research Center (CRCHUM), Montreal, QC, Canada
| | - Laurence Zitvogel
- UMR1015 Gustave Roussy Cancer Campus, Villejuif, France
- Département de Médecine Oncologique, Gustave Roussy Cancer Campus, Villejuif, France
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicetre, France
- Center of Clinical Investigations in Biotherapies of Cancer (CICBT), Villejuif, France
| | - Nicola Segata
- Department CIBIO, University of Trento, Trento, Italy
- IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Harry Sokol
- Gastroenterology Department, Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Saint-Antoine Hospital, Paris, France
- Paris Center for Microbiome Medicine (PaCeMM) FHU, Paris, France
- Micalis Institute, Université Paris-Saclay, INRAE, AgroParisTech, Jouy-en-Josas, France
| |
Collapse
|
9
|
Mullish BH, Merrick B, Quraishi MN, Bak A, Green CA, Moore DJ, Porter RJ, Elumogo NT, Segal JP, Sharma N, Marsh B, Kontkowski G, Manzoor SE, Hart AL, Settle C, Keller JJ, Hawkey P, Iqbal TH, Goldenberg SD, Williams HRT. The use of faecal microbiota transplant as treatment for recurrent or refractory Clostridioides difficile infection and other potential indications: second edition of joint British Society of Gastroenterology (BSG) and Healthcare Infection Society (HIS) guidelines. Gut 2024; 73:1052-1075. [PMID: 38609165 DOI: 10.1136/gutjnl-2023-331550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 02/03/2024] [Indexed: 04/14/2024]
Abstract
The first British Society of Gastroenterology (BSG) and Healthcare Infection Society (HIS)-endorsed faecal microbiota transplant (FMT) guidelines were published in 2018. Over the past 5 years, there has been considerable growth in the evidence base (including publication of outcomes from large national FMT registries), necessitating an updated critical review of the literature and a second edition of the BSG/HIS FMT guidelines. These have been produced in accordance with National Institute for Health and Care Excellence-accredited methodology, thus have particular relevance for UK-based clinicians, but are intended to be of pertinence internationally. This second edition of the guidelines have been divided into recommendations, good practice points and recommendations against certain practices. With respect to FMT for Clostridioides difficile infection (CDI), key focus areas centred around timing of administration, increasing clinical experience of encapsulated FMT preparations and optimising donor screening. The latter topic is of particular relevance given the COVID-19 pandemic, and cases of patient morbidity and mortality resulting from FMT-related pathogen transmission. The guidelines also considered emergent literature on the use of FMT in non-CDI settings (including both gastrointestinal and non-gastrointestinal indications), reviewing relevant randomised controlled trials. Recommendations are provided regarding special areas (including compassionate FMT use), and considerations regarding the evolving landscape of FMT and microbiome therapeutics.
Collapse
Affiliation(s)
- Benjamin H Mullish
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
- Departments of Gastroenterology and Hepatology, St Mary's Hospital, Imperial College Healthcare NHS Trust, London, UK
| | - Blair Merrick
- Centre for Clinical Infection and Diagnostics Research, Guy's and St Thomas' NHS Foundation Trust, King's College London, London, UK
| | - Mohammed Nabil Quraishi
- Department of Gastroenterology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
- Microbiome Treatment Centre, University of Birmingham, Edgbaston, UK
- Institute of Cancer and Genomic Sciences, University of Birmingham, London, UK
| | - Aggie Bak
- Healthcare Infection Society, London, UK
| | - Christopher A Green
- Department of Infectious Diseases & Tropical Medicine, University Hospitals NHS Foundation Trust, Birmingham Heartlands Hospital, Birmingham, UK
- School of Chemical Engineering, University of Birmingham, Birmingham, UK
| | - David J Moore
- Institute of Applied Health Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Robert J Porter
- Department of Microbiology, Royal Devon and Exeter Hospitals, Barrack Road, UK
| | - Ngozi T Elumogo
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
- Norfolk and Norwich University Hospital, Norwich, UK
| | - Jonathan P Segal
- Department of Gastroenterology, Royal Melbourne Hospital, Melbourne, Victoria, Australia
- Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| | - Naveen Sharma
- Department of Gastroenterology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
- Microbiome Treatment Centre, University of Birmingham, Edgbaston, UK
- Institute of Cancer and Genomic Sciences, University of Birmingham, London, UK
| | - Belinda Marsh
- Lay representative for FMT Working Party, Healthcare Infection Society, London, UK
| | - Graziella Kontkowski
- Lay representative for FMT Working Party, Healthcare Infection Society, London, UK
- C.diff support, London, UK
| | - Susan E Manzoor
- Microbiome Treatment Centre, University of Birmingham, Edgbaston, UK
| | - Ailsa L Hart
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
- Department of Gastroenterology and Inflammatory Bowel Disease Unit, St Mark's Hospital and Academic Institute, Middlesex, UK
| | | | - Josbert J Keller
- Department of Gastroenterology, Haaglanden Medisch Centrum, The Hague, The Netherlands
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Peter Hawkey
- Microbiome Treatment Centre, University of Birmingham, Edgbaston, UK
- Public Health Laboratory, Faculty of Medicine, University of Birmingham, Birmingham, UK
| | - Tariq H Iqbal
- Department of Gastroenterology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
- Microbiome Treatment Centre, University of Birmingham, Edgbaston, UK
- Institute of Cancer and Genomic Sciences, University of Birmingham, London, UK
| | - Simon D Goldenberg
- Centre for Clinical Infection and Diagnostics Research, Guy's and St Thomas' NHS Foundation Trust, King's College London, London, UK
| | - Horace R T Williams
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
- Departments of Gastroenterology and Hepatology, St Mary's Hospital, Imperial College Healthcare NHS Trust, London, UK
| |
Collapse
|
10
|
Reygner J, Delannoy J, Barba-Goudiaby MT, Gasc C, Levast B, Gaschet E, Ferraris L, Paul S, Kapel N, Waligora-Dupriet AJ, Barbut F, Thomas M, Schwintner C, Laperrousaz B, Corvaïa N. Reduction of product composition variability using pooled microbiome ecosystem therapy and consequence in two infectious murine models. Appl Environ Microbiol 2024; 90:e0001624. [PMID: 38651930 PMCID: PMC11107171 DOI: 10.1128/aem.00016-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/27/2024] [Indexed: 04/25/2024] Open
Abstract
Growing evidence demonstrates the key role of the gut microbiota in human health and disease. The recent success of microbiotherapy products to treat recurrent Clostridioides difficile infection has shed light on its potential in conditions associated with gut dysbiosis, such as acute graft-versus-host disease, intestinal bowel diseases, neurodegenerative diseases, or even cancer. However, the difficulty in defining a "good" donor as well as the intrinsic variability of donor-derived products' taxonomic composition limits the translatability and reproducibility of these studies. Thus, the pooling of donors' feces has been proposed to homogenize product composition and achieve higher taxonomic richness and diversity. In this study, we compared the metagenomic profile of pooled products to corresponding single donor-derived products. We demonstrated that pooled products are more homogeneous, diverse, and enriched in beneficial bacteria known to produce anti-inflammatory short chain fatty acids compared to single donor-derived products. We then evaluated pooled products' efficacy compared to corresponding single donor-derived products in Salmonella and C. difficile infectious mouse models. We were able to demonstrate that pooled products decreased pathogenicity by inducing a structural change in the intestinal microbiota composition. Single donor-derived product efficacy was variable, with some products failing to control disease progression. We further performed in vitro growth inhibition assays of two extremely drug-resistant bacteria, Enterococcus faecium vanA and Klebsiella pneumoniae oxa48, supporting the use of pooled microbiotherapies. Altogether, these results demonstrate that the heterogeneity of donor-derived products is corrected by pooled fecal microbiotherapies in several infectious preclinical models.IMPORTANCEGrowing evidence demonstrates the key role of the gut microbiota in human health and disease. Recent Food and Drug Administration approval of fecal microbiotherapy products to treat recurrent Clostridioides difficile infection has shed light on their potential to treat pathological conditions associated with gut dysbiosis. In this study, we combined metagenomic analysis with in vitro and in vivo studies to compare the efficacy of pooled microbiotherapy products to corresponding single donor-derived products. We demonstrate that pooled products are more homogeneous, diverse, and enriched in beneficial bacteria compared to single donor-derived products. We further reveal that pooled products decreased Salmonella and Clostridioides difficile pathogenicity in mice, while single donor-derived product efficacy was variable, with some products failing to control disease progression. Altogether, these findings support the development of pooled microbiotherapies to overcome donor-dependent treatment efficacy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Stéphane Paul
- Team GIMAP, Centre International de Recherche en Infectiologie, Université Jean Monnet, Saint-Etienne, France
- Inserm, Université Claude Bernard Lyon, Lyon, France
- CIC 1408 Inserm Vaccinology, University Hospital of Saint-Etienne, Saint-Etienne, France
- Immunology Department, iBiothera Reference Center, University Hospital of Saint-Etienne, Saint-Etienne, France
| | - Nathalie Kapel
- UMR-S 1139, INSERM, Université Paris Cite, Paris, France
- Service de Coprologie fonctionnelle, Hôpital de la Pitié-Salpêtrière-Charles Foix, AP-HP, Paris, France
| | | | - Frederic Barbut
- UMR-S 1139, INSERM, Université Paris Cite, Paris, France
- National Reference Laboratory for Clostridioides difficile, Saint-Antoine Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
- The European Society of Clinical Microbiology and Infectious Diseases Study Group for Clostridioides difficile, Basel, Switzerland
| | - Muriel Thomas
- UMR1319, Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | | | | | | |
Collapse
|
11
|
Ugwu OPC, Alum EU, Okon MB, Obeagu EI. Mechanisms of microbiota modulation: Implications for health, disease, and therapeutic interventions. Medicine (Baltimore) 2024; 103:e38088. [PMID: 38728472 PMCID: PMC11081615 DOI: 10.1097/md.0000000000038088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/11/2024] [Indexed: 05/12/2024] Open
Abstract
Microbiota modulation, the intentional change in the structure and function of the microbial community, is an emerging trajectory that holds the promise to mitigate an infinite number of health issues. The present review illustrates the underlying principles of microbiota modulation and the various applications of this fundamental process to human health, healthcare management, and pharmacologic interventions. Different strategies, directing on dietary interventions, fecal microbiota transplantation, treatment with antibiotics, bacteriophages, microbiome engineering, and modulation of the immune system, are described in detail. This therapeutic implication is reflected in clinical applications to gastrointestinal disorders and immune-mediated diseases for microbiota-modulating agents. In addition to this, the review outlines the challenges of translating researched outcomes into clinical practice to consider safety and provides insights into future research directions of this rapidly developing area.
Collapse
Affiliation(s)
| | - Esther Ugo Alum
- Department of Publication and Extension, Kampala International University, Kampala, Uganda
| | - Michael Ben Okon
- Department of Publication and Extension, Kampala International University, Kampala, Uganda
| | - Emmanuel I. Obeagu
- Department of Publication and Extension, Kampala International University, Kampala, Uganda
| |
Collapse
|
12
|
Profir M, Roşu OA, Creţoiu SM, Gaspar BS. Friend or Foe: Exploring the Relationship between the Gut Microbiota and the Pathogenesis and Treatment of Digestive Cancers. Microorganisms 2024; 12:955. [PMID: 38792785 PMCID: PMC11124004 DOI: 10.3390/microorganisms12050955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/25/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
Digestive cancers are among the leading causes of cancer death in the world. However, the mechanisms of cancer development and progression are not fully understood. Accumulating evidence in recent years pointing to the bidirectional interactions between gut dysbiosis and the development of a specific type of gastrointestinal cancer is shedding light on the importance of this "unseen organ"-the microbiota. This review focuses on the local role of the gut microbiota imbalance in different digestive tract organs and annexes related to the carcinogenic mechanisms. Microbiota modulation, either by probiotic administration or by dietary changes, plays an important role in the future therapies of various digestive cancers.
Collapse
Affiliation(s)
- Monica Profir
- Department of Oncology, Elias University Emergency Hospital, 011461 Bucharest, Romania; (M.P.); (O.A.R.)
- Department of Morphological Sciences, Cell and Molecular Biology and Histology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Oana Alexandra Roşu
- Department of Oncology, Elias University Emergency Hospital, 011461 Bucharest, Romania; (M.P.); (O.A.R.)
| | - Sanda Maria Creţoiu
- Department of Morphological Sciences, Cell and Molecular Biology and Histology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Bogdan Severus Gaspar
- Surgery Clinic, Emergency Clinical Hospital of Bucharest, 014461 Bucharest, Romania;
- Department of Surgery, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| |
Collapse
|
13
|
Itoh K, Matsueda S. Exploring the Potential of Humoral Immune Response to Commensal Bifidobacterium as a Biomarker for Human Health, including Both Malignant and Non-Malignant Diseases: A Perspective on Detection Strategies and Future Directions. Biomedicines 2024; 12:803. [PMID: 38672158 PMCID: PMC11048515 DOI: 10.3390/biomedicines12040803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 03/24/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
In this comprehensive review, we explore the pivotal role of commensal Bifidobacterium (c-BIF) as potent non-self-antigens through antigenic mimicry, along with exploring the potential of humoral immune responses for both malignant and non-malignant disease. c-BIF, a predominant component of the human gut microbiome encompassing around 90% of the human genome, has emerged as a pivotal player in human biology. Over recent decades, there has been extensive research elucidating the intricate connections between c-BIF and various facets of human health, with particular emphasis on their groundbreaking impact on anti-cancer effects and the management of non-malignant diseases. The multifaceted role of c-BIF is explored, ranging from enhancing anti-tumor immunity to improving the efficacy of anti-cancer and anti-infectious disease strategies, and serving as predictive biomarkers for various diseases. Recent studies highlight not only c-BIF's promotion of anti-tumor immunity but also their role in enhancing the efficacy of immune checkpoint inhibitors. The review emphasizes the promising avenue of manipulating the gut microbiota, particularly c-BIF, for modulating cancer immunotherapy with targeted effects on tumor cells while minimizing harm to normal tissue. In the context of infectious and inflammatory diseases, the crucial role of c-BIFs in the management of COVID-19 symptoms is examined, emphasizing their impact on the severity of and immune response to COVID-19. Furthermore, c-BIF exhibits preventive and therapeutic effects on Human Papillomaviruses (HPV) and shows promise in improving inflammatory bowel diseases. The potential application of c-BIF as a biomarker for immunotherapy is explored, with a specific emphasis on its predictive and prognostic value in cancer. Suggestions are made regarding the use of humoral immune responses to cytotoxic T lymphocyte (CTL) epitope peptides that share motifs with c-BIF, proposing them as potential markers for predicting overall survival in diverse cancer patients. In conclusion, c-BIF emerges as a crucial and multifaceted determinant of human health, across anti-tumor immunity to infectious and inflammatory disease management. The manipulation of c-BIF and gut microbiota presents a promising avenue for advancing therapeutic strategies, particularly in the realm of cancer immunotherapy. Additionally, this review highlights the significance of c-BIF as potent non-self-antigens via antigenic mimicry, emphasizing the importance of robust humoral immune responses against c-BIF for preventing various diseases, including inflammatory conditions. Elevated levels of circulating antibodies against c-BIF in healthy individuals may serve as potential indicators of lower risks for malignant and non-malignant diseases.
Collapse
Affiliation(s)
| | - Satoko Matsueda
- Cancer Vaccine Center, Kurume University, Kurume 839-0863, Japan
| |
Collapse
|
14
|
Zhang PF, Xie D. Targeting the gut microbiota to enhance the antitumor efficacy and attenuate the toxicity of CAR-T cell therapy: a new hope? Front Immunol 2024; 15:1362133. [PMID: 38558812 PMCID: PMC10978602 DOI: 10.3389/fimmu.2024.1362133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 03/05/2024] [Indexed: 04/04/2024] Open
Abstract
Chimeric antigen receptor (CAR) -T cell therapy has achieved tremendous efficacy in the treatment of hematologic malignancies and represents a promising treatment regimen for cancer. Despite the striking response in patients with hematologic malignancies, most patients with solid tumors treated with CAR-T cells have a low response rate and experience major adverse effects, which indicates the need for biomarkers that can predict and improve clinical outcomes with future CAR-T cell treatments. Recently, the role of the gut microbiota in cancer therapy has been established, and growing evidence has suggested that gut microbiota signatures may be harnessed to personally predict therapeutic response or adverse effects in optimizing CAR-T cell therapy. In this review, we discuss current understanding of CAR-T cell therapy and the gut microbiota, and the interplay between the gut microbiota and CAR-T cell therapy. Above all, we highlight potential strategies and challenges in harnessing the gut microbiota as a predictor and modifier of CAR-T cell therapy efficacy while attenuating toxicity.
Collapse
Affiliation(s)
- Peng-Fei Zhang
- Gastric Cancer Center, Division of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Dan Xie
- Department of Medical Genetics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| |
Collapse
|
15
|
Mayes C, Meloni M. Forgetting how we ate: personalised nutrition and the strategic uses of history. HISTORY AND PHILOSOPHY OF THE LIFE SCIENCES 2024; 46:14. [PMID: 38453802 PMCID: PMC10920492 DOI: 10.1007/s40656-024-00613-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 02/08/2024] [Indexed: 03/09/2024]
Abstract
Personalised nutrition (PN) has emerged over the past twenty years as a promising area of research in the postgenomic era and has been popularized as the new big thing out of molecular biology. Advocates of PN claim that previous approaches to nutrition sought general and universal guidance that applied to all people. In contrast, they contend that PN operates with the principle that "one size does not fit all" when it comes to dietary guidance. While the molecular mechanisms studied within PN are new, the notion of a personal dietary regime guided by medical advice has a much longer history that can be traced back to Galen's "On Food and Diet" or Ibn Sina's (westernized as Avicenna) "Canon of Medicine". Yet this history is either wholly ignored or misleadingly appropriated by PN proponents. This (mis)use of history, we argue helps to sustain the hype of the novelty of the proposed field and potential commodification of molecular advice that undermines longer histories of food management in premodern and non-Western cultures. Moreover, it elides how the longer history of nutritional advice always happened in a heavily moralized, gendered, and racialized context deeply entwined with collective technologies of power, not just individual advice. This article aims at offering a wider appreciation of this longer history to nuance the hype and exceptionalism surrounding contemporary claims.
Collapse
Affiliation(s)
- Christopher Mayes
- School of Humanities and Social Sciences, Deakin University, Geelong, Australia.
| | - Maurizio Meloni
- School of Humanities and Social Sciences, Deakin University, Geelong, Australia
| |
Collapse
|
16
|
Marinos G, Hamerich IK, Debray R, Obeng N, Petersen C, Taubenheim J, Zimmermann J, Blackburn D, Samuel BS, Dierking K, Franke A, Laudes M, Waschina S, Schulenburg H, Kaleta C. Metabolic model predictions enable targeted microbiome manipulation through precision prebiotics. Microbiol Spectr 2024; 12:e0114423. [PMID: 38230938 PMCID: PMC10846184 DOI: 10.1128/spectrum.01144-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 12/13/2023] [Indexed: 01/18/2024] Open
Abstract
While numerous health-beneficial interactions between host and microbiota have been identified, there is still a lack of targeted approaches for modulating these interactions. Thus, we here identify precision prebiotics that specifically modulate the abundance of a microbiome member species of interest. In the first step, we show that defining precision prebiotics by compounds that are only taken up by the target species but no other species in a community is usually not possible due to overlapping metabolic niches. Subsequently, we use metabolic modeling to identify precision prebiotics for a two-member Caenorhabditis elegans microbiome community comprising the immune-protective target species Pseudomonas lurida MYb11 and the persistent colonizer Ochrobactrum vermis MYb71. We experimentally confirm four of the predicted precision prebiotics, L-serine, L-threonine, D-mannitol, and γ-aminobutyric acid, to specifically increase the abundance of MYb11. L-serine was further assessed in vivo, leading to an increase in MYb11 abundance also in the worm host. Overall, our findings demonstrate that metabolic modeling is an effective tool for the design of precision prebiotics as an important cornerstone for future microbiome-targeted therapies.IMPORTANCEWhile various mechanisms through which the microbiome influences disease processes in the host have been identified, there are still only few approaches that allow for targeted manipulation of microbiome composition as a first step toward microbiome-based therapies. Here, we propose the concept of precision prebiotics that allow to boost the abundance of already resident health-beneficial microbial species in a microbiome. We present a constraint-based modeling pipeline to predict precision prebiotics for a minimal microbial community in the worm Caenorhabditis elegans comprising the host-beneficial Pseudomonas lurida MYb11 and the persistent colonizer Ochrobactrum vermis MYb71 with the aim to boost the growth of MYb11. Experimentally testing four of the predicted precision prebiotics, we confirm that they are specifically able to increase the abundance of MYb11 in vitro and in vivo. These results demonstrate that constraint-based modeling could be an important tool for the development of targeted microbiome-based therapies against human diseases.
Collapse
Affiliation(s)
- Georgios Marinos
- Research Group Medical Systems Biology, University Hospital Schleswig-Holstein Campus Kiel, Kiel University, Kiel, Schleswig-Holstein, Germany
| | - Inga K. Hamerich
- Research Group Evolutionary Ecology and Genetics, Zoological Institute, Kiel University, Kiel, Schleswig-Holstein, Germany
| | - Reena Debray
- Department of Integrative Biology, University of California, Berkeley, California, USA
| | - Nancy Obeng
- Research Group Evolutionary Ecology and Genetics, Zoological Institute, Kiel University, Kiel, Schleswig-Holstein, Germany
| | - Carola Petersen
- Research Group Evolutionary Ecology and Genetics, Zoological Institute, Kiel University, Kiel, Schleswig-Holstein, Germany
| | - Jan Taubenheim
- Research Group Medical Systems Biology, University Hospital Schleswig-Holstein Campus Kiel, Kiel University, Kiel, Schleswig-Holstein, Germany
| | - Johannes Zimmermann
- Research Group Medical Systems Biology, University Hospital Schleswig-Holstein Campus Kiel, Kiel University, Kiel, Schleswig-Holstein, Germany
- Max-Planck Institute for Evolutionary Biology, Ploen, Schleswig-Holstein, Germany
| | - Dana Blackburn
- Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, Texas, USA
| | - Buck S. Samuel
- Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, Texas, USA
| | - Katja Dierking
- Research Group Evolutionary Ecology and Genetics, Zoological Institute, Kiel University, Kiel, Schleswig-Holstein, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Schleswig-Holstein, Germany
| | - Matthias Laudes
- Institute of Diabetes and Clinical Metabolic Research, University Hospital Schleswig-Holstein Campus Kiel, Kiel, Schleswig-Holstein, Germany
| | - Silvio Waschina
- Nutriinformatics, Institute for Human Nutrition and Food Science, Kiel University, Kiel, Schleswig-Holstein, Germany
| | - Hinrich Schulenburg
- Research Group Evolutionary Ecology and Genetics, Zoological Institute, Kiel University, Kiel, Schleswig-Holstein, Germany
- Max-Planck Institute for Evolutionary Biology, Ploen, Schleswig-Holstein, Germany
| | - Christoph Kaleta
- Research Group Medical Systems Biology, University Hospital Schleswig-Holstein Campus Kiel, Kiel University, Kiel, Schleswig-Holstein, Germany
| |
Collapse
|
17
|
Gopal PB. Lurking Danger: Emerging Evidence. Indian J Crit Care Med 2024; 28:93-94. [PMID: 38323251 PMCID: PMC10839932 DOI: 10.5005/jp-journals-10071-24644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024] Open
Abstract
How to cite this article: Gopal PB. Lurking Danger: Emerging Evidence. Indian J Crit Care Med 2024;28(2):93-94.
Collapse
Affiliation(s)
- Palepu B Gopal
- Department of Critical Care Medicine, Citizens Specialty Hospital, Hyderabad, Telangana, India
| |
Collapse
|
18
|
Gurung B, Stricklin M, Wang S. Gut Microbiota-Gut Metabolites and Clostridioides difficile Infection: Approaching Sustainable Solutions for Therapy. Metabolites 2024; 14:74. [PMID: 38276309 PMCID: PMC10819375 DOI: 10.3390/metabo14010074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/06/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024] Open
Abstract
Clostridioides difficile (C. difficile) infection (CDI) is the most common hospital-acquired infection. With the combination of a high rate of antibiotic resistance and recurrence, it has proven to be a debilitating public health threat. Current treatments for CDI include antibiotics and fecal microbiota transplantation, which contribute to recurrent CDIs and potential risks. Therefore, there is an ongoing need to develop new preventative treatment strategies for CDI. Notably, gut microbiota dysbiosis is the primary risk factor for CDI and provides a promising target for developing novel CDI therapy approaches. Along with gut microbiota dysbiosis, a reduction in important gut metabolites like secondary bile acids and short-chain fatty acids (SCFAs) were also seen in patients suffering from CDI. In this review study, we investigated the roles and mechanisms of gut microbiota and gut microbiota-derived gut metabolites, especially secondary bile acids and SCFAs in CDI pathogenesis. Moreover, specific signatures of gut microbiota and gut metabolites, as well as different factors that can modulate the gut microbiota, were also discussed, indicating that gut microbiota modulators like probiotics and prebiotics can be a potential therapeutic strategy for CDI as they can help restore gut microbiota and produce gut metabolites necessary for a healthy gut. The understanding of the associations between gut microbiota-gut metabolites and CDI will allow for developing precise and sustainable approaches, distinct from antibiotics and fecal transplant, for mitigating CDI and other gut microbiota dysbiosis-related diseases.
Collapse
Affiliation(s)
- Bijay Gurung
- Department of Biomedical Sciences, Ohio University Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA; (B.G.); (M.S.)
- Infectious and Tropical Disease Institute, Ohio University, Athens, OH 45701, USA
- Interdisciplinary Molecular and Cellular Biology Program, Ohio University, Athens, OH 45701, USA
| | - Maranda Stricklin
- Department of Biomedical Sciences, Ohio University Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA; (B.G.); (M.S.)
- Infectious and Tropical Disease Institute, Ohio University, Athens, OH 45701, USA
| | - Shaohua Wang
- Department of Biomedical Sciences, Ohio University Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA; (B.G.); (M.S.)
- Infectious and Tropical Disease Institute, Ohio University, Athens, OH 45701, USA
| |
Collapse
|
19
|
Mazzone L, Dooling SW, Volpe E, Uljarević M, Waters JL, Sabatini A, Arturi L, Abate R, Riccioni A, Siracusano M, Pereira M, Engstrand L, Cristofori F, Adduce D, Francavilla R, Costa-Mattioli M, Hardan AY. Precision microbial intervention improves social behavior but not autism severity: A pilot double-blind randomized placebo-controlled trial. Cell Host Microbe 2024; 32:106-116.e6. [PMID: 38113884 DOI: 10.1016/j.chom.2023.11.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/23/2023] [Accepted: 11/21/2023] [Indexed: 12/21/2023]
Abstract
Autism spectrum disorder (ASD) is characterized by the presence of restricted/repetitive behaviors and social communication deficits. Because effective treatments for ASD remain elusive, novel therapeutic strategies are necessary. Preclinical studies show that L. reuteri selectively reversed social deficits in several models for ASD. Here, in a double-blind, randomized, placebo-controlled trial, we tested the effect of L. reuteri (a product containing a combination of strains ATCC-PTA-6475 and DSM-17938) in children with ASD. The treatment does not alter overall autism severity, restricted/repetitive behaviors, the microbiome composition, or the immune profile. However, L. reuteri combination yields significant improvements in social functioning that generalized across different measures. Interestingly, ATCC-PTA-6475, but not the parental strain of DSM-17938, reverses the social deficits in a preclinical mouse model for ASD. Collectively, our findings show that L. reuteri enhances social behavior in children with ASD, thereby warranting larger trials in which strain-specific effects should also be investigated.
Collapse
Affiliation(s)
- Luigi Mazzone
- Child Neurology and Psychiatry Unit, Department of Neurosciences, Policlinico Tor Vergata Foundation Hospital, Viale Oxford 81, 00133 Rome, Italy; Systems Medicine Department, University of Rome Tor Vergata, Montpellier Street 1, 00133 Rome, Italy.
| | - Sean W Dooling
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA; Memory and Brain Research Center, Baylor College of Medicine, Houston, TX, USA; Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Altos Labs, Inc, Bay Area Institute of Science, Redwood City, CA 94065, USA
| | - Elisabetta Volpe
- Molecular Neuroimmunology Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Fondazione Santa Lucia, Rome, Italy
| | - Mirko Uljarević
- Melbourne School of Psychological Sciences, University of Melbourne, Tin Alley, Carlton, Melbourne, VIC 3010, Australia
| | - Jillian L Waters
- Altos Labs, Inc, Bay Area Institute of Science, Redwood City, CA 94065, USA
| | - Andrea Sabatini
- Molecular Neuroimmunology Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Fondazione Santa Lucia, Rome, Italy
| | - Lucrezia Arturi
- Child Neurology and Psychiatry Unit, Department of Neurosciences, Policlinico Tor Vergata Foundation Hospital, Viale Oxford 81, 00133 Rome, Italy; Systems Medicine Department, University of Rome Tor Vergata, Montpellier Street 1, 00133 Rome, Italy
| | - Roberta Abate
- Child Neurology and Psychiatry Unit, Department of Neurosciences, Policlinico Tor Vergata Foundation Hospital, Viale Oxford 81, 00133 Rome, Italy
| | - Assia Riccioni
- Child Neurology and Psychiatry Unit, Department of Neurosciences, Policlinico Tor Vergata Foundation Hospital, Viale Oxford 81, 00133 Rome, Italy; Systems Medicine Department, University of Rome Tor Vergata, Montpellier Street 1, 00133 Rome, Italy
| | - Martina Siracusano
- Child Neurology and Psychiatry Unit, Department of Neurosciences, Policlinico Tor Vergata Foundation Hospital, Viale Oxford 81, 00133 Rome, Italy; Department of Biomedicine and Prevention, University of Rome Tor Vergata, Montpellier Street 1, 00133 Rome, Italy
| | - Marcela Pereira
- Centre for Translational Microbiome Research, Department of Microbiology, Tumour and Cell Biology, Science for Life Laboratory, Karolinska Institutet, Solna, Sweden
| | - Lars Engstrand
- Centre for Translational Microbiome Research, Department of Microbiology, Tumour and Cell Biology, Science for Life Laboratory, Karolinska Institutet, Solna, Sweden
| | - Fernanda Cristofori
- Pediatric Gastroenterology and Hepatology Unit, Department of Interdisciplinary Medicine, Children's Hospital-Giovanni XXIII, University of Bari Aldo Moro, 70121 Bari, Italy
| | - Domenico Adduce
- Pediatric Gastroenterology and Hepatology Unit, Department of Interdisciplinary Medicine, Children's Hospital-Giovanni XXIII, University of Bari Aldo Moro, 70121 Bari, Italy
| | - Ruggiero Francavilla
- Pediatric Gastroenterology and Hepatology Unit, Department of Interdisciplinary Medicine, Children's Hospital-Giovanni XXIII, University of Bari Aldo Moro, 70121 Bari, Italy
| | - Mauro Costa-Mattioli
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA; Memory and Brain Research Center, Baylor College of Medicine, Houston, TX, USA; Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Altos Labs, Inc, Bay Area Institute of Science, Redwood City, CA 94065, USA.
| | - Antonio Y Hardan
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
20
|
Arora U, Kedia S, Ahuja V. The practice of fecal microbiota transplantation in inflammatory bowel disease. Intest Res 2024; 22:44-64. [PMID: 37981746 PMCID: PMC10850701 DOI: 10.5217/ir.2023.00085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/10/2023] [Accepted: 09/14/2023] [Indexed: 11/21/2023] Open
Abstract
Current evidence posits a central role for gut microbiota and the metabolome in the pathogenesis and progression of inflammatory bowel disease (IBD). Fecal microbiota transplantation (FMT) has been established as a means to manipulate this microbiome safely and sustainably. Several aspects of the technical improvement including pretreatment with antibiotics, use of frozen stool samples as well as short donor-to-recipient time are proposed to improve its response rates. Its efficacy in ulcerative colitis has been proven in clinical trials while data is emerging for Crohn's disease. This review describes briefly the biology behind FMT, the available evidence for its use in IBD, and the host, recipient and procedural factors which determine the clinical outcomes.
Collapse
Affiliation(s)
- Umang Arora
- Department of Gastroenterology and Human Nutrition, All India Institute of Medical Sciences, New Delhi, India
| | - Saurabh Kedia
- Department of Gastroenterology and Human Nutrition, All India Institute of Medical Sciences, New Delhi, India
| | - Vineet Ahuja
- Department of Gastroenterology and Human Nutrition, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
21
|
Nuzum ND, Deady C, Kittel-Schneider S, Cryan JF, O'Mahony SM, Clarke G. More than just a number: the gut microbiota and brain function across the extremes of life. Gut Microbes 2024; 16:2418988. [PMID: 39567371 PMCID: PMC11583591 DOI: 10.1080/19490976.2024.2418988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/24/2024] [Accepted: 10/14/2024] [Indexed: 11/22/2024] Open
Abstract
Understanding the interrelationship between the gut microbiota and host physiology, although still in its relative infancy, has taken important steps forward over the past decade. In the context of brain disorders including those characterized by neurodevelopmental and neurodegenerative changes there have been important advances. However, initially research involved correlational analyses, had limited translational scope, and lacked functional assessments. Thus, largescale longitudinal clinical investigations that assess causation and underlying mechanisms via in depth analysis methods are needed. In neurodegeneration research, strong causal evidence now links the gut microbiome to Alzheimer's (AD), and Parkinson's Disease (PD), as supported by human-to-animal transplantation studies. Longitudinal interventions are being conducted in AD, PD, amyotrophic lateral sclerosis, Huntington's disease, and multiple sclerosis. Neurodevelopmental research has also seen a boon in microbiome-related clinical research including in autism, Attention-deficit/hyperactivity disorder, and schizophrenia, which is confirming prior animal model work regarding the key time-windows in the gut microbiome important for infant cognition. While recent research advances represent important progress, fundamental knowledge gaps and obstacles remain. Knowing how and why the gut microbiome changes at the extremes of life will develop our mechanistic understanding and help build the evidence base as we strive toward counteracting microbial missteps with precision therapeutic interventions.
Collapse
Affiliation(s)
- Nathan D Nuzum
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Clara Deady
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Sarah Kittel-Schneider
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Siobhain M O'Mahony
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Gerard Clarke
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| |
Collapse
|
22
|
Lavoie T, Appaneal HJ, LaPlante KL. Advancements in Novel Live Biotherapeutic Products for Clostridioides difficile Infection Prevention. Clin Infect Dis 2023; 77:S447-S454. [PMID: 38051964 DOI: 10.1093/cid/ciad639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Indexed: 12/07/2023] Open
Abstract
The profound impact of the human microbiome on health and disease has captivated the interest of clinical and scientific communities. The human body hosts a vast array of microorganisms collectively forming the human microbiome, which significantly influences various physiological processes and profoundly shapes overall well-being. Notably, the gut stands out as an exceptional reservoir, harboring the most significant concentration of microorganisms, akin to an organ in itself. The gut microbiome's composition and function are influenced by genetics, environment, age, underlying conditions, and antibiotic usage, leading to dysbiosis and pathogenesis, such as Clostridioides difficile infection (CDI). Conventional CDI treatment, involving antibiotics like oral vancomycin and fidaxomicin, fails to address dysbiosis and may further disrupt gut microbial communities. Consequently, emerging therapeutic strategies are focused on targeting dysbiosis and restoring gut microbiota to advance CDI therapeutics. Fecal microbiota transplantation (FMT) has demonstrated remarkable efficacy in treating recurrent CDI by transferring processed stool from a healthy donor to a recipient, restoring gut dysbiosis and enhancing bacterial diversity. Moreover, 2 newer Food and Drug Administration (FDA)-approved live biotherapeutic products (LBP), namely, Fecal Microbiota Live-JSLM and Fecal Microbiota Spores Live-BRPK, have shown promise in preventing CDI recurrence. This review explores the role of the gut microbiota in preventing and treating CDI, with an emphasis on gut-based interventions like FMT and fecal microbiota-based products that hold potential for gut restoration and prevention of CDI recurrence. Understanding the microbiome's impact on CDI prevention and treatment offers valuable insights for advancing future CDI therapeutics.
Collapse
Affiliation(s)
- Thomas Lavoie
- Infectious Diseases Research Program, Providence Veterans Affairs Medical Center, Providence, Rhode Island, USA
- College of Pharmacy, University of Rhode Island, Kingston, Rhode Island, USA
| | - Haley J Appaneal
- Infectious Diseases Research Program, Providence Veterans Affairs Medical Center, Providence, Rhode Island, USA
- Center of Innovation in Long-Term Support Services, Providence Veterans Affairs Medical Center, Providence, Rhode Island, USA
- College of Pharmacy, University of Rhode Island, Kingston, Rhode Island, USA
| | - Kerry L LaPlante
- Infectious Diseases Research Program, Providence Veterans Affairs Medical Center, Providence, Rhode Island, USA
- College of Pharmacy, University of Rhode Island, Kingston, Rhode Island, USA
- Center of Innovation in Long-Term Support Services, Providence Veterans Affairs Medical Center, Providence, Rhode Island, USA
- Warren Alpert Medical School of Brown University, Division of Infectious Diseases, Providence, Rhode Island, USA
- School of Public Health, Brown University, Providence, Rhode Island, USA
| |
Collapse
|
23
|
Ghazanfar H, Kandhi S, Acherjee T, Qureshi ZA, Shaban M, Yordanka DS, Cordero D, Chinta S, Jyala A, Patel H. Role of Fecal Microbiota Transplantation in Managing Clostridium Difficile Infection and Inflammatory Bowel Disease: A Narrative Review. Cureus 2023; 15:e51004. [PMID: 38259389 PMCID: PMC10802990 DOI: 10.7759/cureus.51004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2023] [Indexed: 01/24/2024] Open
Abstract
Fecal microbiota transplantation (FMT) has been emerging as an alternate treatment modality in the management of patients with dysbiosis by restoring abnormal gut microbiota composition through the transplantation of normal fecal microbiota from healthy donors. This technique has lately gained a lot of attention in the treatment of recurrent or refractory Clostridium difficile infection (CDI) owing to its high success rates combined with its favorable safety profile. FMT has also been attracting the interest of clinicians as a new treatment option for inflammatory bowel diseases (IBD). Here, we reviewed most of the recent advancements in the use of FMT for CDI as well as its use in the treatment of IBD.
Collapse
Affiliation(s)
| | - Sameer Kandhi
- Internal Medicine, BronxCare Health System, Bronx, USA
| | | | - Zaheer A Qureshi
- Medicine, The Frank H. Netter M.D. School of Medicine at Quinnipiac University, Bridgeport, USA
| | - Mohammed Shaban
- Internal Medicine, BronxCare Hospital Center, Icahn School of Medicine, New York, USA
| | | | | | | | | | - Harish Patel
- Internal Medicine, BronxCare Health System, Bronx, USA
| |
Collapse
|
24
|
Hoek KL, McClanahan KG, Latour YL, Shealy N, Piazuelo MB, Vallance BA, Byndloss MX, Wilson KT, Olivares-Villagómez D. Turicibacterales protect mice from severe Citrobacter rodentium infection. Infect Immun 2023; 91:e0032223. [PMID: 37800916 PMCID: PMC10652940 DOI: 10.1128/iai.00322-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 08/21/2023] [Indexed: 10/07/2023] Open
Abstract
One of the major contributors to child mortality in the world is diarrheal diseases, with an estimated 800,000 deaths per year. Many pathogens are causative agents of these illnesses, including the enteropathogenic or enterohemorrhagic forms of Escherichia coli. These bacteria are characterized by their ability to cause attaching and effacing lesions in the gut mucosa. Although much has been learned about the pathogenicity of these organisms and the immune response against them, the role of the intestinal microbiota during these infections is not well characterized. Infection of mice with E. coli requires pre-treatment with antibiotics in most mouse models, which hinders the study of the microbiota in an undisturbed environment. Using Citrobacter rodentium as a murine model for attaching and effacing bacteria, we show that C57BL/6 mice deficient in granzyme B expression are highly susceptible to severe disease caused by C. rodentium infection. Although a previous publication from our group shows that granzyme B-deficient CD4+ T cells are partially responsible for this phenotype, in this report, we present data demonstrating that the microbiota, in particular members of the order Turicibacterales, have an important role in conferring resistance. Mice deficient in Turicibacter sanguinis have increased susceptibility to severe disease. However, when these mice are co-housed with resistant mice or colonized with T. sanguinis, susceptibility to severe infection is reduced. These results clearly suggest a critical role for this commensal in the protection against enteropathogens.
Collapse
Affiliation(s)
- Kristen L. Hoek
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Kathleen G. McClanahan
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Yvonne L. Latour
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Nicolas Shealy
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - M. Blanca Piazuelo
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Bruce A. Vallance
- Department of Pediatrics, BC Children’s Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Mariana X. Byndloss
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Institute of Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Microbiome Innovation Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Keith T. Wilson
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Veternas Affairs Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| | - Danyvid Olivares-Villagómez
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Institute of Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
25
|
Boicean A, Birlutiu V, Ichim C, Brusnic O, Onișor DM. Fecal Microbiota Transplantation in Liver Cirrhosis. Biomedicines 2023; 11:2930. [PMID: 38001930 PMCID: PMC10668969 DOI: 10.3390/biomedicines11112930] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 11/26/2023] Open
Abstract
The human gastrointestinal tract houses a diverse array of probiotic and pathogenic bacteria and any alterations in this microbial composition can exert a significant influence on an individual's well-being. It is well-established that imbalances in the gut microbiota play a pivotal role in the development of liver diseases. In light of this, a new adjuvant therapy for liver diseases could be regulating the intestinal microbiota. Through fecal microbiota transplantation, patients whose microbiomes are compromised are treated with stool from healthy donors in an attempt to restore a normal microbiome and alleviate their symptoms. A review of cross-sectional studies and case reports suggests that fecal microbiota transplants may offer effective treatment for chronic liver diseases. Adding to the potential of this emerging therapy, recent research has indicated that fecal microbiota transplantation holds promise as a therapeutic approach specifically for liver cirrhosis. By introducing a diverse range of beneficial microorganisms into the gut, this innovative treatment aims to address the microbial imbalances often observed in cirrhotic patients. While further validation is still required, these preliminary findings highlight the potential impact of fecal microbiota transplantation as a novel and targeted method for managing liver cirrhosis. We aimed to summarize the current state of understanding regarding this procedure, as a new therapeutic method for liver cirrhosis, as well as to explain its clinical application and future potential.
Collapse
Affiliation(s)
- Adrian Boicean
- County Clinical Emergency Hospital of Sibiu, 550245 Sibiu, Romania; (A.B.); (V.B.)
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania
| | - Victoria Birlutiu
- County Clinical Emergency Hospital of Sibiu, 550245 Sibiu, Romania; (A.B.); (V.B.)
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania
| | - Cristian Ichim
- County Clinical Emergency Hospital of Sibiu, 550245 Sibiu, Romania; (A.B.); (V.B.)
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania
| | - Olga Brusnic
- Department of Gastroenterology, University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Târgu Mures, Romania
| | - Danusia Maria Onișor
- Department of Gastroenterology, University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Târgu Mures, Romania
| |
Collapse
|
26
|
Gok Yavuz B, Datar S, Chamseddine S, Mohamed YI, LaPelusa M, Lee SS, Hu ZI, Koay EJ, Tran Cao HS, Jalal PK, Daniel-MacDougall C, Hassan M, Duda DG, Amin HM, Kaseb AO. The Gut Microbiome as a Biomarker and Therapeutic Target in Hepatocellular Carcinoma. Cancers (Basel) 2023; 15:4875. [PMID: 37835569 PMCID: PMC10571776 DOI: 10.3390/cancers15194875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/03/2023] [Accepted: 10/05/2023] [Indexed: 10/15/2023] Open
Abstract
The microbiome is pivotal in maintaining health and influencing disease by modulating essential inflammatory and immune responses. Hepatocellular carcinoma (HCC), ranking as the third most common cause of cancer-related fatalities globally, is influenced by the gut microbiome through bidirectional interactions between the gut and liver, as evidenced in both mouse models and human studies. Consequently, biomarkers based on gut microbiota represent promising non-invasive tools for the early detection of HCC. There is a growing body of evidence suggesting that the composition of the gut microbiota may play a role in the efficacy of immunotherapy in different types of cancer; thus, it could be used as a predictive biomarker. In this review, we will dissect the gut microbiome's role as a potential predictive and diagnostic marker in HCC and evaluate the latest progress in leveraging the gut microbiome as a novel therapeutic avenue for HCC patients, with a special emphasis on immunotherapy.
Collapse
Affiliation(s)
- Betul Gok Yavuz
- Department of Medicine, University of Missouri, St. Louis, MO 63121, USA;
| | - Saumil Datar
- Department of Medicine, University of Texas at Houston, Houston, TX 77030, USA;
| | - Shadi Chamseddine
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (S.C.); (Y.I.M.); (S.S.L.); (Z.I.H.)
| | - Yehia I. Mohamed
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (S.C.); (Y.I.M.); (S.S.L.); (Z.I.H.)
| | - Michael LaPelusa
- Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Sunyoung S. Lee
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (S.C.); (Y.I.M.); (S.S.L.); (Z.I.H.)
| | - Zishuo Ian Hu
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (S.C.); (Y.I.M.); (S.S.L.); (Z.I.H.)
| | - Eugene J. Koay
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Hop S. Tran Cao
- Hepato-Pancreato-Biliary Section, Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Prasun Kumar Jalal
- Division of Gastroenterology, Baylor College of Medicine, Houston, TX 77030, USA;
| | - Carrie Daniel-MacDougall
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (C.D.-M.); (M.H.)
| | - Manal Hassan
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (C.D.-M.); (M.H.)
| | - Dan G. Duda
- Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA;
| | - Hesham M. Amin
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Ahmed O. Kaseb
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (S.C.); (Y.I.M.); (S.S.L.); (Z.I.H.)
| |
Collapse
|
27
|
Iancu MA, Profir M, Roşu OA, Ionescu RF, Cretoiu SM, Gaspar BS. Revisiting the Intestinal Microbiome and Its Role in Diarrhea and Constipation. Microorganisms 2023; 11:2177. [PMID: 37764021 PMCID: PMC10538221 DOI: 10.3390/microorganisms11092177] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
The gut microbiota represents a community of microorganisms (bacteria, fungi, archaea, viruses, and protozoa) that colonize the gut and are responsible for gut mucosal structural integrity and immune and metabolic homeostasis. The relationship between the gut microbiome and human health has been intensively researched in the past years. It is now widely recognized that gut microbial composition is highly responsible for the general health of the host. Among the diseases that have been linked to an altered gut microbial population are diarrheal illnesses and functional constipation. The capacity of probiotics to modulate the gut microbiome population, strengthen the intestinal barrier, and modulate the immune system together with their antioxidant properties have encouraged the research of probiotic therapy in many gastrointestinal afflictions. Dietary and lifestyle changes and the use of probiotics seem to play an important role in easing constipation and effectively alleviating diarrhea by suppressing the germs involved. This review aims to describe how probiotic bacteria and the use of specific strains could interfere and bring benefits as an associated treatment for diarrhea and constipation.
Collapse
Affiliation(s)
- Mihaela Adela Iancu
- Department of Family Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Monica Profir
- Department of Oncology, Elias University Emergency Hospital, 011461 Bucharest, Romania; (M.P.); (O.A.R.)
| | - Oana Alexandra Roşu
- Department of Oncology, Elias University Emergency Hospital, 011461 Bucharest, Romania; (M.P.); (O.A.R.)
| | - Ruxandra Florentina Ionescu
- Department of Morphological Sciences, Cell and Molecular Biology and Histology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
- Department of Cardiology I, “Dr. Carol Davila” Central Military Emergency Hospital, 010825 Bucharest, Romania
| | - Sanda Maria Cretoiu
- Department of Morphological Sciences, Cell and Molecular Biology and Histology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Bogdan Severus Gaspar
- Surgery Clinic, Emergency Clinical Hospital, 014461 Bucharest, Romania;
- Department of Surgery, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| |
Collapse
|
28
|
Li S, Liu M, Cao S, Liu B, Li D, Wang Z, Sun H, Cui Y, Shi Y. The Mechanism of the Gut-Brain Axis in Regulating Food Intake. Nutrients 2023; 15:3728. [PMID: 37686760 PMCID: PMC10490484 DOI: 10.3390/nu15173728] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/16/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
With the increasing prevalence of energy metabolism disorders such as diabetes, cardiovascular disease, obesity, and anorexia, the regulation of feeding has become the focus of global attention. The gastrointestinal tract is not only the site of food digestion and absorption but also contains a variety of appetite-regulating signals such as gut-brain peptides, short-chain fatty acids (SCFAs), bile acids (BAs), bacterial proteins, and cellular components produced by gut microbes. While the central nervous system (CNS), as the core of appetite regulation, can receive and integrate these appetite signals and send instructions to downstream effector organs to promote or inhibit the body's feeding behaviour. This review will focus on the gut-brain axis mechanism of feeding behaviour, discussing how the peripheral appetite signal is sensed by the CNS via the gut-brain axis and the role of the central "first order neural nuclei" in the process of appetite regulation. Here, elucidation of the gut-brain axis mechanism of feeding regulation may provide new strategies for future production practises and the treatment of diseases such as anorexia and obesity.
Collapse
Affiliation(s)
- Shouren Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (S.L.); (M.L.)
| | - Mengqi Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (S.L.); (M.L.)
| | - Shixi Cao
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (S.L.); (M.L.)
| | - Boshuai Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (S.L.); (M.L.)
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou 450002, China
- Henan Forage Engineering Technology Research Center, Zhengzhou 450002, China
| | - Defeng Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (S.L.); (M.L.)
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou 450002, China
- Henan Forage Engineering Technology Research Center, Zhengzhou 450002, China
| | - Zhichang Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (S.L.); (M.L.)
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou 450002, China
- Henan Forage Engineering Technology Research Center, Zhengzhou 450002, China
| | - Hao Sun
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (S.L.); (M.L.)
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou 450002, China
- Henan Forage Engineering Technology Research Center, Zhengzhou 450002, China
| | - Yalei Cui
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (S.L.); (M.L.)
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou 450002, China
- Henan Forage Engineering Technology Research Center, Zhengzhou 450002, China
| | - Yinghua Shi
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (S.L.); (M.L.)
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou 450002, China
- Henan Forage Engineering Technology Research Center, Zhengzhou 450002, China
| |
Collapse
|
29
|
MacNair CR, Tsai CN, Rutherford ST, Tan MW. Returning to Nature for the Next Generation of Antimicrobial Therapeutics. Antibiotics (Basel) 2023; 12:1267. [PMID: 37627687 PMCID: PMC10451936 DOI: 10.3390/antibiotics12081267] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/29/2023] [Accepted: 07/30/2023] [Indexed: 08/27/2023] Open
Abstract
Antibiotics found in and inspired by nature are life-saving cures for bacterial infections and have enabled modern medicine. However, the rise in resistance necessitates the discovery and development of novel antibiotics and alternative treatment strategies to prevent the return to a pre-antibiotic era. Once again, nature can serve as a source for new therapies in the form of natural product antibiotics and microbiota-based therapies. Screening of soil bacteria, particularly actinomycetes, identified most of the antibiotics used in the clinic today, but the rediscovery of existing molecules prompted a shift away from natural product discovery. Next-generation sequencing technologies and bioinformatics advances have revealed the untapped metabolic potential harbored within the genomes of environmental microbes. In this review, we first highlight current strategies for mining this untapped chemical space, including approaches to activate silent biosynthetic gene clusters and in situ culturing methods. Next, we describe how using live microbes in microbiota-based therapies can simultaneously leverage many of the diverse antimicrobial mechanisms found in nature to treat disease and the impressive efficacy of fecal microbiome transplantation and bacterial consortia on infection. Nature-provided antibiotics are some of the most important drugs in human history, and new technologies and approaches show that nature will continue to offer valuable inspiration for the next generation of antibacterial therapeutics.
Collapse
Affiliation(s)
- Craig R. MacNair
- Department of Infectious Diseases, Genentech Inc., South San Francisco, CA 94080, USA;
| | - Caressa N. Tsai
- School of Law, University of California, Berkeley, Berkeley, CA 94704, USA;
| | - Steven T. Rutherford
- Department of Infectious Diseases, Genentech Inc., South San Francisco, CA 94080, USA;
| | - Man-Wah Tan
- Department of Infectious Diseases, Genentech Inc., South San Francisco, CA 94080, USA;
| |
Collapse
|
30
|
Wang Q, Nute M, Treangen TJ. Bakdrive: identifying a minimum set of bacterial species driving interactions across multiple microbial communities. Bioinformatics 2023; 39:i47-i56. [PMID: 37387148 DOI: 10.1093/bioinformatics/btad236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2023] Open
Abstract
MOTIVATION Interactions among microbes within microbial communities have been shown to play crucial roles in human health. In spite of recent progress, low-level knowledge of bacteria driving microbial interactions within microbiomes remains unknown, limiting our ability to fully decipher and control microbial communities. RESULTS We present a novel approach for identifying species driving interactions within microbiomes. Bakdrive infers ecological networks of given metagenomic sequencing samples and identifies minimum sets of driver species (MDS) using control theory. Bakdrive has three key innovations in this space: (i) it leverages inherent information from metagenomic sequencing samples to identify driver species, (ii) it explicitly takes host-specific variation into consideration, and (iii) it does not require a known ecological network. In extensive simulated data, we demonstrate identifying driver species identified from healthy donor samples and introducing them to the disease samples, we can restore the gut microbiome in recurrent Clostridioides difficile (rCDI) infection patients to a healthy state. We also applied Bakdrive to two real datasets, rCDI and Crohn's disease patients, uncovering driver species consistent with previous work. Bakdrive represents a novel approach for capturing microbial interactions. AVAILABILITY AND IMPLEMENTATION Bakdrive is open-source and available at: https://gitlab.com/treangenlab/bakdrive.
Collapse
Affiliation(s)
- Qi Wang
- Systems, Synthetic, and Physical Biology (SSPB) Graduate Program, Rice University, Houston, TX 77005, United States
| | - Michael Nute
- Department of Computer Science, Rice University, Houston, TX 77005, United States
| | - Todd J Treangen
- Department of Computer Science, Rice University, Houston, TX 77005, United States
| |
Collapse
|
31
|
Hoek KL, McClanahan KG, Latour YL, Shealy N, Piazuelo MB, Vallance BA, Byndloss MX, Wilson KT, Olivares-Villagómez D. Turicibacterales protect mice from severe Citrobacter rodentium infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.25.538270. [PMID: 37163036 PMCID: PMC10168287 DOI: 10.1101/2023.04.25.538270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
One of the major contributors to child mortality in the world is diarrheal diseases, with an estimated 800,000 deaths per year. Many pathogens are causative agents of these illnesses, including the enteropathogenic (EPEC) or enterohemorrhagic (EHEC) forms of Escherichia coli. These bacteria are characterized by their ability to cause attaching and effacing lesions in the gut mucosa. Although much has been learned about the pathogenicity of these organisms and the immune response against them, the role of the intestinal microbiota during these infections is not well characterized. Infection of mice with E. coli requires pre-treatment with antibiotics in most mouse models, which hinders the study of the microbiota in an undisturbed environment. Using Citrobacter rodentium as a murine model for attaching and effacing bacteria, we show that C57BL/6 mice deficient in granzyme B expression are highly susceptible to severe disease caused by C. rodentium infection. Although a previous publication from our group shows that granzyme B-deficient CD4+ T cells are partially responsible for this phenotype, in this report we present data demonstrating that the microbiota, in particular members of the order Turicibacterales, have an important role in conferring resistance. Mice deficient in Turicibacter sanguinis have increased susceptibility to severe disease. However, when these mice are co-housed with resistant mice, or colonized with T. sanguinis, susceptibility to severe infection is reduced. These results clearly suggest a critical role for this commensal in the protection against entero-pathogens.
Collapse
Affiliation(s)
- Kristen L. Hoek
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kathleen G. McClanahan
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Yvonne L. Latour
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Nicolas Shealy
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - M. Blanca Piazuelo
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Bruce A. Vallance
- Department of Pediatrics, BC Children’s Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Mariana X. Byndloss
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Institute of Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Microbiome Innovation Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Keith T. Wilson
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, TN, USA
- Veternas Affairs Tennessee Valley Healthcare System, Nashville, TN, USA
| | - Danyvid Olivares-Villagómez
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Institute of Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
32
|
Kiousi DE, Kouroutzidou AZ, Neanidis K, Karavanis E, Matthaios D, Pappa A, Galanis A. The Role of the Gut Microbiome in Cancer Immunotherapy: Current Knowledge and Future Directions. Cancers (Basel) 2023; 15:cancers15072101. [PMID: 37046762 PMCID: PMC10093606 DOI: 10.3390/cancers15072101] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
Cancer immunotherapy is a treatment modality that aims to stimulate the anti-tumor immunity of the host to elicit favorable clinical outcomes. Immune checkpoint inhibitors (ICIs) gained traction due to the lasting effects and better tolerance in patients carrying solid tumors in comparison to conventional treatment. However, a significant portion of patients may present primary or acquired resistance (non-responders), and thus, they may have limited therapeutic outcomes. Resistance to ICIs can be derived from host-related, tumor-intrinsic, or environmental factors. Recent studies suggest a correlation of gut microbiota with resistance and response to immunotherapy as well as with the incidence of adverse events. Currently, preclinical and clinical studies aim to elucidate the unique microbial signatures related to ICI response and anti-tumor immunity, employing metagenomics and/or multi-omics. Decoding this complex relationship can provide the basis for manipulating the malleable structure of the gut microbiota to enhance therapeutic success. Here, we delve into the factors affecting resistance to ICIs, focusing on the intricate gut microbiome–immunity interplay. Additionally, we review clinical studies and discuss future trends and directions in this promising field.
Collapse
Affiliation(s)
- Despoina E. Kiousi
- Department of Molecular Biology and Genetics, Faculty of Health Sciences, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Antonia Z. Kouroutzidou
- Department of Molecular Biology and Genetics, Faculty of Health Sciences, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Konstantinos Neanidis
- Oncology Department, 424 General Military Training Hospital, 56429 Thessaloniki, Greece
| | - Emmanuel Karavanis
- Oncology Department, 424 General Military Training Hospital, 56429 Thessaloniki, Greece
| | | | - Aglaia Pappa
- Department of Molecular Biology and Genetics, Faculty of Health Sciences, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Alex Galanis
- Department of Molecular Biology and Genetics, Faculty of Health Sciences, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| |
Collapse
|
33
|
Marinos G, Hamerich IK, Debray R, Obeng N, Petersen C, Taubenheim J, Zimmermann J, Blackburn D, Samuel BS, Dierking K, Franke A, Laudes M, Waschina S, Schulenburg H, Kaleta C. Metabolic model predictions enable targeted microbiome manipulation through precision prebiotics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.17.528811. [PMID: 36824941 PMCID: PMC9949166 DOI: 10.1101/2023.02.17.528811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
The microbiome is increasingly receiving attention as an important modulator of host health and disease. However, while numerous mechanisms through which the microbiome influences its host have been identified, there is still a lack of approaches that allow to specifically modulate the abundance of individual microbes or microbial functions of interest. Moreover, current approaches for microbiome manipulation such as fecal transfers often entail a non-specific transfer of entire microbial communities with potentially unwanted side effects. To overcome this limitation, we here propose the concept of precision prebiotics that specifically modulate the abundance of a microbiome member species of interest. In a first step, we show that defining precision prebiotics by compounds that are only taken up by the target species but no other species in a community is usually not possible due to overlapping metabolic niches. Subsequently, we present a metabolic modeling network framework that allows us to define precision prebiotics for a two-member C. elegans microbiome model community comprising the immune-protective Pseudomonas lurida MYb11 and the persistent colonizer Ochrobactrum vermis MYb71. Thus, we predicted compounds that specifically boost the abundance of the host-beneficial MYb11, four of which were experimentally validated in vitro (L-serine, L-threonine, D-mannitol, and γ-aminobutyric acid). L-serine was further assessed in vivo, leading to an increase in MYb11 abundance also in the worm host. Overall, our findings demonstrate that constraint-based metabolic modeling is an effective tool for the design of precision prebiotics as an important cornerstone for future microbiome-targeted therapies.
Collapse
Affiliation(s)
- Georgios Marinos
- Research Group Medical Systems Biology, University Hospital Schleswig-Holstein Campus Kiel, Kiel University, Kiel, Schleswig-Holstein, Germany
| | - Inga K Hamerich
- Research Group Evolutionary Ecology and Genetics, Zoological Institute, Kiel University, Kiel, Schleswig-Holstein, Germany
| | - Reena Debray
- Department of Integrative Biology, University of California, Berkeley, California, USA
| | - Nancy Obeng
- Research Group Evolutionary Ecology and Genetics, Zoological Institute, Kiel University, Kiel, Schleswig-Holstein, Germany
| | - Carola Petersen
- Research Group Evolutionary Ecology and Genetics, Zoological Institute, Kiel University, Kiel, Schleswig-Holstein, Germany
| | - Jan Taubenheim
- Research Group Medical Systems Biology, University Hospital Schleswig-Holstein Campus Kiel, Kiel University, Kiel, Schleswig-Holstein, Germany
| | - Johannes Zimmermann
- Research Group Medical Systems Biology, University Hospital Schleswig-Holstein Campus Kiel, Kiel University, Kiel, Schleswig-Holstein, Germany
- Max-Planck Institute for Evolutionary Biology, Ploen, Schleswig-Holstein, Germany
| | - Dana Blackburn
- Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, Texas, USA
| | - Buck S Samuel
- Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, Texas, USA
| | - Katja Dierking
- Research Group Evolutionary Ecology and Genetics, Zoological Institute, Kiel University, Kiel, Schleswig-Holstein, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Schleswig-Holstein, Germany
| | - Matthias Laudes
- Institute of Diabetes and Clinical Metabolic Research, University Hospital Schleswig-Holstein Campus Kiel, Kiel, Schleswig-Holstein, Germany
| | - Silvio Waschina
- Nutriinformatics, Institute for Human Nutrition and Food Science, Kiel University, Kiel, Schleswig-Holstein, Germany
| | - Hinrich Schulenburg
- Research Group Evolutionary Ecology and Genetics, Zoological Institute, Kiel University, Kiel, Schleswig-Holstein, Germany
- Max-Planck Institute for Evolutionary Biology, Ploen, Schleswig-Holstein, Germany
| | - Christoph Kaleta
- Research Group Medical Systems Biology, University Hospital Schleswig-Holstein Campus Kiel, Kiel University, Kiel, Schleswig-Holstein, Germany
| |
Collapse
|
34
|
Faecal microbiota trasplant: Current status and perspectives beyond Clostridioides difficile infection. ENFERMEDADES INFECCIOSAS Y MICROBIOLOGIA CLINICA (ENGLISH ED.) 2023; 41:203-205. [PMID: 36737368 DOI: 10.1016/j.eimce.2022.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 02/04/2023]
|
35
|
Mårtensson A, Cervin-Hoberg C, Huygens F, Lindstedt M, Sakellariou C, Greiff L, Cervin A. Upper airway microbiome transplantation for patients with chronic rhinosinusitis. Int Forum Allergy Rhinol 2022; 13:979-988. [PMID: 36515012 DOI: 10.1002/alr.23122] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/02/2022] [Accepted: 12/11/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND Chronic or recurrent rhinosinusitis without polyps (CRSsNP) is characterized by a persistent inflammation of the sinonasal mucosa. The underlying cause is unclear but increasing interest has been directed toward changes in the sinonasal microbiome as a potential driver. METHODS Twenty-two patients diagnosed with CRSsNP were treated with antibiotics for 13 days, followed by 5 consecutive days of nasal microbiome transplants from healthy donors. Outcome measures were 22-item Sino-Nasal Outcome Test (SNOT-22) questionnaire, total nasal symptom score (TNSS), endoscopic grading, 16S ribosomal RNA (rRNA) next generation sequencing (microbiome analysis), and nasal lavage fluid analysis of inflammatory cytokines. Patients were examined at the start of the study and after antibiotic treatment as well as 10 days and 3 months after the transplant series. RESULTS At the end of the study, patients reported significantly reduced SNOT-22 scores and microbiome analysis showed significantly increased abundance and diversity. No significant change was observed for TNSS or endoscopic scoring. CONCLUSION Nasal microbiome transplants obtained from healthy individuals and administered as nasal lavages to patients with CRSsNP are feasible. The patients reported significant and lasting reduction of symptoms and these findings were associated with a lasting increase in abundance and diversity of the local bacterial flora. The observations, which need to be confirmed by randomized controlled trials, may constitute a new treatment avenue for these difficult to treat patients where antibiotics only provide short lasting symptom control.
Collapse
Affiliation(s)
- Anders Mårtensson
- Department of Otorhinolaryngology (ORL), Helsingborg Hospital, Helsingborg, Sweden.,Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Charlotte Cervin-Hoberg
- Department of Otorhinolaryngology (ORL), Head & Neck Surgery, Skåne University Hospital, Lund, Sweden
| | - Flavia Huygens
- Center for Immunology & Infection Control, Queensland University of Technology, Brisbane, Australia
| | - Malin Lindstedt
- Department of Immunotechnology, Lund University, Lund, Sweden
| | | | - Lennart Greiff
- Department of Clinical Sciences, Lund University, Lund, Sweden.,Department of Otorhinolaryngology (ORL), Head & Neck Surgery, Skåne University Hospital, Lund, Sweden
| | - Anders Cervin
- Department of Clinical Sciences, Lund University, Lund, Sweden.,Department of Otorhinolaryngology (ORL), Head & Neck Surgery, Royal Brisbane & Women's Hospital, Brisbane, Australia.,School of Medicine, University of Queensland, Brisbane, Australia
| |
Collapse
|
36
|
Najafi-Ghalehlou N, Feizkhah A, Mobayen M, Pourmohammadi-Bejarpasi Z, Shekarchi S, Roushandeh AM, Roudkenar MH. Plumping up a Cushion of Human Biowaste in Regenerative Medicine: Novel Insights into a State-of-the-Art Reserve Arsenal. Stem Cell Rev Rep 2022; 18:2709-2739. [PMID: 35505177 PMCID: PMC9064122 DOI: 10.1007/s12015-022-10383-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2022] [Indexed: 12/03/2022]
Abstract
Major breakthroughs and disruptive methods in disease treatment today owe their thanks to our inch by inch developing conception of the infinitive aspects of medicine since the very beginning, among which, the role of the regenerative medicine can on no account be denied, a branch of medicine dedicated to either repairing or replacing the injured or diseased cells, organs, and tissues. A novel means to accomplish such a quest is what is being called "medical biowaste", a large assortment of biological samples produced during a surgery session or as a result of physiological conditions and biological activities. The current paper accentuating several of a number of promising sources of biowaste together with their plausible applications in routine clinical practices and the confronting challenges aims at inspiring research on the existing gap between clinical and basic science to further extend our knowledge and understanding concerning the potential applications of medical biowaste.
Collapse
Affiliation(s)
- Nima Najafi-Ghalehlou
- Department of Medical Laboratory Sciences, Faculty of Paramedicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Feizkhah
- Burn and Regenerative Medicine Research Center, School of Medicine, Velayat Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | - Mohammadreza Mobayen
- Burn and Regenerative Medicine Research Center, School of Medicine, Velayat Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | - Zahra Pourmohammadi-Bejarpasi
- Burn and Regenerative Medicine Research Center, School of Medicine, Velayat Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | - Shima Shekarchi
- Anatomical Sciences Department, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Amaneh Mohammadi Roushandeh
- Burn and Regenerative Medicine Research Center, School of Medicine, Velayat Hospital, Guilan University of Medical Sciences, Rasht, Iran.
| | - Mehryar Habibi Roudkenar
- Burn and Regenerative Medicine Research Center, School of Medicine, Velayat Hospital, Guilan University of Medical Sciences, Rasht, Iran.
- Cardiovascular Diseases Research Center, Department of Cardiology, School of Medicine, Heshmat Hospital, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
37
|
Fernandes MR, Aggarwal P, Costa RGF, Cole AM, Trinchieri G. Targeting the gut microbiota for cancer therapy. Nat Rev Cancer 2022; 22:703-722. [PMID: 36253536 DOI: 10.1038/s41568-022-00513-x] [Citation(s) in RCA: 94] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/07/2022] [Indexed: 02/06/2023]
Abstract
Growing evidence suggests that the gut microbiota modulates the efficacy and toxicity of cancer therapy, most notably immunotherapy and its immune-related adverse effects. The poor response to immunotherapy in patients treated with antibiotics supports this influential role of the microbiota. Until recently, results pertaining to the identification of the microbial species responsible for these effects were incongruent, and relatively few studies analysed the underlying mechanisms. A better understanding of the taxonomy of the species involved and of the mechanisms of action has since been achieved. Defined bacterial species have been shown to promote an improved response to immune-checkpoint inhibitors by producing different products or metabolites. However, a suppressive effect of Gram-negative bacteria may be dominant in some unresponsive patients. Machine learning approaches trained on the microbiota composition of patients can predict the ability of patients to respond to immunotherapy with some accuracy. Thus, interest in modulating the microbiota composition to improve patient responsiveness to therapy has been mounting. Clinical proof-of-concept studies have demonstrated that faecal microbiota transplantation or dietary interventions might be utilized clinically to improve the success rate of immunotherapy in patients with cancer. Here, we review recent advances and discuss emerging strategies for microbiota-based cancer therapies.
Collapse
Affiliation(s)
- Miriam R Fernandes
- Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Poonam Aggarwal
- Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Raquel G F Costa
- Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Alicia M Cole
- Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Giorgio Trinchieri
- Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA.
| |
Collapse
|
38
|
Slizovskiy IB, Oliva M, Settle JK, Zyskina LV, Prosperi M, Boucher C, Noyes NR. Target-enriched long-read sequencing (TELSeq) contextualizes antimicrobial resistance genes in metagenomes. MICROBIOME 2022; 10:185. [PMID: 36324140 PMCID: PMC9628182 DOI: 10.1186/s40168-022-01368-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 09/02/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Metagenomic data can be used to profile high-importance genes within microbiomes. However, current metagenomic workflows produce data that suffer from low sensitivity and an inability to accurately reconstruct partial or full genomes, particularly those in low abundance. These limitations preclude colocalization analysis, i.e., characterizing the genomic context of genes and functions within a metagenomic sample. Genomic context is especially crucial for functions associated with horizontal gene transfer (HGT) via mobile genetic elements (MGEs), for example antimicrobial resistance (AMR). To overcome this current limitation of metagenomics, we present a method for comprehensive and accurate reconstruction of antimicrobial resistance genes (ARGs) and MGEs from metagenomic DNA, termed target-enriched long-read sequencing (TELSeq). RESULTS Using technical replicates of diverse sample types, we compared TELSeq performance to that of non-enriched PacBio and short-read Illumina sequencing. TELSeq achieved much higher ARG recovery (>1,000-fold) and sensitivity than the other methods across diverse metagenomes, revealing an extensive resistome profile comprising many low-abundance ARGs, including some with public health importance. Using the long reads generated by TELSeq, we identified numerous MGEs and cargo genes flanking the low-abundance ARGs, indicating that these ARGs could be transferred across bacterial taxa via HGT. CONCLUSIONS TELSeq can provide a nuanced view of the genomic context of microbial resistomes and thus has wide-ranging applications in public, animal, and human health, as well as environmental surveillance and monitoring of AMR. Thus, this technique represents a fundamental advancement for microbiome research and application. Video abstract.
Collapse
Affiliation(s)
- Ilya B Slizovskiy
- Food-Centric Corridor, Infectious Disease Laboratory, Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, USA
| | - Marco Oliva
- Department of Computer and Information Science and Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL, USA
| | - Jonathen K Settle
- Department of Computer and Information Science and Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL, USA
| | - Lidiya V Zyskina
- Program in Human-Computer Interaction, College of Information Studies, University of Maryland, College Park, MD, USA
| | - Mattia Prosperi
- Data Intelligence Systems Lab, Department of Epidemiology, College of Public Health and Health Professions and College of Medicine, University of Florida, Gainesville, FL, USA
| | - Christina Boucher
- Department of Computer and Information Science and Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL, USA
| | - Noelle R Noyes
- Food-Centric Corridor, Infectious Disease Laboratory, Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, USA.
| |
Collapse
|
39
|
Faecal microbiota trasplant: Current status and perspectives beyond Clostridioides difficile infection. Enferm Infecc Microbiol Clin 2022. [DOI: 10.1016/j.eimc.2022.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
40
|
Bénard MV, de Bruijn CMA, Fenneman AC, Wortelboer K, Zeevenhoven J, Rethans B, Herrema HJ, van Gool T, Nieuwdorp M, Benninga MA, Ponsioen CY. Challenges and costs of donor screening for fecal microbiota transplantations. PLoS One 2022; 17:e0276323. [PMID: 36264933 PMCID: PMC9584411 DOI: 10.1371/journal.pone.0276323] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 10/03/2022] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND The increasing interest to perform and investigate the efficacy of fecal microbiota transplantation (FMT) has generated an urge for feasible donor screening. We report our experience with stool donor recruitment, screening, follow-up, and associated costs in the context of clinical FMT trials. METHODS Potential stool donors, aged between 18-65 years, underwent a stepwise screening process starting with an extensive questionnaire followed by feces and blood investigations. When eligible, donors were rescreened for MDROs and SARS-CoV-2 every 60-days, and full rescreening every 4-6 months. The costs to find and retain a stool donor were calculated. RESULTS From January 2018 to August 2021, 393 potential donors underwent prescreening, of which 202 (51.4%) did not proceed primarily due to loss to follow-up, medication use, or logistic reasons (e.g. COVID-19 measures). 191 potential donors filled in the questionnaire, of which 43 (22.5%) were excluded. The remaining 148 candidates underwent parasitology screening: 91 (61.5%) were excluded, mostly due to Dientamoeba fragilis and/or high amounts of Blastocystis spp. After additional feces investigations 18/57 (31.6%) potential donors were excluded (mainly for presence of Helicobacter Pylori and ESBL-producing organisms). One donor failed serum testing. Overall, 38 out of 393 (10%) potential donors were enrolled. The median participation time of active stool donors was 13 months. To recruit 38 stool donors, €64.112 was spent. CONCLUSION Recruitment of stool donors for FMT is challenging. In our Dutch cohort, failed eligibility of potential donors was often caused by the presence of the protozoa Dientamoeba fragilis and Blastocystis spp.. The exclusion of potential donors that carry these protozoa, especially Blastocystis spp., is questionable and deserves reconsideration. High-quality donor screening is associated with substantial costs.
Collapse
Affiliation(s)
- Mèlanie V. Bénard
- Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism (AGEM), Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- * E-mail:
| | - Clara M. A. de Bruijn
- Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism (AGEM), Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Emma Children’s Hospital, Amsterdam UMC, University of Amsterdam, Pediatric Gastroenterology, Hepatology and Nutrition, Amsterdam, The Netherlands
- Amsterdam Reproduction & Development Research Institute, Amsterdam UMC, Emma Children’s Hospital, Amsterdam, The Netherlands
| | - Aline C. Fenneman
- Department of Endocrinology and Metabolism, Amsterdam Gastroenterology Endocrinology Metabolism (AGEM), Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Department of Clinical and Experimental Vascular Medicine, Amsterdam Cardiovascular Sciences (ACS), Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Koen Wortelboer
- Department of Clinical and Experimental Vascular Medicine, Amsterdam Cardiovascular Sciences (ACS), Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Judith Zeevenhoven
- Emma Children’s Hospital, Amsterdam UMC, University of Amsterdam, Pediatric Gastroenterology, Hepatology and Nutrition, Amsterdam, The Netherlands
| | - Bente Rethans
- Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism (AGEM), Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Hilde J. Herrema
- Department of Clinical and Experimental Vascular Medicine, Amsterdam Cardiovascular Sciences (ACS), Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Tom van Gool
- Section Clinical Parasitology, Department of Medical Microbiology, Amsterdam University Medical Centers, Amsterdam Medical Center, Amsterdam, The Netherlands
| | - Max Nieuwdorp
- Department of Clinical and Experimental Vascular Medicine, Amsterdam Cardiovascular Sciences (ACS), Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Marc A. Benninga
- Emma Children’s Hospital, Amsterdam UMC, University of Amsterdam, Pediatric Gastroenterology, Hepatology and Nutrition, Amsterdam, The Netherlands
| | - Cyriel Y. Ponsioen
- Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism (AGEM), Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
41
|
Timmis JK, Roussilhon DF, van de Burgwal LHM. Innovations for microbiome targeting interventions - a patent landscape analysis indicating overall patenting activity decline and promising target disease areas. Benef Microbes 2022; 13:265-282. [PMID: 35979711 DOI: 10.3920/bm2021.0050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The human microbiota have been implicated in the aetiology and remedy of a host of disorders. However, due to the pervasive uncertainty inherent in the field of microbiota-targeting interventions and associated issues with establishing rigorous safety and efficacy profiles, regulatory oversight is suboptimal. This can dissuade innovators from further exploring novel and much needed health interventions. Modification of regulatory protocols and practices requires focussed efforts and funding to build the evidence base around future regulatory needs. Such modification can be critically informed by identification of changes and trends in technology fields to facilitate identification of regulatory gaps. To this purpose, this study rigorously collected and analysed patent data from Espacenet - covering the years 2013-2018 - and created a patent landscape analysis of microbiome targeting interventions with a focus on medicinal products. Pertinent patenting activity has declined overall. While, in absolute terms, patents most frequently claimed inventions targeting disorders of the gut and alimentary tract, relative year-on-year interest increases have been substantial for cancer, and disorders of the (neuro-)muscular and respiratory systems - driven by the private sector. Academic stakeholders showed top interest in disorders of the metabolism, anti-infectives, and skeletal and dermatological diseases. Although medicinal preparation claims dominated our dataset, a third of patents claimed food preparations, while only 1% claimed application as a diagnostic. Finally, China is, by an inordinate margin, a market of particular interest for both domestic and foreign innovators, indicating that microbiome targeting intervention innovation for EU and US markets might be frustrated. This study is the first to empirically demonstrate that live biotherapeutic product innovation is decelerating and potentially frustrated, supporting the urgent need for improved regulatory standards. Our results indicate which disease areas deserve particular attention for research funding to facilitate proper regulatory appraisal in the near- to mid-term future.
Collapse
Affiliation(s)
- J K Timmis
- Athena Institute for Research on Innovation and Communication in Health and Life Sciences, Vrije Universiteit Amsterdam, Boelelaan, 1081 HV Amsterdam, the Netherlands
| | - D Flaherty Roussilhon
- Athena Institute for Research on Innovation and Communication in Health and Life Sciences, Vrije Universiteit Amsterdam, Boelelaan, 1081 HV Amsterdam, the Netherlands
| | - L H M van de Burgwal
- Athena Institute for Research on Innovation and Communication in Health and Life Sciences, Vrije Universiteit Amsterdam, Boelelaan, 1081 HV Amsterdam, the Netherlands
| |
Collapse
|
42
|
Nigam M, Panwar AS, Singh RK. Orchestrating the fecal microbiota transplantation: Current technological advancements and potential biomedical application. FRONTIERS IN MEDICAL TECHNOLOGY 2022; 4:961569. [PMID: 36212607 PMCID: PMC9535080 DOI: 10.3389/fmedt.2022.961569] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 08/29/2022] [Indexed: 01/10/2023] Open
Abstract
Fecal microbiota transplantation (FMT) has been proved to be an effective treatment for gastrointestinal disorders caused due to microbial disbalance. Nowadays, this approach is being used to treat extragastrointestinal conditions like metabolic and neurological disorders, which are considered to have their provenance in microbial dysbiosis in the intestine. Even though case studies and clinical trials have demonstrated the potential of FMT in treating a variety of ailments, safety and ethical concerns must be answered before the technique is widely used to the community's overall benefit. From this perspective, it is not unexpected that techniques for altering gut microbiota may represent a form of medication whose potential has not yet been thoroughly addressed. This review intends to gather data on recent developments in FMT and its safety, constraints, and ethical considerations.
Collapse
Affiliation(s)
- Manisha Nigam
- Department of Biochemistry, School of Life Sciences, H.N.B. Garhwal University, Srinagar, India
- Correspondence: Manisha Nigam Rahul Kunwar Singh
| | - Abhaya Shikhar Panwar
- Department of Biochemistry, School of Life Sciences, H.N.B. Garhwal University, Srinagar, India
| | - Rahul Kunwar Singh
- Department of Microbiology, School of Life Sciences, H.N.B. Garhwal University, Srinagar, India
- Correspondence: Manisha Nigam Rahul Kunwar Singh
| |
Collapse
|
43
|
El-Salhy M, Mazzawi T, Hausken T, Hatlebakk JG. The fecal microbiota transplantation response differs between patients with severe and moderate irritable bowel symptoms. Scand J Gastroenterol 2022; 57:1036-1045. [PMID: 35486073 DOI: 10.1080/00365521.2022.2064725] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVES Fecal microbiota transplantation (FMT) is a promising intervention for patients with irritable bowel syndrome (IBS). The present study aimed to identify any differences in FMT response between patients with severe and moderate IBS symptoms. MATERIALS AND METHOD The study included the 164 patients who participated in our previous study, of which 96 (58.5%) and 68 (41.5%) had severe (S-IBS-S) and moderate (Mo-IBS-S) IBS, respectively. The patients were randomly divided into a placebo group (own feces) and 30-g and 60-g (donor feces) FMT groups. Patients completed three questionnaires that assessed their symptoms and quality of life at baseline and at 2 weeks, 1 month, and 3 months after FMT, and provided fecal samples before and 1 month after FMT. The fecal bacteria were analyzed using the 16S rRNA gene in PCR DNA amplification covering the V3-V9 variable genes. RESULTS Response rates of the placebo group did not differ between S-IBS-S and Mo-IBS-S patients at 2 weeks, 1 month and 3 months after FMT. The response rates in the active treatment group were higher in S-IBS-S patients than in Mo-IBS-S patients at each observation time. FMT reduced abdominal symptoms and fatigue and improved the quality of life in patients with both severe and moderate IBS. Patients with S-IBS-S had higher levels of Eubacterium siraeum, and lower levels of Eubacterium rectale than Mo-IBS-S, after FMT. CONCLUSION Patients with S-IBS-S have a higher response rate to FMT and a marked improvement in fatigue and in quality of life compared with those with Mo-IBS-S. The clinical trial registration number is NCT03822299 and is available at www.clinicaltrials.gov.
Collapse
Affiliation(s)
- Magdy El-Salhy
- Department of Medicine, Stord Hospital, Stord, Norway.,Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Tarek Mazzawi
- Faculty of Medicine, Department of Medicine, Al-Balqa Applied University, Salt, Jordan
| | - Trygve Hausken
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | | |
Collapse
|
44
|
Zaytsoff SJM, Montina T, Boras VF, Brassard J, Moote PE, Uwiera RRE, Inglis GD. Microbiota Transplantation in Day-Old Broiler Chickens Ameliorates Necrotic Enteritis via Modulation of the Intestinal Microbiota and Host Immune Responses. Pathogens 2022; 11:pathogens11090972. [PMID: 36145404 PMCID: PMC9503007 DOI: 10.3390/pathogens11090972] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/22/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
A microbiota transplant (MT) originating from mature adult chicken ceca and propagated in bioreactors was administered to day-old broiler chicks to ascertain the degree to which, and how, the MT affects Clostridium perfringens (Cp)-incited necrotic enteritis (NE). Using a stress predisposition model of NE, birds administered the MT and challenged with Cp showed fewer necrotic lesions, and exhibited a substantially higher α- and β-diversity of bacteria in their jejunum and ceca. Birds challenged with Cp and not administered the MT showed decreased Lactobacillus and increased Clostridium sensu strico 1 in the jejunum. In ceca, Megamonas, a genus containing butyrate-producing bacteria, was only present in birds administered the MT, and densities of this genus were increased in birds challenged with Cp. Metabolite profiles in cecal digesta were altered in birds administered the MT and challenged with the pathogen; 59 metabolites were differentially abundant following MT treatment, and the relative levels of short chain fatty acids, butyrate, valerate, and propionate, were decreased in birds with NE. Birds administered the MT and challenged with Cp showed evidence of enhanced restoration of intestinal barrier functions, including elevated mRNA of MUC2B, MUC13, and TJP1. Likewise, birds administered the MT exhibited higher mRNA of IL2, IL17A, and IL22 at 2-days post-inoculation with Cp, indicating that these birds were better immunologically equipped to respond to pathogen challenge. Collectively, study findings demonstrated that administering a MT containing a diverse mixture of microorganisms to day-old birds ameliorated NE in broilers by increasing bacterial diversity and promoting positive immune responses.
Collapse
Affiliation(s)
- Sarah J. M. Zaytsoff
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Tony Montina
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Valerie F. Boras
- Chinook Regional Hospital, Alberta Health Services, Lethbridge, AB T1J 1W5, Canada
| | - Julie Brassard
- Saint-Hyacinthe Research and Development Centre, Agriculture and Agri-Food Canada, Saint-Hyacinthe, QC J2S 8E3, Canada
| | - Paul E. Moote
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada
| | - Richard R. E. Uwiera
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - G. Douglas Inglis
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada
- Correspondence:
| |
Collapse
|
45
|
Cerquetella M, Marchegiani A, Rossi G, Trabalza-Marinucci M, Passamonti F, Isidori M, Rueca F. Case Report: Oral Fecal Microbiota Transplantation in a Dog Suffering From Relapsing Chronic Diarrhea-Clinical Outcome and Follow-Up. Front Vet Sci 2022; 9:893342. [PMID: 35859811 PMCID: PMC9289623 DOI: 10.3389/fvets.2022.893342] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 06/06/2022] [Indexed: 12/01/2022] Open
Abstract
The present case report describes the effects of orally administered fecal microbiota transplantation (FMT) (frozen capsules) in a dog suffering from relapsing chronic diarrhea, needing a continuous low prednisolone dose to maintain the condition under acceptable control. Through FMT, we aimed at evaluating the possibility of improving the clinical score and/or reducing/suspending steroid administration. During a first period of strict monitoring (21 days), the canine inflammatory bowel disease activity index (CIBDAI) score passed from mild to clinically insignificant disease. Furthermore, two additional gastrointestinal signs that had been reported, bloating and episodes of painful defecation, rapidly improved (bloating) or even resolved (painful defecation). The patient was then followed for 18 months (to the authors' knowledge, the longest follow-up time ever reported in a dog), during which no serious relapses occurred and no increase in prednisolone dose was necessary. No adverse clinical effects were ever reported during monitoring. The present description provides a further experience increasing those already present in the veterinary literature, in which an agreement on how to use FMT has not yet been achieved although strongly needed and recommended.
Collapse
Affiliation(s)
- Matteo Cerquetella
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Andrea Marchegiani
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Giacomo Rossi
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | | | | | - Marco Isidori
- Department of Veterinary Medicine, University of Perugia, Perugia, Italy
| | - Fabrizio Rueca
- Department of Veterinary Medicine, University of Perugia, Perugia, Italy
| |
Collapse
|
46
|
Gulliver EL, Young RB, Chonwerawong M, D'Adamo GL, Thomason T, Widdop JT, Rutten EL, Rossetto Marcelino V, Bryant RV, Costello SP, O'Brien CL, Hold GL, Giles EM, Forster SC. Review article: the future of microbiome-based therapeutics. Aliment Pharmacol Ther 2022; 56:192-208. [PMID: 35611465 PMCID: PMC9322325 DOI: 10.1111/apt.17049] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/29/2022] [Accepted: 05/12/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND From consumption of fermented foods and probiotics to emerging applications of faecal microbiota transplantation, the health benefit of manipulating the human microbiota has been exploited for millennia. Despite this history, recent technological advances are unlocking the capacity for targeted microbial manipulation as a novel therapeutic. AIM This review summarises the current developments in microbiome-based medicines and provides insight into the next steps required for therapeutic development. METHODS Here we review current and emerging approaches and assess the capabilities and weaknesses of these technologies to provide safe and effective clinical interventions. Key literature was identified through Pubmed searches with the following key words, 'microbiome', 'microbiome biomarkers', 'probiotics', 'prebiotics', 'synbiotics', 'faecal microbiota transplant', 'live biotherapeutics', 'microbiome mimetics' and 'postbiotics'. RESULTS Improved understanding of the human microbiome and recent technological advances provide an opportunity to develop a new generation of therapies. These therapies will range from dietary interventions, prebiotic supplementations, single probiotic bacterial strains, human donor-derived faecal microbiota transplants, rationally selected combinations of bacterial strains as live biotherapeutics, and the beneficial products or effects produced by bacterial strains, termed microbiome mimetics. CONCLUSIONS Although methods to identify and refine these therapeutics are continually advancing, the rapid emergence of these new approaches necessitates accepted technological and ethical frameworks for measurement, testing, laboratory practices and clinical translation.
Collapse
Affiliation(s)
- Emily L. Gulliver
- Centre for Innate Immunity and Infectious DiseasesHudson Institute of Medical ResearchClaytonVictoriaAustralia,Department of Molecular and Translational SciencesMonash UniversityClaytonVictoriaAustralia
| | - Remy B. Young
- Centre for Innate Immunity and Infectious DiseasesHudson Institute of Medical ResearchClaytonVictoriaAustralia,Department of Molecular and Translational SciencesMonash UniversityClaytonVictoriaAustralia
| | - Michelle Chonwerawong
- Centre for Innate Immunity and Infectious DiseasesHudson Institute of Medical ResearchClaytonVictoriaAustralia,Department of Molecular and Translational SciencesMonash UniversityClaytonVictoriaAustralia
| | - Gemma L. D'Adamo
- Centre for Innate Immunity and Infectious DiseasesHudson Institute of Medical ResearchClaytonVictoriaAustralia,Department of Molecular and Translational SciencesMonash UniversityClaytonVictoriaAustralia
| | - Tamblyn Thomason
- Centre for Innate Immunity and Infectious DiseasesHudson Institute of Medical ResearchClaytonVictoriaAustralia,Department of Molecular and Translational SciencesMonash UniversityClaytonVictoriaAustralia
| | - James T. Widdop
- Centre for Innate Immunity and Infectious DiseasesHudson Institute of Medical ResearchClaytonVictoriaAustralia,Department of Molecular and Translational SciencesMonash UniversityClaytonVictoriaAustralia
| | - Emily L. Rutten
- Centre for Innate Immunity and Infectious DiseasesHudson Institute of Medical ResearchClaytonVictoriaAustralia,Department of Molecular and Translational SciencesMonash UniversityClaytonVictoriaAustralia
| | - Vanessa Rossetto Marcelino
- Centre for Innate Immunity and Infectious DiseasesHudson Institute of Medical ResearchClaytonVictoriaAustralia,Department of Molecular and Translational SciencesMonash UniversityClaytonVictoriaAustralia
| | - Robert V. Bryant
- Department of GastroenterologyThe Queen Elizabeth HospitalWoodvilleSouth AustraliaAustralia,School of MedicineUniversity of AdelaideAdelaideSouth AustraliaAustralia
| | - Samuel P. Costello
- Department of GastroenterologyThe Queen Elizabeth HospitalWoodvilleSouth AustraliaAustralia,School of MedicineUniversity of AdelaideAdelaideSouth AustraliaAustralia
| | | | - Georgina L. Hold
- Microbiome Research Centre, St George & Sutherland Clinical SchoolUniversity of New South WalesSydneyNew South WalesAustralia
| | - Edward M. Giles
- Centre for Innate Immunity and Infectious DiseasesHudson Institute of Medical ResearchClaytonVictoriaAustralia,Department of Molecular and Translational SciencesMonash UniversityClaytonVictoriaAustralia,Department of PaediatricsMonash UniversityClaytonVictoriaAustralia
| | - Samuel C. Forster
- Centre for Innate Immunity and Infectious DiseasesHudson Institute of Medical ResearchClaytonVictoriaAustralia,Department of Molecular and Translational SciencesMonash UniversityClaytonVictoriaAustralia
| |
Collapse
|
47
|
Rakotonirina A, Galperine T, Allémann E. Fecal microbiota transplantation: a review on current formulations in Clostridioides difficile infection and future outlooks. Expert Opin Biol Ther 2022; 22:929-944. [PMID: 35763604 DOI: 10.1080/14712598.2022.2095901] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION The role of the gut microbiota in health and the pathogenesis of several diseases has been highlighted in recent years. Even though the precise mechanisms involving the microbiome in these ailments are still unclear, microbiota-modulating therapies have been developed. Fecal microbiota transplantation (FMT) has shown significant results against Clostridioides difficile infection (CDI), and its potential has been investigated for other diseases. Unfortunately, the technical aspects of the treatment make it difficult to implement. Pharmaceutical technology approaches to encapsulate microorganisms could play an important role in providing this treatment and render the treatment modalities easier to handle. AREAS COVERED After an overview of CDI, this narrative review aims to discuss the current formulations for FMT and specifically addresses the technical aspects of the treatment. This review also distinguishes itself by focusing on the hurdles and emphasizing the possible improvements using pharmaceutical technologies. EXPERT OPINION FMT is an efficient treatment for recurrent CDI. However, its standardization is overlooked. The approach of industrial and hospital preparations of FMT are different, but both show promise in their respective methodologies. Novel FMT formulations could enable further research on dysbiotic diseases in the future.
Collapse
Affiliation(s)
- Adèle Rakotonirina
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland.,Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| | - Tatiana Galperine
- Infectious Diseases Service, Department of Medicine, University Hospital and University of Lausanne, Lausanne, Switzerland.,French Group of Faecal Microbiota Transplantation
| | - Eric Allémann
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland.,Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| |
Collapse
|
48
|
Takáčová M, Bomba A, Tóthová C, Micháľová A, Turňa H. Any Future for Faecal Microbiota Transplantation as a Novel Strategy for Gut Microbiota Modulation in Human and Veterinary Medicine? Life (Basel) 2022; 12:723. [PMID: 35629390 PMCID: PMC9146664 DOI: 10.3390/life12050723] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/28/2022] [Accepted: 05/10/2022] [Indexed: 11/16/2022] Open
Abstract
Alterations in the composition of the intestinal microbiome, also known as dysbiosis, are the result of many factors such as diet, antibiotics, stress, diseases, etc. There are currently several ways to modulate intestinal microbiome such as dietary modulation, the use of antimicrobials, prebiotics, probiotics, postbiotics, and synbiotics. Faecal microbiota transplantation (FMT) represents one new method of gut microbiota modulation in humans with the aim of reconstructing the intestinal microbiome of the recipient. In human medicine, this form of bacteriotherapy is successfully used in cases of recurrent Clostridium difficile infection (CDI). FMT has been known in large animal medicine for several years. In small animal medicine, the use of FMT is not part of normal practice.
Collapse
Affiliation(s)
- Martina Takáčová
- Small Animal Clinic, University of Veterinary Medicine and Pharmacy, 041 81 Košice, Slovakia
| | - Alojz Bomba
- Prebiotix s.r.o., 024 01 Kysucké Nové Mesto, Slovakia
| | - Csilla Tóthová
- Clinic of Ruminants, University of Veterinary Medicine and Pharmacy, 041 81 Košice, Slovakia
| | - Alena Micháľová
- Small Animal Clinic, University of Veterinary Medicine and Pharmacy, 041 81 Košice, Slovakia
| | - Hana Turňa
- Small Animal Clinic, University of Veterinary Medicine and Pharmacy, 041 81 Košice, Slovakia
| |
Collapse
|
49
|
Abstract
The gut microbiome plays critical roles in human health and disease. Recent studies suggest it may also be associated with chronic pain and postoperative pain outcomes. In animal models, the composition of the gut microbiome changes after general anesthesia and affects the host response to medications, including anesthetics and opioids. In humans, the gut microbiome is associated with the development of postoperative pain and neurocognitive disorders. Additionally, the composition of the gut microbiome has been associated with pain conditions including visceral pain, nociplastic pain, complex regional pain syndrome, and headaches, partly through altered concentration of circulating bacterial-derived metabolites. Furthermore, animal studies demonstrate the critical role of the gut microbiome in neuropathic pain via immunomodulatory mechanisms. This article reviews basic concepts of the human gut microbiome and its interactions with the host and provide a comprehensive overview of the evidence linking the gut microbiome to anesthesiology, critical care, and pain medicine.
Collapse
|
50
|
The Regulatory Approach for Faecal Microbiota Transplantation as Treatment for Clostridioides difficile Infection in Italy. Antibiotics (Basel) 2022; 11:antibiotics11040480. [PMID: 35453231 PMCID: PMC9024936 DOI: 10.3390/antibiotics11040480] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/01/2022] [Accepted: 04/03/2022] [Indexed: 02/06/2023] Open
Abstract
Faecal microbiota transplantation (FMT) is regarded as an efficacious treatment for recurrent C. difficile infection. Unfortunately, widespread patient access is hindered by regulatory hurdles, which are the primary barriers to incorporating FMT into clinical practice. At the European and International level, there is no uniform perspective on FMT classification, and a coordinated effort is desirable to solve this regulatory puzzle. In this communication, we report the regulatory principles and the implementation approach for FMT application in Italy. Our experience suggests that the EU Tissue and Cell Directives are suited to ensure safe and efficient FMT for C. difficile management, especially through extensive high-quality donor selection and full traceability maintenance.
Collapse
|