1
|
Hu Y, Zhang X, Deng S, Yue C, Jia X, Lyu Y. Non-antibiotic prevention and treatment against Acinetobacter baumannii infection: Are vaccines and adjuvants effective strategies? Front Microbiol 2023; 14:1049917. [PMID: 36760499 PMCID: PMC9905804 DOI: 10.3389/fmicb.2023.1049917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 01/09/2023] [Indexed: 01/26/2023] Open
Abstract
Acinetobacter baumannii (A. baumannii) is a Gram-negative opportunistic pathogen widely attached to the surface of medical instruments, making it one of the most common pathogens of nosocomial infection, and often leading to cross-infection and co-infection. Due to the extensive antibiotic and pan-resistance, A. baumannii infection is facing fewer treatment options in the clinic. Therefore, the prevention and treatment of A. baumannii infection have become a tricky global problem. The requirement for research and development of the new strategy is urgent. Now, non-antibiotic treatment strategies are urgently needed. This review describes the research on A. baumannii vaccines and antibacterial adjuvants, discusses the advantages and disadvantages of different candidate vaccines tested in vitro and in vivo, especially subunit protein vaccines, and shows the antibacterial efficacy of adjuvant drugs in monotherapy.
Collapse
Affiliation(s)
- Yue Hu
- Yan'an Key Laboratory of Microbial Drug Innovation and Transformation, School of Basic Medicine, Yan'an University, Yan'An, China,Non-coding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu, China
| | - Xianqin Zhang
- School of Basic Medical Sciences, Chengdu Medical College, Chengdu, China
| | - Shanshan Deng
- Non-coding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu, China,School of Basic Medical Sciences, Chengdu Medical College, Chengdu, China
| | - Changwu Yue
- Yan'an Key Laboratory of Microbial Drug Innovation and Transformation, School of Basic Medicine, Yan'an University, Yan'An, China,*Correspondence: Changwu Yue ✉
| | - Xu Jia
- Non-coding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu, China,School of Basic Medical Sciences, Chengdu Medical College, Chengdu, China,Xu Jia ✉
| | - Yuhong Lyu
- Yan'an Key Laboratory of Microbial Drug Innovation and Transformation, School of Basic Medicine, Yan'an University, Yan'An, China,Yuhong Lyu ✉
| |
Collapse
|
2
|
Gao S, Khan A, Chen X, Xiao G, van der Veen S, Chen Y, Lin X. Cyclic-di-GMP stimulates keratinocyte innate immune responses and attenuates methicillin-resistant Staphylococcus aureus colonization in a murine skin wound infection model. BMC Microbiol 2022; 22:176. [PMID: 35804301 PMCID: PMC9264594 DOI: 10.1186/s12866-022-02583-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 06/22/2022] [Indexed: 11/10/2022] Open
Abstract
Background Staphylococcus aureus is a leading cause for morbidity and mortality associated with skin and burn wound infections. Therapeutic options for methicillin-resistant S. aureus (MRSA) have dwindled and therefore alternative treatments are urgently needed. In this study, the immuno-stimulating and anti-MRSA effects of cyclic di-guanosine monophosphate (c-di-GMP), a uniquely bacterial second messenger and immuno-modulator, were investigated in HaCaT human epidermal keratinocytes and a murine skin wound infection model. Results Stimulation of HaCaT cells with 125 μM c-di-GMP for 12 h prior to MRSA challenge resulted in a 20-fold reduction in bacterial colonization compared with untreated control cells, which was not the result of a direct c-di-GMP toxic effect, since bacterial viability was not affected by this dose in the absence of HaCaT cells. C-di-GMP-stimulated or MRSA-challenged HaCaT cells displayed enhanced secretion of the antimicrobial peptides human β-defensin 1 (hBD-1), hBD-2, hBD-3 and LL-37, but for hBD1 and LL-37 the responses were additive in a c-di-GMP-dose-dependent manner. Secretion of the chemokines CXCL1 and CXCL8 was also elevated after stimulation of HaCaT cells with lower c-di-GMP doses and peaked at a dose of 5 μM. Finally, pre-treatment of mice with a 200 nmol dose of c-di-GMP 24 h before a challenge with MRSA in skin wound infection model resulted in a major reduction (up to 1,100-fold by day 2) in bacterial CFU counts recovered from challenged skin tissue sections compared PBS-treated control animals. Tissue sections displayed inflammatory cell infiltration and enhanced neutrophil influx in the c-di-GMP pre-treated animals, which might account for the reduced ability of MRSA to colonize c-di-GMP pre-treated mice. Conclusions These results demonstrate that c-di-GMP is a potent immuno-modulator that can stimulate anti-MRSA immune responses in vivo and might therefore be a suitable alternative prophylactic or therapeutic agent for MRSA skin or burn wound infections.
Collapse
Affiliation(s)
- Shuai Gao
- Department of Medical Microbiology and Parasitology, and Department of Infection of the Children's Hospital, National Clinical Research Center for Child Health, School of Medicine, Zhejiang University, 866Yuhangtang Road, West Lake District, Hangzhou, 310058, China
| | - Abidullah Khan
- Department of Burns, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xuhong Chen
- Department of Medical Microbiology and Parasitology, and Department of Infection of the Children's Hospital, National Clinical Research Center for Child Health, School of Medicine, Zhejiang University, 866Yuhangtang Road, West Lake District, Hangzhou, 310058, China
| | - Guohui Xiao
- Department of Medical Microbiology and Parasitology, and Department of Infection of the Children's Hospital, National Clinical Research Center for Child Health, School of Medicine, Zhejiang University, 866Yuhangtang Road, West Lake District, Hangzhou, 310058, China
| | - Stijn van der Veen
- Department of Microbiology, and Department of Dermatology of Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yin Chen
- Key Laboratory of Emergency Detection for Public Health of Zhejiang Province, Zhejiang Provincial Center for Disease Control and Prevention, 3399 Binsheng Road, Binjiang District, Hangzhou, 310051, China.
| | - Xu'ai Lin
- Department of Medical Microbiology and Parasitology, and Department of Infection of the Children's Hospital, National Clinical Research Center for Child Health, School of Medicine, Zhejiang University, 866Yuhangtang Road, West Lake District, Hangzhou, 310058, China.
| |
Collapse
|
3
|
Yan H, Chen W. The Promise and Challenges of Cyclic Dinucleotides as Molecular Adjuvants for Vaccine Development. Vaccines (Basel) 2021; 9:917. [PMID: 34452042 PMCID: PMC8402453 DOI: 10.3390/vaccines9080917] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/05/2021] [Accepted: 08/10/2021] [Indexed: 12/14/2022] Open
Abstract
Cyclic dinucleotides (CDNs), originally discovered as bacterial second messengers, play critical roles in bacterial signal transduction, cellular processes, biofilm formation, and virulence. The finding that CDNs can trigger the innate immune response in eukaryotic cells through the stimulator of interferon genes (STING) signalling pathway has prompted the extensive research and development of CDNs as potential immunostimulators and novel molecular adjuvants for induction of systemic and mucosal innate and adaptive immune responses. In this review, we summarize the chemical structure, biosynthesis regulation, and the role of CDNs in enhancing the crosstalk between host innate and adaptive immune responses. We also discuss the strategies to improve the efficient delivery of CDNs and the recent advance and future challenges in the development of CDNs as potential adjuvants in prophylactic vaccines against infectious diseases and in therapeutic vaccines against cancers.
Collapse
Affiliation(s)
- Hongbin Yan
- Department of Chemistry, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - Wangxue Chen
- Human Health and Therapeutics Research Centre, National Research Council Canada, Ottawa, ON K1A 0R6, Canada
- Department of Biological Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada
| |
Collapse
|
4
|
Potential Tamoxifen Repurposing to Combat Infections by Multidrug-Resistant Gram-Negative Bacilli. Pharmaceuticals (Basel) 2021; 14:ph14060507. [PMID: 34073235 PMCID: PMC8230278 DOI: 10.3390/ph14060507] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/21/2021] [Accepted: 05/21/2021] [Indexed: 12/12/2022] Open
Abstract
The development of new strategic therapies for multidrug-resistant bacteria, like the use of non-antimicrobial approaches and/or drugs repurposed to be used as monotherapies or in combination with clinically relevant antibiotics, has become urgent. A therapeutic alternative for infections by multidrug-resistant Gram-negative bacilli (MDR-GNB) is immune system modulation to improve the infection clearance. We showed that immunocompetent mice pretreated with tamoxifen at 80 mg/kg/d for three days and infected with Acinetobacter baumannii, Pseudomonas aeruginosa, or Escherichia coli in peritoneal sepsis models showed reduced release of the monocyte chemotactic protein-1 (MCP-1) and its signaling pathway interleukin-18 (IL-18), and phosphorylated extracellular signal-regulated kinase 1/2 (ERK1/2). This reduction of MCP-1 induced the reduction of migration of inflammatory monocytes and neutrophils from the bone marrow to the blood. Indeed, pretreatment with tamoxifen in murine peritoneal sepsis models reduced the bacterial load in tissues and blood, and increased mice survival from 0% to 60–100%. Together, these data show that tamoxifen presents therapeutic efficacy against MDR A. baumannii, P. aeruginosa, and E. coli in experimental models of infection and may be a new candidate to be repurposed as a treatment for GNB infections.
Collapse
|
5
|
Chen W. Host Innate Immune Responses to Acinetobacter baumannii Infection. Front Cell Infect Microbiol 2020; 10:486. [PMID: 33042864 PMCID: PMC7521131 DOI: 10.3389/fcimb.2020.00486] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 08/05/2020] [Indexed: 12/23/2022] Open
Abstract
Acinetobacter baumannii has emerged as a major threat to global public health and is one of the key human pathogens in healthcare (nosocomial and community-acquired)-associated infections. Moreover, A. baumannii rapidly develops resistance to multiple antibiotics and is now globally regarded as a serious multidrug resistant pathogen. There is an urgent need to develop novel vaccines and immunotherapeutics as alternatives to antibiotics for clinical management of A. baumannii infection. However, our knowledge of host immune responses to A. baumannii infection and the identification of novel therapeutic targets are significantly lacking. This review highlights the recent advances and critical gaps in our understanding how A. baumannii interacts with the host innate pattern-recognition receptors, induces a cascade of inflammatory cytokine and chemokine responses, and recruits innate immune effectors (such as neutrophils and macrophages) to the site of infection for effective control of the infection. Such knowledge will facilitate the identification of new targets for the design and development of effective therapeutics and vaccines to fight this emerging threat.
Collapse
Affiliation(s)
- Wangxue Chen
- Human Health and Therapeutics (HHT) Research Center, National Research Council Canada, Ottawa, ON, Canada.,Department of Biology, Brock University, St. Catharines, ON, Canada
| |
Collapse
|
6
|
Gogoi H, Mansouri S, Jin L. The Age of Cyclic Dinucleotide Vaccine Adjuvants. Vaccines (Basel) 2020; 8:E453. [PMID: 32823563 PMCID: PMC7563944 DOI: 10.3390/vaccines8030453] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 08/10/2020] [Accepted: 08/12/2020] [Indexed: 02/07/2023] Open
Abstract
As prophylactic vaccine adjuvants for infectious diseases, cyclic dinucleotides (CDNs) induce safe, potent, long-lasting humoral and cellular memory responses in the systemic and mucosal compartments. As therapeutic cancer vaccine adjuvants, CDNs induce potent anti-tumor immunity, including cytotoxic T cells and NK cells activation that achieve durable regression in multiple mouse models of tumors. Clinical trials are ongoing to fulfill the promise of CDNs (ClinicalTrials.gov: NCT02675439, NCT03010176, NCT03172936, and NCT03937141). However, in October 2018, the first clinical data with Merck's CDN MK-1454 showed zero activity as a monotherapy in patients with solid tumors or lymphomas (NCT03010176). Lately, the clinical trial from Aduro's CDN ADU-S100 monotherapy was also disappointing (NCT03172936). The emerging hurdle in CDN vaccine development calls for a timely re-evaluation of our understanding on CDN vaccine adjuvants. Here, we review the status of CDN vaccine adjuvant research, including their superior adjuvant activities, in vivo mode of action, and confounding factors that affect their efficacy in humans. Lastly, we discuss the strategies to overcome the hurdle and advance promising CDN adjuvants in humans.
Collapse
Affiliation(s)
| | | | - Lei Jin
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Florida, Gainesville, FL 32610, USA; (H.G.); (S.M.)
| |
Collapse
|
7
|
Gogoi H, Mansouri S, Katikaneni DS, Jin L. New MoDC-Targeting TNF Fusion Proteins Enhance Cyclic Di-GMP Vaccine Adjuvanticity in Middle-Aged and Aged Mice. Front Immunol 2020; 11:1674. [PMID: 32849581 PMCID: PMC7427090 DOI: 10.3389/fimmu.2020.01674] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 06/23/2020] [Indexed: 12/15/2022] Open
Abstract
Cyclic dinucleotides (CDNs) are promising vaccine adjuvants inducing balanced, potent humoral, and cellular immune responses. How aging influences CDN efficacy is unclear. We examined the vaccine efficacy of 3',5'-cyclic diguanylic acid (cyclic di-GMP, CDG), the founding member of CDNs, in 1-year-old (middle-aged) and 2-year-old (aged) C57BL/6J mice. We found that 1- and 2-year-old C57BL/6J mice are defective in CDG-induced memory T helper (Th)1 and Th17 responses and high-affinity serum immunoglobulin (Ig)G, mucosal IgA production. Next, we generated two novel tumor necrosis factor (TNF) fusion proteins that target soluble TNF (solTNF) and transmembrane TNF (tmTNF) to monocyte-derived dendritic cells (moDCs) to enhance CDG vaccine efficacy in 1- and 2-year-old mice. The moDC-targeting TNF fusion proteins restored CDG-induced memory Th1, Th17, and high-affinity IgG, IgA responses in the 1- and 2-year-old mice. Together, the data suggested that aging negatively impacts CDG vaccine adjuvanticity. MoDC-targeting TNF fusion proteins enhanced CDG adjuvanticity in the aging mice.
Collapse
Affiliation(s)
- Himanshu Gogoi
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Florida, Gainesville, FL, United States
| | - Samira Mansouri
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Florida, Gainesville, FL, United States
| | - Divya S Katikaneni
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Florida, Gainesville, FL, United States
| | - Lei Jin
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Florida, Gainesville, FL, United States
| |
Collapse
|
8
|
A Cyclic-di-GMP signalling network regulates biofilm formation and surface associated motility of Acinetobacter baumannii 17978. Sci Rep 2020; 10:1991. [PMID: 32029764 PMCID: PMC7005169 DOI: 10.1038/s41598-020-58522-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 01/16/2020] [Indexed: 11/30/2022] Open
Abstract
Acinetobacter baumannii has emerged as an increasing multidrug-resistant threat in hospitals and a common opportunistic nosocomial pathogen worldwide. However, molecular details of the pathogenesis and physiology of this bacterium largely remain to be elucidated. Here we identify and characterize the c-di-GMP signalling network and assess its role in biofilm formation and surface associated motility. Bioinformatic analysis revealed eleven candidate genes for c-di-GMP metabolizing proteins (GGDEF/EAL domain proteins) in the genome of A. baumannii strain 17978. Enzymatic activity of the encoded proteins was assessed by molecular cloning and expression in the model organisms Salmonella typhimurium and Vibrio cholerae. Ten of the eleven GGDEF/EAL proteins altered the rdar morphotype of S. typhimurium and the rugose morphotype of V. cholerae. The over expression of three GGDEF proteins exerted a pronounced effect on colony formation of A. baumannii on Congo Red agar plates. Distinct panels of GGDEF/EAL proteins were found to alter biofilm formation and surface associated motility of A. baumannii upon over expression. The GGDEF protein A1S_3296 appeared as a major diguanylate cyclase regulating macro-colony formation, biofilm formation and the surface associated motility. AIS_3296 promotes Csu pili mediated biofilm formation. We conclude that a functional c-di-GMP signalling network in A. baumannii regulates biofilm formation and surface associated motility of this increasingly important opportunistic bacterial pathogen.
Collapse
|
9
|
Potential Mechanisms of Mucin-Enhanced Acinetobacter baumannii Virulence in the Mouse Model of Intraperitoneal Infection. Infect Immun 2019; 87:IAI.00591-19. [PMID: 31405959 DOI: 10.1128/iai.00591-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 08/07/2019] [Indexed: 12/21/2022] Open
Abstract
Porcine mucin has been commonly used to enhance the infectivity of bacterial pathogens, including Acinetobacter baumannii, in animal models, but the mechanisms for enhancement by mucin remain relatively unknown. In this study, using the mouse model of intraperitoneal (i.p.) mucin-enhanced A. baumannii infection, we characterized the kinetics of bacterial replication and dissemination and the host innate immune responses, as well as their potential contribution to mucin-enhanced bacterial virulence. We found that mucin, either admixed with or separately injected with the challenge bacterial inoculum, was able to enhance the tissue and blood burdens of A. baumannii strains of different virulence. Intraperitoneal injection of A. baumannii-mucin or mucin alone induced a significant but comparable reduction of peritoneal macrophages and lymphocytes, accompanied by a significant neutrophil recruitment and early interleukin-10 (IL-10) responses, suggesting that the resulting inflammatory cellular and cytokine responses were largely induced by the mucin. Depletion of peritoneal macrophages or neutralization of endogenous IL-10 activities showed no effect on the mucin-enhanced infectivity. However, pretreatment of mucin with iron chelator DIBI, but not deferoxamine, partially abolished its virulence enhancement ability, and replacement of mucin with iron significantly enhanced the bacterial burdens in the peritoneal cavity and lung. Taken together, our results favor the hypothesis that iron at least partially contributes to the mucin-enhanced infectivity of A. baumannii in this model.
Collapse
|
10
|
Li J, Lee RK, Chen W, Yan H. 2′-Fluoro-c-di-GMP as an oral vaccine adjuvant. RSC Adv 2019; 9:41481-41489. [PMID: 35541605 PMCID: PMC9076492 DOI: 10.1039/c9ra08310c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 12/05/2019] [Indexed: 12/30/2022] Open
Abstract
Bis-(3′–5′)-cyclic dimeric 2′-deoxy-2′-fluoroguanosine monophosphate (2′-F-c-di-GMP) was synthesized through the modified H-phosphonate chemistry. Oral immunization of C57BL/6 mice with Helicobacter pylori cell-free sonicate extract adjuvanted with 2′-F-c-di-GMP led to the production of antigen-specific antibodies in feces and sera, and lowered bacterial counts in the stomach upon post-vaccination infections in immunized mice. Similarly, oral vaccination of BALB/c mice with flagillin proteins from Clostridium difficile and Listeria monocytogenes adjuvanted with 2′-F-c-di-GMP led to production of antigen-specific antibodies both systemically and mucosally. The adjuvanticity of 2′-F-c-di-GMP is associated with the enhanced induction of interferon γ. These results demonstrated the excellent oral adjuvanticity of 2′-F-c-di-GMP. 2′-F-c-di-GMP was synthesized through the modified H-phosphonate chemistry. 2′-F-c-di-GMP was found to be an effective mucosal vaccine adjuvant, both intranasally and orally.![]()
Collapse
Affiliation(s)
- Jia Li
- Department of Chemistry
- Brock University
- St. Catharines
- Canada
| | - Rhonda Kuo Lee
- Human Health and Therapeutics Research Center
- National Research Council of Canada
- Ottawa
- Canada
| | - Wangxue Chen
- Human Health and Therapeutics Research Center
- National Research Council of Canada
- Ottawa
- Canada
- Department of Biological Sciences
| | - Hongbin Yan
- Department of Chemistry
- Brock University
- St. Catharines
- Canada
| |
Collapse
|
11
|
Mansouri S, Patel S, Katikaneni DS, Blaauboer SM, Wang W, Schattgen S, Fitzgerald K, Jin L. Immature lung TNFR2 - conventional DC 2 subpopulation activates moDCs to promote cyclic di-GMP mucosal adjuvant responses in vivo. Mucosal Immunol 2019; 12:277-289. [PMID: 30327534 PMCID: PMC6301145 DOI: 10.1038/s41385-018-0098-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 09/19/2018] [Accepted: 09/25/2018] [Indexed: 02/04/2023]
Abstract
Cyclic dinucleotides (CDNs), including cyclic di-GMP (CDG), are promising vaccine adjuvants in preclinical/clinical trials. The in vivo mechanisms of CDNs are not clear. Here we investigated the roles of lung DC subsets in promoting CDG mucosal adjuvant responses in vivo. Using genetically modified mice and adoptive cell transfer, we identified lung conventional DC 2 (cDC2) as the central player in CDG mucosal responses. We further identified two functionally distinct lung cDC2 subpopulations: TNFR2+pRelB+ and TNFR2-pRelB- cDC2. The TNFR2+ cDC2 were mature and migratory upon intranasal CDG administration while the TNFR2- cDC2 were activated but not mature. Adoptive cell transfer showed that TNFR2- cDC2 mediate the antibody responses of CDG, while the TNFR2+ cDC2 generate Th1/17 responses. Mechanistically, immature TNFR2- cDC2 activate monocyte-derived DCs (moDCs), which do not take up intranasally administered CDG. moDCs promote CDG-induced generation of T follicular helper- and germinal center B cells in the lungs. Our data revealed a previously undescribed in vivo mode of DCs action, whereby an immature lung TNFR2- cDC2 subpopulation directs the non-migratory moDCs to generate CDG mucosal responses in the lung.
Collapse
Affiliation(s)
- Samira Mansouri
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, 12208, USA
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Seema Patel
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Divya S Katikaneni
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Steven M Blaauboer
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, 12208, USA
| | - Wei Wang
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Stefan Schattgen
- Program in Innate Immunity, Division of Infectious Disease and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Katherine Fitzgerald
- Program in Innate Immunity, Division of Infectious Disease and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Lei Jin
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Florida, Gainesville, FL, 32610, USA.
| |
Collapse
|
12
|
Smani Y, Pachón-Ibáñez ME, Pachón J. New molecules and adjuvants in the treatment of infections by Acinetobacter baumannii. Expert Opin Pharmacother 2016; 17:1207-14. [PMID: 27067283 DOI: 10.1080/14656566.2016.1176144] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
INTRODUCTION The current problems of the treatment of infections by Acinetobacter baumannii are linked with the increase of multidrug- and extensive-drug resistance and the lack of development of new antimicrobial drugs for Gram-negative bacilli. For these reasons, new alternatives for the treatment and control of severe infections by A. baumannii are necessary. Several studies have reported the effect of adjuvants to restore the efficacy of existing antimicrobial agents. AREAS COVERED In the present review, the authors describe the main results in the development of adjuvant drugs as well as new data on antimicrobial peptides, in monotherapy or in combination therapy with existing antimicrobial agents, which have shown promising preclinical results in vitro and in vivo. EXPERT OPINION The preclinical evaluation of adjuvants and antimicrobial peptides, in monotherapy or in combination therapy, for A. baumannii infections has shown promising results. However, caution is needed and further extensive in vivo studies and clinical trials have to be performed to confirm the potential use of these adjuvants as true therapeutic alternatives.
Collapse
Affiliation(s)
- Younes Smani
- a Clinical Unit of Infectious Diseases, Microbiology, and Preventive Medicine , Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío/CSIC/University of Seville , Seville , Spain
| | - María Eugenia Pachón-Ibáñez
- a Clinical Unit of Infectious Diseases, Microbiology, and Preventive Medicine , Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío/CSIC/University of Seville , Seville , Spain
| | - Jerónimo Pachón
- a Clinical Unit of Infectious Diseases, Microbiology, and Preventive Medicine , Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío/CSIC/University of Seville , Seville , Spain
| |
Collapse
|
13
|
|
14
|
Pachón-Ibáñez ME, Smani Y, Pachón J. Use of adjuvants in the treatment of Acinetobacter baumannii. Expert Rev Anti Infect Ther 2015; 14:153-5. [PMID: 26620637 DOI: 10.1586/14787210.2016.1126508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The current antibiotic crisis to treat infections by Acinetobacter baumannii is linked with the increase of antimicrobial resistance and the lack of development of new antimicrobial drugs. For this reason, new alternatives for the treatment and control of infections by A. baumannii are necessary. Several studies have reported the effect of adjuvants to restore the efficacy of existing antimicrobial agents. Herein, we analyzed the main results on the development of adjuvant drugs, as monotherapy or in combination therapy with existing antimicrobial agents, which have shown promising results in vitro and in vivo. However, caution is needed and further extensive in vivo studies have to be performed to confirm the potential use of these adjuvants as true therapeutic alternatives.
Collapse
Affiliation(s)
- María Eugenia Pachón-Ibáñez
- a Clinical Unit of Infectious Diseases, microbiology, and Preventive Medicine , Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío/CSIC/University of Seville , Seville , Spain
| | - Younes Smani
- a Clinical Unit of Infectious Diseases, microbiology, and Preventive Medicine , Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío/CSIC/University of Seville , Seville , Spain
| | - Jerónimo Pachón
- a Clinical Unit of Infectious Diseases, microbiology, and Preventive Medicine , Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío/CSIC/University of Seville , Seville , Spain
| |
Collapse
|
15
|
Grguric-Smith LM, Lee HH, Gandhi JA, Brennan MB, DeLeon-Rodriguez CM, Coelho C, Han G, Martinez LR. Neutropenia exacerbates infection by Acinetobacter baumannii clinical isolates in a murine wound model. Front Microbiol 2015; 6:1134. [PMID: 26528277 PMCID: PMC4607880 DOI: 10.3389/fmicb.2015.01134] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 10/02/2015] [Indexed: 01/21/2023] Open
Abstract
The Gram negative coccobacillus Acinetobacter baumannii has become an increasingly prevalent cause of hospital-acquired infections in recent years. The majority of clinical A. baumannii isolates display high-level resistance to antimicrobials, which severely compromises our capacity to care for patients with A. baumannii disease. Neutrophils are of major importance in the host defense against microbial infections. However, the contribution of these cells of innate immunity in host resistance to cutaneous A. baumannii infection has not been directly investigated. Hence, we hypothesized that depletion of neutrophils increases severity of bacterial disease in an experimental A. baumannii murine wound model. In this study, the Ly-6G-specific monoclonal antibody (mAb), 1A8, was used to generate neutropenic mice and the pathogenesis of several A. baumannii clinical isolates on wounded cutaneous tissue was investigated. We demonstrated that neutrophil depletion enhances bacterial burden using colony forming unit determinations. Also, mAb 1A8 reduces global measurements of wound healing in A. baumannii-infected animals. Interestingly, histological analysis of cutaneous tissue excised from A. baumannii-infected animals treated with mAb 1A8 displays enhanced collagen deposition. Furthermore, neutropenia and A. baumannii infection alter pro-inflammatory cytokine release leading to severe microbial disease. Our findings provide a better understanding of the impact of these innate immune cells in controlling A. baumannii skin infections.
Collapse
Affiliation(s)
| | - Hiu H Lee
- Department of Biomedical Sciences, Long Island University-Post Brookville, NY, USA ; Department of Biomedical Sciences, College of Osteopathic Medicine, New York Institute of Technology Old Westbury, NY, USA
| | - Jay A Gandhi
- Department of Biomedical Sciences, Long Island University-Post Brookville, NY, USA
| | - Melissa B Brennan
- Department of Biomedical Sciences, Long Island University-Post Brookville, NY, USA
| | | | - Carolina Coelho
- Centre for Molecular & Cellular Biology of Inflammation, Kings College London, UK
| | - George Han
- Montefiore Medical Center, Division of Dermatology, Department of Medicine Bronx, NY, USA
| | - Luis R Martinez
- Department of Biomedical Sciences, College of Osteopathic Medicine, New York Institute of Technology Old Westbury, NY, USA
| |
Collapse
|
16
|
Diarra MS, Malouin F. Antibiotics in Canadian poultry productions and anticipated alternatives. Front Microbiol 2014; 5:282. [PMID: 24987390 PMCID: PMC4060556 DOI: 10.3389/fmicb.2014.00282] [Citation(s) in RCA: 151] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 05/22/2014] [Indexed: 12/31/2022] Open
Abstract
The use of antibiotics in food-producing animals has significantly increased animal health by lowering mortality and the incidence of diseases. Antibiotics also have largely contributed to increase productivity of farms. However, antibiotic usage in general and relevance of non-therapeutic antibiotics (growth promoters) in feed need to be reevaluated especially because bacterial pathogens of humans and animals have developed and shared a variety of antibiotic resistance mechanisms that can easily be spread within microbial communities. In Canada, poultry production involves more than 2600 regulated chicken producers who have access to several antibiotics approved as feed additives for poultry. Feed recipes and mixtures vary greatly geographically and from one farm to another, making links between use of a specific antibiotic feed additive and production yields or selection of specific antibiotic-resistant bacteria difficult to establish. Many on-farm studies have revealed the widespread presence of antibiotic-resistant bacteria in broiler chickens. While some reports linked the presence of antibiotic-resistant organisms to the use of feed supplemented with antibiotics, no recent studies could clearly demonstrate the benefit of antimicrobial growth promoters on performance and production yields. With modern biosecurity and hygienic practices, there is a genuine concern that intensive utilization of antibiotics or use of antimicrobial growth promoters in feed might no longer be useful. Public pressure and concerns about food and environmental safety (antibiotic residues, antibiotic-resistant pathogens) have driven researchers to actively look for alternatives to antibiotics. Some of the alternatives include pre- and probiotics, organic acids and essential oils. We will describe here the properties of some bioactive molecules, like those found in cranberry, which have shown interesting polyvalent antibacterial and immuno-stimulatory activities.
Collapse
Affiliation(s)
- Moussa S. Diarra
- Pacific Agri-Food Research Center, Agriculture and Agri-Food CanadaAgassiz, BC, Canada
| | - François Malouin
- Département de Biologie, Faculté des Sciences, Centre d'Étude et de Valorisation de la Diversité Microbienne, Université de SherbrookeSherbrooke, QC, Canada
| |
Collapse
|
17
|
Blaauboer SM, Gabrielle VD, Jin L. MPYS/STING-mediated TNF-α, not type I IFN, is essential for the mucosal adjuvant activity of (3'-5')-cyclic-di-guanosine-monophosphate in vivo. THE JOURNAL OF IMMUNOLOGY 2013; 192:492-502. [PMID: 24307739 DOI: 10.4049/jimmunol.1301812] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The bacterial second messenger (3'-5')-cyclic-di-guanosine-monophosphate (CDG) is a promising mucosal adjuvant candidate that activates balanced Th1/Th2/Th17 responses. We showed previously that CDG activates stimulator of IFN genes (STING)-dependent IFN-I production in vitro. However, it is unknown whether STING or IFN-I is required for the CDG adjuvant activity in vivo. In this study, we show that STING(-/-) mice (Tmem173(<tm1Camb>)) do not produce Ag-specific Abs or Th1/Th2/Th17 cytokines during CDG/Ag immunization. Intranasal administration of CDG did not induce TNF-α, IL-1β, IL-6, IL-12, or MCP-1 production in STING(-/-) mice. Surprisingly, we found that the cytokine and Ab responses were unaltered in CDG/Ag-immunized IFNAR(-/-) mice. Instead, we found that CDG activates STING-dependent, IFN-I-independent TNF-α production in vivo and in vitro. Furthermore, using a TNFR1(-/-) mouse, we demonstrate that TNF-α signaling is critical for CDG-induced Ag-specific Ab and Th1/Th2 cytokine production. This is distinct from STING-mediated DNA adjuvant activity, which requires IFN-I, but not TNF-α, production. Finally, we found that CDG activates STING-dependent, but IRF3 stimulation-independent, NF-κB signaling. Our results established an essential role for STING-mediated TNF-α production in the mucosal adjuvant activity of CDG in vivo and revealed a novel IFN-I stimulation-independent STING-NF-κB-TNF-α pathway.
Collapse
Affiliation(s)
- Steven M Blaauboer
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, NY 12208
| | | | | |
Collapse
|
18
|
Cyclic di-GMP: the first 25 years of a universal bacterial second messenger. Microbiol Mol Biol Rev 2013; 77:1-52. [PMID: 23471616 DOI: 10.1128/mmbr.00043-12] [Citation(s) in RCA: 1229] [Impact Index Per Article: 102.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Twenty-five years have passed since the discovery of cyclic dimeric (3'→5') GMP (cyclic di-GMP or c-di-GMP). From the relative obscurity of an allosteric activator of a bacterial cellulose synthase, c-di-GMP has emerged as one of the most common and important bacterial second messengers. Cyclic di-GMP has been shown to regulate biofilm formation, motility, virulence, the cell cycle, differentiation, and other processes. Most c-di-GMP-dependent signaling pathways control the ability of bacteria to interact with abiotic surfaces or with other bacterial and eukaryotic cells. Cyclic di-GMP plays key roles in lifestyle changes of many bacteria, including transition from the motile to the sessile state, which aids in the establishment of multicellular biofilm communities, and from the virulent state in acute infections to the less virulent but more resilient state characteristic of chronic infectious diseases. From a practical standpoint, modulating c-di-GMP signaling pathways in bacteria could represent a new way of controlling formation and dispersal of biofilms in medical and industrial settings. Cyclic di-GMP participates in interkingdom signaling. It is recognized by mammalian immune systems as a uniquely bacterial molecule and therefore is considered a promising vaccine adjuvant. The purpose of this review is not to overview the whole body of data in the burgeoning field of c-di-GMP-dependent signaling. Instead, we provide a historic perspective on the development of the field, emphasize common trends, and illustrate them with the best available examples. We also identify unresolved questions and highlight new directions in c-di-GMP research that will give us a deeper understanding of this truly universal bacterial second messenger.
Collapse
|
19
|
Wan C, Zhang P, Lee DJ, Yang X, Liu X, Sun S, Pan X. Disintegration of aerobic granules: role of second messenger cyclic di-GMP. BIORESOURCE TECHNOLOGY 2013; 146:330-335. [PMID: 23948271 DOI: 10.1016/j.biortech.2013.07.073] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2013] [Revised: 07/14/2013] [Accepted: 07/17/2013] [Indexed: 06/02/2023]
Abstract
Loss of structural stability of aerobic granular process is the challenge for its field applications to treat wastewaters. The second messenger, cyclic diguanylate (c-di-GMP), is widely used by bacteria to regulate the synthesis of exopolysaccharide. This study for the first time confirmed the correlation between concentration of intracellular c-di-GMP and the granular stability under sequencing batch reactor (MBR) mode. In the presence of manganese ions (Mn(2+)), the concentrations of intracellular c-di-GMP and of extracellular polysaccharides and proteins in granules were declined. Clone library study revealed that the polysaccharide producers. Acinetobacter sp., Thauera sp., Bdellovibrio sp. and Paracoccus sp. were lost after Mn(2+) addition. The findings reported herein confirmed that the c-di-GMP is a key chemical factor epistatic to quorum sensing to determine granular stability. Stimulation of synthesis of intracellular c-di-GMP presents a potential way to enhance long-term stability of aerobic granules.
Collapse
Affiliation(s)
- Chunli Wan
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Peng Zhang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Duu-Jong Lee
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China; Laboratory of Environmental Pollution and Bioremediation, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Xinjiang 830011, China; Department of Chemical Engineering, National Taiwan University, Taipei 106, Taiwan; Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan.
| | - Xue Yang
- Laboratory of Environmental Pollution and Bioremediation, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Xinjiang 830011, China
| | - Xiang Liu
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Supu Sun
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Xiangliang Pan
- Laboratory of Environmental Pollution and Bioremediation, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Xinjiang 830011, China
| |
Collapse
|
20
|
Helbig ET, Opitz B, Sander LE. Adjuvant immunotherapies as a novel approach to bacterial infections. Immunotherapy 2013; 5:365-81. [PMID: 23557420 DOI: 10.2217/imt.13.17] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The rapid emergence of multidrug-resistant pathogens, especially Gram-negative bacteria and mycobacteria, represents one of the major medical challenges of the 21st century. The gradual loss of effective classical antibiotics for many bacterial pathogens, combined with an increasing population density and mobility, urgently calls for the development of novel treatments. Here, we discuss the potential of adjuvant immunotherapies to selectively stimulate protective immune responses as a treatment option for bacterial infections. In order to elicit appropriate immune responses and to avoid unwanted inflammatory tissue damage, it is essential to identify ligands and receptor pathways that specifically control protective responses at the site of infection. We summarize existing data and discuss suitable candidate targets for future immunotherapies of infectious diseases.
Collapse
Affiliation(s)
- Elisa T Helbig
- Department of Infectious Diseases & Pulmonary Medicine, Charité University Hospital, Augustenburger Platz 1, 13353 Berlin, Germany
| | | | | |
Collapse
|
21
|
Loss of mitochondrial protein Fus1 augments host resistance to Acinetobacter baumannii infection. Infect Immun 2013; 81:4461-9. [PMID: 24042119 DOI: 10.1128/iai.00771-13] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Fus1 is a tumor suppressor protein with recently described immunoregulatory functions. Although its role in sterile inflammation is being elucidated, its role in regulating immune responses to infectious agents has not been examined. We used here a murine model of Acinetobacter baumannii pneumonia to identify the role of Fus1 in antibacterial host defenses. We found that the loss of Fus1 in mice results in significantly increased resistance to A. baumannii pneumonia. We observed earlier and more robust recruitment of neutrophils and macrophages to the lungs of infected Fus1(-/-) mice, with a concomitant increase in phagocytosis of invading bacteria and more rapid clearance. Such a prompt and enhanced immune response to bacterial infection in Fus1(-/-) mice stems from early activation of proinflammatory pathways (NF-κB and phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin [mTOR]), most likely due to significantly increased mitochondrial membrane potential and mitochondrial reactive oxygen species production. Significant early upregulation of interleukin-17 (IL-17) in Fus1(-/-) immune cells was also observed, together with significant downregulation of IL-10. Depletion of neutrophils eliminates the enhanced antibacterial defenses of the Fus1(-/-) mice, suggesting that ultimately it is the enhanced immune cell recruitment that mediates the increased resistance of Fus1(-/-) mice to A. baumannii pneumonia. Taken together, our data define the novel role for Fus1 in the immune response to A. baumannii pneumonia and highlight new avenues for immune modulating therapeutic targets for this treatment-resistant nosocomial pathogen.
Collapse
|
22
|
Abstract
Cyclic dinucleotides such as bis-(3',5')-cyclic dimeric adenosine monophosphate (c-di-AMP) and bis-(3',5')-cyclic dimeric guanosine monophosphate (c-di-GMP) represent important second messengers in bacteria. Although their synthesis has not been described in plants so far, they may be involved in the regulation of bacterial phytopathogen-plant interactions as well as rhizobium plant symbiosis. Here, we describe a sensitive and specific quantification method for c-di-AMP and c-di-GMP by HPLC-coupled tandem mass spectrometry. Additional linear dinucleotide metabolites and mononucleotides, as well as cyclic mononucleotides, can be simultaneously determined by this method.
Collapse
|
23
|
Miller MA, Stabenow JM, Parvathareddy J, Wodowski AJ, Fabrizio TP, Bina XR, Zalduondo L, Bina JE. Visualization of murine intranasal dosing efficiency using luminescent Francisella tularensis: effect of instillation volume and form of anesthesia. PLoS One 2012; 7:e31359. [PMID: 22384012 PMCID: PMC3286442 DOI: 10.1371/journal.pone.0031359] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Accepted: 01/06/2012] [Indexed: 11/18/2022] Open
Abstract
Intranasal instillation is a widely used procedure for pneumonic delivery of drugs, vaccine candidates, or infectious agents into the respiratory tract of research mice. However, there is a paucity of published literature describing the efficiency of this delivery technique. In this report we have used the murine model of tularemia, with Francisella tularensis live vaccine strain (FTLVS) infection, to evaluate the efficiency of pneumonic delivery via intranasal dosing performed either with differing instillation volumes or different types of anesthesia. FTLVS was rendered luminescent via transformation with a reporter plasmid that constitutively expressed the Photorhabdus luminescens lux operon from a Francisella promoter. We then used an IVIS Spectrum whole animal imaging system to visualize FT dissemination at various time points following intranasal instillation. We found that instillation of FT in a dose volume of 10 µl routinely resulted in infection of the upper airways but failed to initiate infection of the pulmonary compartment. Efficient delivery of FT into the lungs via intranasal instillation required a dose volume of 50 µl or more. These studies also demonstrated that intranasal instillation was significantly more efficient for pneumonic delivery of FTLVS in mice that had been anesthetized with inhaled (isoflurane) vs. parenteral (ketamine/xylazine) anesthesia. The collective results underscore the need for researchers to consider both the dose volume and the anesthesia type when either performing pneumonic delivery via intranasal instillation, or when comparing studies that employed this technique.
Collapse
Affiliation(s)
- Mark A Miller
- The University of Tennessee Health Science Center, Memphis, Tennessee, United States of America.
| | | | | | | | | | | | | | | |
Collapse
|