1
|
Baysal Ö, Genç D, Silme RS, Kırboğa KK, Çoban D, Ghafoor NA, Tekin L, Bulut O. Targeting Breast Cancer with N-Acetyl-D-Glucosamine: Integrating Machine Learning and Cellular Assays for Promising Results. Anticancer Agents Med Chem 2024; 24:334-347. [PMID: 38305389 DOI: 10.2174/0118715206270568231129054853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/16/2023] [Accepted: 10/19/2023] [Indexed: 02/03/2024]
Abstract
BACKGROUND Breast cancer is a common cancer with high mortality rates. Early diagnosis is crucial for reducing the prognosis and mortality rates. Therefore, the development of alternative treatment options is necessary. OBJECTIVE This study aimed to investigate the inhibitory effect of N-acetyl-D-glucosamine (D-GlcNAc) on breast cancer using a machine learning method. The findings were further confirmed through assays on breast cancer cell lines. METHODS MCF-7 and 4T1 cell lines (ATCC) were cultured in the presence and absence of varying concentrations of D-GlcNAc (0.5 mM, 1 mM, 2 mM, and 4 mM) for 72 hours. A xenograft mouse model for breast cancer was established by injecting 4T1 cells into mammary glands. D-GlcNAc (2 mM) was administered intraperitoneally to mice daily for 28 days, and histopathological effects were evaluated at pre-tumoral and post-tumoral stages. RESULTS Treatment with 2 mM and 4 mM D-GlcNAc significantly decreased cell proliferation rates in MCF-7 and 4T1 cell lines and increased Fas expression. The number of apoptotic cells was significantly higher than untreated cell cultures (p < 0.01 - p < 0.0001). D-GlcNAc administration also considerably reduced tumour size, mitosis, and angiogenesis in the post-treatment group compared to the control breast cancer group (p < 0.01 - p < 0.0001). Additionally, molecular docking/dynamic analysis revealed a high binding affinity of D-GlcNAc to the marker protein HER2, which is involved in tumour progression and cell signalling. CONCLUSION Our study demonstrated the positive effect of D-GlcNAc administration on breast cancer cells, leading to increased apoptosis and Fas expression in the malignant phenotype. The binding affinity of D-GlcNAc to HER2 suggests a potential mechanism of action. These findings contribute to understanding D-GlcNAc as a potential anti-tumour agent for breast cancer treatment.
Collapse
Affiliation(s)
- Ömür Baysal
- Department of Molecular Biology and Genetics, Faculty of Science, Molecular Microbiology Unit, Muğla Sıtkı Koçman University, Kötekli-Muğla, Türkiye
| | - Deniz Genç
- Faculty of Health Sciences, Muğla Sıtkı Koçman University, Kötekli-Muğla, Türkiye
| | - Ragıp Soner Silme
- Center for Research and Practice in Biotechnology and Genetic Engineering, Istanbul University, Istanbul, Türkiye
| | - Kevser Kübra Kırboğa
- Department of Bioengineering, Bilecik Seyh Edebali University, 11230, Bilecik, Türkiye
| | - Dilek Çoban
- Department of Molecular Biology and Genetics, Faculty of Science, Molecular Microbiology Unit, Muğla Sıtkı Koçman University, Kötekli-Muğla, Türkiye
| | - Naeem Abdul Ghafoor
- Department of Molecular Biology and Genetics, Faculty of Science, Muğla Sıtkı Koçman University, Kötekli-Muğla, Türkiye
| | - Leyla Tekin
- Department of Pathology, Faculty of Medicine, Muğla Sıtkı Koçman University, Kötekli-Muğla, Türkiye
| | - Osman Bulut
- Milas Faculty of Veterinary Medicine, Muğla Sıtkı Koçman University, Milas, Muğla, Türkiye
| |
Collapse
|
2
|
Baysal Ö, Abdul Ghafoor N, Silme RS, Ignatov AN, Kniazeva V. Molecular dynamics analysis of N-acetyl-D-glucosamine against specific SARS-CoV-2's pathogenicity factors. PLoS One 2021; 16:e0252571. [PMID: 34043733 PMCID: PMC8158907 DOI: 10.1371/journal.pone.0252571] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 05/18/2021] [Indexed: 01/07/2023] Open
Abstract
The causative agent of the pandemic identified as SARS-CoV-2 leads to a severe respiratory illness similar to SARS and MERS with fever, cough, and shortness of breath symptoms and severe cases that can often be fatal. In our study, we report our findings based on molecular docking analysis which could be the new effective way for controlling the SARS-CoV-2 virus and additionally, another manipulative possibilities involving the mimicking of immune system as occurred during the bacterial cell recognition system. For this purpose, we performed molecular docking using computational biology techniques on several SARS-CoV-2 proteins that are responsible for its pathogenicity against N-acetyl-D-glucosamine. A similar molecular dynamics analysis has been carried out on both SARS-CoV-2 and anti-Staphylococcus aureus neutralizing antibodies to establish the potential of N-acetyl-D-glucosamine which likely induces the immune response against the virus. The results of molecular dynamic analysis have confirmed that SARS-CoV-2 spike receptor-binding domain (PDB: 6M0J), RNA-binding domain of nucleocapsid phosphoprotein (PDB: 6WKP), refusion SARS-CoV-2 S ectodomain trimer (PDB: 6X79), and main protease 3clpro at room temperature (PDB: 7JVZ) could bind with N-acetyl-D-glucosamine that these proteins play an important role in SARS-CoV-2's infection and evade the immune system. Moreover, our molecular docking analysis has supported a strong protein-ligand interaction of N-acetyl-D-glucosamine with these selected proteins. Furthermore, computational analysis against the D614G mutant of the virus has shown that N-acetyl-D-glucosamine affinity and its binding potential were not affected by the mutations occurring in the virus' receptor binding domain. The analysis on the affinity of N-acetyl-D-glucosamine towards human antibodies has shown that it could potentially bind to both SARS-CoV-2 proteins and antibodies based on our predictive modelling work. Our results confirmed that N-acetyl-D-glucosamine holds the potential to inhibit several SARS-CoV-2 proteins as well as induce an immune response against the virus in the host.
Collapse
Affiliation(s)
- Ömür Baysal
- Faculty of Science, Department of Molecular Biology and Genetics, Molecular Microbiology Unit, Muğla Sıtkı Koçman University, Menteşe-Muğla, Turkey
- * E-mail:
| | - Naeem Abdul Ghafoor
- Faculty of Science, Department of Molecular Biology and Genetics, Molecular Microbiology Unit, Muğla Sıtkı Koçman University, Menteşe-Muğla, Turkey
| | - Ragıp Soner Silme
- Center for Research and Practice in Biotechnology and Genetic Engineering, Istanbul University, Istanbul, Turkey
| | - Alexander N. Ignatov
- Federal State Autonomous Educational Institution, People’s Friendship University of Russia, Moscow, Russia
| | - Volha Kniazeva
- Institute of Biophysics and Cell Engineering of the National Academy of Sciences of Belarus, Minsk, Belarus
| |
Collapse
|
3
|
Naha PC, Mukherjee SP, Byrne HJ. Toxicology of Engineered Nanoparticles: Focus on Poly(amidoamine) Dendrimers. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15020338. [PMID: 29443901 PMCID: PMC5858407 DOI: 10.3390/ijerph15020338] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 02/05/2018] [Accepted: 02/12/2018] [Indexed: 12/14/2022]
Abstract
Engineered nanomaterials are increasingly being developed for paints, sunscreens, cosmetics, industrial lubricants, tyres, semiconductor devices, and also for biomedical applications such as in diagnostics, therapeutics, and contrast agents. As a result, nanomaterials are being manufactured, transported, and used in larger and larger quantities, and potential impacts on environmental and human health have been raised. Poly(amidoamine) (PAMAM) dendrimers are specifically suitable for biomedical applications. They are well-defined nanoscale molecules which contain a 2-carbon ethylenediamine core and primary amine groups at the surface. The systematically variable structural architecture and the large internal free volume make these dendrimers an attractive option for drug delivery and other biomedical applications. Due to the wide range of applications, the Organisation for Economic Co-Operation and Development (OECD) have included them in their list of nanoparticles which require toxicological assessment. Thus, the toxicological impact of these PAMAM dendrimers on human health and the environment is a matter of concern. In this review, the potential toxicological impact of PAMAM dendrimers on human health and environment is assessed, highlighting work to date exploring the toxicological effects of PAMAM dendrimers.
Collapse
Affiliation(s)
- Pratap C Naha
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA-19104, USA.
| | - Sourav P Mukherjee
- Molecular Toxicology Unit, Institute of Environmental Medicine (IMM), Karolinska Institutet, 17177 Stockholm, Sweden.
| | - Hugh J Byrne
- FOCAS Research Institute, Dublin Institute of Technology, Kevin Street, Dublin 8, Ireland.
| |
Collapse
|
4
|
Silva AL, Peres C, Conniot J, Matos AI, Moura L, Carreira B, Sainz V, Scomparin A, Satchi-Fainaro R, Préat V, Florindo HF. Nanoparticle impact on innate immune cell pattern-recognition receptors and inflammasomes activation. Semin Immunol 2017; 34:3-24. [PMID: 28941640 DOI: 10.1016/j.smim.2017.09.003] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/10/2017] [Accepted: 09/11/2017] [Indexed: 12/19/2022]
Abstract
Nanotechnology-based strategies can dramatically impact the treatment, prevention and diagnosis of a wide range of diseases. Despite the unprecedented success achieved with the use of nanomaterials to address unmet biomedical needs and their particular suitability for the effective application of a personalized medicine, the clinical translation of those nanoparticulate systems has still been impaired by the limited understanding on their interaction with complex biological systems. As a result, unexpected effects due to unpredicted interactions at biomaterial and biological interfaces have been underlying the biosafety concerns raised by the use of nanomaterials. This review explores the current knowledge on how nanoparticle (NP) physicochemical and surface properties determine their interactions with innate immune cells, with particular attention on the activation of pattern-recognition receptors and inflammasome. A critical perspective will additionally address the impact of biological systems on the effect of NP on immune cell activity at the molecular level. We will discuss how the understanding of the NP-innate immune cell interactions can significantly add into the clinical translation by guiding the design of nanomedicines with particular effect on targeted cells, thus improving their clinical efficacy while minimizing undesired but predictable toxicological effects.
Collapse
Affiliation(s)
- Ana Luísa Silva
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Carina Peres
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal; Université Catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, 1200 Brussels, Belgium
| | - João Conniot
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Ana I Matos
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Liane Moura
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Bárbara Carreira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Vanessa Sainz
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Anna Scomparin
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel and dSagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Ronit Satchi-Fainaro
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel and dSagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Véronique Préat
- Université Catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, 1200 Brussels, Belgium.
| | - Helena F Florindo
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal.
| |
Collapse
|
5
|
Poupot M, Turrin CO, Caminade AM, Fournié JJ, Attal M, Poupot R, Fruchon S. Poly(phosphorhydrazone) dendrimers: yin and yang of monocyte activation for human NK cell amplification applied to immunotherapy against multiple myeloma. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2016; 12:2321-2330. [PMID: 27498187 DOI: 10.1016/j.nano.2016.07.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 05/04/2016] [Accepted: 07/18/2016] [Indexed: 12/28/2022]
Abstract
Human natural killer (NK) cells play a key role in anti-cancer and anti-viral immunity, but their selective amplification in vitro is extremely tedious to achieve and remains one of the most challenging problems to solve for efficient NK cell-based immuno-therapeutic treatments against malignant diseases. Here we report that, when added to ex vivo culture of peripheral blood mononuclear cells from healthy volunteers or from cancer patients with multiple myeloma, poly (phosphorhydrazone) dendrimers capped with amino-bis(methylene phosphonate) end groups enable the efficient proliferation of NK cells with anti-cancer cytotoxicity in vivo. We also show that the amplification of the NK population relies on the preliminary activation of monocytes in the framework of a multistep cross-talk between monocytes and NK cells before the proliferation thereof. Thus poly(phosphorhydrazone) dendrimers represent a novel class of extremely promising drugs to develop NK-cell based anti-cancer therapies.
Collapse
Affiliation(s)
- Mary Poupot
- Centre de Recherche en Cancérologie de Toulouse, Université de Toulouse, CNRS, INSERM, UPS, France
| | | | | | - Jean-Jacques Fournié
- Centre de Recherche en Cancérologie de Toulouse, Université de Toulouse, CNRS, INSERM, UPS, France
| | - Michel Attal
- Institut Universitaire du Cancer de Toulouse-Oncopôle, Université de Toulouse, CNRS, INSERM, UPS, France
| | - Rémy Poupot
- Centre de Physiopathologie de Toulouse-Purpan, Université de Toulouse, CNRS, INSERM, UPS, France
| | - Séverine Fruchon
- Centre de Physiopathologie de Toulouse-Purpan, Université de Toulouse, CNRS, INSERM, UPS, France.
| |
Collapse
|
6
|
Tulinska J, Kazimirova A, Kuricova M, Barancokova M, Liskova A, Neubauerova E, Drlickova M, Ciampor F, Vavra I, Bilanicova D, Pojana G, Staruchova M, Horvathova M, Jahnova E, Volkovova K, Bartusova M, Cagalinec M, Dusinska M. Immunotoxicity and genotoxicity testing of PLGA-PEO nanoparticles in human blood cell model. Nanotoxicology 2016; 9 Suppl 1:33-43. [PMID: 23859252 DOI: 10.3109/17435390.2013.816798] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A human blood cell model for immunotoxicity and genotoxicity testing was used to measure the response to polylactic-co-glycolic acid (PLGA-PEO) nanoparticle (NP) (0.12, 3, 15 and 75 μg/cm(2) exposure in fresh peripheral whole blood cultures/isolated peripheral blood mononuclear cell cultures from human volunteers (n = 9-13). PLGA-PEO NPs were not toxic up to dose 3 μg/cm(2); dose of 75 μg/cm(2) displays significant decrease in [(3)H]-thymidine incorporation into DNA of proliferating cells after 4 h (70% of control) and 48 h (84%) exposure to NPs. In non-cytotoxic concentrations, in vitro assessment of the immunotoxic effects displayed moderate but significant suppression of proliferative activity of T-lymphocytes and T-dependent B-cell response in cultures stimulated with PWM > CON A, and no changes in PHA cultures. Decrease in proliferative function was the most significant in T-cells stimulated with CD3 antigen (up to 84%). Cytotoxicity of natural killer cells was suppressed moderately (92%) but significantly in middle-dosed cultures (4 h exposure). On the other hand, in low PLGA-PEO NPs dosed cultures, significant stimulation of phagocytic activity of granulocytes (119%) > monocytes (117%) and respiratory burst of phagocytes (122%) was recorded. Genotoxicity assessment revealed no increase in the number of micronucleated binucleated cells and no induction of SBs or oxidised DNA bases in PLGA-PEO-treated cells. To conclude on immuno- and genotoxicity of PLGA-PEO NPs, more experiments with various particle size, charge and composition need to be done.
Collapse
Affiliation(s)
- Jana Tulinska
- Department of Immunology and Immunotoxicology and Department of Experimental and Applied Genetics, Slovak Medical University , Bratislava , Slovakia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Hao N, Neranon K, Ramström O, Yan M. Glyconanomaterials for biosensing applications. Biosens Bioelectron 2016; 76:113-30. [PMID: 26212205 PMCID: PMC4637221 DOI: 10.1016/j.bios.2015.07.031] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 07/11/2015] [Accepted: 07/14/2015] [Indexed: 02/08/2023]
Abstract
Nanomaterials constitute a class of structures that have unique physiochemical properties and are excellent scaffolds for presenting carbohydrates, important biomolecules that mediate a wide variety of important biological events. The fabrication of carbohydrate-presenting nanomaterials, glyconanomaterials, is of high interest and utility, combining the features of nanoscale objects with biomolecular recognition. The structures can also produce strong multivalent effects, where the nanomaterial scaffold greatly enhances the relatively weak affinities of single carbohydrate ligands to the corresponding receptors, and effectively amplifies the carbohydrate-mediated interactions. Glyconanomaterials are thus an appealing platform for biosensing applications. In this review, we discuss the chemistry for conjugation of carbohydrates to nanomaterials, summarize strategies, and tabulate examples of applying glyconanomaterials in in vitro and in vivo sensing applications of proteins, microbes, and cells. The limitations and future perspectives of these emerging glyconanomaterials sensing systems are furthermore discussed.
Collapse
Affiliation(s)
- Nanjing Hao
- Department of Chemistry, University of Massachusetts Lowell, 1 University Avenue, Lowell, MA 01854, USA
| | - Kitjanit Neranon
- Department of Chemistry, KTH-Royal Institute of Technology, Teknikringen 30, S-10044 Stockholm, Sweden
| | - Olof Ramström
- Department of Chemistry, KTH-Royal Institute of Technology, Teknikringen 30, S-10044 Stockholm, Sweden.
| | - Mingdi Yan
- Department of Chemistry, University of Massachusetts Lowell, 1 University Avenue, Lowell, MA 01854, USA; Department of Chemistry, KTH-Royal Institute of Technology, Teknikringen 30, S-10044 Stockholm, Sweden.
| |
Collapse
|
8
|
Rozbeský D, Ivanova L, Hernychová L, Grobárová V, Novák P, Černý J. Nkrp1 family, from lectins to protein interacting molecules. Molecules 2015; 20:3463-78. [PMID: 25690298 PMCID: PMC6272133 DOI: 10.3390/molecules20023463] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Revised: 02/06/2015] [Accepted: 02/11/2015] [Indexed: 11/25/2022] Open
Abstract
The C-type lectin-like receptors include the Nkrp1 protein family that regulates the activity of natural killer (NK) cells. Rat Nkrp1a was reported to bind monosaccharide moieties in a Ca2+-dependent manner in preference order of GalNac > GlcNAc >> Fuc >> Gal > Man. These findings established for rat Nkrp1a have been extrapolated to all additional Nkrp1 receptors and have been supported by numerous studies over the past two decades. However, since 1996 there has been controversy and another article showed lack of interactions with saccharides in 1999. Nevertheless, several high affinity saccharide ligands were synthesized in order to utilize their potential in antitumor therapy. Subsequently, protein ligands were introduced as specific binders for Nkrp1 proteins and three dimensional models of receptor/protein ligand interaction were derived from crystallographic data. Finally, for at least some members of the NK cell C-type lectin-like proteins, the “sweet story” was impaired by two reports in recent years. It has been shown that the rat Nkrp1a and CD69 do not bind saccharide ligands such as GlcNAc, GalNAc, chitotetraose and saccharide derivatives (GlcNAc-PAMAM) do not directly and specifically influence cytotoxic activity of NK cells as it was previously described.
Collapse
MESH Headings
- Animals
- Antigens, CD/chemistry
- Antigens, CD/immunology
- Antigens, CD/metabolism
- Antigens, Differentiation, T-Lymphocyte/chemistry
- Antigens, Differentiation, T-Lymphocyte/immunology
- Antigens, Differentiation, T-Lymphocyte/metabolism
- Humans
- Killer Cells, Natural/chemistry
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Lectins, C-Type/chemistry
- Lectins, C-Type/immunology
- Lectins, C-Type/metabolism
- Male
- NK Cell Lectin-Like Receptor Subfamily B/chemistry
- NK Cell Lectin-Like Receptor Subfamily B/immunology
- NK Cell Lectin-Like Receptor Subfamily B/metabolism
- Oligosaccharides/chemistry
- Oligosaccharides/immunology
- Oligosaccharides/metabolism
- Protein Structure, Tertiary
- Rats
Collapse
Affiliation(s)
- Daniel Rozbeský
- Institute of Microbiology, v.v.i., Academy of Sciences of the Czech Republic, Vídeňská 1083, Prague 414220, Czech Republic.
- Department of Biochemistry, Faculty of Science, Charles University, Hlavova 8, Prague 212843, Czech Republic.
| | - Ljubina Ivanova
- Institute of Microbiology, v.v.i., Academy of Sciences of the Czech Republic, Vídeňská 1083, Prague 414220, Czech Republic.
| | - Lucie Hernychová
- Institute of Microbiology, v.v.i., Academy of Sciences of the Czech Republic, Vídeňská 1083, Prague 414220, Czech Republic.
- Department of Cell Biology, Faculty of Science, Charles University, Viničná 7, Prague 212843, Czech Republic.
| | - Valéria Grobárová
- Department of Cell Biology, Faculty of Science, Charles University, Viničná 7, Prague 212843, Czech Republic.
| | - Petr Novák
- Institute of Microbiology, v.v.i., Academy of Sciences of the Czech Republic, Vídeňská 1083, Prague 414220, Czech Republic.
- Department of Biochemistry, Faculty of Science, Charles University, Hlavova 8, Prague 212843, Czech Republic.
| | - Jan Černý
- Department of Cell Biology, Faculty of Science, Charles University, Viničná 7, Prague 212843, Czech Republic.
| |
Collapse
|
9
|
Richter J, Capková K, Hříbalová V, Vannucci L, Danyi I, Malý M, Fišerová A. Collagen-induced arthritis: severity and immune response attenuation using multivalent N-acetyl glucosamine. Clin Exp Immunol 2014; 177:121-33. [PMID: 24588081 DOI: 10.1111/cei.12313] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/25/2014] [Indexed: 01/23/2023] Open
Abstract
Rheumatoid arthritis is an autoimmunity leading to considerable impairment of quality of life. N-acetyl glucosamine (GlcNAc) has been described previously as a potent modulator of experimental arthritis in animal models and is used for osteoarthritis treatment in humans, praised for its lack of adverse effects. In this study we present a comprehensive immunological analysis of multivalent GlcNAc-terminated glycoconjugate (GC) application in the treatment of collagen-induced arthritis (CIA) and its clinical outcome. We used immunohistochemistry and FACS to describe conditions on the inflammation site. Systemic and clinical effects were evaluated by FACS, cytotoxicity assay, ELISA, cytometric bead array (CBA), RT-PCR and clinical scoring. We found reduced inflammatory infiltration, NKG2D expression on NK and suppression of T, B and antigen-presenting cells (APC) in the synovia. On the systemic level, GCs prevented the activation of monocyte- and B cell-derived APCs, the rise of TNF-α and IFN-γ levels, and subsequent type II collagen (CII)-specific IgG2a formation. Moreover, we detected an increase of anti-inflammatory IL-4 mRNA in the spleen. Similar to the synovia, the GCs caused a significant reduction of NKG2D-expressing NK cells in the spleen without influencing their lytic function. GCs effectively postponed the onset of arthritic symptoms, reduced their severity and in 18% (GN8P) and 31% (GN4C) of the cases completely prevented their appearance. Our data prove that GlcNAc glycoconjugates prevent the inflammatory response, involving proinflammatory cytokine rise, APC activation and NKG2D expression, leading to the attenuation of clinical symptoms. These results support the glycobiological approach to the treatment of collagen-induced arthritis/rheumatoid arthritis (CIA/RA) as a way of bringing new prospects for more effective therapeutic interventions.
Collapse
Affiliation(s)
- J Richter
- Laboratory of Molecular Biology and Immunology, Institute of Microbiology, ASCR v.v.i., Prague, Czech Republic
| | | | | | | | | | | | | |
Collapse
|
10
|
NK cells in hepatitis B virus infection: a potent target for immunotherapy. Arch Virol 2014; 159:1555-65. [PMID: 24445811 DOI: 10.1007/s00705-013-1965-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 12/18/2013] [Indexed: 12/15/2022]
Abstract
Viruses, including hepatitis B virus (HBV), are the most prevalent and infectious agents that lead to liver disease in humans. Hepatocellular carcinoma (HCC) and cirrhosis of the liver are the most serious complications arising from prolonged forms of hepatitis B. Previous studies demonstrated that patients suffering from long-term HBV infections are unable to eradicate HBV from hepatocytes completely. The mechanisms responsible for progression of these forms of infection have not yet been clarified. However, it seems that there are differences in genetic and immunological parameters when comparing patients to subjects who successfully clear HBV infections, and these may represent the causes of long-term infection. Natural killer (NK) cells, the main innate immune cells that target viral infections, play important roles in the eradication of HBV from hepatocytes. NK cells carry several stimulatory and inhibitor receptors, and binding of receptors with their ligands results in activation and suppression of NK cells, respectively. The aim of this review is to address the recent information regarding NK cell phenotype, functions and modifications in hepatitis B. This review addresses the recent data regarding the roles of NK cells as novel targets for immunotherapies that target hepatitis B infection. It also discusses the potential to reduce the risk of HCC or cirrhosis of the liver by targeting NK cells.
Collapse
|
11
|
Grobárová V, Benson V, Rozbeský D, Novák P, Cerný J. Re-evaluation of the involvement of NK cells and C-type lectin-like NK receptors in modulation of immune responses by multivalent GlcNAc-terminated oligosaccharides. Immunol Lett 2013; 156:110-7. [PMID: 24076118 DOI: 10.1016/j.imlet.2013.09.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 09/16/2013] [Accepted: 09/16/2013] [Indexed: 02/04/2023]
Abstract
Recognition of glycosylation patterns is one of the basic features of innate immunity. Ability of C-type lectin-like receptors such as NKR-P1 to bind saccharide moieties has become recently a controversial issue. In the present study, binding assay with soluble fluorescently labeled recombinant rat NKR-P1A and mouse NKR-P1C proteins revealed apparently no affinity to the various neoglycoproteins. Lack of functional linkage between NKR-P1 and previously described saccharide binder was supported by the fact, that synthetic N-acetyl-D-glucosamine octabranched dendrimer on polyamidoamine scaffold (GN8P) did not change gene expression of NKR-P1 isoforms in C57BL/6 and BALB/c mice divergent in the NK gene complex (both in vitro and in vivo). Surprisingly, N-acetyl-D-glucosamine-coated tetrabranched polyamido-amine dendrimer specifically binds to NKT cells and macrophages but not to NK cells (consistently with changes in cytokine patterns). Despite the fact that GN8P has been tested as an immunomodulator in anti-cancer treatment animal models for many years, surprisingly no changes in cytokine profiles in serum relevant to anti-cancer responses using B16F10 and CT26 harboring mouse strains C57BL/6 and BALB/c are observed. Our results indicate possible indirect involvement of NK cells in GN8P mediated immune responses.
Collapse
Affiliation(s)
- Valéria Grobárová
- Institute of Microbiology, ASCR v.v.i., Department of Immunology and Gnotobiology, Vídeňská 1083, 142 20 Prague 4, Czech Republic
| | | | | | | | | |
Collapse
|
12
|
Abstract
Glycans are key participants in biological processes ranging from reproduction to cellular communication to infection. Revealing glycan roles and the underlying molecular mechanisms by which glycans manifest their function requires access to glycan derivatives that vary systematically. To this end, glycopolymers (polymers bearing pendant carbohydrates) have emerged as valuable glycan analogs. Because glycopolymers can readily be synthesized, their overall shape can be varied, and they can be altered systematically to dissect the structural features that underpin their activities. This review provides examples in which glycopolymers have been used to effect carbohydrate-mediated signal transduction. Our objective is to illustrate how these powerful tools can reveal the molecular mechanisms that underlie carbohydrate-mediated signal transduction.
Collapse
Affiliation(s)
- Laura L Kiessling
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave, Madison, WI 53706, USA.
| | | |
Collapse
|
13
|
Hulikova K, Svoboda J, Benson V, Grobarova V, Fiserova A. N-acetyl-D-glucosamine-coated polyamidoamine dendrimer promotes tumor-specific B cell responses via natural killer cell activation. Int Immunopharmacol 2011; 11:955-61. [PMID: 21349367 DOI: 10.1016/j.intimp.2011.02.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Revised: 01/31/2011] [Accepted: 02/08/2011] [Indexed: 01/23/2023]
Abstract
N-acetyl-D-glucosamine-coated polyamidoamine dendrimer (GN8P), exerting high binding affinity to rodent recombinant NKR-P1A and NKR-P1C activating proteins, was shown previously to delay the development of rat colorectal carcinoma as well as mouse B16F10 melanoma, and to potentiate antigen-specific antibody formation in healthy C57BL/6 mice via NK cell stimulation. In this study, we investigated whether GN8P also modulates tumor-specific B cell responses. Serum anti-B16F10 melanoma IgG levels, IgG2a mRNA expression, antibody dependent cell-mediated cytotoxicity (ADCC), and counts of plasma as well as antigen presenting B cells were evaluated in tumor-bearing C57BL/6 mice treated with GN8P and in respective controls. To reveal the mechanism of GN8P effects, the synthesis of interferon-gamma (IFN-γ) and interleukin-4 (IL-4), cytokines involved in regulation of immunoglobulin class switch, was determined. The GN8P treatment significantly elevated IgG, and particularly IgG2a, response against B16F10 melanoma, which led to augmented ADCC reaction. The significant increase in production of IFN-γ, which is known to support IgG2a secretion, was observed solely in NK1.1 expressing cell populations, predominantly in NK cells. Moreover, GN8P raised the number of plasma cells, and promoted antigen presenting capacity of I-A/I-E-positive B lymphocytes by up-regulation of their CD80 and CD86 co-stimulatory molecule expression. These results indicate that GN8P-induced enhancement of tumor-specific antibody formation is triggered by NK cell activation, and contributes to complexity of anticancer immune response involving lectin-saccharide interaction.
Collapse
Affiliation(s)
- Katarina Hulikova
- Laboratory of Natural Cell Immunity, Department of Immunology and Gnotobiology, Institute of Microbiology, Academy of Sciences of the Czech Republic, v.v.i., Videnska 1083, 142 20 Prague 4, Czech Republic
| | | | | | | | | |
Collapse
|
14
|
Park EJ, Roh J, Kim Y, Choi K. A Single Instillation of Amorphous Silica Nanoparticles Induced Inflammatory Responses and Tissue Damage until Day 28 after Exposure. ACTA ACUST UNITED AC 2011. [DOI: 10.1248/jhs.57.60] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Eun-Jung Park
- Environmental Health Risk Research Department, National Institute of Environmental Research
| | - Jinkyu Roh
- Department of Chemical Engineering, Kwangwoon University
| | - Younghun Kim
- Department of Chemical Engineering, Kwangwoon University
| | - Kyunghee Choi
- Environmental Health Risk Research Department, National Institute of Environmental Research
| |
Collapse
|
15
|
Hulíková K, Grobárová V, Křivohlavá R, Fišerová A. Antitumor activity of N-acetyl-d-glucosamine-substituted glycoconjugates and combined therapy with keyhole limpet hemocyanin in B16F10 mouse melanoma model. Folia Microbiol (Praha) 2010; 55:528-32. [DOI: 10.1007/s12223-010-0087-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Revised: 04/26/2010] [Indexed: 10/19/2022]
|
16
|
Demotte N, Wieërs G, Van Der Smissen P, Moser M, Schmidt C, Thielemans K, Squifflet JL, Weynand B, Carrasco J, Lurquin C, Courtoy PJ, van der Bruggen P. A galectin-3 ligand corrects the impaired function of human CD4 and CD8 tumor-infiltrating lymphocytes and favors tumor rejection in mice. Cancer Res 2010; 70:7476-88. [PMID: 20719885 DOI: 10.1158/0008-5472.can-10-0761] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Human CD8(+) tumor-infiltrating T lymphocytes (TIL), in contrast with CD8(+) blood cells, show impaired IFN-γ secretion on ex vivo restimulation. We have attributed the impaired IFN-γ secretion to a decreased mobility of T-cell receptors on trapping in a lattice of glycoproteins clustered by extracellular galectin-3. Indeed, we have previously shown that treatment with N-acetyllactosamine, a galectin ligand, restored this secretion. We strengthened this hypothesis here by showing that CD8(+) TIL treated with an anti-galectin-3 antibody had an increased IFN-γ secretion. Moreover, we found that GCS-100, a polysaccharide in clinical development, detached galectin-3 from TIL and boosted cytotoxicity and secretion of different cytokines. Importantly, we observed that not only CD8(+) TIL but also CD4(+) TIL treated with GCS-100 secreted more IFN-γ on ex vivo restimulation. In tumor-bearing mice vaccinated with a tumor antigen, injections of GCS-100 led to tumor rejection in half of the mice, whereas all control mice died. In nonvaccinated mice, GCS-100 had no effect by itself. These results suggest that a combination of galectin-3 ligands and therapeutic vaccination may induce more tumor regressions in cancer patients than vaccination alone.
Collapse
Affiliation(s)
- Nathalie Demotte
- Ludwig Institute for Cancer Research and Université Catholique de Louvain, de Duve Institute, Brussels, Belgium
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Peptide and glycopeptide dendrimers and analogous dendrimeric structures and their biomedical applications. Amino Acids 2010; 40:301-70. [DOI: 10.1007/s00726-010-0707-z] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Accepted: 07/15/2010] [Indexed: 02/08/2023]
|
18
|
Kavan D, Kubíčková M, Bílý J, Vaněk O, Hofbauerová K, Mrázek H, Rozbeský D, Bojarová P, Křen V, Žídek L, Sklenář V, Bezouška K. Cooperation between Subunits Is Essential for High-Affinity Binding of N-Acetyl-d-hexosamines to Dimeric Soluble and Dimeric Cellular Forms of Human CD69. Biochemistry 2010; 49:4060-7. [DOI: 10.1021/bi100181a] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Daniel Kavan
- Department of Biochemistry, Faculty of Science, Charles University, 12840 Prague, Czech Republic
- Institute of Microbiology v.v.i., Academy of Sciences of Czech Republic, 14220 Prague, Czech Republic
| | - Monika Kubíčková
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, 61137 Brno, Czech Republic
| | - Jan Bílý
- Department of Biochemistry, Faculty of Science, Charles University, 12840 Prague, Czech Republic
| | - Ondřej Vaněk
- Department of Biochemistry, Faculty of Science, Charles University, 12840 Prague, Czech Republic
- Institute of Microbiology v.v.i., Academy of Sciences of Czech Republic, 14220 Prague, Czech Republic
| | - Kateřina Hofbauerová
- Institute of Microbiology v.v.i., Academy of Sciences of Czech Republic, 14220 Prague, Czech Republic
| | - Hynek Mrázek
- Department of Biochemistry, Faculty of Science, Charles University, 12840 Prague, Czech Republic
- Institute of Microbiology v.v.i., Academy of Sciences of Czech Republic, 14220 Prague, Czech Republic
| | - Daniel Rozbeský
- Department of Biochemistry, Faculty of Science, Charles University, 12840 Prague, Czech Republic
- Institute of Microbiology v.v.i., Academy of Sciences of Czech Republic, 14220 Prague, Czech Republic
| | - Pavla Bojarová
- Department of Biochemistry, Faculty of Science, Charles University, 12840 Prague, Czech Republic
- Institute of Microbiology v.v.i., Academy of Sciences of Czech Republic, 14220 Prague, Czech Republic
| | - Vladimír Křen
- Institute of Microbiology v.v.i., Academy of Sciences of Czech Republic, 14220 Prague, Czech Republic
| | - Lukáš Žídek
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, 61137 Brno, Czech Republic
| | - Vladimír Sklenář
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, 61137 Brno, Czech Republic
| | - Karel Bezouška
- Department of Biochemistry, Faculty of Science, Charles University, 12840 Prague, Czech Republic
- Institute of Microbiology v.v.i., Academy of Sciences of Czech Republic, 14220 Prague, Czech Republic
| |
Collapse
|