1
|
Kizilyer A, Singh MV, Singh VB, Suwunnakorn S, Palis J, Maggirwar SB. Inhibition of Tropomyosin Receptor Kinase A Signaling Negatively Regulates Megakaryopoiesis and induces Thrombopoiesis. Sci Rep 2019; 9:2781. [PMID: 30808933 PMCID: PMC6391490 DOI: 10.1038/s41598-019-39385-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 12/05/2018] [Indexed: 02/07/2023] Open
Abstract
Neurotrophin signaling modulates the differentiation and function of mature blood cells. The expression of neurotrophin receptors and ligands by hematopoietic and stromal cells of the bone marrow indicates that neurotrophins have the potential to regulate hematopoietic cell fate decisions. This study investigates the role of neurotrophins and Tropomyosin receptor kinases (Trk) in the development of megakaryocytes (MKs) and their progeny cells, platelets. Results indicate that primary human MKs and MK cells lines, DAMI, Meg-01 and MO7e express TrkA, the primary receptor for Nerve Growth Factor (NGF) signaling. Activation of TrkA by NGF enhances the expansion of human MK progenitors (MKPs) and, to some extent, MKs. Whereas, inhibition of TrkA receptor by K252a leads to a 50% reduction in the number of both MKPs and MKs and is associated with a 3-fold increase in the production of platelets. In order to further confirm the role of TrkA signaling in platelet production, TrkA deficient DAMI cells were generated using CRISPR-Cas9 technology. Comparative analysis of wild-type and TrkA-deficient Dami cells revealed that loss of TrkA signaling induced apoptosis of MKs and increased platelet production. Overall, these findings support a novel role for TrkA signaling in platelet production and highlight its potential as therapeutic target for Thrombocytopenia.
Collapse
Affiliation(s)
- Ayse Kizilyer
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, United States of America
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Burdur Mehmet Akif Ersoy University, Burdur, Turkey
| | - Meera V Singh
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, United States of America
| | - Vir B Singh
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, United States of America
| | - Sumanun Suwunnakorn
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, United States of America
| | - James Palis
- Department of Pediatrics, Hematology and Oncology, University of Rochester Medical Center, Rochester, NY, United States of America
| | - Sanjay B Maggirwar
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, United States of America.
| |
Collapse
|
2
|
Varricchi G, Raap U, Rivellese F, Marone G, Gibbs BF. Human mast cells and basophils-How are they similar how are they different? Immunol Rev 2019; 282:8-34. [PMID: 29431214 DOI: 10.1111/imr.12627] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mast cells and basophils are key contributors to allergies and other inflammatory diseases since they are the most prominent source of histamine as well as numerous additional inflammatory mediators which drive inflammatory responses. However, a closer understanding of their precise roles in allergies and other pathological conditions has been marred by the considerable heterogeneity that these cells display, not only between mast cells and basophils themselves but also across different tissue locations and species. While both cell types share the ability to rapidly degranulate and release histamine following high-affinity IgE receptor cross-linking, they differ markedly in their ability to either react to other stimuli, generate inflammatory eicosanoids or release immunomodulating cytokines and chemokines. Furthermore, these cells display considerable pharmacological heterogeneity which has stifled attempts to develop more effective anti-allergic therapies. Mast cell- and basophil-specific transcriptional profiling, at rest and after activation by innate and adaptive stimuli, may help to unravel the degree to which these cells differ and facilitate a clearer understanding of their biological functions and how these could be targeted by new therapies.
Collapse
Affiliation(s)
- Gilda Varricchi
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research, University of Naples Federico II, Naples, Italy.,WAO Center of Excellence, Naples, Italy
| | - Ulrike Raap
- Department of Dermatology and Allergology, University of Oldenburg, Oldenburg, Germany
| | - Felice Rivellese
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research, University of Naples Federico II, Naples, Italy.,WAO Center of Excellence, Naples, Italy.,Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Gianni Marone
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research, University of Naples Federico II, Naples, Italy.,WAO Center of Excellence, Naples, Italy.,Institute of Experimental Endocrinology and Oncology "Gaetano Salvatore" (IEOS), National Research Council (CNR), Naples, Italy
| | - Bernhard F Gibbs
- Department of Dermatology and Allergology, University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
3
|
NGF and Its Receptors in the Regulation of Inflammatory Response. Int J Mol Sci 2017; 18:ijms18051028. [PMID: 28492466 PMCID: PMC5454940 DOI: 10.3390/ijms18051028] [Citation(s) in RCA: 194] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 03/31/2017] [Accepted: 05/03/2017] [Indexed: 12/28/2022] Open
Abstract
There is growing interest in the complex relationship between the nervous and immune systems and how its alteration can affect homeostasis and result in the development of inflammatory diseases. A key mediator in cross-talk between the two systems is nerve growth factor (NGF), which can influence both neuronal cell function and immune cell activity. The up-regulation of NGF described in inflamed tissues of many diseases can regulate innervation and neuronal activity of peripheral neurons, inducing the release of immune-active neuropeptides and neurotransmitters, but can also directly influence innate and adaptive immune responses. Expression of the NGF receptors tropomyosin receptor kinase A (TrkA) and p75 neurotrophin receptor (p75NTR) is dynamically regulated in immune cells, suggesting a varying requirement for NGF depending on their state of differentiation and functional activity. NGF has a variety of effects that can be either pro-inflammatory or anti-inflammatory. This apparent contradiction can be explained by considering NGF as part of an endogenous mechanism that, while activating immune responses, also activates pathways necessary to dampen the inflammatory response and limit tissue damage. Decreases in TrkA expression, such as that recently demonstrated in immune cells of arthritis patients, might prevent the activation by NGF of regulatory feed-back mechanisms, thus contributing to the development and maintenance of chronic inflammation.
Collapse
|
4
|
The Evolution of Human Basophil Biology from Neglect towards Understanding of Their Immune Functions. BIOMED RESEARCH INTERNATIONAL 2016; 2016:8232830. [PMID: 28078302 PMCID: PMC5204076 DOI: 10.1155/2016/8232830] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 11/16/2016] [Indexed: 12/03/2022]
Abstract
Being discovered long ago basophils have been neglected for more than a century. During the past decade evidence emerged that basophils share features of innate and adaptive immunity. Nowadays, basophils are best known for their striking effector role in the allergic reaction. They hence have been used for establishing new diagnostic tests and therapeutic approaches and for characterizing natural and recombinant allergens as well as hypoallergens, which display lower or diminished IgE-binding activity. However, it was a long way from discovery in 1879 until identification of their function in hypersensitivity reactions, including adverse drug reactions. Starting with a historical background, this review highlights the modern view on basophil biology.
Collapse
|
5
|
Kleiner S, Braunstahl GJ, Rüdrich U, Gehring M, Eiz-Vesper B, Luger TA, Steelant B, Seys SF, Kapp A, Böhm M, Hellings PW, Raap U. Regulation of melanocortin 1 receptor in allergic rhinitis in vitro and in vivo. Clin Exp Allergy 2016; 46:1066-74. [PMID: 27196703 DOI: 10.1111/cea.12759] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 04/22/2016] [Accepted: 05/05/2016] [Indexed: 12/17/2022]
Abstract
BACKGROUND α-melanocyte-stimulating hormone (α-MSH) was shown to inhibit allergic airway inflammation and exert suppressive effects on human basophils. OBJECTIVE This study aims to extend our current knowledge on the melanocortin 1 receptor (MC1R) expression in nasal tissue of patients with allergic rhinitis (AR) and functional effects of α-MSH in human basophils especially from patients with allergic rhinitis. METHODS MC1R expression before and after nasal allergen provocation was studied in nasal mucosal tissue of AR patients and in a mouse model of allergic airway inflammation using immunofluorescence. In vitro regulation of the MC1R and CD203c surface expression on whole-blood basophils of patients with AR and controls was assessed with flow cytometry. Functional effects of α-MSH on isolated basophils were analysed regarding apoptosis with flow cytometry and chemotaxis using a Boyden chamber assay. RESULTS We detected an accumulation of MC1R-positive basophils in nasal mucosa tissue of patients with AR 24 h after nasal allergen provocation. Such accumulation was not present in mucosa sections from healthy controls. In mice with allergic airway inflammation, we found a clear accumulation of MC1R-positive basophils in the nasal tissue compared to control mice. MC1R expression was inducible in AR patients and controls by stimulation with anti-IgE. α-MSH inhibited anti-IgE and grass pollen induced upregulation of CD203c, but had no effect on chemotaxis or apoptosis of basophils in vitro. CONCLUSIONS AND CLINICAL RELEVANCE MC1R-positive basophils accumulate in the nasal mucosa of patients with AR after nasal allergen provocation. Since α-MSH suppresses proinflammatory effector functions in human basophils via the MC1R, it constitutes an interesting novel target for modulating the allergic inflammatory response.
Collapse
Affiliation(s)
- S Kleiner
- Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany
| | - G-J Braunstahl
- Department of Pulmonology, Sint Franciscus Gasthuis, Rotterdam, the Netherlands
| | - U Rüdrich
- Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany
| | - M Gehring
- Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany
| | - B Eiz-Vesper
- Institute for Transfusion Medicine, Hannover Medical School, Hannover, Germany
| | - T A Luger
- Department of Dermatology, University of Münster, Münster, Germany
| | - B Steelant
- Laboratory of Clinical Immunology, KU Leuven, Leuven, Belgium
| | - S F Seys
- Laboratory of Clinical Immunology, KU Leuven, Leuven, Belgium
| | - A Kapp
- Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany
| | - M Böhm
- Department of Dermatology, University of Münster, Münster, Germany
| | - P W Hellings
- Laboratory of Clinical Immunology, KU Leuven, Leuven, Belgium
| | - U Raap
- Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany
| |
Collapse
|
6
|
NGF in Early Embryogenesis, Differentiation, and Pathology in the Nervous and Immune Systems. Curr Top Behav Neurosci 2015; 29:125-152. [PMID: 26695167 DOI: 10.1007/7854_2015_420] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The physiology of NGF is extremely complex, and although the study of this neurotrophin began more than 60 years ago, it is far from being concluded. NGF, its precursor molecule pro-NGF, and their different receptor systems (i.e., TrkA, p75NTR, and sortilin) have key roles in the development and adult physiology of both the nervous and immune systems. Although the NGF receptor system and the pathways activated are similar for all types of cells sensitive to NGF, the effects exerted during embryonic differentiation and in committed mature cells are strikingly different and sometimes opposite. Bearing in mind the pleiotropic effects of NGF, alterations in its expression and synthesis, as well as variations in the types of receptor available and in their respective levels of expression, may have profound effects and play multiple roles in the development and progression of several diseases. In recent years, the use of NGF or of inhibitors of its receptors has been prospected as a therapeutic tool in a variety of neurological diseases and injuries. In this review, we outline the different roles played by the NGF system in various moments of nervous and immune system differentiation and physiology, from embryonic development to aging. The data collected over the past decades indicate that NGF activities are highly integrated among systems and are necessary for the maintenance of homeostasis. Further, more integrated and multidisciplinary studies should take into consideration these multiple and interactive aspects of NGF physiology in order to design new therapeutic strategies based on the manipulation of NGF and its intracellular pathways.
Collapse
|
7
|
Abstract
Basophils have long been suspected as playing more than a bystander role in initiating and maintaining allergic disorders, despite their relatively low numbers compared with other effector cells, such as mast cells and eosinophils. In vitro studies clearly demonstrated their propensity to generate proallergic cytokines, such as interleukin 4 and interleukin 13, as well as histamine and leukotrienes after simulation with allergens and innate IgE-dependent triggers. However, only very recently have mouse basophils been identified as key regulators of allergy in vivo, including orchestrating Th2 immunity to protease allergens in the induction phase. This review highlights these exciting advances that go far in unraveling our understanding of basophil function in the orchestration of allergic inflammation.
Collapse
|
8
|
Aloe L, Rocco ML, Bianchi P, Manni L. Nerve growth factor: from the early discoveries to the potential clinical use. J Transl Med 2012. [PMID: 23190582 PMCID: PMC3543237 DOI: 10.1186/1479-5876-10-239] [Citation(s) in RCA: 305] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The physiological role of the neurotrophin nerve growth factor (NGF) has been characterized, since its discovery in the 1950s, first in the sensory and autonomic nervous system, then in central nervous, endocrine and immune systems. NGF plays its trophic role both during development and in adulthood, ensuring the maintenance of phenotypic and functional characteristic of several populations of neurons as well as immune cells. From a translational standpoint, the action of NGF on cholinergic neurons of the basal forebrain and on sensory neurons in dorsal root ganglia first gained researcher's attention, in view of possible clinical use in Alzheimer's disease patients and in peripheral neuropathies respectively. The translational and clinical research on NGF have, since then, enlarged the spectrum of diseases that could benefit from NGF treatment, at the same time highlighting possible limitations in the use of the neurotrophin as a drug. In this review we give a comprehensive account for almost all of the clinical trials attempted until now by using NGF. A perspective on future development for translational research on NGF is also discussed, in view of recent proposals for innovative delivery strategies and/or for additional pathologies to be treated, such as ocular and skin diseases, gliomas, traumatic brain injuries, vascular and immune diseases.
Collapse
Affiliation(s)
- Luigi Aloe
- Cellular Biology and Neurobiology Institute, CNR, via del Fosso di Fiorano 64, 00143, Rome, Italy
| | | | | | | |
Collapse
|
9
|
Böhm M, Apel M, Sugawara K, Brehler R, Jurk K, Luger TA, Haas H, Paus R, Eiz-Vesper B, Walls AF, Ponimaskin E, Gehring M, Kapp A, Raap U. Modulation of basophil activity: a novel function of the neuropeptide α-melanocyte-stimulating hormone. J Allergy Clin Immunol 2011; 129:1085-93. [PMID: 22178636 DOI: 10.1016/j.jaci.2011.11.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Revised: 11/09/2011] [Accepted: 11/09/2011] [Indexed: 11/20/2022]
Abstract
BACKGROUND Little is known about the effect of neuropeptides on basophils, which are important effector cells in immune and allergic responses. OBJECTIVE This study aimed at revealing the role of α-melanocyte-stimulating hormone (α-MSH) on basophil function. METHODS Expression of melanocortin receptors and proopiomelanocortin (POMC) was analyzed by means of RT-PCR, Western immunoblotting, fluorescence-activated cell sorting, and double-immunofluorescence analysis. Signal transduction studies included cyclic AMP and Ca(2+) mobilization assays. Basophil activity was assessed based on CD63 surface expression and cytokine release. RESULTS MC-1R expression was detectable in basophils isolated from human peripheral blood, as well as in basophils within nasal tissue. In isolated basophils from human blood, truncated POMC transcripts were present, but there was no POMC protein. Treatment of basophils with α-MSH increased intracellular Ca(2+) but not cyclic AMP levels. α-MSH at physiologic doses potently suppressed basophil activation induced by N-formyl-methionyl-leucyl-phenylalanine, phorbol 12-myristate 13-acetate, or grass pollen allergen in whole blood of healthy or allergic subjects, respectively. The effect of α-MSH on basophil activation was MC-1R mediated (as shown by blockade with a peptide analogue of agouti-signaling protein) and imitated by adrenocorticotropic hormone but not elicited by the tripeptides KPV and KdPT, both of which lack the central pharmacophore of α-MSH. Moreover, α-MSH at physiologic doses significantly suppressed secretion of 3 proallergic cytokines, IL-4, IL-6, and IL-13, in basophils stimulated with anti-IgE, N-formyl-methionyl-leucyl-phenylalanine, or phorbol 12-myristate 13-acetate. CONCLUSION Our findings highlight a novel functional activity of α-MSH, which acts as a natural antiallergic basophil-response modifier. These findings might point to novel therapeutic strategies in treating allergic diseases.
Collapse
Affiliation(s)
- Markus Böhm
- Department of Dermatology, University of Münster, Münster, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Human basophils and eosinophils are the direct target leukocytes of the novel IL-1 family member IL-33. Blood 2008; 113:1526-34. [PMID: 18955562 DOI: 10.1182/blood-2008-05-157818] [Citation(s) in RCA: 325] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In mice, interleukin-18 (IL-18) regulates Th1- or Th2-type immune responses depending on the cytokine environment and effector cells involved, and the ST2-ligand, IL-33, primarily promotes an allergic phenotype. Human basophils, major players in allergic inflammation, constitutively express IL-18 receptors, while ST2 surface expression is inducible by IL-3. Unexpectedly, freshly isolated basophils are strongly activated by IL-33, but, in contrast to mouse basophils, do not respond to IL-18. IL-33 promotes IL-4, IL-13 and IL-8 secretion in synergy with IL-3 and/or FcepsilonRI-activation, and enhances FcepsilonRI-induced mediator release. These effects are similar to that of IL-3, but the signaling pathways engaged are distinct because IL-33 strongly activates NF-kappaB and shows a preference for p38 MAP-kinase, while IL-3 acts through Jak/Stat and preferentially activates ERK. Eosinophils are the only other leukocyte-type directly activated by IL-33, as evidenced by screening of p38-activation in peripheral blood cells. Only upon CD3/CD28-ligation, IL-33 weakly enhances Th2 cytokine expression by in vivo polarized Th2 cells. This study on primary human cells demonstrates that basophils and eosinophils are the only direct target leukocytes for IL-33, suggesting that IL-33 promotes allergic inflammation and Th2 polarization mainly by the selective activation of these specialized cells of the innate immune system.
Collapse
|
11
|
Mustafa FB, Ng FSP, Nguyen TH, Lim LHK. Honeybee venom secretory phospholipase A2 induces leukotriene production but not histamine release from human basophils. Clin Exp Immunol 2007; 151:94-100. [PMID: 18005261 DOI: 10.1111/j.1365-2249.2007.03542.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The role of basophils in an anaphylactic response is well recognized but is usually masked by mast cells, which contain similar mediators for the induction of generalized vasodilatation and laryngeal constriction. The rapid onset of systemic anaphylactic symptoms, particularly in insect stings and ingested food, suggest that basophils, a circulating pool of cells containing histamine and other potent mediators such as leukotrienes, may be more involved in systemic anaphylaxis than originally thought. We wished to examine if secretory phospholipase A2, a systemic allergen found in honey bee venom (HBV-sPLA2) may activate basophils directly leading to rapid systemic mediator release. Basophils were isolated from human blood and stimulated with increasing concentrations of HBV-sPLA2. We found that physiological concentrations of HBV-sPLA2 induce rapid leukotriene C4 production from purified human basophils within 5 min, while interleukin (IL)-4 expression and production was induced at later time-points. Histamine release was not induced, signifying that HBV-sPLA2 did not induce generalized degranulation. Surface expression of CD63, CD69 and CD11b were up-regulated following HBV-sPLA2 treatment. Stimulation of basophils with anti-immunoglobulin E (IgE) following treatment with HBV-sPLA2 did not induce more leukotriene release. To investigate the mechanism of leukotriene production, 9-12 octadecadiynioc acid, a cyclooxygenase-1 (COX-1) and 15-lipoxygenase inhibitor, was used and this abrogated leukotriene production. These results indicate that HBV-sPLA2 can directly activate human basophils in vitro to induce leukotriene production.
Collapse
Affiliation(s)
- F B Mustafa
- Inflammation and Cancer Laboratory, Department of Physiology and NUS Immunology Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | | | | |
Collapse
|
12
|
Ebo DG, Dombrecht EJ, Bridts CH, Aerts NE, de Clerck LS, Stevens WJ. Combined analysis of intracellular signalling and immunophenotype of human peripheral blood basophils by flow cytometry: a proof of concept. Clin Exp Allergy 2007; 37:1668-75. [PMID: 17868401 DOI: 10.1111/j.1365-2222.2007.02819.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND The signal transduction pathways and control mechanisms involved in IgE-mediated basophil activation remain incompletely understood. OBJECTIVES To investigate whether basophilic intracellular signal transduction and immunophenotype can be analysed simultaneously by flow cytometry. METHODS Basophils in whole blood were stimulated with anti-IgE and latex antigen at various concentrations and during different time courses. Phosphorylation of p38 mitogen-activated protein kinase (MAPK) as a representative of the intracellular signal transduction pathway and surface expression of CD63 was assessed simultaneously flow cytometrically. The effect of pre-incubation with IL-3 was assessed. RESULTS Stimulation of the basophils with anti-IgE and allergen induces a rapid phosphorylation of p38 MAPK that peaks between 1 and 5 min and returns to baseline levels after 60 min. In contrast, CD63 up-regulation demonstrates a maximal but more continuous expression that peaks approximately 5 min later than phosphorylation of p38 MAPK. Specific inhibition of p38 MAPK reduced or almost completely abrogated up-regulation of CD63. Pre-incubation of the basophils with IL-3 produces a rapid p38 MAPK phosphorylation over basal levels, but this was weaker and shorter than for anti-IgE stimulation. Pre-incubation of the basophils with IL-3 did not potentiate anti-IgE-induced phosphorylation of p38 MAPK and did affect spontaneous or IgE-mediated CD63 up-regulation. CONCLUSIONS This study provides the proof that the flow cytometer allows an integrated analysis of basophilic intracellular signalling and immunophenotyping. Owing to its technical simplicity, the low number of cells required and rapid analysis, the technique seems promising for use in the clinic as a diagnostic tool or to monitor therapy. CAPSULE SUMMARY This study is the first to provide evidence for a combined analysis of basophilic intracellular signalling and immunophenotyping by flow cytometry. Owing to its technical simplicity, the low number of cells required and rapid analysis, the technique seems promising for use in the clinic as a diagnostic tool or to monitor therapy.
Collapse
Affiliation(s)
- D G Ebo
- Department of Immunology, Allergology, Rheumatology, Faculty of Medicine, University of Antwerp, Antwerp, Belgium
| | | | | | | | | | | |
Collapse
|
13
|
Freund-Michel V, Frossard N. The nerve growth factor and its receptors in airway inflammatory diseases. Pharmacol Ther 2007; 117:52-76. [PMID: 17915332 DOI: 10.1016/j.pharmthera.2007.07.003] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2007] [Accepted: 07/30/2007] [Indexed: 11/16/2022]
Abstract
The nerve growth factor (NGF) belongs to the neurotrophin family and induces its effects through activation of 2 distinct receptor types: the tropomyosin-related kinase A (TrkA) receptor, carrying an intrinsic tyrosine kinase activity in its intracellular domain, and the receptor p75 for neurotrophins (p75NTR), belonging to the death receptor family. Through activation of its TrkA receptor, NGF activates signalling pathways, including phospholipase Cgamma (PLCgamma), phosphatidyl-inositol 3-kinase (PI3K), the small G protein Ras, and mitogen-activated protein kinases (MAPK). Through its p75NTR receptor, NGF activates proapoptotic signalling pathways including the MAPK c-Jun N-terminal kinase (JNK), ceramides, and the small G protein Rac, but also activates pathways promoting cell survival through the transcription factor nuclear factor-kappaB (NF-kappaB). NGF was first described by Rita Levi-Montalcini and collaborators as an important factor involved in nerve differentiation and survival. Another role for NGF has since been established in inflammation, in particular of the airways, with increased NGF levels in chronic inflammatory diseases. In this review, we will first describe NGF structure and synthesis and NGF receptors and their signalling pathways. We will then provide information about NGF in the airways, describing its expression and regulation, as well as pointing out its potential role in inflammation, hyperresponsiveness, and remodelling process observed in airway inflammatory diseases, in particular in asthma.
Collapse
Affiliation(s)
- V Freund-Michel
- EA 3771 Inflammation and Environment in Asthma, University Louis Pasteur-Strasbourg I, Faculty of Pharmacy, Illkirch, France.
| | | |
Collapse
|