1
|
Wang P, You J, Liu G, Wang Q, Zhang L, Lu X, Qin J, Dong Z, Yi B, Huang Q. The Combination of Aligned PDA-Fe@PLCL Conduit with Aligned GelMA Hydrogel Promotes Peripheral Nerve Regeneration. Adv Healthc Mater 2025; 14:e2403370. [PMID: 39718234 DOI: 10.1002/adhm.202403370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 12/01/2024] [Indexed: 12/25/2024]
Abstract
Biomaterial-assisted therapeutic strategies enable precise modulation to direct endogenous cellular responses and harness regenerative capabilities for nerve repair. However, achieving effective cellular engagement during nerve remodeling remains challenging. Herein, a novel composite nerve guidance conduit (NGC), the GelMA/PLys@PDA-Fe@PLCL conduit is developed by combining aligned poly(l-lactide-co-caprolactone) (PLCL) nanofibers modified with polydopamine (PDA), ferrous iron (Fe3⁺), and polylysine (PLys) with aligned methacrylate-anhydride gelatin (GelMA) hydrogel nanofibers. PDA films exhibit strong adhesion and metal coordination properties, allowing Fe3⁺ irons to chelate with phenolic hydroxyl groups of dopamine derivatives, forming a metal-phenolic network on PLCL. PLys molecules are then grafted onto PDA-Fe3⁺ coating via Schiff base and Michael addition reactions. This multifunctional coating enhances surface roughness and zeta potential of PLCL nanofibers, imparts superhydrophilicity with anisotropic wetting behavior, and maintains wet tensile properties of substrates. In vitro studies show that the PLys@PDA-Fe coating significantly promotes aligned distribution of Schwann cells, improves cell adhesion and differentiation, and demonstrates notable antioxidant and anti-inflammatory properties. When implanted into nerve defects in rats, the multifunctional coating conduit combined with aligned GelMA hydrogel effectively accelerates axonal regeneration, remyelination, and angiogenesis, leading to enhanced motor function recovery. Overall, the GelMA/PLys@PDA-Fe@PLCL conduit presents a promising strategy for advancing peripheral nerve repair.
Collapse
Affiliation(s)
- Penghui Wang
- Department of Vascular Surgery, Institute of Vascular Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Jiongming You
- Department of Orthopedic, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, WenZhou, Zhejiang, 325000, China
| | - Guang Liu
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, China
| | - Qiming Wang
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, China
| | - Linjie Zhang
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, China
| | - Xinwu Lu
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, China
| | - Jinbao Qin
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, China
| | - Zhihui Dong
- Department of Vascular Surgery, Institute of Vascular Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Bingcheng Yi
- Qingdao Key Laboratory of Materials for Tissue Repair and Rehabilitation, School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, 266071, China
- Department of Traditional Chinese Medicine, Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Hospital), Qingdao, 266042, China
| | - Qun Huang
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, China
| |
Collapse
|
2
|
Cardoso FSDS, Maria GDS, Pestana FM, Cardoso R, Ramalho BDS, Heringer LDS, Taboada TB, Martinez AMB, de Almeida FM. Nerve repair with polylactic acid and inosine treatment enhance regeneration and improve functional recovery after sciatic nerve transection. Front Cell Neurosci 2025; 18:1525024. [PMID: 39835292 PMCID: PMC11743644 DOI: 10.3389/fncel.2024.1525024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 12/16/2024] [Indexed: 01/22/2025] Open
Abstract
Background Following transection, nerve repair using the polylactic acid (PLA) conduit is an effective option. In addition, inosine treatment has shown potential to promote nerve regeneration. Therefore, this study aimed to investigate the regenerative potential of inosine after nerve transection and polylactic acid conduit repair. Methods C57/Black6 mice were subjected to sciatic nerve transection, repair with PLA conduit, and intraperitoneal injection of saline or inosine 1 h after injury and daily for 1 week. To assess motor and sensory recovery, functional tests were performed before and weekly up to 8 weeks after injury. Following, to evaluate the promotion of regeneration and myelination, electroneuromyography, morphometric analysis and immunohistochemistry were then performed. Results Our results showed that the inosine group had a greater number of myelinated nerve fibers (1,293 ± 85.49 vs. 817 ± 89.2), an increase in neurofilament high chain (NFH) and myelin basic protein (MBP) immunolabeling and a greater number of fibers within the ideal g-ratio (453.8 ± 45.24 vs. 336.6 ± 37.01). In addition, the inosine group presented a greater adenosine A2 receptor (A2AR) immunolabeling area. This resulted in greater compound muscle action potential amplitude and nerve conduction velocity, leading to preservation of muscle and neuromuscular junction integrity, and consequently, the recovery of motor and sensory function. Conclusion Our findings suggest that inosine may enhance regeneration and improve both motor and sensory function recovery after nerve transection when repaired with a poly-lactic acid conduit. This advances the understanding of biomaterials and molecular treatments.
Collapse
Affiliation(s)
- Fellipe Soares dos Santos Cardoso
- Laboratório de Neurodegeneração e Reparo – Departamento de Anatomia Patológica, Hospital Universitário Clementino Fraga Filho, HUCFF/UFRJ, Rio de Janeiro, Brazil
| | - Guilherme dos Santos Maria
- Laboratório de Neurodegeneração e Reparo – Departamento de Anatomia Patológica, Hospital Universitário Clementino Fraga Filho, HUCFF/UFRJ, Rio de Janeiro, Brazil
| | - Fernanda Marques Pestana
- Laboratório de Neurodegeneração e Reparo – Departamento de Anatomia Patológica, Hospital Universitário Clementino Fraga Filho, HUCFF/UFRJ, Rio de Janeiro, Brazil
| | | | - Bruna dos Santos Ramalho
- Laboratório de Neurodegeneração e Reparo – Departamento de Anatomia Patológica, Hospital Universitário Clementino Fraga Filho, HUCFF/UFRJ, Rio de Janeiro, Brazil
- Faculdade Souza Marques, Rio de Janeiro, Brazil
| | - Luiza dos Santos Heringer
- Laboratório de Neurodegeneração e Reparo – Departamento de Anatomia Patológica, Hospital Universitário Clementino Fraga Filho, HUCFF/UFRJ, Rio de Janeiro, Brazil
| | - Tiago Bastos Taboada
- Laboratório de Neurodegeneração e Reparo – Departamento de Anatomia Patológica, Hospital Universitário Clementino Fraga Filho, HUCFF/UFRJ, Rio de Janeiro, Brazil
| | - Ana Maria Blanco Martinez
- Laboratório de Neurodegeneração e Reparo – Departamento de Anatomia Patológica, Hospital Universitário Clementino Fraga Filho, HUCFF/UFRJ, Rio de Janeiro, Brazil
| | - Fernanda Martins de Almeida
- Laboratório de Neurodegeneração e Reparo – Departamento de Anatomia Patológica, Hospital Universitário Clementino Fraga Filho, HUCFF/UFRJ, Rio de Janeiro, Brazil
- Departamento de Histologia ICB/UFRJ, Instituto de Ciências Biomédicas, Rio de Janeiro, Brazil
| |
Collapse
|
3
|
Tusnim J, Kutuzov P, Grasman JM. In Vitro Models for Peripheral Nerve Regeneration. Adv Healthc Mater 2024; 13:e2401605. [PMID: 39324286 DOI: 10.1002/adhm.202401605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/14/2024] [Indexed: 09/27/2024]
Abstract
Peripheral nerve injury (PNI) resulting in lesions is highly prevalent clinically, but current therapeutic approaches fail to provide satisfactory outcomes in many patients. While peripheral nerves have intrinsic regenerative capacity, the regenerative capabilities of peripheral nerves are often insufficient to restore full functionality. This highlights an unmet need for developing more effective strategies to repair damaged peripheral nerves and improve regenerative success. Consequently, researchers are actively exploring a variety of therapeutic strategies, encompassing the local delivery of trophic factors or bioactive molecules, the design of advanced biomaterials that interact with regenerating axons, and augmentation with nerve guidance conduits or complex prostheses. However, clinical translation of these technologies remains limited, emphasizing the need for continued research on peripheral nerve regeneration modalities that can enhance functional restoration. Experimental models that accurately recapitulate key aspects of peripheral nerve injury and repair biology can accelerate therapeutic development by enabling systematic testing of new techniques. Advancing regenerative therapies for PNI requires bridging the gap between basic science discoveries and clinical application. This review discusses different in vitro models of peripheral nerve injury and repair, including their advantages, limitations, and potential applications.
Collapse
Affiliation(s)
- Jarin Tusnim
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Peter Kutuzov
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Jonathan M Grasman
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| |
Collapse
|
4
|
Tovar-Bazaga M, Cervera-Irimia J. Feasibility of a less invasive supercharged end-to-side anterior interosseous nerve to ulnar motor nerve transfer. J Hand Surg Eur Vol 2024:17531934241278885. [PMID: 39340262 DOI: 10.1177/17531934241278885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/30/2024]
Abstract
The object of this study was to perform an anatomical dissection of Thiel-embalmed specimens in a step-by-step procedure, to establish a 'safe zone' in which to perform a less invasive supercharged end-to-side (SETS) anterior interosseous nerve to ulnar motor nerve transfer without tension and to demonstrate its feasibility. The sample size was calculated with a 5 mm error to reach a 95% confidence interval. Dissection was performed in 15 specimens and the 'safe zone' was established between 40 and 90 mm proximal to the pisiform. Several surgical tips are recommended to help complete the procedure. A reproducible 'safe zone' was found for performing a SETS anterior interosseous to ulnar motor nerve transfer with 95% certainty, reducing soft tissue damage and enhancing the original surgical technique.
Collapse
Affiliation(s)
- Miguel Tovar-Bazaga
- Department of Orthopaedic and Traumatology Surgery, Hand Surgery and Microsurgery Unit, IIS-Fundación Jiménez Díaz, Madrid, Spain
| | - Javier Cervera-Irimia
- Department of Orthopaedic and Traumatology Surgery, Hand Surgery and Microsurgery Unit, IIS-Fundación Jiménez Díaz, Madrid, Spain
| |
Collapse
|
5
|
Chen B, Wang L, Pan X, Jiang S, Hu Y. Adipose-derived stem cells modified by TWIST1 silencing accelerates rat sciatic nerve repair and functional recovery. Hum Cell 2024; 37:1394-1404. [PMID: 38907140 PMCID: PMC11341607 DOI: 10.1007/s13577-024-01087-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 05/11/2024] [Indexed: 06/23/2024]
Abstract
The regeneration of peripheral nerves after injury is often slow and impaired, which may be associated with weakened and denervated muscles subsequently leading to atrophy. Adipose-derived stem cells (ADSCs) are often regarded as cell-based therapeutic candidate due to their regenerative potential. The study aims to assess the therapeutic efficacy of gene-modified ADSCs on sciatic nerve injury. We lentivirally transduced ADSCs with shRNA-TWIST1 and transplanted modified cells to rats undergoing sciatic nerve transection and repair. Results showed that TWIST1 knockdown accelerated functional recovery of rats with sciatic nerve injury as faster nerve conduction velocity and higher wire hang scores obtained by rats transplanted with TWIST1-silenced ADSCs than scramble ADSCs. Although the rats experienced degenerated axons and decreased myelin sheath thickness after sciatic nerve injury 8 weeks after operation, those transplanted with TWIST1-silenced ADSCs exhibited more signs of regenerated nerve fibers surrounded by newly formed myelin sheaths than those with scramble ADSCs. The rats transplanted with TWIST1-silenced ADSCs presented increased expressions of neurotrophic factors including neurotrophin-3 (NT-3), brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF), and glial cell line-derived neurotrophic factor (GDNF) in the sciatic nerves than those with scramble ADSCs. These results suggest that genetically modifying TWIST1 in ADSCs could facilitate peripheral nerve repair after injury in a more efficient way than that with ADSCs alone.
Collapse
Affiliation(s)
- Bo Chen
- Department of Orthopedics, The First Affiliated Hospital, College of Medicine, Zhejiang University, No. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Leining Wang
- Department of Surgery of Hand and Foot, Beilun People's Hospital, Ningbo, 315800, Zhejiang, China
| | - Xiaogui Pan
- Department of Surgery of Hand and Foot, Beilun People's Hospital, Ningbo, 315800, Zhejiang, China
| | - Shuai Jiang
- Department of Orthopedics, The First Affiliated Hospital, College of Medicine, Zhejiang University, No. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Yihe Hu
- Department of Orthopedics, The First Affiliated Hospital, College of Medicine, Zhejiang University, No. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China.
| |
Collapse
|
6
|
DeMartini S, Faust A, Navarro B, Dy CJ. Psychological Aspects of Nerve Gap Reconstruction: Addressing Patient Perspectives and Expectations. JOURNAL OF HAND SURGERY GLOBAL ONLINE 2024; 6:760-765. [PMID: 39381399 PMCID: PMC11457534 DOI: 10.1016/j.jhsg.2024.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024] Open
Abstract
Purpose Preoperative expectations play a major role in determining patient satisfaction after surgery. The aim of this study was to characterize patient's preoperative expectations and postoperative perceptions of nerve gap repair surgery. Methods We conducted a search of Embase, Scopus, and Web of Science databases for peer-reviewed articles that studied patient expectations, perceptions, and impressions of nerve gap repair in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Studies related to lumbar plexus radiculopathy, reimplantation, or patient satisfaction scores without patient testimony were excluded. Primary and secondary outcomes were patient's preoperative expectations and postoperative perceptions of nerve gap repair surgery, respectively. Results We included 11 studies evaluating a total of 462 patients. One study evaluated only patient expectations, six studies evaluated only patient perspectives, and four studies evaluated both. Patients were generally overly optimistic in their expectations of surgery. Postoperative satisfaction ranged from 82% to 86%, and 81% to 87% of patients would choose to undergo their surgery again knowing what they know now. Conclusions Patient expectations in nerve gap repair are optimistic, and at times unrealistic. Patient satisfaction with nerve gap repair is high and subject to influence from preoperative education and postoperative outcomes of functional and sensory recovery. Clinical relevance Surgeons should be aware that patient expectations of their postoperative outcomes can have substantial impacts on their perceived management and overall satisfaction. More emphasis should be placed on preoperative education and expectation management to optimize patient satisfaction.
Collapse
Affiliation(s)
- Stephen DeMartini
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO
| | - Amanda Faust
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO
| | - Brendan Navarro
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO
| | - Christopher J. Dy
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
7
|
Smadi BM, Shekouhi R, Azizi A, Chim H. Development of Biomaterials for Addressing Upper Extremity Peripheral Nerve Gaps. JOURNAL OF HAND SURGERY GLOBAL ONLINE 2024; 6:711-717. [PMID: 39381386 PMCID: PMC11456663 DOI: 10.1016/j.jhsg.2024.01.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/16/2024] [Indexed: 10/10/2024] Open
Abstract
Peripheral nerve injuries within the upper extremities can lead to impaired function and reduced quality of life. Although autografts have traditionally served as the primary therapeutic approach to bridge nerve gaps, these present challenges related to donor site morbidity. This review delves into the realm of biomaterials tailored for addressing nerve gaps. Biomaterials, whether natural or synthetically derived, offer the potential not only to act as scaffolds for nerve regeneration but also to be enhanced with growth factors and agents that promote nerve recovery. The historical progression of these biomaterials as well as their current applications, advantages, inherent challenges, and future impact in the arena of regenerative medicine are discussed. By providing a comprehensive overview, we aim to shed light on the transformative potential of biomaterials in peripheral nerve repair and the path toward refining their efficacy in clinical settings.
Collapse
Affiliation(s)
- Bassam M. Smadi
- J Crayton Pruitt Department of Biomedical Engineering, University of Florida, Gainesville, FL
- Nanoscience Institute for Medical and Engineering Technology (NIMET), University of Florida, Gainesville, FL
- College of Medicine, University of Florida, Gainesville, FL
| | - Ramin Shekouhi
- Division of Plastic & Reconstructive Surgery, Department of Surgery, University of Florida College of Medicine, Gainesville, FL
| | - Armina Azizi
- Division of Plastic & Reconstructive Surgery, Department of Surgery, University of Florida College of Medicine, Gainesville, FL
| | - Harvey Chim
- Division of Plastic & Reconstructive Surgery, Department of Surgery, University of Florida College of Medicine, Gainesville, FL
| |
Collapse
|
8
|
Krsek A, Jagodic A, Baticic L. Nanomedicine in Neuroprotection, Neuroregeneration, and Blood-Brain Barrier Modulation: A Narrative Review. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1384. [PMID: 39336425 PMCID: PMC11433843 DOI: 10.3390/medicina60091384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/19/2024] [Accepted: 08/22/2024] [Indexed: 09/30/2024]
Abstract
Nanomedicine is a newer, promising approach to promote neuroprotection, neuroregeneration, and modulation of the blood-brain barrier. This review includes the integration of various nanomaterials in neurological disorders. In addition, gelatin-based hydrogels, which have huge potential due to biocompatibility, maintenance of porosity, and enhanced neural process outgrowth, are reviewed. Chemical modification of these hydrogels, especially with guanidine moieties, has shown improved neuron viability and underscores tailored biomaterial design in neural applications. This review further discusses strategies to modulate the blood-brain barrier-a factor critically associated with the effective delivery of drugs to the central nervous system. These advances bring supportive solutions to the solving of neurological conditions and innovative therapies for their treatment. Nanomedicine, as applied to neuroscience, presents a significant leap forward in new therapeutic strategies that might help raise the treatment and management of neurological disorders to much better levels. Our aim was to summarize the current state-of-knowledge in this field.
Collapse
Affiliation(s)
- Antea Krsek
- Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia;
| | - Ana Jagodic
- Department of Family Medicine, Community Health Center Krapina, 49000 Krapina, Croatia;
| | - Lara Baticic
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| |
Collapse
|
9
|
Huo Y, Cheng Y, Dong X, Cheng Q, Liang X, Duan P, Yu Y, Yan L, Qiu T, Pan Z, Dai H. Pleiotropic effects of nitric oxide sustained-release system for peripheral nerve repair. Acta Biomater 2024; 182:28-41. [PMID: 38761961 DOI: 10.1016/j.actbio.2024.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/23/2024] [Accepted: 05/05/2024] [Indexed: 05/20/2024]
Abstract
The regenerative microenvironment after peripheral nerve injury is imbalanced and difficult to rebalance, which is mainly affected by inflammation, oxidative stress, and inadequate blood supply. The difficulty in remodeling the nerve regeneration microenvironment is the main reason for slow nerve regeneration. Traditional drug treatments have certain limitations, such as difficulty in penetrating the blood-nerve barrier and lack of pleiotropic effects. Therefore, there is an urgent need to build multifunctional nerve grafts that can effectively regulate the regenerative microenvironment and promote nerve regeneration. Nitric oxide (NO), a highly effective gas transmitter with diatomic radicals, is an important regulator of axonal growth and migration, synaptic plasticity, proliferation of neural precursor cells, and neuronal survival. Moreover, NO provides potential anti-inflammation, anti-oxidation, and blood vessel promotion applications. However, excess NO may cause cell death and neuroinflammatory cell damage. The prerequisite for NO treatment of peripheral nerve injury is that it is gradually released over time. In this study, we constructed an injectable NO slow-release system with two main components, including macromolecular NO donor nanoparticles (mPEG-P(MSNO-EG) nanoparticles, NO-NPs) and a carrier for the nanoparticles, mPEG-PA-PP injectable temperature-sensitive hydrogel. Due to the multiple physiological regulation of NO and better physiological barrier penetration, the conduit effectively regulates the inflammatory response and oxidative stress of damaged peripheral nerves, promotes nerve vascularization, and nerve regeneration and docking, accelerating the nerve regeneration process. STATEMENT OF SIGNIFICANCE: The slow regeneration speed of peripheral nerves is mainly due to the destruction of the regeneration microenvironment. Neural conduits with drug delivery capabilities have the potential to improve the microenvironment of nerve regeneration. However, traditional drugs are hindered by the blood nerve barrier and cannot effectively target the injured area. NO, an endogenous gas signaling molecule, can freely cross the blood nerve barrier and act on target cells. However, excessive NO can lead to cell apoptosis. In this study, a NO sustained-release system was constructed to regulate the microenvironment of nerve regeneration through various pathways and promote nerve regeneration.
Collapse
Affiliation(s)
- Yuanfang Huo
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan 430070, China
| | - Yannan Cheng
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Xianzhen Dong
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan 430070, China
| | - Qiang Cheng
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan 430070, China
| | - Xinyue Liang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan 430070, China
| | - Ping Duan
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Yongle Yu
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Lesan Yan
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan 430070, China
| | - Tong Qiu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan 430070, China
| | - Zhenyu Pan
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| | - Honglian Dai
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan 430070, China; Wuhan University of Technology Advanced Engineering Technology Research Institute of Zhongshan City, Zhongshan 528400, China.
| |
Collapse
|
10
|
Li S, Li J, Yang X, Huang J, Feng S, Xie Z, Yang N, Wang Y, Zhou N. Peripheral nervous system lymphatic vessels: A simple delivery route to promote nerve regeneration. Exp Neurol 2024; 377:114783. [PMID: 38688418 DOI: 10.1016/j.expneurol.2024.114783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/09/2024] [Accepted: 04/18/2024] [Indexed: 05/02/2024]
Abstract
The structural and functional features of lymphatic vessels in the peripheral nervous system (pLVs) is still unclear. Here, we clarify the existence of pLVs in rats, PROX1-EGFP transgenic mice and human, and exhibit a clear three-dimensional structure for helping understand its structural features. Moreover, two specific phenotypes of lymphatics endothelial cells (Rnd1Hi LECs and Ccl21Hi LECs) in peripheral nerves are well characterized by single-cell sequencing. Subsequently, the ability of trans-lymphatic delivery to peripheral nerves via pLVs has been dynamically demonstrated. After peripheral nerve injury (PNI), extensive lymphangiogenesis occurs in the lesion area and further enhances the efficiency of retrograde lymphatic-nerve transport. In PNI animal models, subcutaneously footpad-injected exosomes are efficiently delivered to sciatic nerve via pLVs which can promote nerve regeneration. The trans-lymphatic delivery to peripheral nerves via pLVs can subtly bypass BNB which provides an easy and alternative delivery route for PNI treatment.
Collapse
Affiliation(s)
- Senrui Li
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, China
| | - Jiangnan Li
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, China
| | - Xiaoqi Yang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, China; State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jinsheng Huang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, China
| | - Shuai Feng
- Department of Hand and Podiatric Surgery, Henan Provincial People's Hospital, Zhengzhou 450000, China
| | - Zhenjun Xie
- Department of Hand and Podiatric Surgery, Henan Provincial People's Hospital, Zhengzhou 450000, China
| | - Ningning Yang
- Department of Emergency, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, China.
| | - Yuanyi Wang
- Department of Spinal Surgery, The First Hospital of Jilin University, Orthopedics Center, Jilin University, Changchun 130021, China.
| | - Nan Zhou
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, China.
| |
Collapse
|
11
|
Cuthbert R, Simpson AI. Establishing a UK national registry for peripheral nerve injury repair surgery: A strategic blueprint. Injury 2024; 55:111547. [PMID: 38604113 DOI: 10.1016/j.injury.2024.111547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/01/2024] [Indexed: 04/13/2024]
Affiliation(s)
- Rory Cuthbert
- Guy's and St Thomas' Hospital NHS Foundation Trust, London, United Kingdom
| | - Ashley I Simpson
- Guy's and St Thomas' Hospital NHS Foundation Trust, London, United Kingdom.
| |
Collapse
|
12
|
Ramesh PA, Sethuraman S, Subramanian A. Multichannel Conduits with Fascicular Complementation: Significance in Long Segmental Peripheral Nerve Injury. ACS Biomater Sci Eng 2024; 10:2001-2021. [PMID: 38487853 DOI: 10.1021/acsbiomaterials.3c01868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Despite the advances in tissue engineering approaches, reconstruction of long segmental peripheral nerve defects remains unsatisfactory. Although autologous grafts with proper fascicular complementation have shown meaningful functional recovery according to the Medical Research Council Classification (MRCC), the lack of donor nerve for such larger defect sizes (>30 mm) has been a serious clinical issue. Further clinical use of hollow nerve conduits is limited to bridging smaller segmental defects of denuded nerve ends (<30 mm). Recently, bioinspired multichannel nerve guidance conduits (NGCs) gained attention as autograft substitutes as they mimic the fascicular connective tissue microarchitecture in promoting aligned axonal outgrowth with desirable innervation for complete sensory and motor function restoration. This review outlines the hierarchical organization of nerve bundles and their significance in the sensory and motor functions of peripheral nerves. This review also emphasizes the major challenges in addressing the longer nerve defects with the role of fascicular arrangement in the multichannel nerve guidance conduits and the need for fascicular matching to accomplish complete functional restoration, especially in treating long segmental nerve defects. Further, currently available fabrication strategies in developing multichannel nerve conduits and their inconsistency in existing preclinical outcomes captured in this review would seed a new process in designing an ideal larger nerve conduit for peripheral nerve repair.
Collapse
Affiliation(s)
- Preethy Amruthavarshini Ramesh
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials, ABCDE Innovation Centre, School of Chemical & Biotechnology SASTRA Deemed University Thanjavur 613 401, India
| | - Swaminathan Sethuraman
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials, ABCDE Innovation Centre, School of Chemical & Biotechnology SASTRA Deemed University Thanjavur 613 401, India
| | - Anuradha Subramanian
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials, ABCDE Innovation Centre, School of Chemical & Biotechnology SASTRA Deemed University Thanjavur 613 401, India
| |
Collapse
|
13
|
Tang H, Li J, Wang H, Ren J, Ding H, Shang J, Wang M, Wei Z, Feng S. Human umbilical cord mesenchymal stem cell-derived exosomes loaded into a composite conduit promote functional recovery after peripheral nerve injury in rats. Neural Regen Res 2024; 19:900-907. [PMID: 37843227 PMCID: PMC10664107 DOI: 10.4103/1673-5374.380911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/28/2023] [Accepted: 06/12/2023] [Indexed: 10/17/2023] Open
Abstract
Complete transverse injury of peripheral nerves is challenging to treat. Exosomes secreted by human umbilical cord mesenchymal stem cells are considered to play an important role in intercellular communication and regulate tissue regeneration. In previous studies, a collagen/hyaluronic acid sponge was shown to provide a suitable regeneration environment for Schwann cell proliferation and to promote axonal regeneration. This three-dimensional (3D) composite conduit contains a collagen/hyaluronic acid inner sponge enclosed in an electrospun hollow poly (lactic-co-glycolic acid) tube. However, whether there is a synergy between the 3D composite conduit and exosomes in the repair of peripheral nerve injury remains unknown. In this study, we tested a comprehensive strategy for repairing long-gap (10 mm) peripheral nerve injury that combined the 3D composite conduit with human umbilical cord mesenchymal stem cell-derived exosomes. Repair effectiveness was evaluated by sciatic functional index, sciatic nerve compound muscle action potential recording, recovery of muscle mass, measuring the cross-sectional area of the muscle fiber, Masson trichrome staining, and transmission electron microscopy of the regenerated nerve in rats. The results showed that transplantation of the 3D composite conduit loaded with human umbilical cord mesenchymal stem cell-derived exosomes promoted peripheral nerve regeneration and restoration of motor function, similar to autograft transplantation. More CD31-positive endothelial cells were observed in the regenerated nerve after transplantation of the loaded conduit than after transplantation of the conduit without exosomes, which may have contributed to the observed increase in axon regeneration and distal nerve reconnection. Therefore, the use of a 3D composite conduit loaded with human umbilical cord mesenchymal stem cell-derived exosomes represents a promising cell-free therapeutic option for the treatment of peripheral nerve injury.
Collapse
Affiliation(s)
- Haoshuai Tang
- Department of Othopaedics, Tianjin Medical University General Hospital, Tianjin, China
- International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Junjin Li
- Department of Othopaedics, Tianjin Medical University General Hospital, Tianjin, China
- International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Hongda Wang
- Department of Othopaedics, Tianjin Medical University General Hospital, Tianjin, China
- International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Jie Ren
- Department of Othopaedics, Tianjin Medical University General Hospital, Tianjin, China
- International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Han Ding
- Department of Othopaedics, Tianjin Medical University General Hospital, Tianjin, China
- International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Jun Shang
- Department of Othopaedics, Tianjin Medical University General Hospital, Tianjin, China
- International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Min Wang
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhijian Wei
- Department of Othopaedics, Tianjin Medical University General Hospital, Tianjin, China
- International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
- Department of Othopaedics, Qilu Hospital of Shandong University, Shandong University Centre for Othopedics, Advanced Medical Research Institute, Shandong University, Jinan, Shandong Province, China
- Orthopedic Research Center of Shandong University & Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Shiqing Feng
- Department of Othopaedics, Tianjin Medical University General Hospital, Tianjin, China
- International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
- Department of Othopaedics, Qilu Hospital of Shandong University, Shandong University Centre for Othopedics, Advanced Medical Research Institute, Shandong University, Jinan, Shandong Province, China
- Orthopedic Research Center of Shandong University & Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| |
Collapse
|
14
|
Pripotnev S, Pinni SL, Zhou S, Skolnick G, Mackinnon SE. The Medial Antebrachial Cutaneous Nerve Is a Low-Morbidity Alternative to the Standard Sural Nerve Autograft. Hand (N Y) 2024:15589447231218459. [PMID: 38179958 PMCID: PMC11571714 DOI: 10.1177/15589447231218459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
BACKGROUND Nerve interposition grafting is an important technique in nerve reconstructive surgery that is used when a primary repair is not feasible without significant tension. This study sought to evaluate the long-term morbidity of the medial antebrachial cutaneous (MABC) nerve as an alternative donor nerve in comparison with sural nerve harvest. METHODS A single surgeon and institution retrospective chart review was performed to identify all patients who underwent nerve autografting using the sural and MABC as donor nerves between January 1, 2000 and December 31, 2019. Surveys assessed overall patient satisfaction with surgery, as well as donor and recipient site morbidity, satisfaction, pain, numbness, and cold sensitivity. RESULTS Of the 73 patients contacted, 54 agreed to participate, and 43 of 73 (58.9%) ultimately completed the survey: 28 MABC (65.1%) and 15 sural (34.9%). There were no significant differences between the sural and MABC groups in overall satisfaction with surgery, donor and recipient site satisfaction, pain, cold sensitivity, and effect on quality of life. Even though 66.7% of sural donor sites and 75% of MABC donor sites had residual numbness, the effect this had on quality of life was very low (2 and 3, respectively). CONCLUSION The MABC is a safe alternative to the traditional sural nerve autograft. A small subset of patients undergoing nerve autograft harvest will experience long-term morbidity in the form of pain. Conversely, the more common presence of numbness is not reported as bothersome.
Collapse
Affiliation(s)
| | - Sai L. Pinni
- Washington University School of Medicine, St. Louis, MO, USA
| | - Suzanne Zhou
- Washington University School of Medicine, St. Louis, MO, USA
| | - Gary Skolnick
- Washington University School of Medicine, St. Louis, MO, USA
| | | |
Collapse
|
15
|
Fedyakov AG, Dreval ON, Gorozhanin AV, Grekov DN, Sidneva LA, Plieva ZK, Razin MA, Chapandze GN. [Combined use of biomaterials and revascularisation in autoplasty of ulnar nerve]. ZHURNAL VOPROSY NEIROKHIRURGII IMENI N. N. BURDENKO 2024; 88:87-92. [PMID: 39422688 DOI: 10.17116/neiro20248805187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Surgical treatment of peripheral nerve injuries is effective in only 50% of cases. This is primarily due to the significant extent of the diastasis between the fragments of the damaged nerve, in which autoplasty has to be performed. The drawbacks of this technique are the formation of scar tissue, possible necrotisation of the autograft, mismatch of the donor and recipient nerve diameters. In order to overcome these drawbacks and improve the efficiency of surgical intervention, the study presents a clinical case of successful multifascicular ulnar nerve autoplasty with the use of domestic biodegradable biomaterials SpheroGel and ElastoPob, revascularization of the autograft with a connective tissue flap on a vascular pedicle. A persistent regression of local pain syndrome was observed in the early postoperative period. The effectiveness of the performed surgical intervention was confirmed by ultrasound examination: there was no evidence of neuroma in the area of the operation, regeneration of nerve bundles was noted at the site of stitching. Positive dynamics was observed in the results of VAS, DN4, DASH questionnaires.
Collapse
Affiliation(s)
- A G Fedyakov
- Botkin City Clinical Hospital, Moscow, Russia
- Russian Medical Academy for Continuous Professional Education, Moscow, Russia
| | - O N Dreval
- Russian Medical Academy for Continuous Professional Education, Moscow, Russia
| | - A V Gorozhanin
- Botkin City Clinical Hospital, Moscow, Russia
- Russian Medical Academy for Continuous Professional Education, Moscow, Russia
| | - D N Grekov
- Botkin City Clinical Hospital, Moscow, Russia
| | - L A Sidneva
- Russian Medical Academy for Continuous Professional Education, Moscow, Russia
| | - Z Kh Plieva
- Russian Medical Academy for Continuous Professional Education, Moscow, Russia
| | - M A Razin
- Botkin City Clinical Hospital, Moscow, Russia
- Russian Medical Academy for Continuous Professional Education, Moscow, Russia
| | - G N Chapandze
- Russian Medical Academy for Continuous Professional Education, Moscow, Russia
| |
Collapse
|
16
|
Bagheri A, Akbari H, Akbari P. Evaluation and Diagnostic-Treatment Approaches of Brachial Plexus Injuries in Adults. World J Plast Surg 2024; 13:41-48. [PMID: 39665005 PMCID: PMC11629760 DOI: 10.61186/wjps.13.3.41] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 11/04/2024] [Indexed: 12/13/2024] Open
Abstract
Background Brachial plexus injury (BPI), as one of the most devastating injuries in adults, has various negative consequences such as profound functional impairment, debilitating pain, significant mental health consequences, and economic impacts. We aimed to review the evaluation and diagnostic-treatment Approaches of BPI in adults through a review study. Methods An electronic literature search was completed in Google Scholar, Springer, PubMed, and Science Direct databases from 1980 to 2023. Various keywords related to the purpose such as Brachial plexus, surgical strategy, adult were used. Results 1.2% of people with multiple traumas had BPIs. BPI is more common in young adult males. For brachial plexus palsy, preoperative evaluation of nerve root avulsion is helpful in surgical planning. . EMG is useful in confirming a diagnosis, localizing the lesion level, estimating the extent of axon loss, and determining whether the lesion is complete. There are different options available for BPI, such as coordinating care, rehabilitation and psychosocial support. In recent times, significant advancements have been made in surgical techniques for nerve repairs. Conclusion Although it is often not possible to prevent damage to the brachial plexus, it is possible to reduce the risk of further problems after the injury by taking some measures.
Collapse
Affiliation(s)
- Afsaneh Bagheri
- Department of Plastic and Reconstructive Surgery, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hossein Akbari
- Department of Plastic and Reconstructive Surgery, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Peyman Akbari
- Department of Plastic and Reconstructive Surgery, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
17
|
Xu Y, Liu J, Zhang P, Ao X, Li Y, Tian Y, Qiu X, Guo J, Hu X. Zwitterionic Conductive Hydrogel-Based Nerve Guidance Conduit Promotes Peripheral Nerve Regeneration in Rats. ACS Biomater Sci Eng 2023; 9:6821-6834. [PMID: 38011305 DOI: 10.1021/acsbiomaterials.3c00761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
In recent years, conductive biomaterials have been widely used to enhance peripheral nerve regeneration. However, most biomaterials use electronic conductors to increase the conductivity of materials. As information carriers, electronic conductors always transmit discontinuous electrical signals, while biological systems essentially transmit continuous signals through ions. Herein, an ion-based conductive hydrogel was fabricated by simple copolymerization of the zwitterionic monomer sulfobetin methacrylate and hydroxyethyl methacrylate. Benefiting from the excellent mechanical stability, suitable electrical conductivity, and good cytocompatibility of the zwitterionic hydrogel, the Schwann cells cultured on the hydrogel could grow and proliferate better, and dorsal root ganglian had an increased neurite length. The zwitterionic hydrogel-based nerve guidance conduits were then implanted into a 10 mm sciatic nerve defect model in rats. Morphological analysis and electrophysiological data showed that the grafts achieved a regeneration effect close to that of the autologous nerve. Overall, our developed zwitterionic hydrogel facilitates efficient and efficacious peripheral nerve regeneration by mimicking the electrical and mechanical properties of the extracellular matrix and creating a suitable regeneration microenvironment, providing a new material reserve for the repair of peripheral nerve injury.
Collapse
Affiliation(s)
- Yizhou Xu
- Department of Histology and Embryology, School of Basic Medicine, Southern Medical University, Guangzhou 510515, China
- Department of Spinal Surgery, Orthopedic Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Jianing Liu
- Biomaterials Research Center, School of Biomedical Engineering, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou 510515, China
| | - Peng Zhang
- Biomaterials Research Center, School of Biomedical Engineering, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou 510515, China
| | - Xiang Ao
- Department of Human Anatomy, Histology and Embryology, Zhuhai Campus of Zunyi Medical University, Zhuhai 519041, China
| | - Yunlun Li
- Department of Histology and Embryology, School of Basic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Ye Tian
- Biomaterials Research Center, School of Biomedical Engineering, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou 510515, China
| | - Xiaozhong Qiu
- Biomaterials Research Center, School of Biomedical Engineering, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou 510515, China
- Central Laboratory, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou 510999, China
| | - Jiasong Guo
- Department of Histology and Embryology, School of Basic Medicine, Southern Medical University, Guangzhou 510515, China
- Department of Spinal Surgery, Orthopedic Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
- National Experimental Education Demonstration Center for Basic Medical Sciences, National Virtual & Reality Experimental Education Center for Medical Morphology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xiaofang Hu
- Department of Human Anatomy, Histology and Embryology, Zhuhai Campus of Zunyi Medical University, Zhuhai 519041, China
- Department of Histology and Embryology, School of Basic Medicine, Southern Medical University, Guangzhou 510515, China
- Biomaterials Research Center, School of Biomedical Engineering, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
18
|
Yin S, Zhou J, Wang J, Xia B, Chen G. Preparation and performance of electrically conductive decellularized nerve matrix hydrogel conduits. J Biomater Appl 2023; 38:471-483. [PMID: 37670570 DOI: 10.1177/08853282231200963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
Peripheral nerve injury (PNI) is one of the major clinical treatment challenges following an impact on the body. When PNI manifests as nerve gaps, surgical connections and exogenous grafts are required. Recently, electrically conductive polymers (CPs) based nerve guidance conduits have yielded promising results for treating PNI. Polypyrrole (PPy) has become one of the most commonly used CPs in PNI repair due to its advantages of high conductivity and excellent biocompatibility. In this study, we combined different PPy concentrations with a chitosan (CS) temperature-sensitive hydrogel system containing decellularized nerve matrix (DNM) to construct the electrically conductive nerve conduits. We evaluated the physical and biological properties of four groups of nerve conduits. It was found that the PPy concentrations were proportional to the electrical conductivity of the nerve conduits. The mechanical properties of the nerve conduits increased with higher PPy concentrations but decreased when the PPy concentration was as high as 8%. Meanwhile, the co-blending of PPy and DNM gave the nerve conduit suitable degradation properties. Furthermore, in vitro cytotoxicity assay and live/dead assay demonstrated these conduits could support the adhesion and growth of cells. In summary, the electrically conductive nerve conduits with high conductivity, mechanical properties, biodegradation characteristics, and cytocompatibility had potential applications in the field of peripheral nerve regeneration.
Collapse
Affiliation(s)
- Shiyun Yin
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
| | - Jiangyi Zhou
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
| | - Jinsong Wang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
| | - Bin Xia
- Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing, China
| | - Guobao Chen
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
| |
Collapse
|
19
|
Sun Y, Zhang H, Zhang Y, Liu Z, He D, Xu W, Li S, Zhang C, Zhang Z. Li-Mg-Si bioceramics provide a dynamic immuno-modulatory and repair-supportive microenvironment for peripheral nerve regeneration. Bioact Mater 2023; 28:227-242. [PMID: 37292230 PMCID: PMC10245070 DOI: 10.1016/j.bioactmat.2023.05.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/18/2023] [Accepted: 05/20/2023] [Indexed: 06/10/2023] Open
Abstract
Biomaterials can modulate the local immune and repair-supportive microenvironments to promote peripheral nerve regeneration. Inorganic bioceramics have been widely used for regulating tissue regeneration and local immune response. However, little is known on whether inorganic bioceramics can have potential for enhancing peripheral nerve regeneration and what are the mechanisms underlying their actions. Here, the inorganic lithium-magnesium-silicon (Li-Mg-Si, LMS) bioceramics containing scaffolds are fabricated and characterized. The LMS-containing scaffolds had no cytotoxicity against rat Schwann cells (SCs), but promoted their migration and differentiation towards a remyelination state by up-regulating the expression of neurotrophic factors in a β-catenin-dependent manner. Furthermore, using single cell-sequencing, we showed that LMS-containing scaffolds promoted macrophage polarization towards the pro-regenerative M2-like cells, which subsequently facilitated the migration and differentiation of SCs. Moreover, implantation with the LMS-containing nerve guidance conduits (NGCs) increased the frequency of M2-like macrophage infiltration and enhanced nerve regeneration and motor functional recovery in a rat model of sciatic nerve injury. Collectively, these findings indicated that the inorganic LMS bioceramics offered a potential strategy for enhancing peripheral nerve regeneration by modulating the immune microenvironment and promoting SCs remyelination.
Collapse
Affiliation(s)
- Yiting Sun
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China
| | - Hongjian Zhang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yu Zhang
- Department of Oral & Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China
| | - Zheqi Liu
- Department of Oral & Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China
| | - Dongming He
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China
| | - Wanlin Xu
- Department of Oral & Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China
| | - Siyi Li
- Department of Oral & Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China
| | - Chenping Zhang
- Department of Oral & Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China
| | - Zhen Zhang
- Department of Oral & Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China
| |
Collapse
|
20
|
Kim J, Jeon J, Lee J, Khoroldulam B, Choi S, Bae J, Hyun JK, Kang S. Electroceuticals for Regeneration of Long Nerve Gap Using Biodegradable Conductive Conduits and Implantable Wireless Stimulator. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302632. [PMID: 37340589 PMCID: PMC10460856 DOI: 10.1002/advs.202302632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 12/12/2012] [Indexed: 06/22/2023]
Abstract
Regeneration of over 10 mm long peripheral nerve defects remains a challenge due to the failure of regeneration by prolonged axotomy and denervation occurring in long-term recovery. Recent studies reveal that conductive conduits and electrical stimulation accelerate the regeneration of long nerve defects. In this study, an electroceutical platform combining a fully biodegradable conductive nerve conduit and a wireless electrical stimulator is proposed to maximize the therapeutic effect on nerve regeneration. Fully biodegradable nerve conduit fabricated using molybdenum (Mo) microparticles and polycaprolactone (PCL) can eliminate the unwanted effects of non-degradable implants, which occupy nerve paths and need to be removed through surgery increasing the risk of complications. The electrical and mechanical properties of Mo/PCL conduits are optimized by controlling the amounts of Mo and tetraglycol lubricant. The dissolution behavior and electrical conductivity of biodegradable nerve conduits in the biomimetic solutions are also evaluated. In in vivo experiments, the integrated strategy of a conductive Mo/PCL conduit with controlled therapeutic electrical stimulation shows accelerated axon regeneration for long sciatic nerve defects in rats compared to the use of the Mo/PCL conduit without stimulation and has a significant therapeutic effect based on the results obtained from the functional recovery test.
Collapse
Affiliation(s)
- Jio Kim
- Department of Materials Science and EngineeringSeoul National UniversitySeoul08826Republic of Korea
| | - Jooik Jeon
- Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative MedicineDankook UniversityCheonan31116Republic of Korea
| | - Ju‐Yong Lee
- Department of Materials Science and EngineeringSeoul National UniversitySeoul08826Republic of Korea
| | - Badamgarav Khoroldulam
- Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative MedicineDankook UniversityCheonan31116Republic of Korea
| | - Sung‐Geun Choi
- Department of Materials Science and EngineeringSeoul National UniversitySeoul08826Republic of Korea
| | - Jae‐Young Bae
- Department of Materials Science and EngineeringSeoul National UniversitySeoul08826Republic of Korea
| | - Jung Keun Hyun
- Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative MedicineDankook UniversityCheonan31116Republic of Korea
- Department of Rehabilitation MedicineCollege of MedicineDankook UniversityCheonan31116Republic of Korea
- Institute of Tissue Regeneration Engineering (ITREN)Dankook UniversityCheonan31116Republic of Korea
| | - Seung‐Kyun Kang
- Department of Materials Science and EngineeringSeoul National UniversitySeoul08826Republic of Korea
- Research Institute of Advanced Materials (RIAM)Seoul National UniversitySeoul08826Republic of Korea
- Nano Systems Institute SOFT FoundrySeoul National UniversitySeoul08826Republic of korea
| |
Collapse
|
21
|
Takeya H, Itai S, Kimura H, Kurashina Y, Amemiya T, Nagoshi N, Iwamoto T, Sato K, Shibata S, Matsumoto M, Onoe H, Nakamura M. Schwann cell-encapsulated chitosan-collagen hydrogel nerve conduit promotes peripheral nerve regeneration in rodent sciatic nerve defect models. Sci Rep 2023; 13:11932. [PMID: 37488180 PMCID: PMC10366170 DOI: 10.1038/s41598-023-39141-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 07/20/2023] [Indexed: 07/26/2023] Open
Abstract
Chitosan has various tissue regeneration effects. This study was designed to investigate the nerve regeneration effect of Schwann cell (SC)-encapsulated chitosan-collagen hydrogel nerve conduit (CCN) transplanted into a rat model of sciatic nerve defect. We prepared a CCN consisting of an outer layer of chitosan hydrogel and an inner layer of collagen hydrogel to encapsulate the intended cells. Rats with a 10-mm sciatic nerve defect were treated with SCs encapsulated in CCN (CCN+), CCN without SCs (CCN-), SC-encapsulated silicone tube (silicone+), and autologous nerve transplanting (auto). Behavioral and histological analyses indicated that motor functional recovery, axonal regrowth, and myelination of the CCN+ group were superior to those of the CCN- and silicone+ groups. Meanwhile, the CCN- and silicone+ groups showed no significant differences in the recovery of motor function and nerve histological restoration. In conclusion, SC-encapsulated CCN has a synergistic effect on peripheral nerve regeneration, especially axonal regrowth and remyelination of host SCs. In the early phase after transplantation, SC-encapsulated CCNs have a positive effect on recovery. Therefore, using SC-encapsulated CCNs may be a promising approach for massive peripheral nerve defects.
Collapse
Affiliation(s)
- Hiroaki Takeya
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Shun Itai
- Department of Mechanical Engineering, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-Ku, Yokohama-Shi, Kanagawa, 223-8522, Japan
- Division of Medical Science, Graduate School of Biomedical Engineering, Tohoku University, 1-1 Seiryomachi, Aoba-Ku, Sendai, Miyagi, 980-8574, Japan
| | - Hiroo Kimura
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi Shinjuku-Ku, Tokyo, 160-8582, Japan.
| | - Yuta Kurashina
- Division of Advanced Mechanical Systems Engineering, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei-Shi, Tokyo, 184-8588, Japan
| | - Tsuyoshi Amemiya
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Narihito Nagoshi
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Takuji Iwamoto
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Kazuki Sato
- Institute for Integrated Sports Medicine, Keio University School of Medicine, 35 Shinanomachi Shinjuku-Ku, Tokyo, Japan
| | - Shinsuke Shibata
- Division of Microscopic Anatomy, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-Dori, Chuo-Ku, Niigata, 951-8510, Japan
| | - Morio Matsumoto
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Hiroaki Onoe
- Department of Mechanical Engineering, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-Ku, Yokohama-Shi, Kanagawa, 223-8522, Japan
| | - Masaya Nakamura
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi Shinjuku-Ku, Tokyo, 160-8582, Japan
| |
Collapse
|
22
|
Perrelle JM, Boreland AJ, Gamboa JM, Gowda P, Murthy NS. Biomimetic Strategies for Peripheral Nerve Injury Repair: An Exploration of Microarchitecture and Cellularization. BIOMEDICAL MATERIALS & DEVICES (NEW YORK, N.Y.) 2023; 1:21-37. [PMID: 38343513 PMCID: PMC10857769 DOI: 10.1007/s44174-022-00039-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/14/2022] [Indexed: 02/15/2024]
Abstract
Injuries to the nervous system present formidable challenges to scientists, clinicians, and patients. While regeneration within the central nervous system is minimal, peripheral nerves can regenerate, albeit with limitations. The regenerative mechanisms of the peripheral nervous system thus provide fertile ground for clinical and scientific advancement, and opportunities to learn fundamental lessons regarding nerve behavior in the context of regeneration, particularly the relationship of axons to their support cells and the extracellular matrix environment. However, few current interventions adequately address peripheral nerve injuries. This article aims to elucidate areas in which progress might be made toward developing better interventions, particularly using synthetic nerve grafts. The article first provides a thorough review of peripheral nerve anatomy, physiology, and the regenerative mechanisms that occur in response to injury. This is followed by a discussion of currently available interventions for peripheral nerve injuries. Promising biomaterial fabrication techniques which aim to recapitulate nerve architecture, along with approaches to enhancing these biomaterial scaffolds with growth factors and cellular components, are then described. The final section elucidates specific considerations when developing nerve grafts, including utilizing induced pluripotent stem cells, Schwann cells, nerve growth factors, and multilayered structures that mimic the architectures of the natural nerve.
Collapse
Affiliation(s)
- Jeremy M. Perrelle
- Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Andrew J. Boreland
- Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
- Graduate Program in Molecular Biosciences, Rutgers University, Piscataway, NJ, USA
| | - Jasmine M. Gamboa
- Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Prarthana Gowda
- Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - N. Sanjeeva Murthy
- Laboratory for Biomaterials Research, Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| |
Collapse
|
23
|
Lauer H, Prahm C, Thiel JT, Kolbenschlag J, Daigeler A, Hercher D, Heinzel JC. The Grasping Test Revisited: A Systematic Review of Functional Recovery in Rat Models of Median Nerve Injury. Biomedicines 2022; 10:biomedicines10081878. [PMID: 36009423 PMCID: PMC9405835 DOI: 10.3390/biomedicines10081878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 07/31/2022] [Accepted: 08/01/2022] [Indexed: 11/16/2022] Open
Abstract
The rat median nerve model is a well-established and frequently used model for peripheral nerve injury and repair. The grasping test is the gold-standard to evaluate functional recovery in this model. However, no comprehensive review exists to summarize the course of functional recovery in regard to the lesion type. According to PRISMA-guidelines, research was performed, including the databases PubMed and Web of Science. Groups were: (1) crush injury, (2) transection with end-to-end or with (3) end-to-side coaptation and (4) isogenic or acellular allogenic grafting. Total and respective number, as well as rat strain, type of nerve defect, length of isogenic or acellular allogenic allografts, time at first signs of motor recovery (FSR) and maximal recovery grasping strength (MRGS), were evaluated. In total, 47 articles met the inclusion criteria. Group I showed earliest signs of motor recovery. Slow recovery was observable in group III and in graft length above 25 mm. Isografts recovered faster compared to other grafts. The onset and course of recovery is heavily dependent from the type of nerve injury. The grasping test should be used complementary in addition to other volitional and non-volitional tests. Repetitive examinations should be planned carefully to optimize assessment of valid and reliable data.
Collapse
Affiliation(s)
- Henrik Lauer
- Department of Hand-, Plastic, Reconstructive and Burn Surgery, BG Unfallklinik Tuebingen, University of Tuebingen, Schnarrenbergstraße 95, 72076 Tuebingen, Germany; (H.L.); (C.P.); (J.T.T.); (J.K.); (A.D.)
| | - Cosima Prahm
- Department of Hand-, Plastic, Reconstructive and Burn Surgery, BG Unfallklinik Tuebingen, University of Tuebingen, Schnarrenbergstraße 95, 72076 Tuebingen, Germany; (H.L.); (C.P.); (J.T.T.); (J.K.); (A.D.)
| | - Johannes Tobias Thiel
- Department of Hand-, Plastic, Reconstructive and Burn Surgery, BG Unfallklinik Tuebingen, University of Tuebingen, Schnarrenbergstraße 95, 72076 Tuebingen, Germany; (H.L.); (C.P.); (J.T.T.); (J.K.); (A.D.)
| | - Jonas Kolbenschlag
- Department of Hand-, Plastic, Reconstructive and Burn Surgery, BG Unfallklinik Tuebingen, University of Tuebingen, Schnarrenbergstraße 95, 72076 Tuebingen, Germany; (H.L.); (C.P.); (J.T.T.); (J.K.); (A.D.)
| | - Adrien Daigeler
- Department of Hand-, Plastic, Reconstructive and Burn Surgery, BG Unfallklinik Tuebingen, University of Tuebingen, Schnarrenbergstraße 95, 72076 Tuebingen, Germany; (H.L.); (C.P.); (J.T.T.); (J.K.); (A.D.)
| | - David Hercher
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Donaueschingenstraße 13, 1200 Vienna, Austria;
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Johannes C. Heinzel
- Department of Hand-, Plastic, Reconstructive and Burn Surgery, BG Unfallklinik Tuebingen, University of Tuebingen, Schnarrenbergstraße 95, 72076 Tuebingen, Germany; (H.L.); (C.P.); (J.T.T.); (J.K.); (A.D.)
- Correspondence:
| |
Collapse
|