1
|
Gong X, Zhang H, Guo Y, Yu S, Tang M. Chromosome-level genome assembly of Iodes seguinii and its metabonomic implications for rheumatoid arthritis treatment. THE PLANT GENOME 2025; 18:e20534. [PMID: 39603810 PMCID: PMC11729983 DOI: 10.1002/tpg2.20534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/27/2024] [Accepted: 10/29/2024] [Indexed: 11/29/2024]
Abstract
Iodes seguinii is a woody vine known for its potential therapeutic applications in treating rheumatoid arthritis (RA) due to its rich bioactive components. Here, we achieved the first chromosome-level assembly of the nuclear genome of I. seguinii using PacBio HiFi and chromatin conformation capture (Hi-C) sequencing data. The initial assembly with PacBio data produced contigs with an N50 length of 9.71 Mb, and Hi-C data anchored these contigs into 13 chromosomes, achieving a total length of 273.58 Mb, closely matching the estimated genome size. Quality assessments, including BUSCO, long terminal repeat assembly index, transcriptome mapping rates, and sequencing coverage, confirmed the high quality, completeness, and continuity of the assembly, identifying 115.28 Mb of repetitive sequences, 1062 RNA genes, and 25,270 protein-coding genes. Additionally, we assembled and annotated the 150,599 bp chloroplast genome using Illumina sequencing data, containing 121 genes including key DNA barcodes, with maturase K (matK) proving effective for species identification. Phylogenetic analysis positioned I. seguinii at the base of the Lamiales clade, identifying significant gene family expansions and contractions, particularly related to secondary metabolite synthesis and DNA damage repair. Metabolite analysis identified 84 active components in I. seguinii, including the discovery of luteolin, with 119 targets predicted for RA treatment, including core targets like AKT1, toll-like receptor 4 (TLR4), epidermal growth factor receptor (EGFR), tumor necrosis factor (TNF), TP53, NFKB1, janus kinase 2 (JAK2), BCL2, mitogen-activated protein kinase 1 (MAPK1), and spleen-associated tyrosine kinase (SYK). Key active components such as flavonoids and polyphenols with anti-inflammatory activities were highlighted. The discovery of luteolin, in particular, underscores its potential therapeutic role. These findings provide a valuable genomic resource and a scientific basis for the development and application of I. seguinii, addressing the genomic gap in the genus Iodes and the order Icacinales and underscoring the need for further research in genomics, transcriptomics, and metabolomics to fully explore its potential.
Collapse
Affiliation(s)
- Xun Gong
- Department of Rheumatology & ImmunologyAffiliated Hospital of Jiangsu UniversityZhenjiangChina
| | - Hantao Zhang
- School of Life SciencesJiangsu UniversityZhenjiangChina
| | - Yinluo Guo
- School of Life SciencesJiangsu UniversityZhenjiangChina
| | - Shaoshuai Yu
- Department of PharmacyAffiliated People's Hospital of Jiangsu UniversityZhenjiangChina
| | - Min Tang
- School of Life SciencesJiangsu UniversityZhenjiangChina
| |
Collapse
|
2
|
Gao C, Song XD, Chen FH, Wei GL, Guo CY. The protective effect of natural medicines in rheumatoid arthritis via inhibit angiogenesis. Front Pharmacol 2024; 15:1380098. [PMID: 38881875 PMCID: PMC11176484 DOI: 10.3389/fphar.2024.1380098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 05/10/2024] [Indexed: 06/18/2024] Open
Abstract
Rheumatoid arthritis is a chronic immunological disease leading to the progressive bone and joint destruction. Angiogenesis, accompanied by synovial hyperplasia and inflammation underlies joint destruction. Delaying or even blocking synovial angiogenesis has emerged as an important target of RA treatment. Natural medicines has a long history of treating RA, and numerous reports have suggested that natural medicines have a strong inhibitory activity on synovial angiogenesis, thereby improving the progression of RA. Natural medicines could regulate the following signaling pathways: HIF/VEGF/ANG, PI3K/Akt pathway, MAPKs pathway, NF-κB pathway, PPARγ pathway, JAK2/STAT3 pathway, etc., thereby inhibiting angiogenesis. Tripterygium wilfordii Hook. f. (TwHF), sinomenine, and total glucoside of Paeonia lactiflora Pall. Are currently the most representative of all natural products worthy of development and utilization. In this paper, the main factors affecting angiogenesis were discussed and different types of natural medicines that inhibit angiogenesis were systematically summarized. Their specific anti-angiogenesis mechanisms are also reviewed which aiming to provide new perspective and options for the management of RA by targeting angiogenesis.
Collapse
Affiliation(s)
- Chang Gao
- Department of Pharmacy, First Affiliated Hospital of Gannan Medical University, Jiangxi, Ganzhou, China
| | - Xiao-Di Song
- Gannan Medical University, Jiangxi, Ganzhou, China
| | - Fang-Hui Chen
- Department of Pharmacy, First Affiliated Hospital of Gannan Medical University, Jiangxi, Ganzhou, China
| | - Gui-Lin Wei
- Department of Pharmacy, First Affiliated Hospital of Gannan Medical University, Jiangxi, Ganzhou, China
| | - Chun-Yu Guo
- Department of Pharmacy, First Affiliated Hospital of Gannan Medical University, Jiangxi, Ganzhou, China
| |
Collapse
|
3
|
Naidu G, Tripathi DK, Nagar N, Mishra A, Poluri KM. Targeting chemokine-receptor mediated molecular signaling by ethnopharmacological approaches. JOURNAL OF ETHNOPHARMACOLOGY 2024; 325:117837. [PMID: 38310985 DOI: 10.1016/j.jep.2024.117837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/07/2023] [Accepted: 01/26/2024] [Indexed: 02/06/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Infection and inflammation are critical to global human health status and the goal of current pharmacological interventions intends formulating medications/preventives as a measure to deal with this situation. Chemokines and their cognate receptors are major regulatory molecules in many of these ailments. Natural products have been a keen source to the drug development industry, every year contributing significantly to the growing list of FDA approved drugs. A multiverse of natural resource is employed as a part of curative regimen in folk/traditional/ethnomedicine which can be employed to discover, repurpose, and design potent medications for the diseases of clinical concern. AIM OF THE STUDY This review aims to systematically document the ethnopharmacologically active agents targeting the infectious-inflammatory diseases through the chemokine-receptor nexus. MATERIALS AND METHODS Articles related to chemokine/receptor modulating ethnopharmacological anti-inflammatory, anti-infectious natural sources, bioactive compounds, and formulations have been examined with special emphasis on women related diseases. The available literature has been thoroughly scrutinized for the application of traditional medicines in chemokine associated experimental methods, their regulatory outcomes, and pertinence to women's health wherever applicable. Moreover, the potential traditional regimens under clinical trials have been critically assessed. RESULTS A systematic and comprehensive review on the chemokine-receptor targeting ethnopharmaceutics from the available literature has been provided. The article discusses the implication of traditional medicine in the chemokine system dynamics in diverse infectious-inflammatory disorders such as cardiovascular diseases, allergic diseases, inflammatory diseases, neuroinflammation, and cancer. On this note, critical evaluation of the available data surfaced multiple diseases prevalent in women such as osteoporosis, rheumatoid arthritis, breast cancer, cervical cancer and urinary tract infection. Currently there is no available literature highlighting chemokine-receptor targeting using traditional medicinal approach from women's health perspective. Moreover, despite being potent in vitro and in vivo setups there remains a gap in clinical translation of these formulations, which needs to be strategically and scientifically addressed to pave the way for their successful industrial translation. CONCLUSIONS The review provides an optimistic global perspective towards the applicability of ethnopharmacology in chemokine-receptor regulated infectious and inflammatory diseases with special emphasis on ailments prevalent in women, consecutively addressing their current status of clinical translation and future directions.
Collapse
Affiliation(s)
- Goutami Naidu
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India.
| | - Deepak Kumar Tripathi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Nupur Nagar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, 342011, Rajasthan, India
| | - Krishna Mohan Poluri
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India; Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India.
| |
Collapse
|
4
|
Rufino AT, Freitas M, Proença C, Ferreira de Oliveira JMP, Fernandes E, Ribeiro D. Rheumatoid arthritis molecular targets and their importance to flavonoid-based therapy. Med Res Rev 2024; 44:497-538. [PMID: 37602483 DOI: 10.1002/med.21990] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/18/2023] [Accepted: 08/05/2023] [Indexed: 08/22/2023]
Abstract
Rheumatoid arthritis (RA) is a progressive, chronic, autoimmune, inflammatory, and systemic condition that primarily affects the synovial joints and adjacent tissues, including bone, muscle, and tendons. The World Health Organization recognizes RA as one of the most prevalent chronic inflammatory diseases. In the last decade, there was an expansion on the available RA therapeutic options which aimed to improve patient's quality of life. Despite the extensive research and the emergence of new therapeutic approaches and drugs, there are still significant unwanted side effects associated to these drugs and still a vast number of patients that do not respond positively to the existing therapeutic strategies. Over the years, several references to the use of flavonoids in the quest for new treatments for RA have emerged. This review aimed to summarize the existing literature about the flavonoids' effects on the major pathogenic/molecular targets of RA and their potential use as lead compounds for the development of new effective molecules for RA treatment. It is demonstrated that flavonoids can modulate various players in synovial inflammation, regulate immune cell function, decrease synoviocytes proliferation and balance the apoptotic process, decrease angiogenesis, and stop/prevent bone and cartilage degradation, which are all dominant features of RA. Although further investigation is necessary to determine the effectiveness of flavonoids in humans, the available data from in vitro and in vivo models suggest their potential as new disease-modifying anti-rheumatic drugs. This review highlights the use of flavonoids as a promising avenue for future research in the treatment of RA.
Collapse
Affiliation(s)
- Ana T Rufino
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Marisa Freitas
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Carina Proença
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - José M P Ferreira de Oliveira
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Eduarda Fernandes
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Daniela Ribeiro
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
- Faculty of Agrarian Sciences and Environment, University of the Azores, Açores, Portugal
| |
Collapse
|
5
|
Li J, Zhao R, Miao P, Xu F, Chen J, Jiang X, Hui Z, Wang L, Bai R. Discovery of anti-inflammatory natural flavonoids: Diverse scaffolds and promising leads for drug discovery. Eur J Med Chem 2023; 260:115791. [PMID: 37683361 DOI: 10.1016/j.ejmech.2023.115791] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 08/23/2023] [Accepted: 09/01/2023] [Indexed: 09/10/2023]
Abstract
Natural products have been utilized for medicinal purposes for millennia, endowing them with a rich source of chemical scaffolds and pharmacological leads for drug discovery. Among the vast array of natural products, flavonoids represent a prominent class, renowned for their diverse biological activities and promising therapeutic advantages. Notably, their anti-inflammatory properties have positioned them as promising lead compounds for developing novel drugs combating various inflammatory diseases. This review presents a comprehensive overview of flavonoids, highlighting their manifold anti-inflammatory activities and elucidating the underlying pathways in mediating inflammation. Furthermore, this review encompasses systematical classification of flavonoids, related anti-inflammatory targets, involved in vitro and in vivo test models, and detailed statistical analysis. We hope this review will provide researchers engaged in active natural products and anti-inflammatory drug discovery with practical information and potential leads.
Collapse
Affiliation(s)
- Junjie Li
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou, 311121, PR China; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Rui Zhao
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou, 311121, PR China; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Peiran Miao
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou, 311121, PR China; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Fengfeng Xu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou, 311121, PR China; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Jiahao Chen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou, 311121, PR China; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Xiaoying Jiang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou, 311121, PR China; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Zi Hui
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou, 311121, PR China; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China.
| | - Liwei Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou, 311121, PR China; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China.
| | - Renren Bai
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou, 311121, PR China; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China.
| |
Collapse
|
6
|
Alsaleh G, Richter FC, Simon AK. Age-related mechanisms in the context of rheumatic disease. Nat Rev Rheumatol 2022; 18:694-710. [PMID: 36329172 DOI: 10.1038/s41584-022-00863-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2022] [Indexed: 11/06/2022]
Abstract
Ageing is characterized by a progressive loss of cellular function that leads to a decline in tissue homeostasis, increased vulnerability and adverse health outcomes. Important advances in ageing research have now identified a set of nine candidate hallmarks that are generally considered to contribute to the ageing process and that together determine the ageing phenotype, which is the clinical manifestation of age-related dysfunction in chronic diseases. Although most rheumatic diseases are not yet considered to be age related, available evidence increasingly emphasizes the prevalence of ageing hallmarks in these chronic diseases. On the basis of the current evidence relating to the molecular and cellular ageing pathways involved in rheumatic diseases, we propose that these diseases share a number of features that are observed in ageing, and that they can therefore be considered to be diseases of premature or accelerated ageing. Although more data are needed to clarify whether accelerated ageing drives the development of rheumatic diseases or whether it results from the chronic inflammatory environment, central components of age-related pathways are currently being targeted in clinical trials and may provide a new avenue of therapeutic intervention for patients with rheumatic diseases.
Collapse
Affiliation(s)
- Ghada Alsaleh
- The Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, UK.
- Botnar Research Centre, NDORMS, University of Oxford, Oxford, UK.
| | - Felix C Richter
- The Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, UK
| | - Anna K Simon
- The Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, UK
| |
Collapse
|
7
|
Dalle Carbonare L, Bertacco J, Gaglio SC, Minoia A, Cominacini M, Cheri S, Deiana M, Marchetto G, Bisognin A, Gandini A, Antoniazzi F, Perduca M, Mottes M, Valenti MT. Fisetin: An Integrated Approach to Identify a Strategy Promoting Osteogenesis. Front Pharmacol 2022; 13:890693. [PMID: 35652047 PMCID: PMC9149166 DOI: 10.3389/fphar.2022.890693] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Abstract
Flavonoids may modulate the bone formation process. Among flavonoids, fisetin is known to counteract tumor growth, osteoarthritis, and rheumatoid arthritis. In addition, fisetin prevents inflammation-induced bone loss. In order to evaluate its favorable use in osteogenesis, we assayed fisetin supplementation in both in vitro and in vivo models and gathered information on nanoparticle-mediated delivery of fisetin in vitro and in a microfluidic system. Real-time RT-PCR, Western blotting, and nanoparticle synthesis were performed to evaluate the effects of fisetin in vitro, in the zebrafish model, and in ex vivo samples. Our results demonstrated that fisetin at 2.5 µM concentration promotes bone formation in vitro and mineralization in the zebrafish model. In addition, we found that fisetin stimulates osteoblast maturation in cell cultures obtained from cleidocranial dysplasia patients. Remarkably, PLGA nanoparticles increased fisetin stability and, consequently, its stimulating effects on RUNX2 and its downstream gene SP7 expression. Therefore, our findings demonstrated the positive effects of fisetin on osteogenesis and suggest that patients affected by skeletal diseases, both of genetic and metabolic origins, may actually benefit from fisetin supplementation.
Collapse
Affiliation(s)
| | - Jessica Bertacco
- Department of Medicine, University of Verona, Verona, Italy.,Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | | | - Arianna Minoia
- Department of Medicine, University of Verona, Verona, Italy
| | | | - Samuele Cheri
- Department of Medicine, University of Verona, Verona, Italy
| | - Michela Deiana
- Department of Medicine, University of Verona, Verona, Italy
| | | | - Anna Bisognin
- Biocrystallography Lab, Department of Biotechnology, University of Verona, Verona, Italy
| | - Alberto Gandini
- Department of Surgery, Dentistry, Pediatrics and Gynecology, University of Verona, Verona, Italy
| | - Franco Antoniazzi
- Department of Surgery, Dentistry, Pediatrics and Gynecology, University of Verona, Verona, Italy
| | - Massimiliano Perduca
- Biocrystallography Lab, Department of Biotechnology, University of Verona, Verona, Italy
| | - Monica Mottes
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Maria Teresa Valenti
- Department of Medicine, University of Verona, Verona, Italy.,Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| |
Collapse
|
8
|
Septembre-Malaterre A, Boumendjel A, Seteyen ALS, Boina C, Gasque P, Guiraud P, Sélambarom J. Focus on the high therapeutic potentials of quercetin and its derivatives. PHYTOMEDICINE PLUS : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 2:100220. [PMID: 35403087 PMCID: PMC8759805 DOI: 10.1016/j.phyplu.2022.100220] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/10/2022] [Accepted: 01/13/2022] [Indexed: 04/15/2023]
Abstract
BACKGROUND Polyphenols and particularly flavonoids are of constant interest to the scientific community. Flavonoids are investigated for their biological and pharmacological purposes, notably as antioxidant, anticancer, antiviral and for their anti-inflammatory activities. Certainly, one of the best-known flavonols recognized for its therapeutic and preventive properties, is quercetin. Despite its biological interest, quercetin suffer from some drawbacks, mainly related to its bioavailability. Hence, its synthetic or biosynthetic derivatives have been the subject of intensive research. The health-promoting biological activities of flavonols and derivatives mainly arise from their capacity to disrupt the host-pathogen interactions and/or to regulate host cellular functions including oxidative processes and immunological responses. In the age of coronavirus pandemic, the anti-inflammatory and antiviral potential of flavonols should be put forward to explore these substances for decreasing the viral load and inflammatory storm caused by the infection. PURPOSE OF STUDY The present review will decipher and discuss the antioxidant, anti-inflammatory and antiviral capacities of major flavonol with a focus on the molecular basis and structure-activity relationships. STUDY DESIGN Current study used a combination of quercetin derivatives, pathway, antioxidant, anti-inflammatory, antiviral activities as keywords to retrieve the literature. This study critically reviewed the current literature and presented the ability of natural analogs of quercetin having superior antioxidant, anti-inflammatory and antiviral effects than the original molecule. RESULTS This review allowed the identification of relevant key structure-activity relationship elements and highlight approaches on the mechanisms governing the antioxidant, antiviral and anti-inflammatory activities. CONCLUSION Through a critical analysis of the literature, flavonols and more precisely quercetin derivatives reviewed and found to act simultaneously on inflammation, virus and oxidative stress, three key factors that may lead to life threatening diseases.
Collapse
Affiliation(s)
- Axelle Septembre-Malaterre
- Université de La Réunion, Unité de recherche Etudes Pharmaco-Immunologie (EPI), CHU La Réunion site Félix Guyon, Allée des Topazes, CS11021, 97400 Saint Denis de La Réunion, France
- Laboratoire d'immunologie clinique et expérimentale de la zone de l'océan indien (LICE-OI) CHU La Réunion site Félix Guyon, Allée des Topazes, CS11021, 97400 Saint Denis de La Réunion, France
| | | | - Anne-Laure Sandenon Seteyen
- Université de La Réunion, Unité de recherche Etudes Pharmaco-Immunologie (EPI), CHU La Réunion site Félix Guyon, Allée des Topazes, CS11021, 97400 Saint Denis de La Réunion, France
| | - Chailas Boina
- Université de La Réunion, Unité de recherche Etudes Pharmaco-Immunologie (EPI), CHU La Réunion site Félix Guyon, Allée des Topazes, CS11021, 97400 Saint Denis de La Réunion, France
- Laboratoire d'immunologie clinique et expérimentale de la zone de l'océan indien (LICE-OI) CHU La Réunion site Félix Guyon, Allée des Topazes, CS11021, 97400 Saint Denis de La Réunion, France
| | - Philippe Gasque
- Université de La Réunion, Unité de recherche Etudes Pharmaco-Immunologie (EPI), CHU La Réunion site Félix Guyon, Allée des Topazes, CS11021, 97400 Saint Denis de La Réunion, France
- Laboratoire d'immunologie clinique et expérimentale de la zone de l'océan indien (LICE-OI) CHU La Réunion site Félix Guyon, Allée des Topazes, CS11021, 97400 Saint Denis de La Réunion, France
| | - Pascale Guiraud
- Université de La Réunion, Unité de recherche Etudes Pharmaco-Immunologie (EPI), CHU La Réunion site Félix Guyon, Allée des Topazes, CS11021, 97400 Saint Denis de La Réunion, France
| | - Jimmy Sélambarom
- Université de La Réunion, Unité de recherche Etudes Pharmaco-Immunologie (EPI), CHU La Réunion site Félix Guyon, Allée des Topazes, CS11021, 97400 Saint Denis de La Réunion, France
| |
Collapse
|
9
|
Mahmoud AM, Sayed AM, Ahmed OS, Abdel-Daim MM, Hassanein EHM. The role of flavonoids in inhibiting IL-6 and inflammatory arthritis. Curr Top Med Chem 2022; 22:746-768. [PMID: 34994311 DOI: 10.2174/1568026622666220107105233] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/21/2021] [Accepted: 10/28/2021] [Indexed: 11/22/2022]
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease that primarily affects the synovial joints. RA has well-known clinical manifestations and can cause progressive disability and premature death along with socioeconomic burdens. Interleukin-6 (IL-6) has been implicated in the pathology of RA where it can stimulate pannus formation, osteoclastogenesis, and oxidative stress. Flavonoids are plant metabolites with beneficial pharmacological effects, including anti-inflammatory, antioxidant, antidiabetic, anticancer, and others. Flavonoids are polyphenolic compounds found in a variety of plants, vegetables, and fruits. Many flavonoids have demonstrated anti-arthritic activity mediated mainly through the suppression of pro-inflammatory cytokines. This review thoroughly discusses the accumulate data on the role of flavonoids on IL-6 in RA.
Collapse
Affiliation(s)
- Ayman M Mahmoud
- Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Egypt
| | - Ahmed M Sayed
- Biochemistry Laboratory, Chemistry Department, Faculty of Science, Assiut University, Egypt
| | - Osama S Ahmed
- Faculty of Pharmacy, Al-Azhar University-Assiut Branch, Egypt
| | - Mohamed M Abdel-Daim
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Egypt
| | - Emad H M Hassanein
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University-Assiut Branch, Egypt
| |
Collapse
|
10
|
Behl T, Mehta K, Sehgal A, Singh S, Sharma N, Ahmadi A, Arora S, Bungau S. Exploring the role of polyphenols in rheumatoid arthritis. Crit Rev Food Sci Nutr 2021; 62:5372-5393. [PMID: 33998910 DOI: 10.1080/10408398.2021.1924613] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Rheumatoid arthritis (RA) is a chronic, inflammatory and autoimmune disorder which is mainly characterized by inflammation in joints, bone erosions and cartilaginous destruction that leads to joint dysfunction, deformation, and/or permanent functional impairment. The prevalence of RA is increasing, incurring a considerable burden on healthcare systems globally. The exact etiology of RA is unknown, with various pathways implicated in its pathophysiology. Non-steroidal anti-inflammatory drugs (NSAIDs) including celecoxib, diclofenac and ibuprofen, disease-modifying anti-rheumatic drugs (DMARD) including azathioprine, methotrexate and cyclosporine, biological agents including anakinra, infliximab, and rituximab and immunosuppressants are used for symptomatic relief in patients with RA, but these medications have severe adverse effects such as gastric ulcers, hypertension, hepatotoxicity and renal abnormalities which restrict their use in the treatment of RA; new RA treatments with minimal side-effects are urgently required. There is accumulating evidence that dietary polyphenols may show therapeutic efficacy in RA through their antioxidant, anti-inflammatory, apoptotic, and immunosuppressant activities and modulation of the tumor necrosis factor-α (TNF-α), interleukin (IL)-6, mitogen-activated protein kinase (MAPK), IL-1β, c-Jun N-terminal kinase (JNK), and nuclear factor κ light-chain-enhancer of activated B cell (NF-κB) pathways. While resveratrol, genistein, carnosol, epigallocatechin gallate, curcumin, kaempferol, and hydroxytyrosol have also been studied for the treatment of RA, the majority of data are derived from animal models. Here, we review the various pathways involved in the development of RA and the preclinical and clinical data supporting polyphenols as potential therapeutic agents in RA patients. Our review highlights that high-quality clinical studies are required to decisively establish the anti-rheumatic efficacy of polyphenolic compounds.
Collapse
Affiliation(s)
- Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Keshav Mehta
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Neelam Sharma
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Amirhossein Ahmadi
- Faculty of Pharmacy, Mazandaran University of Medial Sciences, Sari, Iran
| | - Sandeep Arora
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| |
Collapse
|
11
|
Cotoraci C, Ciceu A, Sasu A, Miutescu E, Hermenean A. Bioactive Compounds from Herbal Medicine Targeting Multiple Myeloma. APPLIED SCIENCES 2021; 11:4451. [DOI: 10.3390/app11104451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Multiple myeloma (MM) is one of the most widespread hematological cancers. It is characterized by a clonal proliferation of malignant plasma cells in the bone marrow and by the overproduction of monoclonal proteins. In recent years, the survival rate of patients with multiple myeloma has increased significantly due to the use of transplanted stem cells and of the new therapeutic agents that have significantly increased the survival rate, but it still cannot be completely cured and therefore the development of new therapeutic products is needed. Moreover, many patients have various side effects and face the development of drug resistance to current therapies. The purpose of this review is to highlight the bioactive active compounds (flavonoids) and herbal extracts which target dysregulated signaling pathway in MM, assessed by in vitro and in vivo experiments or clinical studies, in order to explore their healing potential targeting multiple myeloma. Mechanistically, they demonstrated the ability to promote cell cycle blockage and apoptosis or autophagy in cancer cells, as well as inhibition of proliferation/migration/tumor progression, inhibition of angiogenesis in the tumor vascular network. Current research provides valuable new information about the ability of flavonoids to enhance the apoptotic effects of antineoplastic drugs, thus providing viable therapeutic options based on combining conventional and non-conventional therapies in MM therapeutic protocols.
Collapse
Affiliation(s)
- Coralia Cotoraci
- Department of Hematology, Faculty of Medicine, Vasile Goldis Western University of Arad, Rebreanu 86, 310414 Arad, Romania
| | - Alina Ciceu
- “Aurel Ardelean” Institute of Life Sciences, Vasile Godis Western University of Arad, Rebreanu 86, 310414 Arad, Romania
| | - Alciona Sasu
- Department of Hematology, Faculty of Medicine, Vasile Goldis Western University of Arad, Rebreanu 86, 310414 Arad, Romania
| | - Eftimie Miutescu
- Department of Gastroenterology, Faculty of Medicine, Vasile Goldis Western University of Arad, Rebreanu 86, 310414 Arad, Romania
| | - Anca Hermenean
- “Aurel Ardelean” Institute of Life Sciences, Vasile Godis Western University of Arad, Rebreanu 86, 310414 Arad, Romania
- Department of Histology, Faculty of Medicine, Vasile Goldis Western University of Arad, Rebreanu 86, 310414 Arad, Romania
| |
Collapse
|
12
|
Fisetin Attenuates Lipopolysaccharide-Induced Inflammatory Responses in Macrophage. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5570885. [PMID: 33954178 PMCID: PMC8057890 DOI: 10.1155/2021/5570885] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/23/2021] [Accepted: 03/31/2021] [Indexed: 12/30/2022]
Abstract
Several studies have reported the efficacy and safety of polyphenols in human health; however, the verification of their efficacy remains insufficient. The aim of this study was to examine whether fisetin, one of flavonoids prevalently present in fruits and vegetables, could suppress lipopolysaccharide- (LPS-) induced inflammatory responses in macrophages. LPS increased proinflammatory mRNA abundance (MCP 1, IL-1β, and iNOS) but were suppressed by fisetin. The increment of nitric oxide by LPS, an oxidative stress factor, was attenuated by fisetin. In addition, LPS-enhanced phosphorylation of mitogen-activated protein kinase (ERK and JNK) was reduced. Finally, fisetin attenuated the expression or activity of uPA, uPAR, MMP-2, and MMP-9, which are known as associated factors of macrophage recruitment or infiltration. In conclusion, fisetin is a promising therapeutic agent for macrophage-related inflammation diseases, like sepsis and atherosclerosis.
Collapse
|
13
|
Cui J, Fan J, Li H, Zhang J, Tong J. Neuroprotective potential of fisetin in an experimental model of spinal cord injury: via modulation of NF-κB/IκBα pathway. Neuroreport 2021; 32:296-305. [PMID: 33470764 PMCID: PMC7886366 DOI: 10.1097/wnr.0000000000001596] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 12/08/2020] [Indexed: 01/19/2023]
Abstract
AIM To evaluate neuroprotective efficacy of fisetin against the experimental model of spinal cord injury (SCI). MATERIALS AND METHODS SCI was induced in male Sprague-Dawley rats by placing an aneurysm clip extradurally. Rats were treated either with vehicle or fisetin for 28 days after SCI. RESULTS Treatment with fisetin significantly attenuated SCI-induced alternations in mechano-tactile and thermal allodynia, hyperalgesia and nerve conduction velocities. SCI-induced upregulated tumor necrosis factor-alpha, interleukins, inducible nitric oxide synthase, cyclooxygenase-II, Bcl-2-associated X protein and caspase-3 mRNA expressions in the spinal cord and these were markedly reduced by fisetin. Spinal nuclear factor kappa B and nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor-alpha protein levels were also significantly downregulated by fisetin. Hematoxylin and eosin staining of spinal cord suggested that fisetin significantly ameliorated histological aberrations such as neuronal degeneration, necrosis and inflammatory infiltration induced in it. CONCLUSION Fisetin exerts neuroprotection via modulation of nuclear factor kappa B/nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor-alpha pathway by inhibiting release of inflammatory mediators (inducible nitric oxide synthase and cyclooxygenase-II), proinflammatory cytokines (tumor necrosis factor-alpha and interleukins), apoptotic mediators (Bcl-2-associated X protein and caspase-3).
Collapse
Affiliation(s)
| | - Jingshi Fan
- Department of Pathology, Baoding First Central Hospital, Baoding, Hebei Province, China
| | | | - Jinku Zhang
- Department of Pathology, Baoding First Central Hospital, Baoding, Hebei Province, China
| | | |
Collapse
|
14
|
Lee SB, Lee JS, Wang JH, Kim MY, Choi YH, Lee HD, Son CG. Genotoxicity of Water Extract from Bark-Removed Rhus verniciflua Stokes. Molecules 2021; 26:molecules26040896. [PMID: 33567750 PMCID: PMC7914431 DOI: 10.3390/molecules26040896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 11/16/2022] Open
Abstract
Rhus verniciflua Stokes (RVS) has been traditionally used as an herbal remedy to support the digestive functions in traditional Korean medicine. Additionally, the pharmacological effects of RVS, including antioxidative, antimicrobial and anticancer activities, have been well-reported. The genotoxicity of RVS, however, is elusive; thus, we evaluated the genotoxicity of RVS without bark (RVX) for safe application as a resource of functional food or a medical drug. To evaluate the genotoxicity of RVX, we used a bacterial reverse mutation test, chromosomal aberration test and comet assay, according to the “Organization for Economic Co-operation and Development” (OECD) guidelines. Briefly, for the reverse mutation test, samples (5000, 1667, 556, 185, 62 and 0 μg/plate of RVX or the positive control) were treated with a precultured strain (TA98, TA100, TA1535, TA1537 or WP2µvrA) with or without the S9 mix, in which RVX partially induced a reverse mutation in four bacterial strains. From the chromosomal aberration test and comet assay, the RVX samples (556, 185, 62, 20 and 0 μg/mL of RVX or the positive control) were treated in a Chinese hamster ovary cell line (CHO-K1 cells) in the conditions of the S9 mix absent or S9 mix present and in Chang liver cells and C2C12 myoblasts, respectively. No chromosomal aberrations in CHO-K1 or DNA damage in Chang liver cells and C2C12 myoblasts was observed. In conclusion, our results suggest the non-genotoxicity of RVX, which would be helpful as a reference for the safe application of bark-removed Rhus verniciflua Stokes as functional raw materials in the food, cosmetics or pharmaceutical fields.
Collapse
Affiliation(s)
- Sung-Bae Lee
- Institute of Bioscience & Integrative Medicine, Daejeon University, 176 split 75 Daedeokdae-ro Seo-gu, Daejeon 35235, Korea; (S.-B.L.); (J.-S.L.); (J.-H.W.)
| | - Jin-Seok Lee
- Institute of Bioscience & Integrative Medicine, Daejeon University, 176 split 75 Daedeokdae-ro Seo-gu, Daejeon 35235, Korea; (S.-B.L.); (J.-S.L.); (J.-H.W.)
| | - Jing-Hua Wang
- Institute of Bioscience & Integrative Medicine, Daejeon University, 176 split 75 Daedeokdae-ro Seo-gu, Daejeon 35235, Korea; (S.-B.L.); (J.-S.L.); (J.-H.W.)
| | - Min-Young Kim
- Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan 47227, Korea; (M.-Y.K.); (Y.-H.C.)
| | - Yung-Hyun Choi
- Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan 47227, Korea; (M.-Y.K.); (Y.-H.C.)
| | - Hwa-Dong Lee
- National Institute for Korean Medicine Development, Gyeongsan-si 38540, Korea;
| | - Chang-Gue Son
- Institute of Bioscience & Integrative Medicine, Daejeon University, 176 split 75 Daedeokdae-ro Seo-gu, Daejeon 35235, Korea; (S.-B.L.); (J.-S.L.); (J.-H.W.)
- Correspondence: ; Tel.: +82-42-257-6397
| |
Collapse
|
15
|
Lee HS, Jung JI, Kim KH, Park SJ, Kim EJ. Toxicodendron vernicifluum Stokes extract inhibits solid tumor growth and lung metastasis of 4T1 murine mammary carcinoma cells in BALB/c mice. PLoS One 2020; 15:e0241805. [PMID: 33152052 PMCID: PMC7646375 DOI: 10.1371/journal.pone.0241805] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 10/20/2020] [Indexed: 12/24/2022] Open
Abstract
Toxicodendron vernicifluum Stokes has long been used as a food supplement and traditional herbal medicine in East Asia. We applied a new extraction method to produce Toxicodendron vernicifluum Stokes extract (TVSE), that doesn't contain urushiol (an allergenic toxin) but dose have higher levels of some flavonoids such as fustin and fisetin. This study was conducted to investigate the anticancer effects of TVSE in an in vivo system. Fifty BALB/c mice were acclimated for one week and then injected with 4T1 murine mammary carcinoma cells in mammary fat pads. After 7 days, the mice were randomly divided into 5 groups, and orally administered with 0, 50, 100, 200 or 400 mg of TVSE/kg body weight (BW)/day for 20 days. TVSE reduced tumor volume and weight dose-dependently. The expression of Ki67 was significantly reduced and the number of TUNEL-positive apoptotic cells was significantly increased in the TVSE-treated group over 100 mg/kg BW/day. While tumor nodules were not found in the liver, but only in lungs, the number of tumor nodules was reduced in a dose-dependent manner in the TVSE treated groups compared to the control group. In breast tumors, expression of platelet endothelial cell adhesion molecule (PECAM-1) and vascular endothelial growth factor (VEGF) was reduced by TVSE treatment. TVSE treatment significantly suppressed mRNA expression in tumors of matrix metalloproteinase (MMP)-2, tissue inhibitor of metalloproteinase (TIMP)-1, urokinase-type plasminogen activator (uPA), intercellular adhesion molecule (ICAM)-1, and vascular cell adhesion molecule (VCAM)-1 while increasing plasminogen activator inhibitor (PAI)-1. These results suggest that TVSE is potentially beneficial for the suppression of breast cancer growth and its-associated lung metastasis.
Collapse
Affiliation(s)
- Hyun Sook Lee
- Department of Food Science & Nutrition, Dongseo University, Busan,
Korea
| | - Jae In Jung
- Regional Strategic Industry Innovation Center, Hallym University,
Chuncheon, Korea
| | | | | | - Eun Ji Kim
- Regional Strategic Industry Innovation Center, Hallym University,
Chuncheon, Korea
| |
Collapse
|
16
|
Anti-Influenza Activity of an Ethyl Acetate Fraction of a Rhus verniciflua Ethanol Extract by Neuraminidase Inhibition. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:8824934. [PMID: 33204399 PMCID: PMC7661131 DOI: 10.1155/2020/8824934] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 09/25/2020] [Accepted: 10/14/2020] [Indexed: 11/18/2022]
Abstract
Antigenic mismatch can cause influenza vaccines to be ineffective, and influenza viruses resistant to antiviral drugs are rising. Thus, development of antiviral agents against these viruses is an immediate need. Rhus verniciflua (RVS) has long been used in herbal medicine and as a nutritional supplement. The effect of RVS and its components on influenza virus has not, however, been reported. We found that RVS treatment significantly reduced viral replication when evaluated with green fluorescent protein- (GFP-) tagged virus (influenza A virus, A/PR/8/34-GFP) in Madin-Darby canine kidney (MDCK) cells. RVS showed significant inhibition of neuraminidase from A/PR/8/34. Subsequently, three fractions were prepared from an ethanolic crude extract of RVS. In vitro assays indicated that an ethyl acetate fraction (RVSE) was more potent than H2O and CHCl3 fractions. RVSE significantly suppressed influenza virus infection in MDCK cells via neuraminidase inhibition. Additionally, RVSE treatment inhibited expression of several virus proteins and decreased mortality of mice exposed to influenza A/PR/8/34 by 50% and reduced weight loss by 11.5%. Active components in RVSE were isolated, and 5-deoxyluteolin (5) and sulfuretin (7) demonstrate the highest neuraminidase inhibitory activity against influenza A virus. RVS, RVSE, and their constituents may be useful for the development of anti-influenza agents.
Collapse
|
17
|
Lee HS, Jung JI, Kim KH, Park SJ, Kim EJ. Rhus verniciflua Stokes extract suppresses migration and invasion in human gastric adenocarcinoma AGS cells. Nutr Res Pract 2020; 14:463-477. [PMID: 33029287 PMCID: PMC7520559 DOI: 10.4162/nrp.2020.14.5.463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/27/2020] [Accepted: 05/20/2020] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND/OBJECTIVES Many studies have suggested that Rhus verniciflua Stokes (RVS) and its extract are anticancer agents. However, RVS had limited use because it contains urushiol, an allergenic toxin. By improving an existing allergen-removal extraction method, we developed a new allergen-free Rhus verniciflua Stokes extract (RVSE) with higher flavonoid content. In this study, we examined whether RVSE inhibits the ability of AGS gastric cancer cells to migrate and invade. MATERIALS/METHODS The flavonoids content of RVSE was analyzed by HPLC. The effects of RVSE on migration and invasion in AGS cells were analyzed by each assay kit. Matrix metalloproteinase (MMP)-9, plasminogen activator inhibitor-1 (PAI-1) and urokinase-type plasminogen activator (uPA) protein expression was analyzed by protein antibody array. The Phosphorylation of signal transducer and activator of transcription (STAT) 3 were assayed by Western blot analysis. RESULTS RVSE treatment with 0-100 μg/mL dose-dependently reduced the ability of AGS cells to migrate and invade. Notably, treatment with RVSE strongly inhibited the expression of MMP-9 and uPA and the phosphorylation of STAT3. In contrast, RVSE treatment dramatically increased the expression of PAI-1. These results indicate that the inhibition of MMP-9 and uPA expression and STAT3 phosphorylation and the stimulation of PAI-1 expression contributed to the decreased migration and invasion of AGS cells treated with RVSE. CONCLUSIONS These results suggest that RVSE may be used as a natural herbal agent to reduce gastric cancer metastasis.
Collapse
Affiliation(s)
- Hyun Sook Lee
- Department of Food Science & Nutrition, Dongseo University, Busan 47011, Korea
| | - Jae In Jung
- Regional Strategic Industry Innovation Center, Hallym University, Chuncheon 24252, Korea
| | | | | | - Eun Ji Kim
- Regional Strategic Industry Innovation Center, Hallym University, Chuncheon 24252, Korea
| |
Collapse
|
18
|
Ren Q, Guo F, Tao S, Huang R, Ma L, Fu P. Flavonoid fisetin alleviates kidney inflammation and apoptosis via inhibiting Src-mediated NF-κB p65 and MAPK signaling pathways in septic AKI mice. Biomed Pharmacother 2019; 122:109772. [PMID: 31918290 DOI: 10.1016/j.biopha.2019.109772] [Citation(s) in RCA: 222] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 11/30/2019] [Accepted: 12/04/2019] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Sepsis is defined as end-organ dysfunction resulting from the host's inflammatory response to infection. One of the most common sepsis-injured organs is the kidneys, resulting in acute kidney injury (AKI) that contributes to the high morbidity and mortality, especially patients in the intensive care unit. Fisetin, a naturally occurring flavonoid, has been reported to protect against the rat of lipopolysaccharide (LPS)-induced acute lung injury. However, the effect of fisetin on septic AKI remains unknown. PURPOSE The current study proposed to systematically investigate the renoprotective effects and the underlying mechanisms of fisetin in septic AKI mice. METHODS The model of septic AKI was established on male C57BL/6 J mice by a single intraperitoneal injection of LPS (10 mg/kg). Fisetin was administrated by gavage at 100 mg/kg for 3 consecutive days before LPS injection and the mice were sacrificed at 16 h after LPS injection. The serum and kidney samples were evaluated for biochemical analysis, histopathological examinations as well as inflammation and apoptosis related gene/protein expression. RESULTS Pretreatment with fisetin significantly alleviated the elevated levels of serum creatinine and blood urea nitrogen in LPS-treated mice. Consistently, LPS induced renal damage as implied by histopathological score and the increased injury markers NGAL and KIM-1, which was attenuated by fisetin. Meanwhile, LPS injection triggered proinflammatory cytokine production and inflammation related proteins in the kidneys. However, fisetin inhibited renal expression of IL-6, IL-1β, TNF-α, HMGB1, iNOS and COX-2 to improve inflammatory response. Furthermore, fisetin effectively reduced the number of TUNEL positive apoptotic cells and suppressed apoptotic protein of Bcl-2, BAX and cleaved caspase-3 in the kidneys of LPS-induced septic AKI. Mechanistically, LPS stimulated the expression of TLR4 and the phosphorylation of NF-κB p65, MAPK (p38, ERK1/2 and JNK), Src and AKT in the injured kidneys, while fisetin notably suppressed the corresponding protein expression. CONCLUSION Fisetin alleviated kidney inflammation and apoptosis to protect against LPS-induced septic AKI mice via inhibiting Src-mediated NF-κB p65 and MAPK signaling pathways.
Collapse
Affiliation(s)
- Qian Ren
- Division of Nephrology and National Clinical Research Center for Geriatrics, Kidney Research Institute, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Fan Guo
- Division of Nephrology and National Clinical Research Center for Geriatrics, Kidney Research Institute, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Sibei Tao
- Division of Nephrology and National Clinical Research Center for Geriatrics, Kidney Research Institute, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Rongshuang Huang
- Division of Nephrology and National Clinical Research Center for Geriatrics, Kidney Research Institute, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Liang Ma
- Division of Nephrology and National Clinical Research Center for Geriatrics, Kidney Research Institute, West China Hospital of Sichuan University, Chengdu, 610041, China.
| | - Ping Fu
- Division of Nephrology and National Clinical Research Center for Geriatrics, Kidney Research Institute, West China Hospital of Sichuan University, Chengdu, 610041, China
| |
Collapse
|
19
|
Immune Checkpoint PD-1/PD-L1 CTLA-4/CD80 are Blocked by Rhus verniciflua Stokes and its Active Compounds. Molecules 2019; 24:molecules24224062. [PMID: 31717574 PMCID: PMC6891444 DOI: 10.3390/molecules24224062] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 11/04/2019] [Accepted: 11/05/2019] [Indexed: 01/24/2023] Open
Abstract
The bark of Rhus verniciflua Stokes (RVS) has been used to treat cancer in Korean herbal medicine. When we screened for PD-1 and CTLA-4 immune checkpoint inhibitors (PD-1/PD-L1 CTLA-4/CD80) from around 800 herbal extracts using competitive Enzyme-Linked Immunosorbent Assay (ELISA), we found that RVS blocked both the PD-1/PD-L1 and the CTLA-4/CD80 interactions. To identify the active compounds from RVS, we performed bioactivity-guided fractionation, and the ethyl acetate (EtOAc) fraction of RVS proved to be the most effective at blocking the PD-1/PD-L1 and CTLA-4/CD80 interactions. In addition, we isolated and identified 20 major compounds in the EtOAc fraction of RVS and then examined the blocking effects of these 20 compounds on PD-1/PD-L1 and CTLA-4/CD80. Among them, four compounds [eriodictyol (7) > fisetin (9) > quercetin (18) > liquiritigenin (13)] blocked the interaction of PD-1/PD-L1 on competitive ELISA. In addition, four different compounds [protocatechuic acid (2) > caffeic acid (19) > taxifolin (5) > butin (6)] blocked the interaction of CTLA-4/CD80. Our findings suggest that RVS and its components could be used as a potential immune checkpoint inhibitor blockade and could be developed for immuno-oncological therapeutics.
Collapse
|
20
|
Effect of Rhus verniciflua Extract on IgE-Antigen-Mediated Allergic Reaction in Rat Basophilic Leukemic RBL-2H3 Mast Cells and Passive Cutaneous Anaphylaxis in Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:6497691. [PMID: 31687037 PMCID: PMC6811800 DOI: 10.1155/2019/6497691] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 08/03/2019] [Accepted: 08/26/2019] [Indexed: 01/10/2023]
Abstract
Rhus verniciflua is widely known for its antioxidant, antibacterial, anticancer, and antiaging efficacy and α-glucosidase inhibition. This study was designed whether Rhus verniciflua extracts inhibit the IgE-antigen-mediated allergic reaction in RBL-2H3 mast cells, and it further investigated the FcεRI- and arachidonate-signaling by which Rhus verniciflua extracts exert its antiallergic effects. IgE-antigen-sensitized RBL-2H3 mast cells were investigated for the cytotoxicity of Rhus verniciflua extracts and β-hexosaminidase release, and inflammatory mediators (e.g., TNF-α, IL-4, IL-6, histamine, and PGD2) were then assessed. Additionally, we examined expressions of genes involved in arachidonate- and FcεRI-signaling pathway in RBL-2H3. Rhus verniciflua extracts inhibited β-hexosaminidase release and production of the inflammatory mediators in RBL-2H3. Rhus verniciflua extracts reduced amounts of histamine and expressions of FcεRI signaling-related genes such as Lyn and Syk and phosphorylation of extracellular signal-regulated kinase in mast cells. Finally, in late allergic responses, Rhus verniciflua extracts reduced PGD2 release and COX-2 and cPLA2 phosphorylation expressions from IgE-antigen-mediated mast cells. Lastly, 250–500 mg/kg RVE significantly attenuated the Ag/IgE-induced passive cutaneous anaphylaxis (PCA) reaction in mice. These findings provide novel information on the molecular mechanisms underlying the antiallergy properties of Rhus verniciflua extracts in FcɛRI-mediated allergic reaction.
Collapse
|
21
|
Kitanaka N, Nakano R, Sugiura K, Kitanaka T, Namba S, Konno T, Nakayama T, Sugiya H. Interleukin-1β promotes interleulin-6 expression via ERK1/2 signaling pathway in canine dermal fibroblasts. PLoS One 2019; 14:e0220262. [PMID: 31344106 PMCID: PMC6658082 DOI: 10.1371/journal.pone.0220262] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 07/11/2019] [Indexed: 12/18/2022] Open
Abstract
Interleukin-6 (IL-6) is a pleiotropic cytokine involved in the regulation of the immune response and inflammation. In this study, we investigated effect of the proinflammatory cytokine interleukin-1β (IL-1β) on IL-6 expression in canine dermal fibroblasts. IL-1β induced IL-6 mRNA expression and protein release in a time- and dose-dependent manner. When cells were treated with inhibitors of mitogen-activated protein kinases (MAPKs), the extracellular signal-regulated kinase (ERK) inhibitor FR180240 inhibited IL-1β-induced IL-6 mRNA expression, but not SP600125 or SKF86002, which are c-Jun N-terminal kinase (JNK) and p38 MAPK inhibitors, respectively. In cells treated with U0126, an inhibitor of MAPK/ERK kinase (MEK), which activates ERK, IL-1β-induced IL-6 mRNA expression was also inhibited. IL-1β stimulated ERK1/2 phosphorylation. In cells transfected with ERK1 and ERK2 isoform siRNAs, IL-1β-induced IL-6 mRNA expression was reduced. These observations suggest that IL-1β induces IL-6 expression via ERK1/2 signaling pathway in canine dermal fibroblasts.
Collapse
Affiliation(s)
- Nanako Kitanaka
- Laboratory of Veterinary Biochemistry, Nihon University College of Bioresource Sciences, Kameino, Fujisawa, Kanagawa, Japan
| | - Rei Nakano
- Laboratory of Veterinary Biochemistry, Nihon University College of Bioresource Sciences, Kameino, Fujisawa, Kanagawa, Japan
- Laboratory for Cellular Function Conversion Technology, RIKEN Center for Integrative Medical Sciences, Suehiro-cho, Tsurumi, Yokohama, Kanagawa, Japan
| | - Kanae Sugiura
- Laboratory of Veterinary Biochemistry, Nihon University College of Bioresource Sciences, Kameino, Fujisawa, Kanagawa, Japan
| | - Taku Kitanaka
- Laboratory of Veterinary Biochemistry, Nihon University College of Bioresource Sciences, Kameino, Fujisawa, Kanagawa, Japan
| | - Shinichi Namba
- Laboratory of Veterinary Biochemistry, Nihon University College of Bioresource Sciences, Kameino, Fujisawa, Kanagawa, Japan
| | - Tadayoshi Konno
- Laboratory of Veterinary Biochemistry, Nihon University College of Bioresource Sciences, Kameino, Fujisawa, Kanagawa, Japan
| | - Tomohiro Nakayama
- Laboratory of Veterinary Radiotherapy, Nihon University College of Bioresource Sciences, Kameino, Fujisawa, Kanagawa, Japan
| | - Hiroshi Sugiya
- Laboratory of Veterinary Biochemistry, Nihon University College of Bioresource Sciences, Kameino, Fujisawa, Kanagawa, Japan
| |
Collapse
|
22
|
Tsai YH, Lin JJ, Ma YS, Peng SF, Huang AC, Huang YP, Fan MJ, Lien JC, Chung JG. Fisetin Inhibits Cell Proliferation through the Induction of G 0/G 1 Phase Arrest and Caspase-3-Mediated Apoptosis in Mouse Leukemia Cells. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2019; 47:841-863. [PMID: 31096772 DOI: 10.1142/s0192415x19500447] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Fisetin, a naturally occurring flavonoid, is found in common fruits and vegetables and has been shown to induce cytotoxic effects in many human cancer cell lines. No information has shown that fisetin induced cell cycle arrest and apoptosis in mouse leukemia WEHI-3 cells. We found that fisetin decreased total viable cells through G0/G1 phase arrest and induced sub-G1 phase (apoptosis). We have confirmed fisetin induced cell apoptosis by the formation of DNA fragmentation and induction of apoptotic cell death. Results indicated that fisetin induced intracellular Ca 2+ increase but decreased the ROS production and the levels of ΔΨ m in WEHI-3 cells. Fisetin increased the activities of caspase-3, -8 and -9. Cells were pre-treated with inhibitors of caspase-3, -8 and -9 and then treated with fisetin and results showed increased viable cell number when compared to fisetin treated only. Fisetin reduced expressions of cdc25a but increased p-p53, Chk1, p21 and p27 that may lead to G0/G1 phase arrest. Fisetin inhibited anti-apoptotic protein Bcl-2 and Bcl-xL and increased pro-apoptotic protein Bax and Bak. Furthermore, fisetin increased the protein expression of cytochrome c and AIF. Fisetin decreased cell number through G0/G1 phase arrest via the inhibition of cdc25c and induction of apoptosis through caspase-dependent and mitochondria-dependent pathways. Therefore, fisetin may be useful as a potential therapeutic agent for leukemia.
Collapse
Affiliation(s)
- Yu-Hsiang Tsai
- * Department of Biological Science and Technology, China Medical University, Taichung 40402, Taiwan
| | - Jen-Jyh Lin
- † Department of Respiratory Therapy, China Medical University, Taichung 40402, Taiwan.,¶ Division of Cardiology, China Medical University Hospital, Taichung 40402, Taiwan
| | - Yi-Shih Ma
- ∥ School of Chinese Medicine for Post-Baccalaureate, I-Shou University, Kaohsiung 84001, Taiwan.,** Department of Chinese Medicine, E-Da Hospital, Kaohsiung 82445, Taiwan
| | - Shu-Fen Peng
- * Department of Biological Science and Technology, China Medical University, Taichung 40402, Taiwan
| | - An-Cheng Huang
- †† Department of Nursing, St. Mary's Junior College of Medicine, Nursing and Management, Yilan 26644, Taiwan
| | - Yi-Ping Huang
- ‡ Department of Physiology, College of Medicine, China Medical University, Taichung 40402, Taiwan
| | - Ming-Jen Fan
- ‡‡ Department of Biotechnology, Asia University, Taichung 41354, Taiwan
| | - Jin-Cherng Lien
- § School of Pharmacy, China Medical University, Taichung 40402, Taiwan
| | - Jing-Gung Chung
- * Department of Biological Science and Technology, China Medical University, Taichung 40402, Taiwan.,‡‡ Department of Biotechnology, Asia University, Taichung 41354, Taiwan
| |
Collapse
|
23
|
Could Polyphenols Help in the Control of Rheumatoid Arthritis? Molecules 2019; 24:molecules24081589. [PMID: 31013659 PMCID: PMC6515230 DOI: 10.3390/molecules24081589] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/16/2019] [Accepted: 04/20/2019] [Indexed: 12/20/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic, systemic, joint-invading, autoimmune inflammatory disease, which causes joint cartilage breakdown and bone damage, resulting in functional impairment and deformation of the joints. The percentage of RA patients has been rising and RA represents a substantial burden for patients around the world. Despite the development of many RA therapies, because of the side effects and low effectiveness of conventional drugs, patients still need and researchers are seeking new therapeutic alternatives. Polyphenols extracted from natural products are effective on several inflammatory diseases, including RA. In this review polyphenols are classified into four types: flavonoids, phenolic acids, stilbenes and others, among which mainly flavonoids are discussed. Researchers have reported that anti-RA efficacies of polyphenols are based mainly on three mechanisms: their anti-inflammatory, antioxidant and apoptotic properties. The main RA factors modified by polyphenols are mitogen-activated protein kinase (MAPK), interleukin-1β (IL-1β), IL-6, tumor necrosis factor-α (TNF-α), nuclear factor κ light chain enhancer of activated B cells (NF-κB) and c-Jun N-terminal kinases (JNK). Polyphenols could be potent alternative RA therapies and sources for novel drugs for RA by affecting its key mechanisms.
Collapse
|
24
|
Ku SK, Jeong SY, Yang S, Kim KM, Choi H, Bae JS. Suppressive effects of collismycin C on polyphosphate-mediated vascular inflammatory responses. Fitoterapia 2019; 134:447-453. [DOI: 10.1016/j.fitote.2019.03.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 03/20/2019] [Accepted: 03/22/2019] [Indexed: 01/18/2023]
|
25
|
Lee BS, Lee C, Yang S, Park EK, Ku SK, Bae JS. Suppressive effects of pelargonidin on lipopolysaccharide-induced inflammatory responses. Chem Biol Interact 2019; 302:67-73. [DOI: 10.1016/j.cbi.2019.02.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 02/06/2019] [Accepted: 02/08/2019] [Indexed: 12/20/2022]
|
26
|
Fisetin rescues retinal functions by suppressing inflammatory response in a DBA/2J mouse model of glaucoma. Doc Ophthalmol 2019; 138:125-135. [PMID: 30756213 DOI: 10.1007/s10633-019-09676-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 01/26/2019] [Indexed: 12/13/2022]
Abstract
PURPOSE Glaucoma is a common chronic neurodegenerative disease, which could lead to visual loss. In this study, we aimed to investigate whether fisetin, a natural flavone with anti-inflammatory and antioxidant properties, is able to alleviate glaucoma. METHODS We employed a DBA/2J mouse model which was treated with or without fisetin. Pattern electroretinogram (P-ERG), visual evoked potentials (VEPs) and intraocular pressure (IOP) were evaluated. Quantitative real-time polymerase chain reaction and enzyme-linked immunosorbent assay (ELISA) were used to measure the expression levels of TNF-α, IL-1β and IL-6. Western blotting was performed to assess the activation of nuclear factor kappa-B (NF-κB). RESULTS We found that DBA/2J mice treated with fisetin (10-30 mg/kg) showed improved P-ERG and VEP amplitudes and reduced IOP compared to untreated DBA/2J mice. In addition, there were more survived retinal ganglion cells (RGCs) and less activated microglia in fisetin-treated DBA/2J mice than those in untreated mice. Furthermore, secreted protein levels and mRNA levels of TNF-α, IL-1β and IL-6 were significantly repressed by fisetin. The phosphorylated p65 level in the nucleus was dramatically reduced in fisetin-treated mice compared to it in untreated mice. Our results demonstrate that fisetin may exert its function through regulating cytokine productions and inhibiting NF-κB activation in the retina. CONCLUSION In conclusion, fisetin is able to promote the visual functions of DBA/2J mice by inhibiting NF-κB activation.
Collapse
|
27
|
Jeong JH, Back SK, An JH, Lee NS, Kim DK, Na CS, Jeong YG, Han SY. Topical film prepared with Rhus verniciflua extract-loaded pullulan hydrogel for atopic dermatitis treatment. J Biomed Mater Res B Appl Biomater 2019; 107:2325-2334. [PMID: 30697924 DOI: 10.1002/jbm.b.34325] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 11/26/2018] [Accepted: 12/23/2018] [Indexed: 12/22/2022]
Abstract
Atopic dermatitis (AD) is characterized by relapsing pruritus and skin dryness. Due to the pathogenic multiplicity and the adverse effects associated with the current therapeutics, development of transdermal drug delivery system is becoming an area of interest. Here, a novel topical film prepared with Rhus verniciflua extract (RVE)-loaded pullulan hydrogel (RVE@PH) was synthesized and tested its therapeutic efficacy on the AD rats modeled by neonatal capsaicin injection method. The RVE@PH was characterized by a Fourier-transform infrared spectroscopy and an in vitro release assay. Rat pups were randomly divided into two groups: vehicle-treated (VEH; n = 5) and capsaicin-treated (n = 15). The latter were given capsaicin subcutaneously at 24 h after birth for AD induction and further divided into three groups (n = 5 per each): not treated (CAP), pullulan hydrogel-applied (PH), and RVE@PH-applied (RVE-PH). The pullulan hydrogel and RVE@PH were topically applied on shoulder lesions for 14 days (from 42 to 56 days after birth). Their phenotypes were compared based on the dermatitis score, epidermal thickness, mast cell infiltration, and serum myeloperoxidase (MPO) activities. The PH group showed significant attenuation in all the aforementioned values compared to the CAP group, suggesting that pullulan hydrogel itself has therapeutic activity against AD. Notably, the attenuations were more potent in the RVE-PH group than the PH group, indicating that the therapeutic efficacy against AD is augmented by the presence of RVE, a loaded pharmaceutic. Collectively, these results indicate that RVE@PH inhibits AD through exerting the dual roles, that is, the pullulan hydrogel-mediated physical and RVE-mediated pharmaceutical actions. © 2019 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B: 2325-2334, 2019.
Collapse
Affiliation(s)
- Ji Heun Jeong
- Department of Anatomy, College of Medicine, Konyang University, Daejeon, 35365, South Korea
| | - Seung Keun Back
- Department of Biomedical Laboratory Science, College of Medical Science, Konyang University, Daejeon, 35365, South Korea
| | - Jong Hun An
- Department of Anatomy, College of Medicine, Konyang University, Daejeon, 35365, South Korea
| | - Nam-Seob Lee
- Department of Anatomy, College of Medicine, Konyang University, Daejeon, 35365, South Korea
| | - Do-Kyung Kim
- Department of Anatomy, College of Medicine, Konyang University, Daejeon, 35365, South Korea
| | - Chun Soo Na
- Lifetree Co., Ltd., Suwon, 63421, South Korea
| | - Young-Gil Jeong
- Department of Anatomy, College of Medicine, Konyang University, Daejeon, 35365, South Korea
| | - Seung Yun Han
- Department of Anatomy, College of Medicine, Konyang University, Daejeon, 35365, South Korea.,Myunggok Research Institute, College of Medicine, Konyang University, Daejeon, 35365, South Korea
| |
Collapse
|
28
|
Feng C, Yuan X, Chu K, Zhang H, Ji W, Rui M. Preparation and optimization of poly (lactic acid) nanoparticles loaded with fisetin to improve anti-cancer therapy. Int J Biol Macromol 2018; 125:700-710. [PMID: 30521927 DOI: 10.1016/j.ijbiomac.2018.12.003] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 11/26/2018] [Accepted: 12/01/2018] [Indexed: 12/16/2022]
Abstract
Fisetin is a natural flavonoid with promising antitumor activity, whereas its clinical application is limited by its hydrophobic property. In this study, we aimed to load fisetin into poly(lactic acid) (PLA) nanoparticles to increase fisetin's solubility and therapeutic efficacy. Based on spontaneous emulsification solvent diffusion (SESD) method, the formulation of PLA nanoparticles was optimized by two successive experimental designs. One-factor-at-a-time variation experiments were first applied to investigate the effects of four process variables on three responses, including drug encapsulation efficiency, average particles size and cumulative drug release ratio, followed by determining the possible ranges of these variables. Subsequently, the combinations of four variables at best levels were evaluated using a Taguchi orthogonal array design with regard to the same three responses. Eventually, the nanoparticle prepared by optimized procedure showed a narrow size distribution around 226.85 ± 4.78 nm with a high encapsulation efficiency of 90.35%. The incorporation of fisetin in nanoparticles was subsequently confirmed by FT-IR and DSC spectroscopy. Furthermore, cytotoxicity assay against HCT116 colon cancer cells in vitro and antitumor test in a xenograft 4T1 breast cancer model in vivo demonstrated that the antitumor effect of drug-loaded nanoparticles was superior to that of free drug solution.
Collapse
Affiliation(s)
- Chunlai Feng
- Department of Pharmaceutics, School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China.
| | - Xianqin Yuan
- Department of Pharmaceutics, School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China
| | - Kexin Chu
- Department of Pharmaceutics, School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China
| | - Haisheng Zhang
- Department of Pharmaceutics, School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China
| | - Wei Ji
- Department of Pharmaceutics, School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China
| | - Mengjie Rui
- Department of Pharmaceutics, School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China.
| |
Collapse
|
29
|
Farsad-Naeimi A, Alizadeh M, Esfahani A, Darvish Aminabad E. Effect of fisetin supplementation on inflammatory factors and matrix metalloproteinase enzymes in colorectal cancer patients. Food Funct 2018. [PMID: 29541713 DOI: 10.1039/c7fo01898c] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A growing body of evidence indicates that inflammation is associated with tumorigenesis, metastasis and chemotherapeutic resistance in patients with colorectal cancer (CRC). Natural flavonoids are promising agents for inflammation-related tumor progression in patients with CRC. This study aimed to assess the efficacy of flavonoid fisetin supplementation on the inflammatory status and matrix metalloproteinase (MMP) levels in these patients. In this double-blind, randomized placebo-controlled clinical trial, 37 CRC patients undergoing chemotherapy were assigned to receive either 100 mg fisetin (n = 18) or placebo (n = 19) for seven consecutive weeks. The supplementation began one week before chemotherapy and continued until the end of the second chemotherapy cycle. Levels of interleukin (IL)-8, IL-10, high-sensitivity C-reactive protein (hs-CRP), MMP-7, and MMP-9 were measured in plasma using ELISA, before and after the intervention. The trial was registered at http://www.irct.ir (code: IRCT2015110511288N9). The participants were 55.59 ± 15.46 years old with 62.16% being male. After the intervention, the plasma levels of IL-8 and hs-CRP reduced significantly in the fisetin group (p < 0.04 and p < 0.01, respectively). Additionally, fisetin supplementation suppressed the values of MMP-7 levels (p < 0.02). However, significant changes were observed only in IL-8 concentrations in the fisetin group when compared with the placebo group (p < 0.03). The changes in the levels of other metabolic factors were not statistically significant. According to the results, fisetin could improve the inflammatory status in CRC patients, suggesting it as a novel complementary antitumor agent for these patients and warranting further studies.
Collapse
|
30
|
Xu SP, Li YS. Fisetin inhibits pristine-induced systemic lupus erythematosus in a murine model through CXCLs regulation. Int J Mol Med 2018; 42:3220-3230. [PMID: 30272314 PMCID: PMC6202111 DOI: 10.3892/ijmm.2018.3903] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 06/15/2018] [Indexed: 12/16/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is associated with an increased risk of vascular complications. Lupus nephritis is a major manifestation of SLE in the clinic. Lupus nephritis is elevated by T helper type 17 (Th17) cells, the major pro‑inflammatory T‑cell subset, leading to autoimmunity modulation. Therapeutic treatments targeting leukocyte recruitment may be useful in attenuating vascular complications linked to SLE progression. 3,7,3',4'‑Tetrahydroxyflavone (fisetin) is a flavonol and a member of the flavonoid polyphenols. It is present in various fruits and vegetables, including persimmons, apples, kiwis, grapes, onions, strawberries and cucumbers. In the present study, the effects of fisetin against SLE induced by pristane (PRI) were evaluated in mice. Fisetin was indicated to reduce PRI‑induced anti‑double stranded DNA, anti‑ small nuclear ribonucleoprotein and the ratio of albumin to creatinine in urine. In addition, the chemokine (C‑X‑C motif) ligand (CXCL) signaling pathway was activated for PRI treatment, which was reversed by fisetin administration by reducing CXCL‑1 and 2, chemokine (C‑C motif) ligand 3, as well as CXC receptor 2 expression. In addition, the induction of inflammatory cytokines, including interleukin (IL)‑6, tumor necrosis factor‑α, IL‑1β, as well as the chemokine interferon‑γ, by PRI were downregulated by fisetin treatment in mice. Furthermore, Th17 cells and their associated cytokines were highly induced by PRI treatment, which was inhibited by fisetin administration. The present results indicated that fisetin may be an effective management for SLE by targeting the CXCL signaling pathway and regulating Th17 differentiation during lupus nephritis development.
Collapse
Affiliation(s)
- Su-Ping Xu
- Department of Dermatology, Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Yong-Sheng Li
- Department of Rheumatology, Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| |
Collapse
|
31
|
Lee S, Cho Y, Kim J, Kang JW, Yoon GY, Lee JH, Jung SY, Kwon O, Shin KM, Lee JD. The efficacy and safety of the herbal medicine geonchildan for patients with active rheumatoid arthritis: study protocol for a randomized, double-blind, placebo-controlled, parallel pilot trial. Trials 2018; 19:471. [PMID: 30176923 PMCID: PMC6122614 DOI: 10.1186/s13063-018-2849-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 08/07/2018] [Indexed: 12/01/2022] Open
Abstract
Background This study aims to assess the efficacy and safety of geonchildan, a Korean traditional herbal medicine, for patients with active rheumatoid arthritis (RA) and evaluate the feasibility of a large-scale confirmatory clinical trial. Methods/design This is a randomized, double-blind, placebo-controlled, parallel two-arm pilot trial in Seoul, Korea. Altogether, 30 patients diagnosed with RA for at least 3 months and with a Disease Activity Score for 28 joints (DAS28) ≥ 3.2 will be enrolled. Participants are randomly assigned to one of two groups, the experimental group or the placebo group, in a 1:1 ratio and will make four scheduled visits. The participants will be administered geonchildan or a placebo three times per day for 12 weeks. The change in DAS28 will be examined as the primary efficacy outcome. The secondary efficacy outcomes include the proportion of patients achieving ACR20, ACR50, ACR70, and EULAR responses; the DAS28 sub-items; the consumption of medication; Korean Health Assessment Questionnaire scores; inflammatory parameters; and the Korean medical diagnostic pattern indicator. Adverse events and laboratory test results will be recorded to evaluate safety. The process, resources used, and management of the study will also be assessed to determine the feasibility of a large-scale trial. Discussion This is the first clinical trial to explore the efficacy and safety of geonchildan in patients with active RA. If the superiority of geonchildan versus the placebo is demonstrated and the study design is feasible, this study could form the foundation for a large-scale clinical trial. The results will be published in a peer-reviewed journal. Trial registration Clinical Research Information Service, KCT0001943. Registered on 14 June 2016. Electronic supplementary material The online version of this article (10.1186/s13063-018-2849-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Seunghoon Lee
- Department of Acupuncture & Moxibustion Medicine, Kyung Hee University Korean Medicine Hospital, 23 Kyunghee dae-ro, Dongdaemun-gu, Seoul, 02447, South Korea
| | - Yeeun Cho
- Department of Clinical Korean Medicine, Graduate School, Kyung Hee University, Seoul, South Korea
| | - Jihye Kim
- Department of Acupuncture & Moxibustion Medicine, Kyung Hee University Korean Medicine Hospital, 23 Kyunghee dae-ro, Dongdaemun-gu, Seoul, 02447, South Korea
| | - Jung Won Kang
- Department of Acupuncture & Moxibustion Medicine, Kyung Hee University Korean Medicine Hospital, 23 Kyunghee dae-ro, Dongdaemun-gu, Seoul, 02447, South Korea.,Department of Acupuncture & Moxibustion, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Ga Young Yoon
- Department of Clinical Korean Medicine, Graduate School, Kyung Hee University, Seoul, South Korea
| | - Jun-Hwan Lee
- Clinical Medicine Division, Korea Institute of Oriental Medicine, Daejeon, 34054, South Korea.,University of Science & Technology (UST), Korean Medicine Life Science, Campus of Korea Institute of Oriental Medicine, Daejeon, 34054, South Korea
| | - So-Young Jung
- Clinical Medicine Division, Korea Institute of Oriental Medicine, Daejeon, 34054, South Korea
| | - Ojin Kwon
- Clinical Medicine Division, Korea Institute of Oriental Medicine, Daejeon, 34054, South Korea
| | - Kyung-Min Shin
- Clinical Medicine Division, Korea Institute of Oriental Medicine, Daejeon, 34054, South Korea.
| | - Jae-Dong Lee
- Department of Acupuncture & Moxibustion Medicine, Kyung Hee University Korean Medicine Hospital, 23 Kyunghee dae-ro, Dongdaemun-gu, Seoul, 02447, South Korea. .,Department of Acupuncture & Moxibustion, College of Korean Medicine, Kyung Hee University, Seoul, South Korea.
| |
Collapse
|
32
|
Shi YS, Li CB, Li XY, Wu J, Li Y, Fu X, Zhang Y, Hu WZ. Fisetin Attenuates Metabolic Dysfunction in Mice Challenged with a High-Fructose Diet. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:8291-8298. [PMID: 30040414 DOI: 10.1021/acs.jafc.8b02140] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Excess fructose consumption can lead to metabolic syndrome, including insulin resistance, dyslipidemia, and hepatic injury, which are associated with oxidative stress and inflammation. The present study was to investigate whether fisetin improved multiple disturbances induced by fructose consumption. First, fisetin was found to be nontoxic to mice after an 8 week treatment. Second, the mice fed with a high-fructose (HFru)-diet for 8 weeks exhibited insulin resistance, dyslipidemia, hepatic injury, oxidative stress, and inflammation. Fisetin supplementation effectively improved the undesirable results mentioned above when compared to the HFru group. Meanwhile, fisetin significantly suppressed the nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) pathway and activated the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway in mice fed with HFru. Our findings demonstrated that fisetin exerted the beneficial effects in HFru-feeding mice, which might be associated with suppression of NF-κB and activation of the Nrf2 pathway.
Collapse
Affiliation(s)
- Yu-Sheng Shi
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, College of Life Science , Dalian Nationalities University , Dalian , Liaoning 116600 , People's Republic of China
| | - Chun-Bin Li
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, College of Life Science , Dalian Nationalities University , Dalian , Liaoning 116600 , People's Republic of China
| | - Xiao-Ying Li
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, College of Life Science , Dalian Nationalities University , Dalian , Liaoning 116600 , People's Republic of China
| | - Jiao Wu
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, College of Life Science , Dalian Nationalities University , Dalian , Liaoning 116600 , People's Republic of China
| | - Yang Li
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, College of Life Science , Dalian Nationalities University , Dalian , Liaoning 116600 , People's Republic of China
| | - Xin Fu
- Department of Pharmacognosy , Heilongjiang University of Chinese Medicine , Harbin , Heilongjiang 150040 , People's Republic of China
| | - Yan Zhang
- Jiamusi College , Heilongjiang University of Chinese Medicine , Jiamusi , Heilongjiang 154007 , People's Republic of China
| | - Wen-Zhong Hu
- Jiamusi College , Heilongjiang University of Chinese Medicine , Jiamusi , Heilongjiang 154007 , People's Republic of China
| |
Collapse
|
33
|
Shih YL, Hung FM, Lee CH, Yeh MY, Lee MH, Lu HF, Chen YL, Liu JY, Chung JG. Fisetin Induces Apoptosis of HSC3 Human Oral Cancer Cells Through Endoplasmic Reticulum Stress and Dysfunction of Mitochondria-mediated Signaling Pathways. ACTA ACUST UNITED AC 2018; 31:1103-1114. [PMID: 29102932 DOI: 10.21873/invivo.11176] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 09/08/2017] [Accepted: 09/14/2017] [Indexed: 12/21/2022]
Abstract
BACKGROUND/AIM Oral cancer has been reported to be one of the major cancer-related diseases in human populations and the treatment of oral cancer is still unsatisfied. Fisetin, is a flavonoid from plants and has several biological activities such as antioxidant, anti-inflammatory and anticancer function, but its cytotoxicity in human oral cancer cells is unknown. In the present study, we investigated fisetin-induced cytotoxic effects on HSC3 human oral cancer cells in vitro. Materials and Methods/Results: We used flow cytometric assay to show fisetin induced apoptotic cell death through increased reactive oxygen species and Ca2+, but reduced the mitochondrial membrane potential and increased caspase-8, -9 and -3 activities in HSC3 cells. Furthermore, we also used 4' 6-diamidino-2-phenylindole staining to show that fisetin induced chromatin condensation (apoptotic cell death), and Comet assay to show that fisetin induced DNA damage in HSC3 cells. Western blotting was used to examine the levels of apoptotic-associated protein and results indicated that fisetin increased expression of pro-apoptotic proteins such as B-cell lymphoma 2 (BCL2) antagonist/killer (BAK) and BCL2-associated X (BAX) but reduced that of anti-apoptotic protein such as BCL2 and BCL-x, and increased the cleaved forms of caspase-3, -8 and -9, and cytochrome c, apoptosis-inducing factor (AIF) and endonuclease G (ENDO G) in HSC3 cells. Confocal microscopy showed that fisetin increased the release of cytochrome c, AIF and ENDO G from mitochondria into the cytoplasm. CONCLUSION Based on these observations, we suggest that fisetin induces apoptotic cell death through endoplasmic reticulum stress- and mitochondria-dependent pathways.
Collapse
Affiliation(s)
- Yung-Luen Shih
- Department of Pathology and Laboratory Medicine, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan, R.O.C.,School of Medical Laboratory Science and Biotechnology, Taipei Medical University, Taipei, Taiwan, R.O.C.,School of Medicine, College of Medicine, Fu-Jen Catholic University, New Taipei City, Taiwan, R.O.C
| | - Fang-Ming Hung
- Department of Surgical Intensive Care Unit, Far Eastern Memorial Hospital, New Taipei, Taiwan, R.O.C
| | - Ching-Hsiao Lee
- Department of Medical Technology, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli County, Taiwan, R.O.C
| | - Ming-Yang Yeh
- Department of Medical Education and Research, Cheng Hsin General Hospital, Taipei, Taiwan, R.O.C
| | - Mei-Hui Lee
- Department of Genetic Counseling Center, Changhua Christian Hospital, Changhua, Taiwan, R.O.C
| | - Hsu-Feng Lu
- Department of Restaurant, Hotel and Institutional Management, Fu-Jen Catholic University, New Taipei City, Taiwan, R.O.C.,Department of Clinical Pathology, Cheng Hsin General Hospital, Taipei, Taiwan, R.O.C
| | - Yung-Liang Chen
- Department of Medical Laboratory Science and Biotechnology, Yuanpei University, Hsinchu, Taiwan, R.O.C
| | - Jia-You Liu
- Department of Clinical Pathology, Cheng Hsin General Hospital, Taipei, Taiwan, R.O.C.
| | - Jing-Gung Chung
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan, R.O.C.
| |
Collapse
|
34
|
Lee W, Lee D, Lee Y, Lee T, Song KS, Yang EJ, Bae JS. Isolation, Synthesis, and Antisepsis Effects of a C-Methylcoumarinochromone Isolated from Abronia nana Cell Culture. JOURNAL OF NATURAL PRODUCTS 2018; 81:1173-1182. [PMID: 29762033 DOI: 10.1021/acs.jnatprod.7b00826] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Only a few isoflavones have been isolated from plants of the genus Abronia. The biological properties of compounds isolated from Abronia species have not been well established, and their antisepsis effects have not been reported yet. In the present study, a new C-methylcoumarinochromone, was isolated from Abronia nana suspension cultures. Its structure was deduced as 9,11-dihydroxy-10-methylcoumarinochromone (boeravinone Y, 1) by spectroscopic data analysis and verified by chemical synthesis. The potential inhibitory effects of 1 against high mobility group box 1 (HMGB1)-mediated septic responses were investigated. Results showed that 1 effectively inhibited lipopolysaccharide-induced release of HMGB1 and suppressed HMGB1-mediated septic responses, in terms of reduction of hyperpermeability, leukocyte adhesion and migration, and cell adhesion molecule expression. In addition, 1 increased the phagocytic activity of macrophages and exhibited bacterial clearance effects in the peritoneal fluid and blood of mice with cecal ligation and puncture-induced sepsis. Collectively, these results suggested that 1 might have potential therapeutic activity against various severe vascular inflammatory diseases via inhibition of the HMGB1 signaling pathway.
Collapse
Affiliation(s)
- Wonhwa Lee
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, BK21 Plus KNU Multi-Omics Based Creative Drug Research Team , Kyungpook National University , Daegu 41566 , Republic of Korea
- Aging Research Center , Korea Research Institute of Bioscience and Biotechnology , Daejeon 34141 , Republic of Korea
| | - Doohyun Lee
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, BK21 Plus KNU Multi-Omics Based Creative Drug Research Team , Kyungpook National University , Daegu 41566 , Republic of Korea
| | - Yuri Lee
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, BK21 Plus KNU Multi-Omics Based Creative Drug Research Team , Kyungpook National University , Daegu 41566 , Republic of Korea
| | - Taeho Lee
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, BK21 Plus KNU Multi-Omics Based Creative Drug Research Team , Kyungpook National University , Daegu 41566 , Republic of Korea
| | - Kyung-Sik Song
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, BK21 Plus KNU Multi-Omics Based Creative Drug Research Team , Kyungpook National University , Daegu 41566 , Republic of Korea
| | - Eun-Ju Yang
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, BK21 Plus KNU Multi-Omics Based Creative Drug Research Team , Kyungpook National University , Daegu 41566 , Republic of Korea
| | - Jong-Sup Bae
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, BK21 Plus KNU Multi-Omics Based Creative Drug Research Team , Kyungpook National University , Daegu 41566 , Republic of Korea
| |
Collapse
|
35
|
Sung B. Role of Fisetin in Chemosensitization. ROLE OF NUTRACEUTICALS IN CHEMORESISTANCE TO CANCER 2018:111-139. [DOI: 10.1016/b978-0-12-812373-7.00006-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
36
|
Lee IC, Bae JS. Antiseptic effects of dabrafenib on TGFBIp-induced septic responses. Chem Biol Interact 2017; 278:92-100. [PMID: 29042256 DOI: 10.1016/j.cbi.2017.10.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 09/18/2017] [Accepted: 10/13/2017] [Indexed: 12/27/2022]
Abstract
Transforming growth factor-β-induced protein (TGFBIp), an extracellular protein, is expressed on several cell types in response to TGF-β stimulation. Human umbilical vein endothelial cell (HUVEC)-derived TGFBIp functions as a mediator of sepsis. Screening of bioactive compound libraries is an effective approach for repositioning FDA-approved drugs or discovering new treatments for human diseases (drug repositioning). Dabrafenib (DAB), a B-Raf inhibitor, was initially used for treating metastatic melanoma. The present study determined whether DAB modulated TGFBIp-mediated septic responses in HUVECs and in mice. Antiseptic functions of DAB were examined by measuring permeability, leukocyte adhesion and migration, and proinflammatory protein activation in TGFBIp-stimulated HUVECs and mice. In addition, beneficial effects of DAB on survival rate were examined using a mouse model of sepsis. We found that DAB inhibited TGFBIp-induced vascular barrier disruption, cell adhesion molecule (CAM) expression, and neutrophil adhesion/transendothelial migration toward human endothelial cells. DAB also suppressed TGFBIp-induced hyperpermeability and leukocyte migration in vivo. These results suggest that DAB exerts anti-inflammatory effects by inhibiting hyperpermeability, CAM expression, and leukocyte adhesion and migration, indicating its utility for treating vascular inflammatory diseases.
Collapse
Affiliation(s)
- In-Chul Lee
- Department of Cosmetic Science and Technology, Seowon University, Cheongju 28674, Republic of Korea
| | - Jong-Sup Bae
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, BK21 Plus KNU Multi-Omics based Creative Drug Research Team, Kyungpook National University, Daegu 41566, Republic of Korea.
| |
Collapse
|
37
|
Ferreira de Oliveira JMP, Pacheco AR, Coutinho L, Oliveira H, Pinho S, Almeida L, Fernandes E, Santos C. Combination of etoposide and fisetin results in anti-cancer efficiency against osteosarcoma cell models. Arch Toxicol 2017; 92:1205-1214. [PMID: 29270805 DOI: 10.1007/s00204-017-2146-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 12/14/2017] [Indexed: 01/26/2023]
Abstract
Osteosarcoma chemotherapy is often limited by chemoresistance, resulting in poor prognosis. Combined chemotherapy could, therefore, be used to prevent resistance to chemotherapeutics. Here, the effects of fisetin on osteosarcoma cells were investigated, as well as cytostatic potential in combination with the anti-cancer drug etoposide. For this, different osteosarcoma cell lines were treated with fisetin, with etoposide and with respective combinations. Fisetin was associated with decrease in colony formation in Saos-2 and in U2OS cells but not in MG-63 cells. Notwithstanding, upon evaluation of cellular growth by crystal violet assay, MG-63 and Saos-2 cells showed decreased cell proliferation at 40 and 20 µM fisetin, respectively. Depending on the relative concentrations, fisetin:etoposide combinations showed negative-to-positive interactions on the inhibition of cell proliferation. In addition, fisetin treatment up to 50 µM for 48 h resulted in G2-phase cell cycle arrest. Regardless of the combination, fisetin:etoposide increased % cells in G2-phase and decreased % cells in G1-phase. In addition, mixtures with more positive combined effects induced increased % cells in S-phase. Compared to etoposide treatment, these combinations resulted in decreased levels of cyclins B1 and E1, pointing to the role of these regulators in fisetin-induced cell cycle arrest. In conclusion, these results show that the combination of fisetin with etoposide has higher anti-proliferative effects in osteosarcoma associated with cell cycle arrest, allowing the use of lower doses of the chemotherapeutic agent, which has important implications for osteosarcoma treatment.
Collapse
Affiliation(s)
- José Miguel P Ferreira de Oliveira
- UCIBIO, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal.,Department of Biology, Faculty of Sciences, University of Porto, 4150-171, Porto, Portugal
| | - Ana Rita Pacheco
- Department of Biology and CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Laura Coutinho
- Department of Biology and CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Helena Oliveira
- Department of Biology and CESAM, University of Aveiro, 3810-193, Aveiro, Portugal.,CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 4200-319, Porto, Portugal
| | - Sónia Pinho
- Department of Biology and CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Luis Almeida
- Department of Pharmacology and Therapeutics, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Eduarda Fernandes
- UCIBIO, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal
| | - Conceição Santos
- Department of Biology, Faculty of Sciences, University of Porto, 4150-171, Porto, Portugal. .,LAQV, REQUIMTE, Faculty of Sciences, University of Porto, Porto, Portugal.
| |
Collapse
|
38
|
Lee IC, Bae JS. Suppressive Effects of Zingerone on Polyphosphate-Mediated Vascular Inflammatory Responses. INT J PHARMACOL 2017. [DOI: 10.3923/ijp.2018.20.30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
39
|
Jeong S, Ku SK, Bae JS. Inhibitory Effects of Sulforaphane on Polyphosphate-mediated Septic Responses. INT J PHARMACOL 2017. [DOI: 10.3923/ijp.2018.83.92] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
40
|
Han MS, Lee YM, Kim SW, Kim KM, Lee T, Lee W, Kwon OK, Lee S, Bae JS. Role of moesin in HMGB1-stimulated severe inflammatory responses. Thromb Haemost 2017; 114:350-63. [DOI: 10.1160/th14-11-0969] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Accepted: 02/25/2015] [Indexed: 11/05/2022]
Abstract
SummarySepsis is a life-threatening condition that arises when the body’s response to infection causes systemic inflammation. High-mobility group box 1 (HMGB1), as a late mediator of sepsis, enhances hyper-permeability, and it is therefore a therapeutic target. Despite extensive research into the underlying mechanisms of sepsis, the target molecules controlling vascular leakage remain largely unknown. Moesin is a cytoskeletal protein involved in cytoskeletal changes and para-cellular gap formation. The objectives of this study were to determine the roles of moesin in HMGB1-mediated vascular hyperpermeability and inflammatory responses and to investigate the mechanisms of action underlying these responses. Using siRNA knockdown of moesin expression in primary human umbilical vein endothelial cells (HUVECs), moesin was found to be required in HMGB1-induced F-actin rearrangement, hyperpermeability, and inflammatory responses. The mechanisms involved in moesin phosphorylation were analysed by blocking the binding of the HMGB1 receptor (RAGE) and inhibiting the Rho and MAPK pathways. HMGB1-treated HUVECs exhibited an increase in Thr558 phosphorylation of moesin. Circulating levels of moesin were measured in patients admitted to the intensive care unit with sepsis, severe sepsis, and septic shock; these patients showed significantly higher levels of moesin than healthy controls, which was strongly correlated with disease severity. High blood moesin levels were also observed in cecal ligation and puncture (CLP)-induced sepsis in mice. Administration of blocking moesin antibodies attenuated CLP-induced septic death. Collectively, our findings demonstrate that the HMGB1-RAGE-moesin axis can elicit severe inflammatory responses, suggesting it to be a potential target for the development of diagnostics and therapeutics for sepsis.
Collapse
|
41
|
Jeong JH, An JH, Yang H, Kim DK, Lee NS, Jeong YG, Na CS, Na DS, Dong MS, Han SY. Protective effect of Rhus verniciflua Stokes extract in an experimental model of post-menopausal osteoporosis. Anat Cell Biol 2017; 50:219-229. [PMID: 29043101 PMCID: PMC5639177 DOI: 10.5115/acb.2017.50.3.219] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 06/22/2017] [Accepted: 06/24/2017] [Indexed: 12/20/2022] Open
Abstract
Post-menopausal osteoporosis (PMO) is a major global human health concern. Owing to the need for therapeutic drugs without side effects, natural extracts containing various polyphenolic compounds that may exert estrogenic effects have been studied in depth. Rhus verniciflua Stokes (RVS), which has been used as a traditional herbal medicine for centuries in Korea, was recently revealed to exert estrogenic effects attributable to its bioactive ingredients sulfuretin and butein, which have strong estrogen receptor–binding affinities. In this study, the protective potential of RVS in PMO was evaluated by using an experimental animal model of PMO, which was established by ovariectomy (OVX) of female Sprague Dawley rats. The oral administration of RVS at 20 mg/kg or 100 mg/kg for 8 weeks markedly protected against OVX-induced atrophy of the uterine tube and reversed the elevation in the ratio of serum receptor activator of nuclear factor-κB ligand to osteoprotegerin, which is a marker of disease severity. In addition, RVS inhibited OVX-induced tibia bone loss, activated osteogenic activity, and suppressed osteoclastic activity in the tibial epiphyseal plate, a region of bone remodeling. Collectively, these factors indicated that the oral intake of RVS might be beneficial for the prevention of PMO.
Collapse
Affiliation(s)
- Ji Heun Jeong
- Department of Anatomy, Konyang University College of Medicine, Daejeon, Korea
| | - Jong Hoon An
- Department of Anatomy, Konyang University College of Medicine, Daejeon, Korea
| | - Hui Yang
- Department of Microbiology, Konyang University College of Medicine, Daejeon, Korea
| | - Do-Kyung Kim
- Department of Anatomy, Konyang University College of Medicine, Daejeon, Korea
| | - Nam-Seob Lee
- Department of Anatomy, Konyang University College of Medicine, Daejeon, Korea
| | - Young-Gil Jeong
- Department of Anatomy, Konyang University College of Medicine, Daejeon, Korea
| | | | | | - Mi-Sook Dong
- School of Life Sciences & Biotechnology, Korea University, Seoul, Korea
| | - Seung Yun Han
- Department of Anatomy, Konyang University College of Medicine, Daejeon, Korea.,Myunggok Research Institute, Konyang University College of Medicine, Daejeon, Korea
| |
Collapse
|
42
|
Hughes SD, Ketheesan N, Haleagrahara N. The therapeutic potential of plant flavonoids on rheumatoid arthritis. Crit Rev Food Sci Nutr 2017; 57:3601-3613. [DOI: 10.1080/10408398.2016.1246413] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Samuel D. Hughes
- Biomedicine, College of Public Health, Medical & Veterinary Sciences, James Cook University, Townsville, Australia
| | - Natkunam Ketheesan
- Biomedicine, College of Public Health, Medical & Veterinary Sciences, James Cook University, Townsville, Australia
- Australian Institute of Tropical Health and Medicine (AITHM), James Cook University, Townsville, Australia
| | - Nagaraja Haleagrahara
- Biomedicine, College of Public Health, Medical & Veterinary Sciences, James Cook University, Townsville, Australia
- Australian Institute of Tropical Health and Medicine (AITHM), James Cook University, Townsville, Australia
| |
Collapse
|
43
|
Lee IC, Kim J, Bae JS. Anti-inflammatory effects of dabrafenib in vitro and in vivo. Can J Physiol Pharmacol 2017; 95:697-707. [DOI: 10.1139/cjpp-2016-0519] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The screening of bioactive compound libraries can be an effective approach for repositioning FDA-approved drugs or discovering new treatments for human diseases (drug repositioning). Drug repositioning refers to the development of existing drugs for new indications. Dabrafenib (DAB) is a B-Raf inhibitor and initially used for the treatment of metastatic melanoma therapy. Here, we tested the possible use of DAB in the treatment of lipopolysaccharide (LPS)-mediated vascular inflammatory responses. The anti-inflammatory activities of DAB were determined by measuring permeability, neutrophils adhesion and migration, and activation of pro-inflammatory proteins in LPS-activated human umbilical vein endothelial cells (HUVECs) and mice. We found that DAB inhibited LPS-induced barrier disruption, expression of cell adhesion molecules (CAMs), and adhesion and transendothelial migration of neutrophils to human endothelial cells. DAB also suppressed LPS-induced hyperpermeability and leukocytes migration in vivo. Furthermore, DAB suppressed the production of tumor necrosis factor-α (TNF-α) or interleukin (IL)-6 and the activation of nuclear factor-κB (NF-κB) or extracellular regulated kinases (ERK) 1/2 by LPS. Moreover, treatment with DAB resulted in reduced LPS-induced lethal endotoxemia. These results suggest that DAB possesses anti-inflammatory functions by inhibiting hyperpermeability, expression of CAMs, and adhesion and migration of leukocytes, thereby endorsing its usefulness as a therapy for vascular inflammatory diseases.
Collapse
Affiliation(s)
- In-Chul Lee
- Department of Cosmetic Science and Technology, Seowon University, Cheongju 28674, Republic of Korea
| | - Jongdoo Kim
- Cancer Control Team, Gachon University Gil Medical Center, Incheon 21565, Republic of Korea
| | - Jong-Sup Bae
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, BK21 Plus KNU Multi-Omics based Creative Drug Research Team, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
44
|
Suppressive effects of zingerone on TGFBIp-mediated septic responses. Arch Pharm Res 2017; 41:276-287. [DOI: 10.1007/s12272-017-0919-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 05/03/2017] [Indexed: 12/21/2022]
|
45
|
Zheng W, Feng Z, You S, Zhang H, Tao Z, Wang Q, Chen H, Wu Y. Fisetin inhibits IL-1β-induced inflammatory response in human osteoarthritis chondrocytes through activating SIRT1 and attenuates the progression of osteoarthritis in mice. Int Immunopharmacol 2017; 45:135-147. [DOI: 10.1016/j.intimp.2017.02.009] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Revised: 01/28/2017] [Accepted: 02/07/2017] [Indexed: 11/16/2022]
|
46
|
Jeong S, Ku SK, Bae JS. Anti-inflammatory effects of pelargonidin on TGFBIp-induced responses. Can J Physiol Pharmacol 2017; 95:372-381. [DOI: 10.1139/cjpp-2016-0322] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Transforming growth factor β induced protein (TGFBIp) is an extracellular matrix protein expressed in several cell types in response to TGF-β. TGFBIp is released by human umbilical vein endothelial cells (HUVECs) and functions as a mediator of experimental sepsis. Pelargonidin (PEL) is a well-known red pigment found in plants, and has been reported as having important biological activities that are potentially beneficial for human health. This study was undertaken to investigate whether PEL can modulate TGFBIp-mediated inflammatory responses in HUVECs and in mice. The anti-inflammatory activities of PEL were determined by measuring permeability, leukocyte adhesion and migration, and activation of proinflammatory proteins in TGFBIp-activated HUVECs and mice. In addition, the beneficial effects of PEL on survival rate in a mouse sepsis model were tested. We found that PEL inhibited TGFBIp-induced barrier disruption, expression of cell adhesion molecules and adhesion/transendothelial migration of neutrophils to human endothelial cells. PEL also suppressed TGFBIp-induced hyperpermeability and leukocyte migration in vivo. These results suggest that PEL possesses anti-inflammatory properties that result in inhibition of hyperpermeability, expression of cell adhesion molecules, and adhesion and migration of leukocytes, thereby endorsing its usefulness as a therapy for vascular inflammatory diseases.
Collapse
Affiliation(s)
- Seongdo Jeong
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, BK21 Plus KNU Multi-Omics based Creative Drug Research Team, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Sae-Kwang Ku
- Department of Anatomy and Histology, College of Korean Medicine, Daegu Haany University, Gyeongsan 38610, Republic of Korea
| | - Jong-Sup Bae
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, BK21 Plus KNU Multi-Omics based Creative Drug Research Team, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
47
|
Islam MS, Segars JH, Castellucci M, Ciarmela P. Dietary phytochemicals for possible preventive and therapeutic option of uterine fibroids: Signaling pathways as target. Pharmacol Rep 2017; 69:57-70. [DOI: 10.1016/j.pharep.2016.10.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 10/03/2016] [Accepted: 10/19/2016] [Indexed: 02/07/2023]
|
48
|
Chen H, Wang C, Zhou H, Tao R, Ye J, Li W. Antioxidant capacity and identification of the constituents of ethyl acetate fraction from Rhus verniciflua Stokes by HPLC-MS. Nat Prod Res 2017; 31:1573-1577. [DOI: 10.1080/14786419.2016.1277353] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Hongxia Chen
- Institute of Chemical Industry of Forest Products, CAF, Nanjing, China
- Key and Open Laboratory on Forest Chemical Engineering, SFA, Nanjing, China
| | - Chengzhang Wang
- Institute of Chemical Industry of Forest Products, CAF, Nanjing, China
- Key and Open Laboratory on Forest Chemical Engineering, SFA, Nanjing, China
- Institute of New Technology of Forestry, CAF, Beijing, China
| | - Hao Zhou
- Institute of Chemical Industry of Forest Products, CAF, Nanjing, China
- Key and Open Laboratory on Forest Chemical Engineering, SFA, Nanjing, China
- Institute of New Technology of Forestry, CAF, Beijing, China
| | - Ran Tao
- Institute of Chemical Industry of Forest Products, CAF, Nanjing, China
- Key and Open Laboratory on Forest Chemical Engineering, SFA, Nanjing, China
| | - Jianzhong Ye
- Institute of Chemical Industry of Forest Products, CAF, Nanjing, China
- Key and Open Laboratory on Forest Chemical Engineering, SFA, Nanjing, China
| | - Wenjun Li
- Institute of Chemical Industry of Forest Products, CAF, Nanjing, China
- Key and Open Laboratory on Forest Chemical Engineering, SFA, Nanjing, China
| |
Collapse
|
49
|
Kang H, Ku SK, Kim J, Chung J, Kim SC, Zhou W, Na M, Bae JS. Anti-vascular inflammatory effects of pentacyclic triterpenoids from Astilbe rivularis in vitro and in vivo. Chem Biol Interact 2017; 261:127-138. [DOI: 10.1016/j.cbi.2016.11.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 10/25/2016] [Accepted: 11/16/2016] [Indexed: 12/12/2022]
|
50
|
Kang SH, Hwang IH, Son E, Cho CK, Choi JS, Park SJ, Jang BC, Lee KB, Lee ZW, Lee JH, Yoo HS, Jang IS. Allergen-Removed Rhus verniciflua Extract Induces Ovarian Cancer Cell Death via JNK Activation. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2016; 44:1719-1735. [PMID: 27848251 DOI: 10.1142/s0192415x16500968] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Nuclear factor-[Formula: see text]B (NF-[Formula: see text]B)/Rel transcription factors are best known for their central roles in promoting cell survival in cancer. NF-[Formula: see text]B antagonizes tumor necrosis factor (TNF)-[Formula: see text]-induced apoptosis through a process involving attenuation of the c-Jun-N-terminal kinase (JNK). However, the role of JNK activation in apoptosis induced by negative regulation of NF-[Formula: see text]B is not completely understood. We found that allergen-removed Rhus verniciflua Stokes (aRVS) extract-mediated NF-[Formula: see text]B inhibition induces apoptosis in SKOV-3 ovarian cancer cells via the serial activation of caspases and SKOV-3 cells are most specifically suppressed by aRVS. Here, we show that in addition to activating caspases, aRVS extract negatively modulates the TNF-[Formula: see text]-mediated I[Formula: see text]B/NF-[Formula: see text]B pathway to promote JNK activation, which results in apoptosis. When the cytokine TNF-[Formula: see text] binds to the TNF receptor, I[Formula: see text]B dissociates from NF-[Formula: see text]B. As a result, the active NF-[Formula: see text]B translocates to the nucleus. aRVS extract (0.5[Formula: see text]mg/ml) clearly prevented NF-[Formula: see text]B from mobilizing to the nucleus, resulting in the upregulation of JNK phosphorylation. This subsequently increased Bax activation, leading to marked aRVS-induced apoptosis, whereas the JNK inhibitor SP600125 in aRVS extract treated SKOV-3 cells strongly inhibited Bax. Bax subfamily proteins induced apoptosis through caspase-3. Thus, these results indicate that aRVS extract contains components that inhibit NF-[Formula: see text]B signaling to upregulate JNK activation in ovarian cancer cells and support the potential of aRVS as a therapeutic agent for ovarian cancer.
Collapse
Affiliation(s)
- Se-Hui Kang
- * Division of Bioconvergence, Korea Basic Science Institute, Daejeon 305-333, Republic of Korea
| | - In-Hu Hwang
- † Department of Physiology, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Eunju Son
- ‡ Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon 305-764, Korea
| | - Chong-Kwan Cho
- § East-West Cancer Center, Daejeon University, Daejeon 302-120, Republic of Korea
| | - Jong-Soon Choi
- * Division of Bioconvergence, Korea Basic Science Institute, Daejeon 305-333, Republic of Korea.,‡ Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon 305-764, Korea
| | - Soo-Jung Park
- ¶ Department of Sasang Constitutional Medicine, College of Korean Medicine, Woosuk University, Wanju, Jeonbuk, 55338, Republic of Korea
| | - Byeong-Churl Jang
- ∥ Department of Molecular Medicine, College of Medicine, Keimyung University, Daegu 704-701, Republic of Korea
| | - Kyung-Bok Lee
- * Division of Bioconvergence, Korea Basic Science Institute, Daejeon 305-333, Republic of Korea
| | - Zee-Won Lee
- * Division of Bioconvergence, Korea Basic Science Institute, Daejeon 305-333, Republic of Korea
| | - Jong Hoon Lee
- ** Department of Integrative Cancer Center, Woosuk Korean Medicine Hospital, Woosuk University, Jeonju 560-833, Republic of Korea
| | - Hwa-Seung Yoo
- § East-West Cancer Center, Daejeon University, Daejeon 302-120, Republic of Korea
| | - Ik-Soon Jang
- * Division of Bioconvergence, Korea Basic Science Institute, Daejeon 305-333, Republic of Korea
| |
Collapse
|