1
|
Wang M, Hong Y, Fu X, Sun X. Advances and applications of biomimetic biomaterials for endogenous skin regeneration. Bioact Mater 2024; 39:492-520. [PMID: 38883311 PMCID: PMC11179177 DOI: 10.1016/j.bioactmat.2024.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/11/2024] [Accepted: 04/11/2024] [Indexed: 06/18/2024] Open
Abstract
Endogenous regeneration is becoming an increasingly important strategy for wound healing as it facilitates skin's own regenerative potential for self-healing, thereby avoiding the risks of immune rejection and exogenous infection. However, currently applied biomaterials for inducing endogenous skin regeneration are simplistic in their structure and function, lacking the ability to accurately mimic the intricate tissue structure and regulate the disordered microenvironment. Novel biomimetic biomaterials with precise structure, chemical composition, and biophysical properties offer a promising avenue for achieving perfect endogenous skin regeneration. Here, we outline the recent advances in biomimetic materials induced endogenous skin regeneration from the aspects of structural and functional mimicry, physiological process regulation, and biophysical property design. Furthermore, novel techniques including in situ reprograming, flexible electronic skin, artificial intelligence, single-cell sequencing, and spatial transcriptomics, which have potential to contribute to the development of biomimetic biomaterials are highlighted. Finally, the prospects and challenges of further research and application of biomimetic biomaterials are discussed. This review provides reference to address the clinical problems of rapid and high-quality skin regeneration.
Collapse
Affiliation(s)
- Mengyang Wang
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, Beijing, 100853, PR China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, 100089, PR China
| | - Yiyue Hong
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, Beijing, 100853, PR China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, 100089, PR China
| | - Xiaobing Fu
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, Beijing, 100853, PR China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, 100089, PR China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, PR China
| | - Xiaoyan Sun
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, Beijing, 100853, PR China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, 100089, PR China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, PR China
| |
Collapse
|
2
|
Islamuddin M, Qin X. Renal macrophages and NLRP3 inflammasomes in kidney diseases and therapeutics. Cell Death Discov 2024; 10:229. [PMID: 38740765 DOI: 10.1038/s41420-024-01996-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/22/2024] [Accepted: 04/26/2024] [Indexed: 05/16/2024] Open
Abstract
Macrophages are exceptionally diversified cell types and perform unique features and functions when exposed to different stimuli within the specific microenvironment of various kidney diseases. In instances of kidney tissue necrosis or infection, specific patterns associated with damage or pathogens prompt the development of pro-inflammatory macrophages (M1). These M1 macrophages contribute to exacerbating tissue damage, inflammation, and eventual fibrosis. Conversely, anti-inflammatory macrophages (M2) arise in the same circumstances, contributing to kidney repair and regeneration processes. Impaired tissue repair causes fibrosis, and hence macrophages play a protective and pathogenic role. In response to harmful stimuli within the body, inflammasomes, complex assemblies of multiple proteins, assume a pivotal function in innate immunity. The initiation of inflammasomes triggers the activation of caspase 1, which in turn facilitates the maturation of cytokines, inflammation, and cell death. Macrophages in the kidneys possess the complete elements of the NLRP3 inflammasome, including NLRP3, ASC, and pro-caspase-1. When the NLRP3 inflammasomes are activated, it triggers the activation of caspase-1, resulting in the release of mature proinflammatory cytokines (IL)-1β and IL-18 and cleavage of Gasdermin D (GSDMD). This activation process therefore then induces pyroptosis, leading to renal inflammation, cell death, and renal dysfunction. The NLRP3-ASC-caspase-1-IL-1β-IL-18 pathway has been identified as a factor in the development of the pathophysiology of numerous kidney diseases. In this review, we explore current progress in understanding macrophage behavior concerning inflammation, injury, and fibrosis in kidneys. Emphasizing the pivotal role of activated macrophages in both the advancement and recovery phases of renal diseases, the article delves into potential strategies to modify macrophage functionality and it also discusses emerging approaches to selectively target NLRP3 inflammasomes and their signaling components within the kidney, aiming to facilitate the healing process in kidney diseases.
Collapse
Affiliation(s)
- Mohammad Islamuddin
- Division of Comparative Pathology, Tulane National Primate Research Center, Tulane University School of Medicine, Tulane University, 18703 Three Rivers Road, Covington, LA, 70433, USA.
- Department of Microbiology and Immunology, School of Medicine, Tulane University, New Orleans, LA, 70112, USA.
| | - Xuebin Qin
- Division of Comparative Pathology, Tulane National Primate Research Center, Tulane University School of Medicine, Tulane University, 18703 Three Rivers Road, Covington, LA, 70433, USA.
- Department of Microbiology and Immunology, School of Medicine, Tulane University, New Orleans, LA, 70112, USA.
| |
Collapse
|
3
|
Miccoli A, Pianese V, Bidoli C, Fausto AM, Scapigliati G, Picchietti S. Transcriptome profiling of microdissected cortex and medulla unravels functional regionalization in the European sea bass Dicentrarchus labrax thymus. FISH & SHELLFISH IMMUNOLOGY 2024; 145:109319. [PMID: 38145782 DOI: 10.1016/j.fsi.2023.109319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 12/27/2023]
Abstract
The thymus is a sophisticated primary lymphoid organ in jawed vertebrates, but knowledge on teleost thymus remains scarce. In this study, for the first time in the European sea bass, laser capture microdissection was leveraged to collect two thymic regions based on histological features, namely the cortex and the medulla. The two regions were then processed by RNAseq and in-depth functional transcriptome analyses with the aim of revealing differential gene expression patterns and gene sets enrichments, ultimately unraveling unique microenvironments imperative for the development of functional T cells. The sea bass cortex emerged as a hub of T cell commitment, somatic recombination, chromatin remodeling, cell cycle regulation, and presentation of self antigens from autophagy-, proteasome- or proteases-processed proteins. The cortex therefore accommodated extensive thymocyte proliferation and differentiation up to the checkpoint of positive selection. The medulla instead appeared as the center stage in autoimmune regulation by negative selection and deletion of autoreactive T cells, central tolerance mechanisms and extracellular matrix organization. Region-specific canonical markers of T and non-T lineage cells as well as signals for migration to/from, and trafficking within, the thymus were identified, shedding light on the highly coordinated and exquisitely complex bi-directional interactions among thymocytes and stromal components. Markers ascribable to thymic nurse cells and poorly characterized post-aire mTEC populations were found in the cortex and medulla, respectively. An in-depth data mining also exposed previously un-annotated genomic resources with differential signatures. Overall, our findings contribute to a broader understanding of the relationship between regional organization and function in the European sea bass thymus, and provide essential insights into the molecular mechanisms underlying T-cell mediated adaptive immune responses in teleosts.
Collapse
Affiliation(s)
- A Miccoli
- National Research Council, Institute for Marine Biological Resources and Biotechnology (IRBIM), 60125, Ancona, Italy
| | - V Pianese
- Dept. for Innovation in Biological, Agro-food and Forest Systems (DIBAF), University of Tuscia, Largo Dell'Università Snc, 01100, Viterbo, Italy
| | - C Bidoli
- Dept. of Life Sciences, University of Trieste, 34127, Trieste, Italy
| | - A M Fausto
- Dept. for Innovation in Biological, Agro-food and Forest Systems (DIBAF), University of Tuscia, Largo Dell'Università Snc, 01100, Viterbo, Italy
| | - G Scapigliati
- Dept. for Innovation in Biological, Agro-food and Forest Systems (DIBAF), University of Tuscia, Largo Dell'Università Snc, 01100, Viterbo, Italy
| | - S Picchietti
- Dept. for Innovation in Biological, Agro-food and Forest Systems (DIBAF), University of Tuscia, Largo Dell'Università Snc, 01100, Viterbo, Italy.
| |
Collapse
|
4
|
Tan F, Zhang L, Yin L, Wang L, Zhang H, Zheng L, Cui X, Lv X, Bai R, Zheng M. Immune synergistic mechanism of recombinant plasmid adjuvant containing chicken IL-4 and IL-2 fusion genes on chicken coccidia live vaccine. Poult Sci 2024; 103:103204. [PMID: 37939587 PMCID: PMC10665987 DOI: 10.1016/j.psj.2023.103204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/12/2023] [Accepted: 10/12/2023] [Indexed: 11/10/2023] Open
Abstract
The recombinant plasmid pCI-IL-4-IL-2-EGFP containing fusion genes of chicken IL-4 and IL-2 can be used as an adjuvant to enhance the anticoccidiosis effect of the chicken coccidia live vaccine. The chickens were divided into 3 groups: blank control group, vaccine + pCI-IL-4-IL-2-EGFP adjuvant coimmunization group, and vaccine-only group to investigate the immune synergy mechanism of recombinant plasmid adjuvant pCI-IL-4-IL-2-EGFP. The expressions of IL-2, IL-4, TNF-α, and IFN-γ in chicken sera and tissues were detected by ELISA and RT-qPCR, and the proliferation of T and B lymphocytes and antigen presenting cells (APC) in chicken immune organs and intestines were detected by acid alpha-naphthalase (ANAE) staining, methyl green pyronine (MGP) staining, and immunofluorescence (IF) staining, respectively. Results showed that the mRNA expression of IL-2, IL-4, IFN-γ and the number of activated T and B lymphocytes were significantly upregulated in the spleen and cecum tonsils of chickens in vaccine + pCI-IL-4-IL-2-EGFP group compared with the vaccine-only group on 7 d after vaccination (P < 0.05). Protein contents of IL-2, IL-4 and TNF-α in vaccine + pCI-IL-4-IL-2-EGFP group were significantly increased compared to vaccine-only group on 28 d of inoculation (P < 0.05). The number of T and B lymphocytes and APC in chickens of the vaccine+ pCI-IL-4-IL-2-EGFP group was significantly higher than that of the vaccine-only group in cecum tonsils, thymus and spleen after 14 and 28 d of inoculation (P < 0.05). All results revealed that pCI-IL-4-IL-2-EGFP adjuvant enhanced the immune response of chicken coccidia live vaccine by upregulating the expression of IL-2, IL-4, TNF-α, and IFN-γ and promoting the proliferation of T, B lymphocytes and APCs in chicken intestines and immune organ sites. Moreover, our study provides a theoretical basis for the clinical application of cytogenic plasmids as adjuvants.
Collapse
Affiliation(s)
- Fan Tan
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong 030801, China
| | - Li Zhang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong 030801, China
| | - Liyang Yin
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong 030801, China
| | - Liming Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong 030801, China
| | - Honghui Zhang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong 030801, China
| | - Longlong Zheng
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong 030801, China
| | - Xiaozhen Cui
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong 030801, China
| | - Xiaoling Lv
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong 030801, China
| | - Rui Bai
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong 030801, China
| | - Mingxue Zheng
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong 030801, China.
| |
Collapse
|
5
|
Long H, Lichtnekert J, Andrassy J, Schraml BU, Romagnani P, Anders HJ. Macrophages and fibrosis: how resident and infiltrating mononuclear phagocytes account for organ injury, regeneration or atrophy. Front Immunol 2023; 14:1194988. [PMID: 37868987 PMCID: PMC10587486 DOI: 10.3389/fimmu.2023.1194988] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 09/22/2023] [Indexed: 10/24/2023] Open
Abstract
Mononuclear phagocytes (MP), i.e., monocytes, macrophages, and dendritic cells (DCs), are essential for immune homeostasis via their capacities to clear pathogens, pathogen components, and non-infectious particles. However, tissue injury-related changes in local microenvironments activate resident and infiltrating MP towards pro-inflammatory phenotypes that contribute to inflammation by secreting additional inflammatory mediators. Efficient control of injurious factors leads to a switch of MP phenotype, which changes the microenvironment towards the resolution of inflammation. In the same way, MP endorses adaptive structural responses leading to either compensatory hypertrophy of surviving cells, tissue regeneration from local tissue progenitor cells, or tissue fibrosis and atrophy. Under certain circumstances, MP contribute to the reversal of tissue fibrosis by clearance of the extracellular matrix. Here we give an update on the tissue microenvironment-related factors that, upon tissue injury, instruct resident and infiltrating MP how to support host defense and recover tissue function and integrity. We propose that MP are not intrinsically active drivers of organ injury and dysfunction but dynamic amplifiers (and biomarkers) of specific tissue microenvironments that vary across spatial and temporal contexts. Therefore, MP receptors are frequently redundant and suboptimal targets for specific therapeutic interventions compared to molecular targets upstream in adaptive humoral or cellular stress response pathways that influence tissue milieus at a contextual level.
Collapse
Affiliation(s)
- Hao Long
- Division of Nephrology, Department of Medicine IV, University Hospital, Ludwig-Maximilians-University (LMU), Munich, Germany
- Department of Urology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, China
| | - Julia Lichtnekert
- Division of Nephrology, Department of Medicine IV, University Hospital, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Joachim Andrassy
- Department of General, Visceral and Transplant Surgery, University Hospital of Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
| | - Barbara U. Schraml
- Institute for Cardiovascular Physiology and Pathophysiology, Biomedical Center, Ludwig-Maximilians-University (LMU), Munich, Germany
- Walter-Brendel-Centre of Experimental Medicine, University Hospital, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Paola Romagnani
- Department of Biomedical, Experimental and Clinical Sciences “Mario Serio”, University of Firenze, Nephrology and Dialysis Unit, Meyer Children’s Hospital, Firenze, Italy
| | - Hans-Joachim Anders
- Division of Nephrology, Department of Medicine IV, University Hospital, Ludwig-Maximilians-University (LMU), Munich, Germany
| |
Collapse
|
6
|
Žaloudíková M. Mechanisms and Effects of Macrophage Polarization and Its Specifics in Pulmonary Environment. Physiol Res 2023; 72:S137-S156. [PMID: 37565418 PMCID: PMC10660583 DOI: 10.33549/physiolres.935058] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 06/09/2023] [Indexed: 12/01/2023] Open
Abstract
Macrophages are a specific group of cells found in all body tissues. They have specific characteristics in each of the tissues that correspond to the functional needs of the specific environment. These cells are involved in a wide range of processes, both pro-inflammatory and anti-inflammatory ("wound healing"). This is due to their specific capacity for so-called polarization, a phenotypic change that is, moreover, partially reversible compared to other differentiated cells of the human body. This promises a wide range of possibilities for its influence and thus therapeutic use. In this article, we therefore review the mechanisms that cause polarization, the basic classification of polarized macrophages, their characteristic markers and the effects that accompany these phenotypic changes. Since the study of pulmonary (and among them mainly alveolar) macrophages is currently the focus of scientific interest of many researchers and these macrophages are found in very specific environments, given mainly by the extremely high partial pressure of oxygen compared to other locations, which specifically affects their behavior, we will focus our review on this group.
Collapse
Affiliation(s)
- M Žaloudíková
- Department of Physiology, Second Faculty of Medicine, Charles University, Prague, Czech Republic.
| |
Collapse
|
7
|
Sadikan MZ, Abdul Nasir NA, Bakar NS, Iezhitsa I, Agarwal R. Tocotrienol-rich fraction reduces retinal inflammation and angiogenesis in rats with streptozotocin-induced diabetes. BMC Complement Med Ther 2023; 23:179. [PMID: 37268913 DOI: 10.1186/s12906-023-04005-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 05/20/2023] [Indexed: 06/04/2023] Open
Abstract
BACKGROUND Diabetic retinopathy (DR) is the second commonest microvascular complication of diabetes mellitus. It is characterized by chronic inflammation and angiogenesis. Palm oil-derived tocotrienol-rich fraction (TRF), a substance with anti-inflammatory and anti-angiogenic properties, may provide protection against DR development. Therefore, in this study, we investigated the effect of TRF on retinal vascular and morphological changes in diabetic rats. The effects of TRF on the retinal expression of inflammatory and angiogenic markers were also studied in the streptozotocin (STZ)-induced diabetic rats. METHODS Male Sprague Dawley rats weighing 200-250 g were grouped into normal rats (N) and diabetic rats. Diabetes was induced by intraperitoneal injection of streptozotocin (55 mg/kg body weight) whereas N similarly received citrate buffer. STZ-injected rats with blood glucose of more than 20 mmol/L were considered diabetic and were divided into vehicle-treated (DV) and TRF-treated (DT) groups. N and DV received vehicle, whereas DT received TRF (100 mg/kg body weight) via oral gavage once daily for 12 weeks. Fundus images were captured at week 0 (baseline), week 6 and week 12 post-STZ induction to estimate vascular diameters. At the end of experimental period, rats were euthanized, and retinal tissues were collected for morphometric analysis and measurement of NFκB, phospho-NFκB (Ser536), HIF-1α using immunohistochemistry (IHC) and enzyme-linked immunosorbent assay (ELISA). Retinal inflammatory and angiogenic cytokines expression were measured by ELISA and real-time quantitative PCR. RESULTS TRF preserved the retinal layer thickness (GCL, IPL, INL and OR; p < 0.05) and retinal venous diameter (p < 0.001). TRF also lowered the retinal NFκB activation (p < 0.05) as well as expressions of IL-1β, IL-6, TNF-α, IFN-γ, iNOS and MCP-1 (p < 0.05) compared to vehicle-treated diabetic rats. Moreover, TRF also reduced retinal expression of VEGF (p < 0.001), IGF-1 (p < 0.001) and HIF-1α (p < 0.05) compared to vehicle-treated rats with diabetes. CONCLUSION Oral TRF provided protection against retinal inflammation and angiogenesis in rats with STZ-induced diabetes by suppressing the expression of the markers of retinal inflammation and angiogenesis.
Collapse
Affiliation(s)
- Muhammad Zulfiqah Sadikan
- Department of Pharmacology, Faculty of Medicine, Manipal University College Malaysia (MUCM), Bukit Baru, 75150, Melaka, Malaysia
- Centre for Neuroscience Research (NeuRon), Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, 47000, Sungai Buloh, Selangor, Malaysia
| | - Nurul Alimah Abdul Nasir
- Centre for Neuroscience Research (NeuRon), Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, 47000, Sungai Buloh, Selangor, Malaysia.
| | - Nor Salmah Bakar
- Department of Pathology, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, 47000, Sungai Buloh, Selangor, Malaysia
| | - Igor Iezhitsa
- School of Medicine, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
- Department of Pharmacology and Bioinformatics, Volgograd State Medical University, Pavshikh Bortsov sq. 1, Volgograd, 400131, Russia
| | - Renu Agarwal
- School of Medicine, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| |
Collapse
|
8
|
Effects of Bacillus subtilis Natto Strains on Antiviral Responses in Resiquimod-Stimulated Human M1-Phenotype Macrophages. Foods 2023; 12:foods12020313. [PMID: 36673407 PMCID: PMC9858497 DOI: 10.3390/foods12020313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/03/2023] [Accepted: 01/06/2023] [Indexed: 01/11/2023] Open
Abstract
Bacillus subtilis natto is used in the production of natto, a traditional fermented soy food, and has beneficial immunomodulatory effects in humans. Single-stranded RNA (ssRNA) viruses, including influenza and coronavirus, often cause global pandemics. We proposed a human cell culture model mimicking ssRNA viral infection and investigated the ability of B. subtilis natto to induce antiviral effects in the model. The gene expressions were analyzed using quantitative real-time reverse transcription PCR. M1-phenotype macrophages derived from THP-1 cells strongly express the Toll-like receptor 8 (76.2-hold), CD80 (64.2-hold), and CCR7 (45.7-hold) mRNA compared to M0 macrophages. One µg/mL of resiquimod (RSQ)-stimulation induced the expression of IRF3 (1.9-hold), CXCL10 (14.5-hold), IFNβ1 (3.5-hold), ISG20 (4.4-hold), and MxA (1.7-hold) mRNA in the M1-phenotype macrophages. Based on these results, the RSQ-stimulated M1-phenotype macrophages were used as a cell culture model mimicking ssRNA viral infection. Moreover, the B. subtilis natto XF36 strain induced the expression of genes associated with antiviral activities (IFNβ1, IFNλ1, ISG20, and RNase L) and anti-inflammatory activities (IL-10) in the cell culture model. Thus, it is suggested that the XF36 suppresses viral infections and excessive inflammation by inducing the expression of genes involved in antiviral and anti-inflammatory activities.
Collapse
|
9
|
Vo T, Saini Y. Case report: Mafb promoter activity may define the alveolar macrophage dichotomy. Front Immunol 2022; 13:1050494. [PMID: 36578483 PMCID: PMC9791191 DOI: 10.3389/fimmu.2022.1050494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/25/2022] [Indexed: 12/14/2022] Open
Abstract
Cre-LoxP system has been widely used to induce recombination of floxed genes of interest. Currently available macrophage promoter-specific Cre recombinase mice strains have various limitations that warrants the testing of additional Cre strains. V-maf musculoaponeurotic fibrosarcoma oncogene family, protein b -Cre (Mafb-Cre) mice label macrophages in most organs such as spleen, small intestine, lung, bone marrow, and peritoneal cavity. However, whether Mafb-Cre recombinase targets the gene recombination in alveolar macrophage remains untested. Here, we utilized MafbCre/WTR26mTmG/WT strain that expresses mTOM protein in all the cells of mouse body except for those that express Mafb-Cre-regulated mEGFP. We performed fluorescent microscopy and flow cytometry to analyze mTOM and mEGFP expression in alveolar macrophages from MafbCre/WTR26mTmG/WT mice. Our analyses revealed that the Mafb-Cre is active in only ~40% of the alveolar macrophages in an age-independent manner. While Mafb- (mTOM+/mEGFP-) and Mafb+ (mEGFP+) alveolar macrophages exhibit comparable expression of CD11b and CD11c surface markers, the surface expression of MHCII is elevated in the Mafb+ (mEGFP+) macrophages. The bone marrow-derived macrophages from MafbCre/WTR26mTmG/WT mice are highly amenable to Cre-LoxP recombination in vitro. The bone marrow depletion and reconstitution experiment revealed that ~98% of alveolar macrophages from MafbCre/WTR26mTmG/WT → WT chimera are amenable to the Mafb-Cre-mediated recombination. Finally, the Th2 stimulation and ozone exposure to the MafbCre/WTR26mTmG/WT mice promote the Mafb-Cre-mediated recombination in alveolar macrophages. In conclusion, while the Mafb-/Mafb+ dichotomy thwarts the use of Mafb-Cre for the induction of floxed alleles in the entire alveolar macrophage population, this strain provides a unique tool to induce gene deletion in alveolar macrophages that encounter Th2 microenvironment in the lung airspaces.
Collapse
|
10
|
Royzman D, Peckert-Maier K, Stich L, König C, Wild AB, Tauchi M, Ostalecki C, Kiesewetter F, Seyferth S, Lee G, Eming SA, Fuchs M, Kunz M, Stürmer EK, Peters EMJ, Berking C, Zinser E, Steinkasserer A. Soluble CD83 improves and accelerates wound healing by the induction of pro-resolving macrophages. Front Immunol 2022; 13:1012647. [PMID: 36248909 PMCID: PMC9564224 DOI: 10.3389/fimmu.2022.1012647] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 09/13/2022] [Indexed: 11/22/2022] Open
Abstract
To facilitate the recovery process of chronic and hard-to-heal wounds novel pro-resolving treatment options are urgently needed. We investigated the pro-regenerative properties of soluble CD83 (sCD83) on cutaneous wound healing, where sCD83 accelerated wound healing not only after systemic but also after topical application, which is of high therapeutic interest. Cytokine profile analyses revealed an initial upregulation of inflammatory mediators such as TNFα and IL-1β, followed by a switch towards pro-resolving factors, including YM-1 and IL-10, both expressed by tissue repair macrophages. These cells are known to mediate resolution of inflammation and stimulate wound healing processes by secretion of growth factors such as epidermal growth factor (EGF) and vascular endothelial growth factor (VEGF), which promote vascularization as well as fibroblast and keratinocyte differentiation. In conclusion, we have found strong wound healing capacities of sCD83 beyond the previously described role in transplantation and autoimmunity. This makes sCD83 a promising candidate for the treatment of chronic- and hard-to-heal wounds.
Collapse
Affiliation(s)
- Dmytro Royzman
- Department of Immune Modulation, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- *Correspondence: Dmytro Royzman, ; Alexander Steinkasserer,
| | - Katrin Peckert-Maier
- Department of Immune Modulation, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Lena Stich
- Department of Immune Modulation, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Christina König
- Department of Immune Modulation, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Andreas B. Wild
- Department of Immune Modulation, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Miyuki Tauchi
- Department of Internal Medicine 2, University Hospital Erlangen, FAU, Erlangen, Germany
| | - Christian Ostalecki
- Department of Dermatology, University Hospital Erlangen, FAU, Erlangen, Germany
| | | | - Stefan Seyferth
- Division of Pharmaceutics, Department of Chemistry and Pharmacy, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Geoffrey Lee
- Division of Pharmaceutics, Department of Chemistry and Pharmacy, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Sabine A. Eming
- Department of Dermatology, University Hospital Cologne, Center for Molecular Medicine Cologne (CMMC), Cologne Excellence Cluster Cluster of Excellence for Aging Research (CECAD), University of Cologne, Cologne, Germany
| | - Maximilian Fuchs
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hannover, Germany
| | - Meik Kunz
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hannover, Germany
- Department of Medical Informatics, Friedrich-Alexander University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany
| | - Ewa K. Stürmer
- Department for Vascular Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Eva M. J. Peters
- Psychoneuroimmunology Laboratory, Klinik für Psychosomatik und Psychotherapie, Justus-Liebig Universität Gießen, Gießen, Germany
| | - Carola Berking
- Department of Dermatology, University Hospital Erlangen, FAU, Erlangen, Germany
| | - Elisabeth Zinser
- Department of Immune Modulation, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Alexander Steinkasserer
- Department of Immune Modulation, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- *Correspondence: Dmytro Royzman, ; Alexander Steinkasserer,
| |
Collapse
|
11
|
Zhu Y, Webster MJ, Murphy CE, Middleton FA, Massa PT, Liu C, Dai R, Weickert CS. Distinct Phenotypes of Inflammation Associated Macrophages and Microglia in the Prefrontal Cortex Schizophrenia Compared to Controls. Front Neurosci 2022; 16:858989. [PMID: 35844224 PMCID: PMC9279891 DOI: 10.3389/fnins.2022.858989] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 06/01/2022] [Indexed: 12/23/2022] Open
Abstract
Approximately 40% of people with schizophrenia are classified as having "high inflammation." This subgroup has worse neuropathology than patients with "low inflammation." Thus, one would expect the resident microglia and possibly monocyte-derived macrophages infiltrating from the periphery to be "activated" in those with schizophrenia with elevated neuroinflammation. To test whether microglia and/or macrophages are associated with increased inflammatory signaling in schizophrenia, we measured microglia- and macrophage-associated transcripts in the postmortem dorsolateral prefrontal cortex of 69 controls and 72 people with schizophrenia. Both groups were stratified by neuroinflammatory status based on cortical mRNA levels of cytokines and SERPINA3. We found microglial mRNAs levels were either unchanged (IBA1 and Hexb, p > 0.20) or decreased (CD11c, <62% p < 0.001) in high inflammation schizophrenia compared to controls. Conversely, macrophage CD163 mRNA levels were increased in patients, substantially so in the high inflammation schizophrenia subgroup compared to low inflammation subgroup (>250%, p < 0.0001). In contrast, high inflammation controls did not have elevated CD163 mRNA compared to low inflammation controls (p > 0.05). The pro-inflammatory macrophage marker (CD64 mRNA) was elevated (>160%, all p < 0.05) and more related to CD163 mRNA in the high inflammation schizophrenia subgroup compared to high inflammation controls, while anti-inflammatory macrophage and cytokine markers (CD206 and IL-10 mRNAs) were either unchanged or decreased in schizophrenia. Finally, macrophage recruitment chemokine CCL2 mRNA was increased in schizophrenia (>200%, p < 0.0001) and CCL2 mRNA levels positively correlated with CD163 mRNA (r = 0.46, p < 0.0001). Collectively, our findings support the co-existence of quiescent microglia and increased pro-inflammatory macrophages in the cortex of people with schizophrenia.
Collapse
Affiliation(s)
- Yunting Zhu
- Department of Neuroscience, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Maree J. Webster
- Stanley Medical Research Institute, Rockville, MD, United States
| | - Caitlin E. Murphy
- Schizophrenia Research Laboratory, Neuroscience Research Australia, Sydney, NSW, Australia
| | - Frank A. Middleton
- Department of Neuroscience, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Paul T. Massa
- Department of Neurology and Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Chunyu Liu
- Department of Psychiatry, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Rujia Dai
- Department of Psychiatry, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Cyndi Shannon Weickert
- Department of Neuroscience, SUNY Upstate Medical University, Syracuse, NY, United States
- Schizophrenia Research Laboratory, Neuroscience Research Australia, Sydney, NSW, Australia
- School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
12
|
FIOROTTI HELENAB, SOARES THIAGOG, BORGES MÁRCIAH, MATAVEL ALESSANDRA, CAMPOS FABIANAV, FIGUEIREDO SUELYGDE. Preliminary report on the hemagglutinating activity of the Scorpaena plumieri fish venom. AN ACAD BRAS CIENC 2022; 94:e20200976. [DOI: 10.1590/0001-376520220976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 03/02/2021] [Indexed: 12/23/2022] Open
Affiliation(s)
- HELENA B. FIOROTTI
- Universidade Federal do Espírito Santo, Brazil; Instituto Butantan, Brazil
| | | | | | | | | | | |
Collapse
|
13
|
Lopes-Ferreira M, Sosa-Rosales I, Silva Junior PI, Conceicao K, Maleski ALA, Balan-Lima L, Disner GR, Lima C. Molecular Characterization and Functional Analysis of the Nattectin-like Toxin from the Venomous Fish Thalassophryne maculosa. Toxins (Basel) 2021; 14:toxins14010002. [PMID: 35050979 PMCID: PMC8778695 DOI: 10.3390/toxins14010002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/08/2021] [Accepted: 11/15/2021] [Indexed: 01/02/2023] Open
Abstract
TmC4-47.2 is a toxin with myotoxic activity found in the venom of Thalassophryne maculosa, a venomous fish commonly found in Latin America whose envenomation produces an injury characterized by delayed neutrophil migration, production of major pro-inflammatory cytokines, and necrosis at the wound site, as well as a specific systemic immune response. However, there are few studies on the protein structure and functions associated with it. Here, the toxin was identified from the crude venom by chromatography and protein purification systems. TmC4-47.2 shows high homology with the Nattectin from Thalassophryne nattereri venom, with 6 cysteines and QPD domain for binding to galactose. We confirm its hemagglutinating and microbicide abilities independent of carbohydrate binding, supporting its classification as a nattectin-like lectin. After performing the characterization of TmC4-47.2, we verified its ability to induce an increase in the rolling and adherence of leukocytes in cremaster post-capillary venules dependent on the α5β1 integrin. Finally, we could observe the inflammatory activity of TmC4-47.2 through the production of IL-6 and eotaxin in the peritoneal cavity with sustained recruitment of eosinophils and neutrophils up to 24 h. Together, our study characterized a nattectin-like protein from T. maculosa, pointing to its role as a molecule involved in the carbohydrate-independent agglutination response and modulation of eosinophilic and neutrophilic inflammation.
Collapse
Affiliation(s)
- Monica Lopes-Ferreira
- Immunoregulation Unit of the Laboratory of Applied Toxinology (CeTICs/FAPESP), Butantan Institute, Vital Brasil Avenue, 1500 Butantan, Sao Paulo 05503-009, Brazil; (A.L.A.M.); (L.B.-L.); (G.R.D.); (C.L.)
- Correspondence:
| | - Ines Sosa-Rosales
- Escuela de Ciências Aplicadas del Mar, Universidad de Oriente, Boca de Rio 6304, Venezuela;
| | - Pedro Ismael Silva Junior
- Protein Chemistry Unit of the Laboratory of Applied Toxinology (CeTICs/FAPESP), Butantan Institute, Vital Brasil Avenue, 1500 Butantan, Sao Paulo 05503-009, Brazil;
| | - Katia Conceicao
- Peptide Biochemistry Laboratory, UNIFESP, Sao Jose dos Campos 12247-014, Brazil;
| | - Adolfo Luis Almeida Maleski
- Immunoregulation Unit of the Laboratory of Applied Toxinology (CeTICs/FAPESP), Butantan Institute, Vital Brasil Avenue, 1500 Butantan, Sao Paulo 05503-009, Brazil; (A.L.A.M.); (L.B.-L.); (G.R.D.); (C.L.)
- Post-Graduation Program of Toxinology, Butantan Institute, Vital Brasil Avenue, 1500 Butantan, Sao Paulo 05503-009, Brazil
| | - Leticia Balan-Lima
- Immunoregulation Unit of the Laboratory of Applied Toxinology (CeTICs/FAPESP), Butantan Institute, Vital Brasil Avenue, 1500 Butantan, Sao Paulo 05503-009, Brazil; (A.L.A.M.); (L.B.-L.); (G.R.D.); (C.L.)
| | - Geonildo Rodrigo Disner
- Immunoregulation Unit of the Laboratory of Applied Toxinology (CeTICs/FAPESP), Butantan Institute, Vital Brasil Avenue, 1500 Butantan, Sao Paulo 05503-009, Brazil; (A.L.A.M.); (L.B.-L.); (G.R.D.); (C.L.)
| | - Carla Lima
- Immunoregulation Unit of the Laboratory of Applied Toxinology (CeTICs/FAPESP), Butantan Institute, Vital Brasil Avenue, 1500 Butantan, Sao Paulo 05503-009, Brazil; (A.L.A.M.); (L.B.-L.); (G.R.D.); (C.L.)
| |
Collapse
|
14
|
Liu S, Yu T, Zhang Y, Pan C, Cai L, Yang M. Integrated analysis of mRNA and long non-coding RNA expression profiles reveals the potential roles of lncRNA-mRNA network in carp macrophage immune regulation. In Vitro Cell Dev Biol Anim 2021; 57:835-847. [PMID: 34554377 DOI: 10.1007/s11626-021-00610-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 07/28/2021] [Indexed: 12/27/2022]
Abstract
Long non-coding RNAs (lncRNAs) have emerged as a hot topic in research as mounting evidence has indicated their transcriptional or post-transcriptional regulatory potential in multiple biological processes. Previous studies have revealed the involvement of lncRNAs in the immunoregulation of mammalian macrophages by changing mRNA expression; however, studies on the lncRNAs in fish macrophages and their potential roles in the immune system remain unknown. Primary macrophages were isolated from the head kidney (HK) of red common carp (Cyprinus carpio) and high-throughput lncRNA-mRNA sequencing was performed using the Illumina HiSeq platform. The results revealed that the most highly expressed mRNAs in primary HK macrophages were mainly involved in immune-related signal pathways. Furthermore, the most enriched immune-related GO term and KEGG pathway of the mRNAs were "immune system development" and "chemokine signaling pathway," respectively. A total of 20,333 lncRNAs, composed of 10,512 known and 9821 novel lncRNAs, were identified, and functional enrichment analysis of the lncRNA-mRNA network indicated that the expressed lncRNAs in primary HK macrophages could be associated with the regulation of multiple immune-related signaling pathways. In addition, the expressions of several selected lncRNAs and their related mRNAs were determined in carp macrophages following a 6-h exposure to lipopolysaccharide (LPS) and Poly(I: C), the results of which confirmed the co-expression regulation of lncRNAs and target mRNAs in the immune response of carp macrophages. These results suggest the correlative of the lncRNA-mRNA network in fish macrophage immune response, which may further affect the cross-talk of various signaling pathways by interaction with other network genes. Here, we provided fundamental data about the transcriptome profiles of primary HK macrophages from red common carp by analysis of the lncRNA-mRNA network, and ultimately suggest the potential roles of lncRNA-mRNA networks in immune regulation in teleost fish.
Collapse
Affiliation(s)
- Shuai Liu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
- Research Institute of Poyang Lake, Jiangxi Academy of Sciences, Nanchang, 330012, China
| | - Ting Yu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Yuanyuan Zhang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Chenyuan Pan
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Ling Cai
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China.
| | - Ming Yang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
15
|
Cord blood levels of interleukin-10 decrease in neonates with increased birth weight: novel implications of the cytokine network in early obesity. Eur J Pediatr 2021; 180:2529-2537. [PMID: 33959818 DOI: 10.1007/s00431-021-04104-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 02/18/2021] [Accepted: 05/02/2021] [Indexed: 10/21/2022]
Abstract
Interleukin-10 (IL-10) and interferon-gamma (IFN-gamma) are associated with body weight alterations in children, adolescents, and adults. However, little is known regarding the role of IL-10 and IFN-gamma in birth weight of neonates. One hundred eighty-two infants were enrolled and divided in groups of normal birth weight (< 95th percentile) or increased birth weight (> 95th percentile) for gestational age. IL-10 and IFN-gamma levels were measured in umbilical cord tissue and blood of newborns by quantitative polymerase chain reaction (qPCR) and enzyme-linked immunosorbent assay (ELISA). The average value of birth weight in infants below and above the 95th percentile was 3.03±0.39 and 3.58±0.37 kg, respectively, and was independent of the mother's pre-gestational body mass index. The Student t test revealed that neonates with birth weights > 95th percentile show a significant 30% decrease in cord blood values of IL-10 as compared to infants with birth weights < 95th percentile (P<0.0001), with no significant changes in IFN-gamma levels (P=0.1661). Cord blood IL-10 was not of maternal origin but produced by umbilical cord tissue that showed less IL-10 expression in neonates with birth weights > 95th percentile than in infants with birth weights < 95th percentile (P=0.0252). Cord blood levels of IL-10 exhibited significant inverse correlations with birth weight (r = - 0.658, P=0.002) and INF-gamma (r = - 0.502, P=0.005).Conclusion: In conclusion, this work demonstrates for the first time that cord blood IL-10 decreases as birth weight increases in infants born at term and might help to improve early recognition of newborns at higher risk of developing obesity in childhood or adulthood. What is Known: • Reduction in interleukin-10 levels has been associated with obesity in adolescents and adults but not newborns. • The number of neonates with excess birth weight has alarmingly increased in the last 30 years. What is New: • We demonstrate that umbilical cord blood levels of interleukin-10 clearly decrease as birth weight increases. • Interleukin-10 and interferon-gamma integrate a cytokine network that might play a role in obesity in infants.
Collapse
|
16
|
The immunogenic maturation of goat monocyte-derived dendritic cells and upregulation of toll-like receptors by five antigens of Haemonchus contortus in-vitro. Res Vet Sci 2021; 136:247-258. [PMID: 33721712 DOI: 10.1016/j.rvsc.2021.03.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 03/01/2021] [Accepted: 03/04/2021] [Indexed: 12/25/2022]
Abstract
Previously, it was found that several proteins of Haemonchus contortus were involved in the stimulation of the host immune system. However, the information about the selection of superlative antigens with immunogenic efficacies on host DCs is lacking. In the current study, the stimulatory effects of five recombinant proteins (elongation factor-1α, arginine kinase, ES-15, ES-24, and ADP-ribosylation factor 1) of H. contortus on the maturation of goat monocyte-derived dendritic cells (md-DCs) were reported. Recombinant proteins were purified separately in E. coli expression and incubated with isolated goat peripheral blood mononuclear cells (PBMC). Immunofluorescence assay (IFA) results confirmed the binding of these molecules to the md-DC's surface as compared to control groups. In the flow cytometry analysis, recombinant proteins induced md-DC stimulation via the up-regulation of the expression of the costimulatory molecule (CD80) and MHC-II. Quantitative RT-PCR data showed a significant increase in the expression of specific genes of the WNT and toll-like receptor (TLR) signaling pathways. The result of ELISA indicated the higher levels of cytokine (IL-10, IL-12, IFN-γ, and TNF-α) secretion in the md-DC compared to the negative (pET-32a His-Tag) and blank (PBS) control groups. The data gives valuable support in the selection of potential antigens for future studies on the immunomodulation of the host against the infection of H. contortus.
Collapse
|
17
|
Minutti-Zanella C, Gil-Leyva EJ, Vergara I. Immunomodulatory properties of molecules from animal venoms. Toxicon 2021; 191:54-68. [PMID: 33417946 DOI: 10.1016/j.toxicon.2020.12.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 12/02/2020] [Accepted: 12/30/2020] [Indexed: 10/22/2022]
Abstract
The immune system can amplify or decrease the strength of its response when it is stimulated by chemical or biological substances that act as immunostimulators, immunosuppressants, or immunoadjuvants. Immunomodulation is a progressive approach to treat a diversity of pathologies with promising results, including autoimmune disorders and cancer. Animal venoms are a mixture of chemical compounds that include proteins, peptides, amines, salts, polypeptides, enzymes, among others, which produce the toxic effect. Since the discovery of captopril in the early 1980s, other components from snakes, spiders, scorpions, and marine animal venoms have been demonstrated to be useful for treating several human diseases. The valuable progress in fields such as venomics, molecular biology, biotechnology, immunology, and others has been crucial to understanding the interaction of toxins with the immune system and its application on immune pathologies. More in-depth knowledge of venoms' components and multi-disciplinary studies could facilitate their transformation into effective novel immunotherapies. This review addresses advances and research of molecules from venoms that have immunomodulatory properties.
Collapse
Affiliation(s)
- C Minutti-Zanella
- Departamento de Ciencias Químico-Biológicas, Universidad de Las Américas Puebla, ExHda. Sta. Catarina Mártir s/n, San Andrés Cholula, 72820, Puebla, Mexico
| | - E J Gil-Leyva
- Departamento de Ciencias Químico-Biológicas, Universidad de Las Américas Puebla, ExHda. Sta. Catarina Mártir s/n, San Andrés Cholula, 72820, Puebla, Mexico
| | - I Vergara
- Departamento de Ciencias Químico-Biológicas, Universidad de Las Américas Puebla, ExHda. Sta. Catarina Mártir s/n, San Andrés Cholula, 72820, Puebla, Mexico.
| |
Collapse
|
18
|
Wasityastuti W, Habib NA, Sari DCR, Arfian N. Effects of low and moderate treadmill exercise on liver of d-galactose-exposed aging rat model. Physiol Rep 2020; 7:e14279. [PMID: 31724278 PMCID: PMC6854106 DOI: 10.14814/phy2.14279] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 10/08/2019] [Accepted: 10/10/2019] [Indexed: 12/15/2022] Open
Abstract
Aging increases liver susceptibility to diseases and it causes inflammation in liver tissue which can lead to fibrosis. Studies suggest that aging is caused by the accumulation of free radicals. Lack of physical activity can lower hormone levels and increase free radicals that can accelerate the aging process. Hence, physical activity is very important to maintain functions of organs. This research was aimed to study the effects of low and moderate treadmill exercise on d‐Galactose‐exposed aging rat model by evaluating the degree of hepatic fibrosis, number of M1 and M2, and M1/M2 ratio. Twenty‐four 3‐month‐old male Wistar aging model rats were randomly divided into four groups, that is, three treatment groups with daily 300 mg kgBW−1d‐Galactose injection administrated intraperitoneally for 4 weeks and 1 control group with normal saline injection. Two of the d‐Galactose treated groups were given low and moderate treadmill exercise for 4 weeks. It was concluded that low intensity treadmill exercise significantly lowered the degree of d‐Galactose‐exposed hepatic fibrosis, and moderate treadmill exercise was able to restore the injured liver tissue back to the non‐aging state. Administration of d‐Galactose causes inflammation marked by the elevated number of M1 and M2 macrophages. Moderate treadmill exercise drove M1/M2 ratio back to the control condition.
Collapse
Affiliation(s)
- Widya Wasityastuti
- Department of Physiology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Nurfatma A Habib
- Master in Biomedical Sciences, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Dwi C R Sari
- Department of Anatomy, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Nur Arfian
- Department of Anatomy, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| |
Collapse
|
19
|
Hreha TN, Collins CA, Daugherty AL, Griffith JM, Hruska KA, Hunstad DA. Androgen-Influenced Polarization of Activin A-Producing Macrophages Accompanies Post-pyelonephritic Renal Scarring. Front Immunol 2020; 11:1641. [PMID: 32849562 PMCID: PMC7399094 DOI: 10.3389/fimmu.2020.01641] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 06/18/2020] [Indexed: 12/14/2022] Open
Abstract
Ascending bacterial pyelonephritis, a form of urinary tract infection (UTI) that can result in hospitalization, sepsis, and other complications, occurs in ~250,000 US patients annually; uropathogenic Escherichia coli (UPEC) cause a large majority of these infections. Although UTIs are primarily a disease of women, acute pyelonephritis in males is associated with increased mortality and morbidity, including renal scarring, and end-stage renal disease. Preclinical models of UTI have only recently allowed investigation of sex and sex-hormone effects on pathogenesis. We previously demonstrated that renal scarring after experimental UPEC pyelonephritis is augmented by androgen exposure; testosterone exposure increases both the severity of pyelonephritis and the degree of renal scarring in both male and female mice. Activin A is an important driver of scarring in non-infectious renal injury, as well as a mediator of macrophage polarization. In this work, we investigated how androgen exposure influences immune cell recruitment to the UPEC-infected kidney and how cell-specific activin A production affects post-pyelonephritic scar formation. Compared with vehicle-treated females, androgenized mice exhibited reduced bacterial clearance from the kidney, despite robust myeloid cell recruitment that continued to increase as infection progressed. Infected kidneys from androgenized mice harbored more alternatively activated (M2) macrophages than vehicle-treated mice, reflecting an earlier shift from a pro-inflammatory (M1) phenotype. Androgen exposure also led to a sharp increase in activin A-producing myeloid cells in the infected kidney, as well as decreased levels of follistatin (which normally antagonizes activin action). As a result, infection in androgenized mice featured prolonged polarization of macrophages toward a pro-fibrotic M2a phenotype, accompanied by an increase in M2a-associated cytokines. These data indicate that androgen enhancement of UTI severity and resulting scar formation is related to augmented local activin A production and corresponding promotion of M2a macrophage polarization.
Collapse
Affiliation(s)
- Teri N Hreha
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, United States
| | - Christina A Collins
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, United States
| | - Allyssa L Daugherty
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, United States
| | - Jessie M Griffith
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, United States
| | - Keith A Hruska
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, United States.,Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, United States
| | - David A Hunstad
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, United States.,Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
20
|
Chen J, Wu Y, Duan FX, Wang SN, Guo XY, Ding SQ, Zhou JH, Hu JG, Lü HZ. Effect of M2 macrophage adoptive transfer on transcriptome profile of injured spinal cords in rats. Exp Biol Med (Maywood) 2019; 244:880-892. [PMID: 31159561 DOI: 10.1177/1535370219854668] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The previous studies showed that alternatively activated anti-inflammatory macrophage (M2) adoptive immunity can improve the proportion of local M2 cells and play the neuroprotective effect after spinal cord injury (SCI). Its molecular mechanism is not yet very clear. Therefore, this study aims to analyze the effect of the M2 adoptive transfer on the local expression of gene transcription. Sprague-Dawley (SD) rats were used for culture of macrophages and establishment of SCI models. After SCI, the polarized M2 macrophages were transferred to the injured rats by tail vein injection. Seven days after operation, the differentially expressed genes (DEGs) in the spinal cords were analyzed by RNA-sequencing (RNA-Seq). Then, the functional enrichment analysis and pathways were performed by using gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG), respectively. RNA-Seq showed that M2 adoptive immunity can down-regulate many well-studied gene expressions associated with signaling pathways of inflammatory, such as antigen processing and presentation, phagosome, cell adhesion molecules, natural killer cell-mediated cytotoxicity, endocytosis, proteasome, and Toll-like receptor signaling pathway. These may explain the mechanism of our previous adoptive immunization of M2 cells to provide neuroprotection for SCI. In addition, a novel pathway, retinoic acid-inducible gene-1 (RIG-I)-like receptor signaling pathway was found to be involved in the pathological process of SCI and the response to M2 adoptive immunity as well. This will provide a new explanation for the pathological mechanism of SCI and a new theoretical and experimental basis for its clinical treatment. The raw Illumina data are available at http://www.ncbi.nlm.nih.gov/sra (accession number PRJNA517238). Impact statement This research aimed to analyze the effect of M2 macrophage adoptive transfer on the local expression of gene transcription after SCI by RNA-Seq. The results showed that M2 adoptive immunity can down-regulate many well-studied gene expressions associated with signaling pathways of inflammatory. These may explain the mechanism of our previous adoptive immunization of M2 cells to provide neuroprotection for SCI. In addition, a novel pathway, RIG-I-like receptor signaling pathway was also found to involve in the pathological process of SCI and the response to M2 adoptive immunity. This will provide a new explanation for the pathological mechanism of SCI and a new theoretical and experimental basis for its clinical treatment.
Collapse
Affiliation(s)
- Jing Chen
- 1 Clinical Laboratory, the First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China.,2 Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China.,3 Department of Immunology, Bengbu Medical College, Anhui 233030, PR China
| | - Yan Wu
- 1 Clinical Laboratory, the First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China.,2 Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China.,3 Department of Immunology, Bengbu Medical College, Anhui 233030, PR China
| | - Fei-Xiang Duan
- 1 Clinical Laboratory, the First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China.,2 Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China
| | - Sai-Nan Wang
- 1 Clinical Laboratory, the First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China.,2 Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China.,3 Department of Immunology, Bengbu Medical College, Anhui 233030, PR China
| | - Xue-Yan Guo
- 1 Clinical Laboratory, the First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China.,2 Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China
| | - Shu-Qin Ding
- 1 Clinical Laboratory, the First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China.,2 Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China
| | - Ji-Hong Zhou
- 3 Department of Immunology, Bengbu Medical College, Anhui 233030, PR China
| | - Jian-Guo Hu
- 1 Clinical Laboratory, the First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China.,2 Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China
| | - He-Zuo Lü
- 1 Clinical Laboratory, the First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China.,2 Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China.,3 Department of Immunology, Bengbu Medical College, Anhui 233030, PR China
| |
Collapse
|
21
|
Macrophages: versatile players in renal inflammation and fibrosis. Nat Rev Nephrol 2019; 15:144-158. [PMID: 30692665 DOI: 10.1038/s41581-019-0110-2] [Citation(s) in RCA: 556] [Impact Index Per Article: 111.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/11/2018] [Indexed: 12/15/2022]
Abstract
Macrophages have important roles in immune surveillance and in the maintenance of kidney homeostasis; their response to renal injury varies enormously depending on the nature and duration of the insult. Macrophages can adopt a variety of phenotypes: at one extreme, M1 pro-inflammatory cells contribute to infection clearance but can also promote renal injury; at the other extreme, M2 anti-inflammatory cells have a reparative phenotype and can contribute to the resolution phase of the response to injury. In addition, bone marrow monocytes can differentiate into myeloid-derived suppressor cells that can regulate T cell immunity in the kidney. However, macrophages can also promote renal fibrosis, a major driver of progression to end-stage renal disease, and the CD206+ subset of M2 macrophages is strongly associated with renal fibrosis in both human and experimental diseases. Myofibroblasts are important contributors to renal fibrosis and recent studies provide evidence that macrophages recruited from the bone marrow can transition directly into myofibroblasts within the injured kidney. This process is termed macrophage-to-myofibroblast transition (MMT) and is driven by transforming growth factor-β1 (TGFβ1)-Smad3 signalling via a Src-centric regulatory network. MMT may serve as a key checkpoint for the progression of chronic inflammation into pathogenic fibrosis.
Collapse
|
22
|
Wang LX, Zhang SX, Wu HJ, Rong XL, Guo J. M2b macrophage polarization and its roles in diseases. J Leukoc Biol 2018; 106:345-358. [PMID: 30576000 PMCID: PMC7379745 DOI: 10.1002/jlb.3ru1018-378rr] [Citation(s) in RCA: 498] [Impact Index Per Article: 83.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 12/07/2018] [Accepted: 12/09/2018] [Indexed: 12/14/2022] Open
Abstract
Macrophages play an important role in a wide variety of physiologic and pathologic processes. Plasticity and functional polarization are hallmarks of macrophages. Macrophages commonly exist in two distinct subsets: classically activated macrophages (M1) and alternatively activated macrophages (M2). M2b, a subtype of M2 macrophages, has attracted increasing attention over the past decade due to its strong immune‐regulated and anti‐inflammatory effects. A wide variety of stimuli and multiple factors modulate M2b macrophage polarization in vitro and in vivo. M2b macrophages possess both protective and pathogenic roles in various diseases. Understanding the mechanisms of M2b macrophage activation and the modulation of their polarization might provide a great perspective for the design of novel therapeutic strategies. The purpose of this review is to discuss current knowledge of M2b macrophage polarization, the roles of M2b macrophages in a variety of diseases and the stimuli to modulate M2b macrophage polarization.
Collapse
Affiliation(s)
- Le-Xun Wang
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Joint Laboratory of Guangdong, Hong Kong and Macao on Glycolipid Metabolic Diseases, Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, Institute of Chinese Medicine Sciences, Guangdong Pharmaceutical University, Guangzhou, China
| | - Sheng-Xi Zhang
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Joint Laboratory of Guangdong, Hong Kong and Macao on Glycolipid Metabolic Diseases, Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, Institute of Chinese Medicine Sciences, Guangdong Pharmaceutical University, Guangzhou, China
| | - Hui-Juan Wu
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Joint Laboratory of Guangdong, Hong Kong and Macao on Glycolipid Metabolic Diseases, Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, Institute of Chinese Medicine Sciences, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xiang-Lu Rong
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Joint Laboratory of Guangdong, Hong Kong and Macao on Glycolipid Metabolic Diseases, Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, Institute of Chinese Medicine Sciences, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jiao Guo
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Joint Laboratory of Guangdong, Hong Kong and Macao on Glycolipid Metabolic Diseases, Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, Institute of Chinese Medicine Sciences, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
23
|
Hou J, Shi J, Chen L, Lv Z, Chen X, Cao H, Xiang Z, Han X. M2 macrophages promote myofibroblast differentiation of LR-MSCs and are associated with pulmonary fibrogenesis. Cell Commun Signal 2018; 16:89. [PMID: 30470231 PMCID: PMC6260991 DOI: 10.1186/s12964-018-0300-8] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 11/13/2018] [Indexed: 01/21/2023] Open
Abstract
Background Idiopathic pulmonary fibrosis (IPF) is a devastating disease characterized by the histopathological pattern of usual interstitial pneumonia and is associated with a high mortality rate. Recently, lung resident mesenchymal stem cells (LR-MSCs) have been identified as an important contributor to myofibroblast activation in pulmonary fibrosis. Macrophages are also believed to play a critical role in pulmonary fibrosis. However, the underlying connections between LR-MSCs and macrophages in the pathogenesis of pulmonary fibrosis are still elusive. Methods In this study, we investigated the interaction between LR-MSCs and macrophages using a bleomycin-induced mouse pulmonary fibrosis model and a coculture system. Results Here, we show that blocking pulmonary macrophage infiltration attenuated bleomycin-induced pulmonary fibrosis. In addition, as determined by flow cytometry, we discovered that the recruited macrophages in fibrotic lungs of bleomycin-treated mice were mainly M2 macrophages. In particular, we found that M2, rather than M1 macrophages, promoted myofibroblast differentiation of LR-MSCs. Moreover, we demonstrated that suppression of the Wnt/β-catenin signaling pathway could attenuate myofibroblast differentiation of LR-MSCs induced by M2 macrophages and bleomycin-induced pulmonary fibrosis. Tissue samples from IPF patients confirmed the infiltration of M2 macrophages and activation of Wnt/β-catenin signaling pathway. Conclusion In summary, this study furthered our understanding of the pulmonary fibrosis pathogenesis and highlighted M2 macrophages as a critical target for treating pulmonary fibrosis. Electronic supplementary material The online version of this article (10.1186/s12964-018-0300-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jiwei Hou
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Hankou Road 22, Nanjing, 210093, China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, China
| | - Jingyan Shi
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Hankou Road 22, Nanjing, 210093, China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, China
| | - Ling Chen
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Hankou Road 22, Nanjing, 210093, China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, China
| | - Zhongyang Lv
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Hankou Road 22, Nanjing, 210093, China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, China
| | - Xiang Chen
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Hankou Road 22, Nanjing, 210093, China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, China
| | - Honghui Cao
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Hankou Road 22, Nanjing, 210093, China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, China
| | - Zou Xiang
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Xiaodong Han
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Hankou Road 22, Nanjing, 210093, China. .,Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, China.
| |
Collapse
|
24
|
Wasnik S, Rundle CH, Baylink DJ, Yazdi MS, Carreon EE, Xu Y, Qin X, Lau KHW, Tang X. 1,25-Dihydroxyvitamin D suppresses M1 macrophages and promotes M2 differentiation at bone injury sites. JCI Insight 2018; 3:98773. [PMID: 30185660 PMCID: PMC6171806 DOI: 10.1172/jci.insight.98773] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 07/27/2018] [Indexed: 12/14/2022] Open
Abstract
An indispensable role of macrophages in bone repair has been well recognized. Previous data have demonstrated the copresence of M1 macrophages and mesenchymal stem cells (MSCs) during the proinflammatory stage of bone repair. However, the exact role of M1 macrophages in MSC function and bone repair is unknown. This study aimed to define the role of M1 macrophages at bone injury sites via the function of 1,25-Dihydroxyvitamin D (1,25[OH]2D) in suppressing M1 but promoting M2 differentiation. We showed that 1,25(OH)2D suppressed M1 macrophage-mediated enhancement of MSC migration. Additionally, 1,25(OH)2D inhibited M1 macrophage secretion of osteogenic proteins (i.e., Oncostatin M, TNF-α, and IL-6). Importantly, the 1,25(OH)2D-mediated suppression of osteogenic function in M1 macrophages at the proinflammatory stage was associated with 1,25(OH)2D-mediated reduction of MSC abundance, compromised osteogenic potential of MSCs, and impairment of fracture repair. Furthermore, outside the proinflammatory stage, 1,25(OH)2D treatment did not suppress fracture repair. Accordingly, our data support 2 conclusions: (a) M1 macrophages are important for the recruitment and osteogenic priming of MSCs and, hence, are necessary for fracture repair, and (b) under vitamin D-sufficient conditions, 1,25(OH)2D treatment is unnecessary and can be detrimental if provided during the proinflammatory stage of fracture healing.
Collapse
Affiliation(s)
- Samiksha Wasnik
- Division of Regenerative Medicine, Department of Medicine, Loma Linda University, Loma Linda, California, USA
| | - Charles H Rundle
- Musculoskeletal Disease Center, Jerry L. Pettis Memorial VA Medical Center, Loma Linda, California, USA
| | - David J Baylink
- Division of Regenerative Medicine, Department of Medicine, Loma Linda University, Loma Linda, California, USA
| | - Mohammad Safaie Yazdi
- Division of Regenerative Medicine, Department of Medicine, Loma Linda University, Loma Linda, California, USA
| | - Edmundo E Carreon
- Division of Regenerative Medicine, Department of Medicine, Loma Linda University, Loma Linda, California, USA
| | - Yi Xu
- Division of Regenerative Medicine, Department of Medicine, Loma Linda University, Loma Linda, California, USA
| | - Xuezhong Qin
- Division of Regenerative Medicine, Department of Medicine, Loma Linda University, Loma Linda, California, USA.,Musculoskeletal Disease Center, Jerry L. Pettis Memorial VA Medical Center, Loma Linda, California, USA
| | - Kin-Hing William Lau
- Division of Regenerative Medicine, Department of Medicine, Loma Linda University, Loma Linda, California, USA.,Musculoskeletal Disease Center, Jerry L. Pettis Memorial VA Medical Center, Loma Linda, California, USA
| | - Xiaolei Tang
- Division of Regenerative Medicine, Department of Medicine, Loma Linda University, Loma Linda, California, USA
| |
Collapse
|
25
|
Immunological features and efficacy of the recombinant subunit vaccine LTB-EMY162 against Echinococcus multilocularis metacestode. Appl Microbiol Biotechnol 2018; 102:2143-2154. [DOI: 10.1007/s00253-018-8771-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 12/22/2017] [Accepted: 12/27/2017] [Indexed: 12/15/2022]
|
26
|
Yadav S, Kujur PK, Pandey SK, Goel Y, Maurya BN, Verma A, Kumar A, Singh RP, Singh SM. Antitumor action of 3-bromopyruvate implicates reorganized tumor growth regulatory components of tumor milieu, cell cycle arrest and induction of mitochondria-dependent tumor cell death. Toxicol Appl Pharmacol 2018; 339:52-64. [DOI: 10.1016/j.taap.2017.12.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 12/03/2017] [Accepted: 12/04/2017] [Indexed: 02/07/2023]
|
27
|
Nakamoto M, Takeuchi Y, Akita K, Kumagai R, Suzuki J, Koyama T, Noda T, Yoshida K, Ozaki A, Araki K, Sakamoto T. A novel C-type lectin gene is a strong candidate gene for Benedenia disease resistance in Japanese yellowtail, Seriola quinqueradiata. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 76:361-369. [PMID: 28705457 DOI: 10.1016/j.dci.2017.07.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 07/08/2017] [Accepted: 07/08/2017] [Indexed: 06/07/2023]
Abstract
Little is known about mechanisms of resistance to parasitic diseases in marine finfish. Benedenia disease is caused by infection by the monogenean parasite Benedenia seriolae. Previous quantitative trait locus (QTL) analyses have identified a major QTL associated with resistance to Benedenia disease in linkage group Squ2 of the Japanese yellowtail/amberjack Seriola quinqueradiata. To uncover the bioregulatory mechanism of Benedenia disease resistance, complete Illumina sequencing of BAC clones carrying genomic DNA for the QTL region in linkage group Squ2 was performed to reveal a novel C-type lectin in this region. Expression of the mRNA of this C-type lectin was detected in skin tissue parasitized by B. seriolae. Scanning for single nucleotide polymorphisms (SNPs) uncovered a SNP in the C-type lectin/C-type lectin-like domain that was significantly associated with B. seriolae infection levels. These results strongly suggest that the novel C-type lectin gene controls resistance to Benedenia disease in Japanese yellowtails.
Collapse
Affiliation(s)
- Masatoshi Nakamoto
- Department of Aquatic Marine Biosciences, Tokyo University of Marine Science and Technology, Tokyo 108-8477, Japan
| | - Yusuke Takeuchi
- Department of Aquatic Marine Biosciences, Tokyo University of Marine Science and Technology, Tokyo 108-8477, Japan
| | - Kazuki Akita
- Department of Aquatic Marine Biosciences, Tokyo University of Marine Science and Technology, Tokyo 108-8477, Japan
| | - Ryo Kumagai
- Department of Aquatic Marine Biosciences, Tokyo University of Marine Science and Technology, Tokyo 108-8477, Japan
| | - Junpei Suzuki
- Department of Aquatic Marine Biosciences, Tokyo University of Marine Science and Technology, Tokyo 108-8477, Japan
| | - Takashi Koyama
- Department of Aquatic Marine Biosciences, Tokyo University of Marine Science and Technology, Tokyo 108-8477, Japan
| | - Tsutomu Noda
- Goto Laboratory of the Seikai National Fisheries Research Institute, Japan Fisheries Research and Education Agency, Nagasaki 853-0508, Japan
| | - Kazunori Yoshida
- Goto Laboratory of the Seikai National Fisheries Research Institute, Japan Fisheries Research and Education Agency, Nagasaki 853-0508, Japan
| | - Akiyuki Ozaki
- National Research Institute of Aquaculture, Japan Fisheries Research and Education Agency, Mie 516-0193, Japan
| | - Kazuo Araki
- National Research Institute of Aquaculture, Japan Fisheries Research and Education Agency, Mie 516-0193, Japan
| | - Takashi Sakamoto
- Department of Aquatic Marine Biosciences, Tokyo University of Marine Science and Technology, Tokyo 108-8477, Japan.
| |
Collapse
|
28
|
Zhu L, Fu X, Chen X, Han X, Dong P. M2 macrophages induce EMT through the TGF-β/Smad2 signaling pathway. Cell Biol Int 2017; 41:960-968. [PMID: 28493530 DOI: 10.1002/cbin.10788] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 05/08/2017] [Indexed: 12/11/2022]
Abstract
IPF is characterized by fibroblast accumulation, collagen deposition, and ECM remodeling, with myofibroblasts believed to be the effector cell type. Myofibroblasts develop due to EMT of lung alveolar epithelial cells, which can be induced by TGF-β. M2 macrophages, a macrophage subpopulation, secrete large amounts of TGF-β. To clarify the relationship between IPF, EMT, TGF-β, and M2 macrophages, a bleomycin-induced pulmonary fibrosis mouse model was used. Seventeen days after mice were treated with bleomycin, the successful establishment of a pulmonary fibrosis model was confirmed by HE stain and Masson's trichrome stain. We found evidence in support of EMT, such as elevated protein levels of α-SMA in lung tissue and decreased levels of E-cadherin and CK-18. Additionally, increased TGF-β levels and TGF-β/Smad2 signaling activation was observed. Macrophages were recruited to pulmonary alveoli. Alveolar macrophages were phenotyped and identified as M2 macrophages, with up-regulated CD206 on the cell surfaces. For in vitro studies, we treated RAW 264.7 cells with IL-4 for 24 h, and the cells were then utilized as M2 macrophages. TGF-β levels increased significantly in the culture supernatant. Forty-eight hours after lung epithelial cells (MLE-12) were co-cultured with the M2 macrophages, the expression of α-SMA increased, and E-cadherin and CK-18 decreased. When a TGF-β receptor inhibitor, LY2109761 was used, the EMT induced by M2 macrophages was blocked. In conclusion, we demonstrated that M2 macrophages induce EMT through the TGF-β/Smad2 signaling pathway.
Collapse
Affiliation(s)
- Liangying Zhu
- Immunology and Reproductive Biology Laboratory, Medical School, Nanjing University, Hankou Road 22, Nanjing, 210093, China.,The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, China
| | - Xiao Fu
- Immunology and Reproductive Biology Laboratory, Medical School, Nanjing University, Hankou Road 22, Nanjing, 210093, China.,The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, China
| | - Xiang Chen
- Immunology and Reproductive Biology Laboratory, Medical School, Nanjing University, Hankou Road 22, Nanjing, 210093, China
| | - Xiaodong Han
- Immunology and Reproductive Biology Laboratory, Medical School, Nanjing University, Hankou Road 22, Nanjing, 210093, China
| | - Ping Dong
- Immunology and Reproductive Biology Laboratory, Medical School, Nanjing University, Hankou Road 22, Nanjing, 210093, China
| |
Collapse
|
29
|
Spielman LJ, Estaki M, Ghosh S, Gibson DL, Klegeris A. The effects of voluntary wheel running on neuroinflammatory status: Role of monocyte chemoattractant protein-1. Mol Cell Neurosci 2017; 79:93-102. [DOI: 10.1016/j.mcn.2016.12.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 12/30/2016] [Indexed: 12/17/2022] Open
|
30
|
Bone marrow-derived innate macrophages attenuate oxazolone-induced colitis. Cell Immunol 2017; 311:46-53. [DOI: 10.1016/j.cellimm.2016.10.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 09/21/2016] [Accepted: 10/11/2016] [Indexed: 12/26/2022]
|
31
|
Dias-Netipanyj MF, Boldrini-Leite LM, Trindade ES, Moreno-Amaral AN, Elifio-Esposito S. Bjcul, a snake venom lectin, modulates monocyte-derived macrophages to a pro-inflammatory profile in vitro. Toxicol In Vitro 2016; 33:118-24. [PMID: 26944802 DOI: 10.1016/j.tiv.2016.02.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 02/26/2016] [Accepted: 02/27/2016] [Indexed: 10/22/2022]
Abstract
Macrophages are cells of high plasticity and can act in different ways to ensure that the appropriate immune response remains controlled. This study shows the effects of the C-type Bothrops jararacussu venom lectin (BJcuL) on the activation of human macrophages derived from the U937 cell line. BJcuL binds on the cell surface, and this event is inhibited by its specific carbohydrate. It induced phagocytosis and production of H2O2, and expression of antigen presentation molecules. It also enhanced the production of TNF-α, GM-CSF and IL-6 by macrophages and indirectly induced T cells to an increased production of TNF-α, IFN-γ and IL-6 in the presence of LPS. Our results suggest that BJcuL can modulate macrophage functional activation towards an M1 state.
Collapse
Affiliation(s)
- M F Dias-Netipanyj
- Pós-graduação em Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica do Paraná, Rua Imaculada Conceição, 1155, Curitiba, PR CEP 80215-901, Brazil
| | - L M Boldrini-Leite
- Núcleo de Tecnologia Celular, Escola de Medicina, Pontifícia Universidade Católica do Paraná, Rua Imaculada Conceição, 1155, Curitiba, PR CEP 80215-901, Brazil
| | - E S Trindade
- Departamento de Biologia Celular, Universidade Federal do Paraná, Rua Francisco H. dos Santos, 100, Caixa Postal 19031, Curitiba, PR CEP 81531-980, Brazil
| | - A N Moreno-Amaral
- Pós-graduação em Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica do Paraná, Rua Imaculada Conceição, 1155, Curitiba, PR CEP 80215-901, Brazil
| | - S Elifio-Esposito
- Pós-graduação em Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica do Paraná, Rua Imaculada Conceição, 1155, Curitiba, PR CEP 80215-901, Brazil.
| |
Collapse
|
32
|
Tosello-Trampont AC, Krueger P, Narayanan S, Landes SG, Leitinger N, Hahn YS. NKp46(+) natural killer cells attenuate metabolism-induced hepatic fibrosis by regulating macrophage activation in mice. Hepatology 2016; 63:799-812. [PMID: 26662852 PMCID: PMC4764418 DOI: 10.1002/hep.28389] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Accepted: 12/06/2015] [Indexed: 12/17/2022]
Abstract
UNLABELLED Nonalcoholic steatohepatitis (NASH) affects 3%-5% of the U.S. population, having severe clinical complications to the development of fibrosis and end-stage liver diseases, such as cirrhosis and hepatocellular carcinoma. A critical cause of NASH is chronic systemic inflammation promoted by innate immune cells, such as liver macrophages (Mϕ) and natural killer (NK) cells. However, little is known about how the crosstalk between Mϕ and NK cells contributes to regulate NASH progression to fibrosis. In this report, we demonstrate that NKp46(+) cells play an important role in preventing NASH progression to fibrosis by regulating M1/M2 polarization of liver Mϕ. Using a murine model of NASH, we demonstrate that DX5(+)NKp46(+) NK cells are increased during disease and play a role in polarizing Mϕ toward M1-like phenotypes. This NK's immunoregulatory function depends on the production of interferon-gamma (IFN-γ), but not by granzyme-mediated cytolytic activity. Notably, depletion of NKp46(+) cells promotes the development of fibrosis with increased expression of profibrogenic genes as well as skewed M2 Mϕ phenotypes in hepatic tissues. CONCLUSIONS NK cell-derived IFN-γ may be essential for maintaining a balanced inflammatory environment that promotes tissue integrity and limiting NASH progression to fibrosis.
Collapse
Affiliation(s)
| | - Peter Krueger
- Beirne Carter Center for Immunology Research, University of Virginia, Charlottesville, VA 22908,Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA 22908
| | - Sowmya Narayanan
- Beirne Carter Center for Immunology Research, University of Virginia, Charlottesville, VA 22908,Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA 22908
| | - Susan G. Landes
- Beirne Carter Center for Immunology Research, University of Virginia, Charlottesville, VA 22908
| | - Norbert Leitinger
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908
| | - Young S. Hahn
- Beirne Carter Center for Immunology Research, University of Virginia, Charlottesville, VA 22908,Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA 22908
| |
Collapse
|
33
|
Ait-Lounis A, Laraba-Djebari F. TNF-alpha modulates adipose macrophage polarization to M1 phenotype in response to scorpion venom. Inflamm Res 2015; 64:929-36. [PMID: 26403661 DOI: 10.1007/s00011-015-0876-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Revised: 09/07/2015] [Accepted: 09/09/2015] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVE We previously reported that Androctonus australis hector (Aah) venom and its toxic fraction affect adipose tissue metabolism. However, the contribution of immune system and the role of adipose tissue macrophages (ATMs) in the progression of inflammation induced by scorpion venom remain largely unknown. METHODS Here we evaluate the capacity of the toxic fraction of Aah venom (FTox-G50) to induce the expression of M1 and M2 markers genes on adipose tissue and isolated stromal vascular cells (SVC). Quantitative real-time PCR was performed on the SVC 24 h after FTox-G50 venom injection to assess the gene expressions of IL12p40, IL23, and other macrophages-associated markers. RESULTS We found that ATM from FTox-G50-venom-injected mice markedly increased the expressions of IL-12p40 and IL-23. Furthermore, the expression of nitric oxide synthase 2 (an M1 marker) was up-regulated, but the expression of Arginase1 (an M2 marker) was not. Systemic injection of a chemical inhibitor directed against TNF-α binding reduced the expression of inflammatory M1 macrophage markers and the MAPKpk2 gene, a key mediator of inflammatory signaling. CONCLUSION These results indicate that TNF-α is a physiological regulator of inflammation and macrophage activation induced by scorpion venom.
Collapse
Affiliation(s)
- Aouatef Ait-Lounis
- USTHB, Faculty of Biological Sciences, Laboratory of Cellular and Molecular Biology, BP 32 El-Alia, Bab Ezzouar, Algiers, Algeria
| | - Fatima Laraba-Djebari
- USTHB, Faculty of Biological Sciences, Laboratory of Cellular and Molecular Biology, BP 32 El-Alia, Bab Ezzouar, Algiers, Algeria.
| |
Collapse
|
34
|
Ziegman R, Alewood P. Bioactive components in fish venoms. Toxins (Basel) 2015; 7:1497-531. [PMID: 25941767 PMCID: PMC4448160 DOI: 10.3390/toxins7051497] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 04/21/2015] [Accepted: 04/23/2015] [Indexed: 01/12/2023] Open
Abstract
Animal venoms are widely recognized excellent resources for the discovery of novel drug leads and physiological tools. Most are comprised of a large number of components, of which the enzymes, small peptides, and proteins are studied for their important bioactivities. However, in spite of there being over 2000 venomous fish species, piscine venoms have been relatively underrepresented in the literature thus far. Most studies have explored whole or partially fractioned venom, revealing broad pharmacology, which includes cardiovascular, neuromuscular, cytotoxic, inflammatory, and nociceptive activities. Several large proteinaceous toxins, such as stonustoxin, verrucotoxin, and Sp-CTx, have been isolated from scorpaenoid fish. These form pores in cell membranes, resulting in cell death and creating a cascade of reactions that result in many, but not all, of the physiological symptoms observed from envenomation. Additionally, Natterins, a novel family of toxins possessing kininogenase activity have been found in toadfish venom. A variety of smaller protein toxins, as well as a small number of peptides, enzymes, and non-proteinaceous molecules have also been isolated from a range of fish venoms, but most remain poorly characterized. Many other bioactive fish venom components remain to be discovered and investigated. These represent an untapped treasure of potentially useful molecules.
Collapse
Affiliation(s)
- Rebekah Ziegman
- Institute for Molecular Bioscience, the University of Queensland, St. Lucia, QLD 4072, Australia.
| | - Paul Alewood
- Institute for Molecular Bioscience, the University of Queensland, St. Lucia, QLD 4072, Australia.
| |
Collapse
|
35
|
Identification of C-type isolectins in the venom of the scorpionfish Scorpaena plumieri. Toxicon 2015; 95:67-71. [DOI: 10.1016/j.toxicon.2015.01.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 12/18/2014] [Accepted: 01/06/2015] [Indexed: 11/19/2022]
|
36
|
Low CF, Shamsudin MN, Abdullah M, Chee HY, Aliyu-Paiko M. Experimental infection of brown-marbled grouper, Epinephelus fuscoguttatus (Forskal), with Vibrio parahaemolyticus identifies parvalbumin beta-2 subunit I, alpha-2-macroglobulin, nattectin and immunoglobulin light chain, differentially expressed in resistant grouper. JOURNAL OF FISH DISEASES 2015; 38:17-25. [PMID: 24397626 DOI: 10.1111/jfd.12195] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 09/05/2013] [Accepted: 09/12/2013] [Indexed: 06/03/2023]
Abstract
The mechanisms through which brown-marbled grouper accomplishes resistance to infection, particularly against Vibrios, are not yet fully understood. In this study, brown-marbled grouper fingerlings were experimentally infected with Vibrio parahaemolyticus, to identify disease resistance grouper, and the serum proteome profiles were compared between resistant and susceptible candidates, via two-dimensional gel electrophoresis (2-DE). The results showed that putative parvalbumin beta-2 subunit I, alpha-2-macroglobulin, nattectin and immunoglobulin light chain proteins were among proteins that significantly overexpressed in the resistant fish as compared to the susceptible group of fish, whereas apolipoprotein E and immunoglobulin light chain proteins were observed to be differentially overexpressed in the susceptible fish. Further analysis by peptide sequencing revealed that the immunoglobulin light chain proteins identified in the resistant and susceptible groups differed in amino acid composition. Taken together, the results demonstrated for the first time that putative parvalbumin beta-2 subunit I, alpha-2-macroglobulin, nattectin and immunoglobulin light chain are among important proteins participating to effect disease resistance mechanism in fish and were overexpressed to function collectively to resist V. parahaemolyticus infection. Most of these molecules are mediators of immune response.
Collapse
Affiliation(s)
- C-F Low
- Laboratory of Marine Biotechnology, Institute of Bioscience (IBS), Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | | | | | | | | |
Collapse
|
37
|
Thalassophryne nattereri fish venom: from the envenoming to the understanding of the immune system. J Venom Anim Toxins Incl Trop Dis 2014; 20:35. [PMID: 25140174 PMCID: PMC4137268 DOI: 10.1186/1678-9199-20-35] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 07/30/2014] [Indexed: 12/21/2022] Open
Abstract
Thalassophryne nattereri (niquim) is a venomous fish found off North and Northeast coast of Brazil, where it is known by the severity of the accidents involving humans. This review article is divided into four topics. The first one provides a brief description of the animal biology and its distribution off Brazilian coastal waters, the venom apparatus, signs and symptoms observed in envenomated humans and also describes envenomation in mice. The second topic describes the use of modern genetic approach and mass spectrometry for identification of highly expressed genes in its venom glands and the sequence of major toxins. The third chapter offers a detailed study of tissue injury induced by the venom and reveals the role of toxins that impair inflammation reduction. Finally, the fourth section expands the understanding of many extrinsic and intrinsic essential factors in maintaining survival of memory B cell compartment. Our results demonstrate the wide possibilities for research in the area of toxinology, also the necessity of interconnection among biochemistry, pharmacology and immunology areas for the expansion of knowledge and for generation of innovation.
Collapse
|
38
|
Weekman EM, Sudduth TL, Abner EL, Popa GJ, Mendenhall MD, Brothers HM, Braun K, Greenstein A, Wilcock DM. Transition from an M1 to a mixed neuroinflammatory phenotype increases amyloid deposition in APP/PS1 transgenic mice. J Neuroinflammation 2014; 11:127. [PMID: 25062954 PMCID: PMC4128532 DOI: 10.1186/1742-2094-11-127] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Accepted: 06/22/2014] [Indexed: 11/22/2022] Open
Abstract
Background The polarization to different neuroinflammatory phenotypes has been described in early Alzheimer’s disease, yet the impact of these phenotypes on amyloid-beta (Aβ) pathology remains unknown. Short-term studies show that induction of an M1 neuroinflammatory phenotype reduces Aβ, but long-term studies have not been performed that track the neuroinflammatory phenotype. Methods Wild-type and APP/PS1 transgenic mice aged 3 to 4 months received a bilateral intracranial injection of adeno-associated viral (AAV) vectors expressing IFNγ or green fluorescent protein in the frontal cortex and hippocampus. Mice were sacrificed 4 or 6 months post-injection. ELISA measurements were used for IFNγ protein levels and biochemical levels of Aβ. The neuroinflammatory phenotype was determined through quantitative PCR. Microglia, astrocytes, and Aβ levels were assessed with immunohistochemistry. Results AAV expressing IFNγ induced an M1 neuroinflammatory phenotype at 4 months and a mixed phenotype along with an increase in Aβ at 6 months. Microglial staining was increased at 6 months and astrocyte staining was decreased at 4 and 6 months in mice receiving AAV expressing IFNγ. Conclusions Expression of IFNγ through AAV successfully induced an M1 phenotype at 4 months that transitioned to a mixed phenotype by 6 months. This transition also appeared with an increase in amyloid burden suggesting that a mixed phenotype, or enhanced expression of M2a and M2c markers, could contribute to increasing amyloid burden and disease progression.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Donna M Wilcock
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536, USA.
| |
Collapse
|
39
|
Liposomes of phosphatidylcholine and cholesterol induce an M2-like macrophage phenotype reprogrammable to M1 pattern with the involvement of B-1 cells. Immunobiology 2014; 219:403-15. [PMID: 24594322 DOI: 10.1016/j.imbio.2014.01.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2013] [Revised: 12/14/2013] [Accepted: 01/24/2014] [Indexed: 12/21/2022]
Abstract
Macrophages respond to endogenous and non-self stimuli acquiring the M1 or M2 phenotypes, corresponding to classical or alternative activation, respectively. The role of B-1 cells in the regulation of macrophage polarization through the secretion of interleukin (IL)-10 has been demonstrated. However, the influence of B-1 cells on macrophage phenotype induction by an immunogen that suppress their ability to secrete IL-10 has not been explored. Here, we studied the peritoneal macrophage pattern induced by liposomes comprised of dipalmitoylphosphatidylcholine (DPPC) and cholesterol (Chol) carrying ovalbumin (OVA) (Lp DPPC/OVA), and the involvement of B-1 cells in macrophage polarization. Peritoneal cells from BALB/c, B-1 cells-deficient BALB/xid and C57BL/6 mice immunized with Lp DPPC/OVA and OVA in soluble form (PBS/OVA) were analyzed and stimulated or not in vitro with lipopolysaccharide (LPS). Peritoneal macrophages from BALB/c and C57BL/6 mice immunized with Lp DPPC/OVA showed an M2-like phenotype as evidenced by their high arginase activity without LPS stimulation. Upon stimulation, these macrophages were reprogrammable toward the M1 phenotype with the upregulation of nitric oxide (NO) and a decrease in IL-10 secretion. In addition, high IFN-γ levels were detected in the culture supernatant of peritoneal cells from BALB/c and C57BL/6 mice immunized with Lp DPPC/OVA. Nevertheless, still high levels of arginase activity and undetectable levels of IL-12 were found, indicating that the switch to a classical activation state was not complete. In the peritoneal cells from liposomes-immunized BALB/xid mice, levels of arginase activity, NO, and IL-6 were below those from wild type animals, but the last two products were restored upon adoptive transfer of B-1 cells, together with an increase in IFN-γ secretion. Summarizing, we have demonstrated that Lp DPPC/OVA induce an M2-like pattern in peritoneal macrophages reprogrammable to M1 phenotype after LPS stimulation, with the involvement of B-1 cells.
Collapse
|
40
|
Beal DR, Stepien DM, Natarajan S, Kim J, Remick DG. Reduction of eotaxin production and eosinophil recruitment by pulmonary autologous macrophage transfer in a cockroach allergen-induced asthma model. Am J Physiol Lung Cell Mol Physiol 2013; 305:L866-77. [PMID: 24077949 DOI: 10.1152/ajplung.00120.2013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We sought to investigate the effects of cockroach allergen (CRA) exposure on the lung macrophage population to determine how different macrophage phenotypes influence exacerbation of disease. CRA exposure caused significantly reduced expression of CD86 on lung macrophages. These effects were not systemic, as peritoneal macrophage CD86 expression was not altered. To investigate whether naïve macrophages could reduce asthma-like pulmonary inflammation, autologous peritoneal macrophages were instilled into the airways 24 h before the final CRA challenge. Pulmonary inflammation was assessed by measurement of airway hyperresponsiveness, mucin production, inflammatory cell recruitment, and cytokine production. Cell transfer did not have significant effects in control mice, nor did it affect pulmonary mucin production or airway hyperresponsiveness in control or CRA-exposed mice. However, there was significant reduction in the number of eosinophils recovered in the bronchoalveolar lavage (BAL) (5.8 × 10⁵ vs. 0.88 × 10⁵), and total cell recruitment to the airways of CRA-exposed mice was markedly reduced (1.1 × 10⁶ vs. 0.57 × 10⁶). The reduced eosinophil recruitment was reflected by substantially lower levels of eosinophil peroxidase in the lung and significantly lower concentrations of eotaxins in BAL (eotaxin 1: 3 pg/ml vs. undetectable; eotaxin 2: 2,383 vs. 131 pg/ml) and lung homogenate (eotaxin 1: 1,043 vs. 218 pg/ml; eotaxin 2: 10 vs. 1.5 ng/ml). We conclude that CRA decreases lung macrophage CD86 expression. Furthermore, supplementation of the lung cell population with peritoneal macrophages inhibits eosinophil recruitment, achieved through reduction of eotaxin production. These data demonstrate that transfer of naïve macrophages will reduce some aspects of asthma-like pulmonary inflammation in response to CRA.
Collapse
Affiliation(s)
- Dominic R Beal
- Boston Univ. School of Medicine, 670 Albany St., Rm. 405, Boston, MA 02118.
| | | | | | | | | |
Collapse
|