1
|
Hatin Betseba A, Christabel Shaji Y, Brucely Y, Sakthipandi K. Synthesis and characterization of nickel-based MOFs: Enhancing photocatalysis and targeted cancer drug delivery. J INDIAN CHEM SOC 2024; 101:101335. [DOI: 10.1016/j.jics.2024.101335] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
2
|
Truong HB, Le VN, Zafar MN, Rabani I, Do HH, Nguyen XC, Hoang Bui VK, Hur J. Recent advancements in modifications of metal-organic frameworks-based materials for enhanced water purification and contaminant detection. CHEMOSPHERE 2024; 356:141972. [PMID: 38608780 DOI: 10.1016/j.chemosphere.2024.141972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 04/14/2024]
Abstract
Metal-organic frameworks (MOFs) have emerged as a key focus in water treatment and monitoring due to their unique structural features, including extensive surface area, customizable porosity, reversible adsorption, and high catalytic efficiency. While numerous reviews have discussed MOFs in environmental remediation, this review specifically addresses recent advancements in modifying MOFs to enhance their effectiveness in water purification and monitoring. It underscores their roles as adsorbents, photocatalysts, and in luminescent and electrochemical sensing. Advancements such as pore modification, defect engineering, and functionalization, combined synergistically with advanced materials, have led to the development of recyclable MOF-based nano-adsorbents, Z-scheme photocatalytic systems, nanocomposites, and hybrid materials. These innovations have broadened the spectrum of removable contaminants and improved material recyclability. Additionally, this review delves into the creation of multifunctional MOF materials, the development of robust MOF variants, and the simplification of synthesis methods, marking significant progress in MOF sensor technology. Furthermore, the review addresses current challenges in this field and proposes potential future research directions and practical applications. The growing research interest in MOFs underscores the need for an updated synthesis of knowledge in this area, focusing on both current challenges and future opportunities in water remediation.
Collapse
Affiliation(s)
- Hai Bang Truong
- Optical Materials Research Group, Science and Technology Advanced Institute, Van Lang University, Ho Chi Minh City, Viet Nam; Faculty of Applied Technology, School of Technology, Van Lang University, Ho Chi Minh City, Viet Nam.
| | - Van Nhieu Le
- Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City, Ho Chi Minh City, 70000, Viet Nam
| | | | - Iqra Rabani
- Department of Nanotechnology and Advanced Materials Engineering, Sejong University, Seoul, 05006, South Korea
| | - Ha Huu Do
- VKTech Research Center, NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City, 700000, Viet Nam
| | - Xuan Cuong Nguyen
- Institute of Research and Development, Duy Tan University, Da Nang, 550000, Viet Nam; Faculty of Environmental Chemical Engineering, Duy Tan University, Da Nang, 550000, Viet Nam
| | - Vu Khac Hoang Bui
- Department of Environment and Energy, Sejong University, Seoul, 05006, South Korea
| | - Jin Hur
- Department of Environment and Energy, Sejong University, Seoul, 05006, South Korea.
| |
Collapse
|
3
|
Durodola SS, Akeremale OK, Ore OT, Bayode AA, Badamasi H, Olusola JA. A Review on Nanomaterial as Photocatalysts for Degradation of Organic Pollutants. J Fluoresc 2024; 34:501-514. [PMID: 37432581 DOI: 10.1007/s10895-023-03332-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 06/29/2023] [Indexed: 07/12/2023]
Abstract
Eliminating hazardous organic contaminants from water is a major concern today. Nanomaterials with their textural features, large surface area, electrical conductivity, and magnetic properties make them efficient for the removal and photocatalytic degradation of organic pollutants. The reaction mechanisms of the photocatalytic oxidation of common organic pollutants were critically examined. A detailed review of articles published on photocatalytic degradation of hydrocarbons, pesticides, and dyes was presented therein. This review seeks to bridge information gaps on the reported nanomaterial as photocatalysts for the degradation of organic pollutants under sub-headings, nanomaterials, organic pollutants, degradation of organic pollutants, and mechanisms of photocatalytic activities.
Collapse
Affiliation(s)
- Solomon S Durodola
- Department of Chemistry, Obafemi Awolowo University, 220005, Ile-Ife, Nigeria.
| | - Olaniran K Akeremale
- Department of Science and Technology Education, Bayero University, 3011, Kano, Nigeria
| | - Odunayo T Ore
- Department of Chemistry, Obafemi Awolowo University, 220005, Ile-Ife, Nigeria
| | - Ajibola A Bayode
- Department of Chemical Sciences, Faculty of Natural Sciences, Redeemer's University, P.M.B. 230, Ede, 232101, Nigeria
| | - Hamza Badamasi
- Department of Chemistry, Federal University Dutse, Dutse, Jigawa State, Nigeria
| | - Johnson Adedeji Olusola
- Department of Geography and Planning Science, Ekiti State University, Ado Ekiti, Ekiti State, Nigeria
- Institute of Ecology and Environmental Studies, Obafemi Awolowo University, Ile-Ife, 220005, Nigeria
| |
Collapse
|
4
|
Wen Q, Li D, Li H, Long M, Gao C, Wu L, Song F, Zhou J. Synergetic effect of photocatalysis and peroxymonosulfate activated by Co/Mn-MOF-74@g-C3N4 Z-scheme photocatalyst for removal of tetracycline hydrochloride. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
5
|
Gembo RO, Aoyi O, Majoni S, Etale A, Odisitse S, King'ondu CK. Synthesis of bismuth oxyhalide (BiOBrzI(1-z)) solid solutions for photodegradation of methylene blue dye. AAS Open Res 2022; 4:43. [PMID: 34557643 PMCID: PMC8442118 DOI: 10.12688/aasopenres.13249.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2021] [Indexed: 11/20/2022] Open
Abstract
Background: The removal of textile wastes is a priority due to their mutagenic and carcinogenic properties. In this study, bismuth oxyhalide was used in the removal of methylene blue (MB) which is a textile waste. The main objective of this study was to develop and investigate the applicability of a bismuth oxyhalide (BiOBr
zI
(1-z)) solid solutions in the photodegradation of MB under solar and ultraviolet (UV) light irradiation. Methods: Bismuth oxyhalide
(BiOBr
zI
(1-z)) (0 ≤ z ≤ 1) materials were successfully prepared through the hydrothermal method. Brunauer-Emmett-Teller (BET), transmission electron microscope (TEM), X-ray diffractometer (XRD), and scanning electron microscope (SEM) were used to determine the surface area, microstructure, crystal structure, and morphology of the resultant products. The photocatalytic performance of BiOBr
zI
(1-z) materials was examined through methylene blue (MB) degradation under UV light and solar irradiation. Results: The XRD showed that BiOBr
zI
(1-z) materials crystallized into a tetragonal crystal structure with (102) peak slightly shifting to lower diffraction angle with an increase in the amount of iodide (I
-). BiOBr
0.6I
0.4 materials showed a point of zero charge of 5.29 and presented the highest photocatalytic activity in the removal of MB with 99% and 88% efficiency under solar and UV irradiation, respectively. The kinetics studies of MB removal by BiOBr
zI
(1-z) materials showed that the degradation process followed nonlinear pseudo-first-order model indicating that the removal of MB depends on the population of the adsorption sites. Trapping experiments confirmed that photogenerated holes (h
+) and superoxide radicals (
•O
2−) are the key species responsible for the degradation of MB. Conclusions: This study shows that bismuth oxyhalide materials are very active in the degradation of methylene blue dye using sunlight and thus they have great potential in safeguarding public health and the environment from the dye’s degradation standpoint. Moreover, the experimental results agree with nonlinear fitting.
Collapse
Affiliation(s)
- Robert O. Gembo
- Department of Chemical and Forensic Sciences, Botswana International University of Science and Technology, Palapye, Botswana
| | - Ochieng Aoyi
- Department of Chemical, Materials, and Metallurgical Engineering, Botswana International University of Science and Technology, Palapye, Botswana
| | - Stephen Majoni
- Department of Chemical and Forensic Sciences, Botswana International University of Science and Technology, Palapye, Botswana
| | - Anita Etale
- Global Change Institute, University of the Witwatersrand, Johannesburg, South Africa
| | - Sebusi Odisitse
- Department of Chemical and Forensic Sciences, Botswana International University of Science and Technology, Palapye, Botswana
| | - Cecil K. King'ondu
- Department of Chemical and Forensic Sciences, Botswana International University of Science and Technology, Palapye, Botswana
- Department of Physical Sciences, South Eastern Kenya University, Kitui, Kenya
| |
Collapse
|
6
|
Gembo RO, Aoyi O, Majoni S, Etale A, Odisitse S, King'ondu CK. Synthesis of bismuth oxyhalide (BiOBr zI (1- z)) solid solutions for photodegradation of methylene dye. AAS Open Res 2021; 4:43. [PMID: 34557643 DOI: 10.12688/aasopenres.13249.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/30/2021] [Indexed: 11/20/2022] Open
Abstract
Background: The removal of textile wastes is a priority due to their mutagenic and carcinogenic properties. In this study, bismuth oxyhalide was used in the removal of methylene blue (MB) which is a textile waste. The main objective of this study was to develop and investigate the applicability of a bismuth oxyhalide (BiOBr zI (1-z)) solid solutions in the photodegradation of MB under solar and ultraviolet (UV) light irradiation. Methods: Bismuth oxyhalide (BiOBr zI (1-z)) (0 ≤ z ≤ 1) materials were successfully prepared through the hydrothermal method. Brunauer-Emmett-Teller (BET), transmission electron microscope (TEM), X-ray diffractometer (XRD), and scanning electron microscope (SEM) were used to determine the surface area, microstructure, crystal structure, and morphology of the resultant products. The photocatalytic performance of BiOBr zI (1-z) materials was examined through methylene blue (MB) degradation under UV light and solar irradiation. Results: The XRD showed that BiOBr zI (1-z) materials crystallized into a tetragonal crystal structure with (102) peak slightly shifting to lower diffraction angle with an increase in the amount of iodide (I -). BiOBr 0.6I 0.4 materials showed a point of zero charge of 5.29 and presented the highest photocatalytic activity in the removal of MB with 99% and 88% efficiency under solar and UV irradiation, respectively. The kinetics studies of MB removal by BiOBr zI (1-z) materials showed that the degradation process followed nonlinear pseudo-first-order model indicating that the removal of MB depends on the population of the adsorption sites. Trapping experiments confirmed that photogenerated holes (h +) and superoxide radicals ( •O 2 -) are the key species responsible for the degradation of MB. Conclusions : This study shows that bismuth oxyhalide materials are very active in the degradation of methylene blue dye using sunlight and thus they have great potential in safeguarding public health and the environment from the dye's degradation standpoint. Moreover, the experimental results agree with nonlinear fitting.
Collapse
Affiliation(s)
- Robert O Gembo
- Department of Chemical and Forensic Sciences, Botswana International University of Science and Technology, Palapye, Botswana
| | - Ochieng Aoyi
- Department of Chemical, Materials, and Metallurgical Engineering, Botswana International University of Science and Technology, Palapye, Botswana
| | - Stephen Majoni
- Department of Chemical and Forensic Sciences, Botswana International University of Science and Technology, Palapye, Botswana
| | - Anita Etale
- Global Change Institute, University of the Witwatersrand, Johannesburg, South Africa
| | - Sebusi Odisitse
- Department of Chemical and Forensic Sciences, Botswana International University of Science and Technology, Palapye, Botswana
| | - Cecil K King'ondu
- Department of Chemical and Forensic Sciences, Botswana International University of Science and Technology, Palapye, Botswana.,Department of Physical Sciences, South Eastern Kenya University, Kitui, Kenya
| |
Collapse
|
7
|
Mehek R, Iqbal N, Noor T, Amjad MZB, Ali G, Vignarooban K, Khan MA. Metal-organic framework based electrode materials for lithium-ion batteries: a review. RSC Adv 2021; 11:29247-29266. [PMID: 35479575 PMCID: PMC9040901 DOI: 10.1039/d1ra05073g] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/20/2021] [Indexed: 12/25/2022] Open
Abstract
Metal-organic frameworks (MOFs) with efficient surface and structural properties have risen as a distinctive class of porous materials through the last few decades, which has enabled MOFs to gain attention in a wide range of applications like drug delivery, gas separation and storage, catalysis and sensors. Likewise, they have also emerged as efficient active materials in energy storage devices owing to their remarkable conducting properties. Metal-organic frameworks (MOFs) have garnered great interest in high-energy-density rechargeable batteries and super-capacitors. Herein the study presents their expanding diversity, structures and chemical compositions which can be tuned at the molecular level. It also aims to evaluate their inherently porous framework and how it facilitates electronic and ionic transportation through the charging and discharging cycles of lithium-ion batteries. In this review we have summarized the various synthesis paths to achieve a particular metal-organic framework. This study focuses mainly on the implementation of metal-organic frameworks as efficient anode and cathode materials for lithium-ion batteries (LIBs) with an evaluation of their influence on cyclic stability and discharge capacity. For this purpose, a brief assessment is made of recent developments in metal-organic frameworks as anode or cathode materials for lithium-ion batteries which would provide enlightenment in optimizing the reaction conditions for designing a MOF structure for the battery community and electrochemical energy storage applications.
Collapse
Affiliation(s)
- Rimsha Mehek
- U.S.-Pakistan Center for Advanced Studies in Energy (USPCAS-E), National University of Sciences and Technology (NUST) H-12 Campus Islamabad 44000 Pakistan +92 51 9085 5281
| | - Naseem Iqbal
- U.S.-Pakistan Center for Advanced Studies in Energy (USPCAS-E), National University of Sciences and Technology (NUST) H-12 Campus Islamabad 44000 Pakistan +92 51 9085 5281
| | - Tayyaba Noor
- School of Chemical and Materials Engineering (SCME), National University of Sciences and Technology (NUST) Islamabad Pakistan
| | - M Zain Bin Amjad
- U.S.-Pakistan Center for Advanced Studies in Energy (USPCAS-E), National University of Sciences and Technology (NUST) H-12 Campus Islamabad 44000 Pakistan +92 51 9085 5281
| | - Ghulam Ali
- U.S.-Pakistan Center for Advanced Studies in Energy (USPCAS-E), National University of Sciences and Technology (NUST) H-12 Campus Islamabad 44000 Pakistan +92 51 9085 5281
| | - K Vignarooban
- Department of Physics, Faculty of Science, University of Jaffna Jaffna 40000 Sri Lanka
| | - M Abdullah Khan
- Renewable Energy Advancement Laboratory (REAL), Department of Environmental Sciences, Quaid-i-Azam University Islamabad 45320 Pakistan
| |
Collapse
|
8
|
Mosleh S, Rezaei K, Dashtian K, Salehi Z. Ce/Eu redox couple functionalized HKUST-1 MOF insight to sono-photodegradation of malathion. JOURNAL OF HAZARDOUS MATERIALS 2021; 409:124478. [PMID: 33239207 DOI: 10.1016/j.jhazmat.2020.124478] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 10/17/2020] [Accepted: 11/02/2020] [Indexed: 06/11/2023]
Abstract
The Ce/Eu redox pair-functionalized HKUST-1 MOF, as an innovative environmentally friendly and recyclable sono-photocatalyst, was hydrothermally mixed and fully characterized by XRD, PL, EIS, FE-SEM, EDS, Mott-Schottky, chronoamperometry, and DRS techniques. The obtained chemical and optical characteristics of the n-type Ce/Eu-HKUST-1 MOF showed that the transfer of additional 4f orbital electrons in the Ce/Eu redox pair improves the sono-photocatalytic activity. The performance of Ce/Eu-HKUST-1 MOF for the sono-photodegradation of Malathion (MA) was evaluated in the aqueous media in the simultaneous presence of blue light and ultrasonic irradiation. The optimization of the process was cross-examined using the response surface methodology as a function of the MA concentration (15-35 mg·L-1), Ce/Eu-HKUST-1 mass (10-30 mg), pH (4-12), and ultrasonic wave irradiation duration (10-30 min). The maximum sono-photocatalytic degradation capacity was found to be 99.99% under the optimum conditions set as 25 mg·L-1, 20 mg, 8, and 25 min for the concentration of Malathion, photocatalyst mass, pH, and irradiation duration, respectively. These findings were attributed to the suppression of electron-hole pair recombination, increased life-time of charge carriers, enhanced visible light absorption, and prominent proportion of hydroxyl and peroxide radicals formed.
Collapse
Affiliation(s)
- Soleiman Mosleh
- Department of Gas and Petroleum, Yasouj University, Gachsaran 75918-74831, Iran.
| | - Khalil Rezaei
- Department of Chemistry, Iran University of Science and Technology, Tehran, Iran
| | - Kheibar Dashtian
- Chemistry Department, Yasouj University, Yasouj 75918-74831, Iran.
| | - Zaker Salehi
- Department of Radiation Sciences, School of Paramedical Sciences, Yasuj University of Medical Sciences, Iran
| |
Collapse
|
9
|
Fakhri H, Bagheri H. Two novel sets of UiO-66@ metal oxide/graphene oxide Z-scheme heterojunction: Insight into tetracycline and malathion photodegradation. J Environ Sci (China) 2020; 91:222-236. [PMID: 32172972 DOI: 10.1016/j.jes.2020.01.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 01/05/2020] [Accepted: 01/13/2020] [Indexed: 06/10/2023]
Abstract
Nowadays, widespread researches have been focused on the development of effective photocatalysts to remove pollutants of the aquatic system. In accordance with the universal studies, two new sets of UiO-66@ metal oxide (including ZnO and TiO2)/graphene oxide heterojunctions were synthesized for photodegradation of aromatic (tetracycline) and nonaromatic (malathion) pollutants which are challenging cases in the environment. The dosage of the photocatalyst, pH of the solution, the type of metal oxide, and the presence of various scavengers are assayed parameters in this work. In the optimum condition, maximum photodegradation efficiency is achieved in 90 min for tetracycline (81%) and malathion (100%) by the UiO-66@ZnO/graphene oxide. The superior separation of charge carriers by Z-scheme mechanism, excellent electron mobility on layers of graphene oxide and high surface area are factors that enhanced the efficiency. Furthermore, in comparison with pure UiO-66, the band gaps belong to heterojunctions revealed a red shift in the absorption edge, which can be responsible for more expand adsorption of the solar spectrum. Total organic carbon analysis verified the decontamination of these pollutants in the solution. The produced main intermediates during the photocatalytic process were identified and the possible degradation pathway proposed. In general, the superior photocatalytic activity suggests that these designed photocatalysts can be a promising choice for having a clean future.
Collapse
Affiliation(s)
- Hanieh Fakhri
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Hasan Bagheri
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
10
|
Wang Q, Gao Q, Al-Enizi AM, Nafady A, Ma S. Recent advances in MOF-based photocatalysis: environmental remediation under visible light. Inorg Chem Front 2020. [DOI: 10.1039/c9qi01120j] [Citation(s) in RCA: 233] [Impact Index Per Article: 46.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Highly photoactive MOFs can be engineered via various strategies for the purpose of extended visible light absorption, more efficient generation, separation and transfer of charge carriers, as well as good recyclability.
Collapse
Affiliation(s)
- Qi Wang
- School of Environmental Science and Engineering
- Zhejiang Gongshang University
- Hangzhou 310018
- China
- Department of Chemistry
| | - Qiaoyuan Gao
- School of Environmental Science and Engineering
- Zhejiang Gongshang University
- Hangzhou 310018
- China
| | | | - Ayman Nafady
- Chemistry Department
- College of Science
- King Saud University
- Riyadh
- Saudi Arabia
| | - Shengqian Ma
- Department of Chemistry
- University of South Florida
- Tampa
- USA
| |
Collapse
|