1
|
Arvind M, Pattnaik B, Gheware A, Prakash YS, Srivastava M, Agrawal A, Bhatraju NK. Plausible role of INPP4A dysregulation in idiopathic pulmonary fibrosis. Physiol Rep 2024; 12:e16032. [PMID: 38720166 PMCID: PMC11078778 DOI: 10.14814/phy2.16032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 03/02/2024] [Accepted: 04/12/2024] [Indexed: 05/12/2024] Open
Abstract
INPP4A has been shown to be involved in the regulation of cell proliferation and apoptosis of multiple cell types including fibroblasts. Previous reports from our group have demonstrated the role of inositol polyphosphate 4-phosphatase Type I A (INPP4A) in these functions. Though existing evidences suggest a critical role for INPP4A in the maintenance of lung homeostasis, its role in chronic lung diseases is relatively under explored. In the current study, we made an attempt to understand the regulation of INPP4A in idiopathic pulmonary fibrosis (IPF). Through integration of relevant INPP4A gene expression data from public repositories with our results from in vitro experiments and mouse models, we show that INPP4A is altered in IPF. Interestingly, the direction of the change is dependent both on the disease stage and the region of the lung used. INPP4A was found to be upregulated when analyzed in lung sample representative of the whole lung, but was downregulated in the fibrotic regions of the lung. Similarly, INPP4A was found to be high, compared to controls, only in the early stage of the disease. Though the observed increase in INPP4A was found to be negatively correlated to physiological indices, FVC, and DLCO, of lung function, treatment with anti-INPP4A antibody worsened the condition in bleomycin treated mice. These contrasting results taken together are suggestive of a nuanced regulation of INPP4A in IPF which is dependent on the disease stage, cellular state and extent of fibrosis in the lung region being analyzed.
Collapse
Affiliation(s)
- Meghana Arvind
- Centre of Excellence for Translational Research In Asthma and Lung diseases (TRIAL)CSIR‐Institute of Genomics and Integrative BiologyNew DelhiIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
| | - Bijay Pattnaik
- Centre of Excellence for Translational Research In Asthma and Lung diseases (TRIAL)CSIR‐Institute of Genomics and Integrative BiologyNew DelhiIndia
- Department of Pulmonary Critical Care and Sleep MedicineAll India Institute of Medical SciencesNew DelhiIndia
| | - Atish Gheware
- Centre of Excellence for Translational Research In Asthma and Lung diseases (TRIAL)CSIR‐Institute of Genomics and Integrative BiologyNew DelhiIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
- Division of Pulmonary and Critical Care Medicine, Department of MedicineWashington University in St. LouisSt. LouisMissouriUSA
| | - Y. S. Prakash
- Department of Anaesthesiology and Perioperative MedicineMayo ClinicRochesterMinnesotaUSA
- Department of Physiology and Biomedical EngineeringMayo ClinicRochesterMinnesotaUSA
| | - Mousami Srivastava
- Centre of Excellence for Translational Research In Asthma and Lung diseases (TRIAL)CSIR‐Institute of Genomics and Integrative BiologyNew DelhiIndia
- Symbiosis Statistical Institute (SSI)Symbiosis International University (SIU)PuneMaharashtraIndia
| | - Anurag Agrawal
- Centre of Excellence for Translational Research In Asthma and Lung diseases (TRIAL)CSIR‐Institute of Genomics and Integrative BiologyNew DelhiIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
- Trivedi School of BiosciencesAshoka UniversitySonipatHaryanaIndia
| | - Naveen Kumar Bhatraju
- Centre of Excellence for Translational Research In Asthma and Lung diseases (TRIAL)CSIR‐Institute of Genomics and Integrative BiologyNew DelhiIndia
- Trivedi School of BiosciencesAshoka UniversitySonipatHaryanaIndia
| |
Collapse
|
2
|
Rajizadeh MA, Najafipour H, Bejeshk MA. An Updated Comprehensive Review of Plants and Herbal Compounds with Antiasthmatic Effect. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2024; 2024:5373117. [PMID: 39263346 PMCID: PMC11390241 DOI: 10.1155/2024/5373117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 12/11/2023] [Accepted: 01/27/2024] [Indexed: 09/13/2024]
Abstract
Background Asthma is a common disease with rising prevalence worldwide, especially in industrialized countries. Current asthma therapy with traditional medicines lacks satisfactory success, hence the patients' search for alternative and complementary treatments for their diseases. Researchers have conducted many studies on plants with antiallergic and antiasthmatic effects in recent decades. Many of these plants are now used in clinics, and searching for their mechanism of action may result in creating new ideas for producing more effective drugs. Purpose The goal of this review was to provide a compilation of the findings on plants and their active agents with experimentally confirmed antiasthmatic effects. Study Design and Method. A literature search was conducted from 1986 to November 2023 in Scopus, Springer Link, EMBASE, Science Direct, PubMed, Google Scholar, and Web of Science to identify and report the accumulated knowledge on herbs and their compounds that may be effective in asthma treatment. Results The results revealed that 58 plants and 32 herbal extracted compounds had antiasthmatic activity. Also, 32 plants were shown to have anti-inflammatory and antioxidative effects or may act as bronchodilators and potentially have antiasthmatic effects, which must be investigated in future studies. Conclusion The ability of herbal medicine to improve asthma symptoms has been confirmed by clinical and preclinical studies, and such compounds may be used as a source for developing new antiasthmatic drugs. Moreover, this review suggests that many bioactive compounds have therapeutic potential against asthma.
Collapse
Affiliation(s)
- Mohammad Amin Rajizadeh
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Hamid Najafipour
- Cardiovascular Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Science, Kerman, Iran
| | - Mohammad Abbas Bejeshk
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
3
|
Hong JH, Lee YC. Anti-Inflammatory Effects of Cicadidae Periostracum Extract and Oleic Acid through Inhibiting Inflammatory Chemokines Using PCR Arrays in LPS-Induced Lung inflammation In Vitro. LIFE (BASEL, SWITZERLAND) 2022; 12:life12060857. [PMID: 35743888 PMCID: PMC9225349 DOI: 10.3390/life12060857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 05/26/2022] [Accepted: 06/07/2022] [Indexed: 11/16/2022]
Abstract
In this study, we aimed to evaluate the anti-inflammatory effects and mechanisms of CP and OA treatments in LPS-stimulated lung epithelial cells on overall chemokines and their receptors using PCR arrays. In addition, we aimed to confirm those effects and mechanisms in LPS-stimulated lung macrophages on some chemokines and cytokines. In our study, CP treatments significantly inhibited the inflammatory mediators CCL2, CCL3, CCL4, CCL5, CCL6, CCL9, CCL11, CCL17, CCL20, CXCL1, CXCL2, CXCL3, CXCL5, CXCL7, CXCL10, TNF-α, and IL-6, while markedly suppressing NF-κB p65 nuclear translocation and the phosphorylations of PI3K p55, Akt, Erk1/2, p38, and NF-κB p65 in LPS-stimulated lung epithelial cells. CP treatments also significantly decreased the inflammatory mediators CCL2, CCL5, CCL17, CXCL1, and CXCL2, while markedly inhibiting phospho-PI3K p55 and iNOS expression in LPS-stimulated lung macrophages. Likewise, OA treatments significantly suppressed the inflammatory mediators CCL2, CCL3, CCL4, CCL5, CCL8, CCL11, CXCL1, CXCL3, CXCL5, CXCL7, CXCL10, CCRL2, TNF-α, and IL-6, while markedly reducing the phosphorylations of PI3K p85, PI3K p55, p38, JNK, and NF-κB p65 in LPS-stimulated lung epithelial cells. Finally, OA treatments significantly inhibited the inflammatory mediators CCL2, CCL5, CCL17, CXCL1, CXCL2, TNF-α, and IL-6, while markedly suppressing phospho-PI3K p55, iNOS, and Cox-2 in LPS-stimulated lung macrophages. These results prove that CP and OA treatments have anti-inflammatory effects on the inflammatory chemokines and cytokines by inhibiting pro-inflammatory mediators, including PI3K, Akt, MAPKs, NF-κB, iNOS, and Cox-2. These findings suggest that CP and OA are potential chemokine-based therapeutic substances for treating the lung and airway inflammation seen in allergic disorders.
Collapse
Affiliation(s)
| | - Young-Cheol Lee
- Correspondence: ; Tel.: +82-33-730-0672; Fax: +82-33-730-0653
| |
Collapse
|
4
|
Tan H, Tong X, Gao Z, Xu Y, Tan L, Zhang W, Xiang R, Xu Y. The hMeDIP-Seq identified INPP4A as a novel biomarker for eosinophilic chronic rhinosinusitis with nasal polyps. Epigenomics 2022; 14:757-775. [PMID: 35765979 DOI: 10.2217/epi-2022-0053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Background: Eosinophilic chronic rhinosinusitis with nasal polyps (ECRSwNP) is an endotype of chronic rhinosinusitis with nasal polyps characterized by more severe symptoms, a stronger association with asthma and a greater recurrence risk. It is unknown whether DNA hydroxymethylation could influence ECRSwNP. Methods: Hydroxymethylated DNA immunoprecipitation sequencing was carried out in three distinct groups (control, ECRSwNP and NECRSwNP). Additional qRT-PCR, immunohistochemistry and analysis of the receiver operating characteristic curve were performed. Results: Between ECRSwNP and NECRSwNP, 26 genes exhibited differential DNA hydroxymethylation. Consistent with their hydroxymethylation level, GNAL, INPP4A and IRF4 expression levels were significantly different between ECRSwNP and the other two groups. The receiver operating characteristic curve revealed that INPP4A mRNA has a high predictive accuracy for ECRSwNP. Conclusion: DNA hydroxymethylation regulates the expression of multiple genes in ECRSwNP. INPP4A mRNA was markedly decreased in ECRSwNP polyps and can predict ECRSwNP.
Collapse
Affiliation(s)
- Hanyu Tan
- Department of Otolaryngology - Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Xiaoting Tong
- Department of Otolaryngology - Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Ziang Gao
- Department of Otolaryngology - Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yingying Xu
- Department of Otolaryngology - Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Lu Tan
- Department of Otolaryngology - Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Wei Zhang
- Department of Otolaryngology - Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Rong Xiang
- Department of Otolaryngology - Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yu Xu
- Department of Otolaryngology - Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| |
Collapse
|
5
|
Qian L, Mehrabi Nasab E, Athari SM, Athari SS. Mitochondria signaling pathways in allergic asthma. J Investig Med 2022; 70:863-882. [PMID: 35168999 PMCID: PMC9016245 DOI: 10.1136/jim-2021-002098] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/05/2021] [Indexed: 12/23/2022]
Abstract
Mitochondria, as the powerhouse organelle of cells, are greatly involved in regulating cell signaling pathways, including those related to the innate and acquired immune systems, cellular differentiation, growth, death, apoptosis, and autophagy as well as hypoxic stress responses in various diseases. Asthma is a chronic complicated airway disease characterized by airway hyperresponsiveness, eosinophilic inflammation, mucus hypersecretion, and remodeling of airway. The asthma mortality and morbidity rates have increased worldwide, so understanding the molecular mechanisms underlying asthma progression is necessary for new anti-asthma drug development. The lung is an oxygen-rich organ, and mitochondria, by sensing and processing O2, contribute to the generation of ROS and activation of pro-inflammatory signaling pathways. Asthma pathophysiology has been tightly associated with mitochondrial dysfunction leading to reduced ATP synthase activity, increased oxidative stress, apoptosis induction, and abnormal calcium homeostasis. Defects of the mitochondrial play an essential role in the pro-remodeling mechanisms of lung fibrosis and airway cells' apoptosis. Identification of mitochondrial therapeutic targets can help repair mitochondrial biogenesis and dysfunction and reverse related pathological changes and lung structural remodeling in asthma. Therefore, we here overviewed the relationship between mitochondrial signaling pathways and asthma pathogenic mechanisms.
Collapse
Affiliation(s)
- Ling Qian
- Department of Pulmonary and Critical Care Medicine, Shanghai Fifth People's Hospital, Shanghai, China
| | - Entezar Mehrabi Nasab
- Department of Cardiology, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran (the Islamic Republic of)
| | | | - Seyyed Shamsadin Athari
- Department of Immunology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran (the Islamic Republic of)
| |
Collapse
|
6
|
Wang S, Gong L, Mo Y, Zhang J, Jiang Z, Tian Z, Shao C. Resveratrol attenuates inflammation and apoptosis through alleviating endoplasmic reticulum stress via Akt/mTOR pathway in fungus-induced allergic airways inflammation. Int Immunopharmacol 2021; 103:108489. [PMID: 34968999 DOI: 10.1016/j.intimp.2021.108489] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 11/14/2021] [Accepted: 12/17/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND Resveratrol has shown pleiotropic effects against inflammation and oxidative response. The present study aimed to investigate the effects and mechanisms of resveratrol on fungus-induced allergic airway inflammation. METHODS Female BALB/c mice were injected intraperitoneally with Aspergillus fumigatus (Af) extract emulsified with aluminum on day 0 and 7 and intranasally challenged with Af extracts on day 14 and 15. Resveratrol or dexamethasone or a vehicle was injected intraperitoneally 1 h before each challenge. Mice were sacrificed for serum, bronchoalveolar lavage fluid (BALF), and lungs 24 h after the last challenge. The control group was administered with saline. BEAS-2B was used for the experiments in vitro that Af-exposed airway epithelial cells. RESULTS Resveratrol and dexamethasone attenuated the airway inflammation and eosinophilia, and reduced not only the production of IL-4, IL-5, and IL-13 in the BALF and lung tissues but also the mRNA levels of lung IL-6, TNF-α, and TGF-β induced by Af challenge (P < 0.05). Furthermore, Af-induced lung endoplasmic reticulum (ER) stress-related proteins PERK, CHOP, and GRP78 and the apoptosis markers including cleaved caspase-3 and cleaved caspase-7 were both suppressed significantly by resveratrol (P < 0.05). In vitro, activation of ER stress and the Akt/mTOR pathway in Af-exposed BEAS-2B cells were effectively ameliorated by resveratrol. Inhibition of the Akt/mTOR pathway using LY294002 suppressed the ER stress while ER stress inhibitor 4-PBA decreased the apoptosis in Af-exposed BEAS-2B cells. CONCLUSIONS Our findings collectively revealed that resveratrol alleviated the Af-exposed allergic inflammation and apoptosis through inhibiting ER stress via Akt/mTOR pathway, exerting therapeutic effects on the fungus-induced allergic lung disorder.
Collapse
Affiliation(s)
- Sijiao Wang
- Department of Pulmonary Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Linjing Gong
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yuqing Mo
- Department of Pulmonary Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jun Zhang
- Department of Pulmonary Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Zhilong Jiang
- Department of Pulmonary Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Zhengan Tian
- Shanghai International Travel Health Care Center, Shanghai 200335, China
| | - Changzhou Shao
- Department of Pulmonary Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Department of Pulmonary Medicine, Xiamen Branch, Zhongshan Hospital, Fudan University, Xiamen 361015, China.
| |
Collapse
|
7
|
Pyun H, Nam JW, Cho H, Park J, Seo EK, Lee K. Allergic Inflammation Caused by Dimerized Translationally Controlled Tumor Protein is Attenuated by Cardamonin. Front Pharmacol 2021; 12:765521. [PMID: 34690788 PMCID: PMC8527174 DOI: 10.3389/fphar.2021.765521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 09/20/2021] [Indexed: 11/13/2022] Open
Abstract
We demonstrated in our previous reports that dimeric form of translationally controlled tumor protein (dTCTP) initiates a variety of allergic phenomena. In the present study, we examined whether and how dTCTP's role in allergic inflammation can be modulated or negated. The possible potential of cardamonin as an anti-allergic agent was assessed by ELISA using BEAS-2B cells and OVA-challenged allergic mouse model. The interaction between cardamonin and dTCTP was confirmed by SPR assay. Cardamonin was found to reduce the secretion of IL-8 caused by dTCTP in BEAS-2B cells by interacting with dTCTP. This interaction between dTCTP and cardamonin was confirmed through kinetic analysis (KD = 4.72 ± 0.07 μM). Also, cardamonin reduced the migration of various inflammatory cells in the bronchoalveolar lavage fluid (BALF), inhibited OVA specific IgE secretion and bronchial remodeling. In addition, cardamonin was observed to have an anti-allergic response by inhibiting the activity of NF-κB. Cardamonin exerts anti-allergic anti-inflammatory effect by inhibiting dTCTP, suggesting that it may be useful in the therapy of allergic diseases.
Collapse
Affiliation(s)
- Haejun Pyun
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, South Korea
| | - Joo-Won Nam
- College of Pharmacy, Yeungnam University, Gyeongsan, South Korea
| | - Hyunsoo Cho
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, South Korea
| | - Jiyoung Park
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, South Korea.,Fluorescence Core Imaging Center, Department of Life Science, Ewha Womans University, Seoul, South Korea
| | - Eun Kyoung Seo
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, South Korea
| | - Kyunglim Lee
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, South Korea
| |
Collapse
|
8
|
Zhang LX, Li CX, Kakar MU, Khan MS, Wu PF, Amir RM, Dai DF, Naveed M, Li QY, Saeed M, Shen JQ, Rajput SA, Li JH. Resveratrol (RV): A pharmacological review and call for further research. Biomed Pharmacother 2021; 143:112164. [PMID: 34649335 DOI: 10.1016/j.biopha.2021.112164] [Citation(s) in RCA: 176] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/27/2021] [Accepted: 09/03/2021] [Indexed: 12/27/2022] Open
Abstract
Resveratrol (RV) is a well-known polyphenolic compound in various plants, including grape, peanut, and berry fruits, which is quite famous for its association with several health benefits such as anti-obesity, cardioprotective neuroprotective, antitumor, antidiabetic, antioxidants, anti-age effects, and glucose metabolism. Significantly, promising therapeutic properties have been reported in various cancer, neurodegeneration, and atherosclerosis and are regulated by several synergistic pathways that control oxidative stress, cell death, and inflammation. Similarly, RV possesses a strong anti-adipogenic effect by inhibiting fat accumulation processes and activating oxidative and lipolytic pathways, exhibiting their cardioprotective effects by inhibiting platelet aggregation. The RV also shows significant antibacterial effects against various food-borne pathogens (Listeria, Campylobacter, Staphylococcus aureus, and E. coli) by inhibiting an electron transport chain (ETC) and F0F1-ATPase, which decreases the production of cellular energy that leads to the spread of pathogens. After collecting and analyzing scientific literature, it may be concluded that RV is well tolerated and favorably affects cardiovascular, neurological, and diabetic disorders. As such, it is possible that RV can be considered the best nutritional additive and a complementary drug, especially a therapeutic candidate. Therefore, this review would increase knowledge about the blend of RV as well as inspire researchers around the world to consider RV as a pharmaceutical drug to combat future health crises against various inhumane diseases. In the future, this article will be aware of discoveries about the potential of this promising natural compound as the best nutraceuticals and therapeutic drugs in medicine.
Collapse
Affiliation(s)
- Li-Xue Zhang
- School of Medicine, Northwest Minzu University, Lanzhou 730030, China
| | - Chang-Xing Li
- Department of Human Anatomy, Medical College of Qinghai University, 810000 Xining, China
| | - Mohib Ullah Kakar
- Faculty of Marine Sciences, Lasbela University of Agriculture Water and Marine Sciences, Uthal 90150, Balochistan, Pakistan
| | - Muhammad Sajjad Khan
- The Cholistan University of Veterinary and Animal Sciences, Bahawalpur 6300, Pakistan.
| | - Pei-Feng Wu
- Department of Human Anatomy, Medical College of Qinghai University, 810000 Xining, China
| | - Rai Muhammad Amir
- Institute of Food and Nutritional Sciences, PMAS-Arid Agriculture University, Rawalpindi, Pakistan
| | - Dong-Fang Dai
- Department of Human Anatomy, Medical College of Qinghai University, 810000 Xining, China
| | - Muhammad Naveed
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Qin-Yuan Li
- Department of Human Anatomy, Medical College of Qinghai University, 810000 Xining, China
| | - Muhammad Saeed
- The Cholistan University of Veterinary and Animal Sciences, Bahawalpur 6300, Pakistan
| | - Ji-Qiang Shen
- Department of Human Anatomy, Medical College of Qinghai University, 810000 Xining, China
| | - Shahid Ali Rajput
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Jian-Hua Li
- Department of Human Anatomy, Medical College of Qinghai University, 810000 Xining, China.
| |
Collapse
|
9
|
Liu JX, Zhang Y, Yuan HY, Liang J. The treatment of asthma using the Chinese Materia Medica. JOURNAL OF ETHNOPHARMACOLOGY 2021; 269:113558. [PMID: 33186702 DOI: 10.1016/j.jep.2020.113558] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/12/2020] [Accepted: 11/02/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Asthma is a costly global health problem that negatively influences the quality of life of patients. The Chinese Materia Medica (CMM) contains remedies that have been used for the treatment of asthma for millennia. This article strives to systematically summarize the current research progress so that more comprehensive examinations of various databases related to CMM anti-asthma drugs, can be performed, so as to sequentially provide effective basic data for development and application of anti-asthma drugs based on the CMM. MATERIALS AND METHODS The research data published over the past 20 years for asthma treatment based on traditional CMM remedies were retrieved and collected from libraries and online databases (PubMed, ScienceDirect, Elsevier, Spring Link, Web of Science, PubChem Compound, Wan Fang, CNKI, Baidu, and Google Scholar). Information was also added from classic CMM, literature, conference papers on classic herbal formulae, and dissertations (PhD or Masters) based on traditional Chinese medicine. RESULTS This review systematically summarizes the experimental studies on the treatment of asthma with CMM, covering the effective chemical components, typical asthma models, important mechanisms and traditional anti-asthma CMM formulae. The therapy value of the CMM for anti-asthma is clarified, and the original data and theoretical research foundation are provided for the development of new anti-asthmatic data and research for the CMM. CONCLUSIONS Substantial progress against asthma has been made through relevant experimental research based on the CMM. These advances improved the theoretical basis of anti-asthma drugs for CMM and provided a theoretical basis for the application of a asthma treatment that is unique. By compiling these data, it is expected that the CMM will now contain a clearer mechanism of action and a greater amount of practical data that can be used for future anti-asthma drug research.
Collapse
Affiliation(s)
- Jun-Xi Liu
- Key Laboratory of Chinese Materia Medica (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin, 150040, PR China; Department of Pharmacy, Heilongjiang Nursing College, 209 Academy Road, Harbin, 150086, PR China
| | - Yang Zhang
- Key Laboratory of Chinese Materia Medica (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin, 150040, PR China
| | - Hong-Yu Yuan
- Key Laboratory of Chinese Materia Medica (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin, 150040, PR China
| | - Jun Liang
- Key Laboratory of Chinese Materia Medica (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin, 150040, PR China.
| |
Collapse
|
10
|
Bi J, Lin Y, Sun Y, Zhang M, Chen Q, Miu X, Tang L, Liu J, Zhu L, Ni Z, Wang X. Investigation of the Active Ingredients and Mechanism of Polygonum cuspidatum in Asthma Based on Network Pharmacology and Experimental Verification. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:1075-1089. [PMID: 33727796 PMCID: PMC7955765 DOI: 10.2147/dddt.s275228] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 01/28/2021] [Indexed: 12/12/2022]
Abstract
Background Polygonum cuspidatum is a Chinese medicine commonly used to treat phlegm-heat asthma. However, its anti-asthmatic active ingredients and mechanism are still unknown. The aim of this study was to predict the active ingredients and pathways of Polygonum cuspidatum and to further explore the potential molecular mechanism in asthma by using network pharmacology. Methods The active ingredients and their targets related to Polygonum cuspidatum were seeked out with the TCM systematic pharmacology analysis platform (TCMSP), and the ingredient-target network was constructed. The GeneCards, DrugBank and OMIM databases were used to collect and screen asthma targets, and then the drug-target-disease interaction network was constructed with Cytoscape software. A target protein-protein interaction (PPI) network was constructed using the STRING database to screen key targets. Finally, GO and KEGG analyses were used to identify biological processes and signaling pathways. The anti-asthmatic effects of Polygonum cuspidatum and its active ingredients were tested in vitro for regulating airway smooth muscle (ASM) cells proliferation and MUC5AC expression, two main symptoms of asthma, by using Real-time PCR, Western blotting, CCK-8 assays and annexin V-FITC staining. Results Twelve active ingredients in Polygonum cuspidatum and 479 related target proteins were screened in the relevant databases. Among these target proteins, 191 genes had been found to be differentially expressed in asthma. PPI network analysis and KEGG pathway enrichment analysis predicted that the Polygonum cuspidatum could regulate the AKT, MAPK and apoptosis signaling pathways. Consistently, further in vitro experiments demonstrated that Polygonum cuspidatum and resveratrol (one active ingredient of Polygonum cuspidatum) were shown to inhibit ASM cells proliferation and promoted apoptosis of ASM cells. Furthermore, Polygonum cuspidatum and resveratrol inhibited PDGF-induced AKT/mTOR activation in ASM cells. In addition, Polygonum cuspidatum decreased H2O2 induced MUC5AC overexpression in airway epithelial NCI-H292 cells. Conclusion Polygonum cuspidatum could alleviate the symptoms of asthma including ASM cells proliferation and MUC5AC expression through the mechanisms predicted by network pharmacology, which provides a basis for further understanding of Polygonum cuspidatum in the treatment of asthma.
Collapse
Affiliation(s)
- Junjie Bi
- Department of Respiratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, People's Republic of China
| | - Yuhua Lin
- Department of Respiratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, People's Republic of China
| | - Yipeng Sun
- Department of Respiratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, People's Republic of China
| | - Mengzhe Zhang
- Department of Laboratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, People's Republic of China
| | - Qingge Chen
- Department of Respiratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, People's Republic of China
| | - Xiayi Miu
- Department of Respiratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, People's Republic of China
| | - Lingling Tang
- Department of Respiratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, People's Republic of China
| | - Jinjin Liu
- Department of Respiratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, People's Republic of China
| | - Linyun Zhu
- Department of Respiratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, People's Republic of China
| | - Zhenhua Ni
- Central Laboratory, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, People's Republic of China
| | - Xiongbiao Wang
- Department of Respiratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, People's Republic of China
| |
Collapse
|
11
|
Active ingredients from Chinese medicine plants as therapeutic strategies for asthma: Overview and challenges. Biomed Pharmacother 2021; 137:111383. [PMID: 33761604 DOI: 10.1016/j.biopha.2021.111383] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 02/02/2021] [Accepted: 02/08/2021] [Indexed: 12/11/2022] Open
Abstract
Although considerable advance has been made in diagnosing and treating, asthma is still a serious public health challenge. Traditional Chinese medicine (TCM) is an effective therapy of complementary and alternative medicine. More and more scientific evidences support the use of TCM for asthma treatment, and active ingredients from Chinese medicine plants are becoming a hot issue. PURPOSE OF REVIEW To summarize the frontier knowledge on the function and underlying mechanisms of the active ingredients in asthma treatments and provide a fully integrated, reliable reference for exploring innovative treatments for asthma. METHODS The cited literature was obtained from the PubMed and CNIK databases (up to September 2020). Experimental studies on the active ingredients of Chinese medicine and their therapeutic mechanisms were identified. The key words used in the literature retrieval were "asthma" and "traditional Chinese medicine" or "Chinese herbal medicine". The literature on the active ingredients was then screened manually. RESULTS We summarized the effect of these active ingredients on asthma, primarily including the effect through which these ingredients can regulate the immunologic equilibrium mechanism by acting on a number of signalling pathways, such as Notch, JAK-STAT-MAPK, adiponectin-iNOS-NF-κB, PGD2-CRTH2, PI3K/AKT, Keap1-Nrf2/HO-1, T-bet/Gata-3 and Foxp3-RORγt, thereby regulating the progression of asthma. CONCLUSION The active ingredients from Chinese medicine have multilevel effects on asthma by regulating the immunologic equilibrium mechanism or signalling pathways, giving them great clinical value. However, the safety and functional mechanism of these ingredients still must be further determined.
Collapse
|
12
|
Collison AM, Sokulsky LA, Nightingale S, Percival E, LeFevre A, Meredith J, Krauss S, Foster PS, Mattes J. In vivo targeting of miR-223 in experimental eosinophilic oesophagitis. Clin Transl Immunology 2020; 9:e1210. [PMID: 33282292 PMCID: PMC7683276 DOI: 10.1002/cti2.1210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 08/19/2020] [Accepted: 10/20/2020] [Indexed: 01/03/2023] Open
Abstract
Objectives Eosinophilic oesophagitis (EoE) is characterised by oesophageal inflammation, fibrosis and dysfunction. Micro (mi)-RNAs interfere with pro-inflammatory and pro-fibrotic transcriptional programs, and miR-223 was upregulated in oesophageal mucosal biopsy specimens from EoE patients. The therapeutic potential of modulating miR-223 expression in vivo has not been determined. We aimed to elucidate the relevance of oesophageal miR-223 expression in an in vivo model of EoE by inhibiting miR-223 tissue expression. Methods The expression of miR-223 and the validated miR-223 target insulin-like growth factor receptor 1 (IGF1R) protein was determined in our paediatric cohort of EoE patients. A murine model of Aspergillus fumigatus-induced EoE was employed, and oesophagi were assessed for miR-233, IGF1R, T lymphocyte type 2 (T2) cytokine expression and eosinophil infiltration. Mice were treated with antagomirs targeting miR-223 or resveratrol targeting its upstream regulator Midline-1(MID-1). Results There was an inverse relationship between an increased expression of miR-223 and a decreased IGF1R protein concentration in biopsy specimens from EoE patients. TNF-related apoptosis-inducing ligand deficiency, MID-1 inhibition and resveratrol treatment suppressed miR-223 expression. Furthermore, inhibition of miR-223 and treatment with resveratrol in the oesophagus resulted in an amelioration of EoE hallmark features including eosinophilic infiltration, oesophageal circumference and a reduction in T2 cytokine expression. Conclusion miR-223 has a key role in the perpetuation of EoE hallmark features downstream of TNF-related apoptosis-inducing ligand and MID-1 in an experimental model. These studies highlight a potentially critical role of miRNA function in EoE aetiology. miR-223 expression in the oesophagus may be therapeutically modulated by resveratrol, providing a potential new therapeutic option to be explored in EoE patients for this increasingly prevalent condition.
Collapse
Affiliation(s)
- Adam M Collison
- Experimental and Translational Respiratory Medicine Group Newcastle NSW Australia.,Priority Research Centre GrowUpWell The University of Newcastle and Hunter Medical Research Institute Newcastle NSW Australia
| | - Leon A Sokulsky
- Experimental and Translational Respiratory Medicine Group Newcastle NSW Australia.,Priority Research Centre GrowUpWell The University of Newcastle and Hunter Medical Research Institute Newcastle NSW Australia.,Priority Research Centre for Healthy Lungs The University of Newcastle and Hunter Medical Research Institute Newcastle NSW Australia
| | - Scott Nightingale
- Priority Research Centre GrowUpWell The University of Newcastle and Hunter Medical Research Institute Newcastle NSW Australia.,Paediatric Gastroenterology Department John Hunter Children's Hospital Newcastle NSW Australia
| | - Elizabeth Percival
- Experimental and Translational Respiratory Medicine Group Newcastle NSW Australia.,Priority Research Centre GrowUpWell The University of Newcastle and Hunter Medical Research Institute Newcastle NSW Australia
| | - Anna LeFevre
- Priority Research Centre GrowUpWell The University of Newcastle and Hunter Medical Research Institute Newcastle NSW Australia
| | - Joseph Meredith
- Priority Research Centre GrowUpWell The University of Newcastle and Hunter Medical Research Institute Newcastle NSW Australia
| | - Sybille Krauss
- Faculty IV: School of Science and Technology Institute of Biology Department Human Biology/Neurobiology University of Siegen Siegen Germany
| | - Paul S Foster
- Priority Research Centre for Healthy Lungs The University of Newcastle and Hunter Medical Research Institute Newcastle NSW Australia
| | - Joerg Mattes
- Experimental and Translational Respiratory Medicine Group Newcastle NSW Australia.,Priority Research Centre GrowUpWell The University of Newcastle and Hunter Medical Research Institute Newcastle NSW Australia.,Paediatric Respiratory & Sleep Medicine Department Newcastle Children's Hospital Kaleidoscope Newcastle NSW Australia
| |
Collapse
|
13
|
Arteaga-Badillo DA, Portillo-Reyes J, Vargas-Mendoza N, Morales-González JA, Izquierdo-Vega JA, Sánchez-Gutiérrez M, Álvarez-González I, Morales-González Á, Madrigal-Bujaidar E, Madrigal-Santillán E. Asthma: New Integrative Treatment Strategies for the Next Decades. MEDICINA (KAUNAS, LITHUANIA) 2020; 56:E438. [PMID: 32872366 PMCID: PMC7558718 DOI: 10.3390/medicina56090438] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/20/2020] [Accepted: 08/24/2020] [Indexed: 02/07/2023]
Abstract
Asthma is a chronic disease whose main anatomical-functional alterations are grouped into obstruction, nonspecific bronchial hyperreactivity, inflammation and airway remodeling. Currently, the Global Initiative of Asthma 2020 (GINA 2020) suggests classifying it into intermittent cases, slightly persistent, moderately persistent and severely persistent, thus determining the correct guidelines for its therapy. In general, the drugs used for its management are divided into two groups, those with a potential bronchodilator and the controlling agents of inflammation. However, asthmatic treatments continue to evolve, and notable advances have been made possible in biological therapy with monoclonal antibodies and in the relationship between this disease and oxidative stress. This opens a new path to dietary and herbal strategies and the use of antioxidants as a possible therapy that supports conventional pharmacological treatments and reduces their doses and/or adverse effects. This review compiles information from different published research on risk factors, pathophysiology, classification, diagnosis and the main treatments; likewise, it synthesizes the current evidence of herbal medicine for its control. Studies on integrative medicine (IM) therapies for asthmatic control are critically reviewed. An integrative approach to the prevention and management of asthma warrants consideration in clinical practice. The intention is to encourage health professionals and scientists to expand the horizons of basic and clinical research (preclinical, clinical and integrative medicine) on asthma control.
Collapse
Affiliation(s)
- Diego A. Arteaga-Badillo
- Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Ex-Hacienda de la Concepción, Tilcuautla, Pachuca de Soto 42080, Mexico; (D.A.A.-B.); (J.P.-R.); (J.A.I.-V.); (M.S.-G.)
| | - Jacqueline Portillo-Reyes
- Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Ex-Hacienda de la Concepción, Tilcuautla, Pachuca de Soto 42080, Mexico; (D.A.A.-B.); (J.P.-R.); (J.A.I.-V.); (M.S.-G.)
| | - Nancy Vargas-Mendoza
- Escuela Superior de Medicina, Instituto Politécnico Nacional, “Unidad Casco de Santo Tomas”, Ciudad de México 11340, Mexico; (N.V.-M.); (J.A.M.-G.)
| | - José A. Morales-González
- Escuela Superior de Medicina, Instituto Politécnico Nacional, “Unidad Casco de Santo Tomas”, Ciudad de México 11340, Mexico; (N.V.-M.); (J.A.M.-G.)
| | - Jeannett A. Izquierdo-Vega
- Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Ex-Hacienda de la Concepción, Tilcuautla, Pachuca de Soto 42080, Mexico; (D.A.A.-B.); (J.P.-R.); (J.A.I.-V.); (M.S.-G.)
| | - Manuel Sánchez-Gutiérrez
- Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Ex-Hacienda de la Concepción, Tilcuautla, Pachuca de Soto 42080, Mexico; (D.A.A.-B.); (J.P.-R.); (J.A.I.-V.); (M.S.-G.)
| | - Isela Álvarez-González
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, “Unidad Profesional A. López Mateos”, Ciudad de México 07738, Mexico; (I.Á.-G.); (E.M.-B.)
| | - Ángel Morales-González
- Escuela Superior de Cómputo, Instituto Politécnico Nacional, “Unidad Profesional A. López Mateos”, Ciudad de México 07738, Mexico;
| | - Eduardo Madrigal-Bujaidar
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, “Unidad Profesional A. López Mateos”, Ciudad de México 07738, Mexico; (I.Á.-G.); (E.M.-B.)
| | - Eduardo Madrigal-Santillán
- Escuela Superior de Medicina, Instituto Politécnico Nacional, “Unidad Casco de Santo Tomas”, Ciudad de México 11340, Mexico; (N.V.-M.); (J.A.M.-G.)
| |
Collapse
|
14
|
Zhou Y, Zhang T, Yan Y, You B, You Y, Zhang W, Chen J. MicroRNA-223-3p regulates allergic inflammation by targeting INPP4A. Braz J Otorhinolaryngol 2020; 87:591-600. [PMID: 32631807 PMCID: PMC9422747 DOI: 10.1016/j.bjorl.2020.05.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 04/29/2020] [Accepted: 05/15/2020] [Indexed: 01/07/2023] Open
Abstract
Introduction Emerging evidence indicates that physiological and pathological conditions of the nose are posttranscriptionally regulated by microRNAs, a class of small noncoding RNAs. Recently, microRNA-223-3p has been increasingly implicated in the modulation of allergic rhinitis Objective This study aimed to assess the role and mechanism of microRNA-223-3p in a mouse model of allergic rhinitis. Methods The expression level of miR-223-3p was measured in the serum of 41 allergic rhinitis patients and 39 healthy controls using quantitative real time polymerase chain reaction. BALB/c mice were used to establish an allergic rhinitis model by intraperitoneal sensitization and intranasal challenge with ovalbumin. MicroRNA-223-3p agomir/antagomir was then intranasally administered to mice after ovalbumin challenge for another week. The symptoms of nasal rubbing and sneezing were recorded. Serum ovalbumin-specific immunoglobulin E concentration, microRNA-223-3p expression and proinflammatory cytokine (IL-4, IL-5, IFN-γ) levels in nasal mucosa were measured by ELISA and quantitative real time polymerase chain reaction, respectively. Histopathologic changes were evaluated using hematoxylin and eosin staining. Results MicroRNA-223-3p levels increased significantly in both allergic rhinitis patients and allergic rhinitis mice. In addition, upregulation of microRNA-223-3p levels by nasal administration of microRNA-223-3p agomir also markedly increased the concentration of ovalbumin -specific IgE, the frequencies of nasal rubbing and sneezing, the levels of proinflammatory cytokines (IL-4, IL-5, IFN-γ) and eosinophil infiltration in the nasal mucosa of allergic rhinitis mice. Moreover, microRNA-223-3p antagomir appeared to strongly ameliorate the symptoms and pathology in nasal mucosa. Subsequently, we demonstrated for the first time that microRNA-223-3p negatively regulated INPP4A expression by binding with the 3′ untranslated region (3′UTR) of INPP4A. Conclusions These findings indicate that microRNA-223-3p plays an important role in regulating the pathology and symptoms of allergic rhinitis by targeting INPP4A.
Collapse
Affiliation(s)
- Yong Zhou
- Affiliated Hospital of Nantong University, Institute of Otolaryngology Head and Neck Surgery, Nantong, China; Affiliated Hospital of Nantong University, Department of Otolaryngology Head and Neck Surgery, Nantong, China
| | - Ting Zhang
- Affiliated Hospital of Nantong University, Institute of Otolaryngology Head and Neck Surgery, Nantong, China; Affiliated Hospital of Nantong University, Department of Otolaryngology Head and Neck Surgery, Nantong, China
| | - Yongbing Yan
- Affiliated Hospital of Nantong University, Institute of Otolaryngology Head and Neck Surgery, Nantong, China; Affiliated Hospital of Nantong University, Department of Otolaryngology Head and Neck Surgery, Nantong, China
| | - Bo You
- Affiliated Hospital of Nantong University, Institute of Otolaryngology Head and Neck Surgery, Nantong, China; Affiliated Hospital of Nantong University, Department of Otolaryngology Head and Neck Surgery, Nantong, China
| | - Yiwen You
- Affiliated Hospital of Nantong University, Institute of Otolaryngology Head and Neck Surgery, Nantong, China; Affiliated Hospital of Nantong University, Department of Otolaryngology Head and Neck Surgery, Nantong, China
| | - Wei Zhang
- Affiliated Hospital of Nantong University, Institute of Otolaryngology Head and Neck Surgery, Nantong, China; Affiliated Hospital of Nantong University, Department of Otolaryngology Head and Neck Surgery, Nantong, China.
| | - Jing Chen
- Affiliated Hospital of Nantong University, Institute of Otolaryngology Head and Neck Surgery, Nantong, China; Affiliated Hospital of Nantong University, Department of Otolaryngology Head and Neck Surgery, Nantong, China.
| |
Collapse
|
15
|
Zhang Y, Guo L, Law BYK, Liang X, Ma N, Xu G, Wang X, Yuan X, Tang H, Chen Q, Wong VKW, Wang X. Resveratrol decreases cell apoptosis through inhibiting DNA damage in bronchial epithelial cells. Int J Mol Med 2020; 45:1673-1684. [PMID: 32186748 PMCID: PMC7169938 DOI: 10.3892/ijmm.2020.4539] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 01/28/2020] [Indexed: 12/11/2022] Open
Abstract
One of the major risk factors for asthma development is exposure to environmental allergens. House dust mites (HDM) can induce DNA damage, resulting in asthma. Resveratrol (RES) produced by several plants, has anti‑apoptotic properties and may affect a variety of biological processes. The aim of the present study was to investigate the protective role of RES against apoptosis in bronchial epithelial cells. C57BL/6J mice treated with HDM exhibited high levels of cell apoptosis, while RES significantly reversed this process. Induced DNA damage was more severe in the HDM group vs. the HDM combined with RES group. This result was confirmed by immunostaining and western blot analysis of the protein expression of the DNA damage‑related gene γH2AX, which was highly induced by HDM. In addition, treatment with RES protected bronchial epithelial cells exposed to HDM from DNA damage. RES decreases reactive oxygen species levels to inhibit oxidative DNA damage in bronchial epithelial cells. Furthermore, compared with the HDM group, induced cell apoptosis could be attenuated by RES in the group of combined treatment with RES and HDM. A DNA repair inhibitor augmented DNA damage and apoptosis in bronchial epithelial cells, whereas RES significantly attenuated cell apoptosis through inhibiting DNA damage.
Collapse
Affiliation(s)
- Yun Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau 999078, P.R. China
| | - Linlin Guo
- Department of Obstetrics and Gynecology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Betty Yuen-Kwan Law
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau 999078, P.R. China
| | - Xiaobo Liang
- Laboratory of Inflammation and Allergy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Ning Ma
- Laboratory of Inflammation and Allergy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Guofeng Xu
- Laboratory of Inflammation and Allergy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Xiaoyun Wang
- Laboratory of Inflammation and Allergy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Xiefang Yuan
- Laboratory of Inflammation and Allergy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Hongmei Tang
- Laboratory of Inflammation and Allergy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Qi Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau 999078, P.R. China
| | - Vincent Kam-Wai Wong
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau 999078, P.R. China
| | - Xing Wang
- Laboratory of Inflammation and Allergy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| |
Collapse
|
16
|
Xu Y, Liu Q, Guo X, Xiang L, Zhao G. Resveratrol attenuates IL‑33‑induced mast cell inflammation associated with inhibition of NF‑κB activation and the P38 signaling pathway. Mol Med Rep 2020; 21:1658-1666. [PMID: 32016471 DOI: 10.3892/mmr.2020.10952] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 12/24/2019] [Indexed: 11/05/2022] Open
Abstract
Resveratrol (RSV), a natural polyphenol found in grapes and other herbal plants, has been reported to possess anti‑inflammatory, anti‑oxidative and anti‑proliferative activities. The aim of the present study was to investigate the effect of RSV on interleukin (IL)‑33‑induced inflammatory responses in mast cells and identify the underlying molecular mechanisms. Rat basophilic leukemia (RBL‑2H3) cells were stimulated with IL‑33 in the presence or absence of RSV. MTT, ELISA, reverse transcription‑quantitative PCR and western blot analyses were then performed in order to assess cytotoxicity, inflammatory cytokine production, suppression of tumorigenicity 2 receptor expression, protein expression involved in mitogen‑activated protein kinase (MAPK) and nuclear factor (NF)‑κB signaling, respectively. Finally, rats were used to determine the biological effect of RSV in vivo. The results revealed that RSV inhibited cell viability and increased cytotoxicity in a dose‑dependent manner. Medium concentration of RSV (10 µM) treatment attenuated inflammatory cytokine production, such as IL‑6, IL‑13, tumor necrosis factor‑α and monocyte chemotactic protein‑1, and curbed IL‑33‑induced enhancement of immunoglobulin E‑mediated responses in RBL‑2H3 cells, which were associated with the suppression of NF‑κB‑mediated transcription and inhibition of P38 phosphorylation in response to IL‑33 stimulation, but not extracellular signal regulated kinase or JNK. Notably, RSV application also decreased the levels of inflammatory cytokines in rats induced by IL‑33 injection, which was similar to the anti‑inflammatory effect in vitro. The data from the present study demonstrated that RSV played a regulatory role in antagonizing the effects of IL‑33 on mast cells both in vitro and in vivo, suggesting that it has therapeutic potential in IL‑33‑mediated inflammatory diseases that are associated with mast cells.
Collapse
Affiliation(s)
- Yundan Xu
- Department of Medical Biology, School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, P.R. China
| | - Qiang Liu
- Department of Medical Biology, School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, P.R. China
| | - Xiaohong Guo
- Department of Medical Biology, School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, P.R. China
| | - Lei Xiang
- Department of Medical Biology, School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, P.R. China
| | - Gang Zhao
- Department of Medical Biology, School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, P.R. China
| |
Collapse
|
17
|
Athari SS. Targeting cell signaling in allergic asthma. Signal Transduct Target Ther 2019; 4:45. [PMID: 31637021 PMCID: PMC6799822 DOI: 10.1038/s41392-019-0079-0] [Citation(s) in RCA: 176] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 09/03/2019] [Accepted: 09/15/2019] [Indexed: 02/08/2023] Open
Abstract
Asthma is chronic inflammation of the airways characterized by airway hyper-responsiveness, wheezing, cough, and dyspnea. Asthma affects >350 million people worldwide. The Th2 immune response is a major contributor to the pathophysiology of asthma. Targeted therapy modulating cell signaling pathways can be a powerful strategy to design new drugs to treat asthma. The potential molecular pathways that can be targeted include IL-4-IL-13-JAK-STAT-MAP kinases, adiponectin-iNOS-NF-κB, PGD2-CRTH2, IFNs-RIG, Wnt/β-catenin-FAM13A, FOXC1-miR-PI3K/AKT, JNK-Gal-7, Nrf2-ROS, Foxp3-RORγt, CysLTR, AMP, Fas-FasL, PTHrP/PPARγ, PAI-1, FcɛRI-LAT-SLP-76, Tim-3-Gal-9, TLRs-MyD88, PAR2, and Keap1/Nrf2/ARE. Therapeutic drugs can be designed to target one or more of these pathways to treat asthma.
Collapse
Affiliation(s)
- Seyyed Shamsadin Athari
- Department of Immunology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
18
|
Khanna K, Chaudhuri R, Aich J, Pattnaik B, Panda L, Prakash YS, Mabalirajan U, Ghosh B, Agrawal A. Secretory Inositol Polyphosphate 4-Phosphatase Protects against Airway Inflammation and Remodeling. Am J Respir Cell Mol Biol 2019; 60:399-412. [PMID: 30335467 PMCID: PMC6444634 DOI: 10.1165/rcmb.2017-0353oc] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 09/14/2018] [Indexed: 01/16/2023] Open
Abstract
The asthma candidate gene inositol polyphosphate 4-phosphatase type I A (INPP4A) is a lipid phosphatase that negatively regulates the PI3K/Akt pathway. Destabilizing genetic variants of INPP4A increase the risk of asthma, and lung-specific INPP4A knockdown induces asthma-like features. INPP4A is known to localize intracellularly, and its extracellular presence has not been reported yet. Here we show for the first time that INPP4A is secreted by airway epithelial cells and that extracellular INPP4A critically inhibits airway inflammation and remodeling. INPP4A was present in blood and BAL fluid, and this extracellular INPP4A was reduced in patients with asthma and mice with allergic airway inflammation. In both naive mice and mice with allergic airway inflammation, antibody-mediated neutralization of extracellular INPP4A potentiated PI3K/Akt signaling and induced airway hyperresponsiveness, with prominent airway remodeling, subepithelial fibroblast proliferation, and collagen deposition. The link between extracellular INPP4A and fibroblasts was investigated in vitro. Cultured airway epithelial cells secreted enzymatically active INPP4A in extracellular vesicles and in a free form. Extracellular vesicle-mediated transfer of labeled INPP4A, from epithelial cells to fibroblasts, was observed. Inhibition of such transfer by anti-INPP4A antibody increased fibroblast proliferation. We propose that secretory INPP4A is a novel "paracrine" layer of the intricate regulation of lung homeostasis, by which airway epithelium dampens PI3K/Akt signaling in inflammatory cells or local fibroblasts, thereby limiting inflammation and remodeling.
Collapse
Affiliation(s)
- Kritika Khanna
- Centre of Excellence for Translational Research in Asthma and Lung Disease
- Molecular Immunogenetics Laboratory, and
- Academy of Scientific and Innovative Research, CSIR-Institute of Genomics and Integrative Biology, Delhi, India
| | - Rituparna Chaudhuri
- Centre of Excellence for Translational Research in Asthma and Lung Disease
- Molecular Immunogenetics Laboratory, and
- Academy of Scientific and Innovative Research, CSIR-Institute of Genomics and Integrative Biology, Delhi, India
| | - Jyotirmoi Aich
- Centre of Excellence for Translational Research in Asthma and Lung Disease
| | - Bijay Pattnaik
- Centre of Excellence for Translational Research in Asthma and Lung Disease
- Molecular Immunogenetics Laboratory, and
- Department of Pulmonary Medicine and Sleep Disorders, All India Institute of Medical Sciences, New Delhi, India; and
| | - Lipsa Panda
- Centre of Excellence for Translational Research in Asthma and Lung Disease
- Molecular Immunogenetics Laboratory, and
- Academy of Scientific and Innovative Research, CSIR-Institute of Genomics and Integrative Biology, Delhi, India
| | - Y. S. Prakash
- Department of Anesthesiology
- Department of Physiology, and
- Department of Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Ulaganathan Mabalirajan
- Centre of Excellence for Translational Research in Asthma and Lung Disease
- Molecular Immunogenetics Laboratory, and
| | - Balaram Ghosh
- Centre of Excellence for Translational Research in Asthma and Lung Disease
- Molecular Immunogenetics Laboratory, and
- Academy of Scientific and Innovative Research, CSIR-Institute of Genomics and Integrative Biology, Delhi, India
| | - Anurag Agrawal
- Centre of Excellence for Translational Research in Asthma and Lung Disease
- Molecular Immunogenetics Laboratory, and
- Academy of Scientific and Innovative Research, CSIR-Institute of Genomics and Integrative Biology, Delhi, India
| |
Collapse
|
19
|
Alharris E, Alghetaa H, Seth R, Chatterjee S, Singh NP, Nagarkatti M, Nagarkatti P. Resveratrol Attenuates Allergic Asthma and Associated Inflammation in the Lungs Through Regulation of miRNA-34a That Targets FoxP3 in Mice. Front Immunol 2018; 9:2992. [PMID: 30619345 PMCID: PMC6306424 DOI: 10.3389/fimmu.2018.02992] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 12/04/2018] [Indexed: 01/01/2023] Open
Abstract
Asthma is a chronic inflammatory disease of airways mediated by T-helper 2 (Th2) cells involving complex signaling pathways. Although resveratrol has previously been shown to attenuate allergic asthma, the role of miRNA in this process has not been studied. We investigated the effect of resveratrol on ovalbumin-induced experimental allergic asthma in mice. To that end, BALB/c mice were immunized with ovalbumin (OVA) intraperitoneally followed by oral gavage of vehicle (OVA-veh) or resveratrol (100 mg/kg body) (OVA-res). On day 7, the experimental groups received intranasal challenge of OVA followed by 7 days of additional oral gavage of vehicle or resveratrol. At day 15, all mice were euthanized and bronchioalveolar fluid (BALF), serum and lung infiltrating cells were collected and analyzed. The data showed that resveratrol significantly reduced IL-5, IL-13, and TGF-β in the serum and BALF in mice with OVA-induced asthma. Also, we saw a decrease in CD3+CD4+, CD3+CD8+, and CD4+IL-4+ cells with increase in CD4+CD25+FOXP3+ cells in pulmonary inflammatory cell infiltrate in OVA-res group when compared to OVA-veh. miRNA expression arrays using lung infiltrating cells showed that resveratrol caused significant alterations in miRNA expression, specifically downregulating the expression of miR-34a. Additionally, miR-34a was found to target FOXP3, as evidenced by enhanced expression of FOXP3 in the lung tissue. Also, transfection studies showed that miR-34a inhibitor upregulated FOXP3 expression while miR-34a-mimic downregulated FOXP3 expression. The current study suggests that resveratrol attenuates allergic asthma by downregulating miR-34a that induces increased expression of FOXP3, a master regulator of Treg development and functions.
Collapse
Affiliation(s)
- Esraah Alharris
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC, United States
| | - Hasan Alghetaa
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC, United States
| | - Ratanesh Seth
- Environmental Health and Disease Laboratory, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina,Columbia, SC, United States
| | - Saurabh Chatterjee
- Environmental Health and Disease Laboratory, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina,Columbia, SC, United States
| | - Narendra P. Singh
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC, United States
| | - Mitzi Nagarkatti
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC, United States
| | - Prakash Nagarkatti
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC, United States,*Correspondence: Prakash Nagarkatti
| |
Collapse
|
20
|
Anti-Inflammatory Effects of Resveratrol: Mechanistic Insights. Int J Mol Sci 2018; 19:ijms19061812. [PMID: 29925765 PMCID: PMC6032205 DOI: 10.3390/ijms19061812] [Citation(s) in RCA: 166] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 06/10/2018] [Accepted: 06/12/2018] [Indexed: 12/14/2022] Open
Abstract
Inflammation is the principal response invoked by the body to address injuries. Despite inflammation constituting a crucial component of tissue repair, it is well known that unchecked or chronic inflammation becomes deleterious, leading to progressive tissue damage. Studies over the past years focused on foods rich in polyphenols with anti-inflammatory and immunomodulatory properties, since inflammation was recognized to play a central role in several diseases. In this review, we discuss the beneficial effects of resveratrol, the most widely investigated polyphenol, on cancer and neurodegenerative, respiratory, metabolic, and cardiovascular diseases. We highlight how resveratrol, despite its unfavorable pharmacokinetics, can modulate the inflammatory pathways underlying those diseases, and we identify future opportunities for the evaluation of its clinical feasibility.
Collapse
|
21
|
Zhu XD, Lei XP, Dong WB. Resveratrol as a potential therapeutic drug for respiratory system diseases. DRUG DESIGN DEVELOPMENT AND THERAPY 2017; 11:3591-3598. [PMID: 29290681 PMCID: PMC5736354 DOI: 10.2147/dddt.s148868] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Respiratory system diseases are common and major ailments that seriously endanger human health. Resveratrol, a polyphenolic phytoalexin, is considered an anti-inflammatory, antioxidant, and anticancer agent. Thanks to its wide range of biological activities, resveratrol has become a hotspot in many fields, including respiratory system diseases. Indeed, research has demonstrated that resveratrol is helpful to relieve pulmonary function in the general population. Meanwhile, growing evidence indicates that resveratrol plays a protective role in respiratory system diseases. This review aimed to summarize the main protective effects of resveratrol in respiratory system diseases, including its anti-inflammatory, antiapoptotic, antioxidant, antifibrotic, antihypertensive, and anticancer activities. We found that resveratrol plays a protective role in the respiratory system through a variety of mechanisms, and so it may become a new drug for the treatment of respiratory system diseases.
Collapse
Affiliation(s)
- Xiao-Dan Zhu
- Department of Newborn Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Xiao-Ping Lei
- Department of Newborn Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Wen-Bin Dong
- Department of Newborn Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| |
Collapse
|
22
|
Zhu LY, Ni ZH, Luo XM, Wang XB. Advance of antioxidants in asthma treatment. World J Respirol 2017; 7:17-28. [DOI: 10.5320/wjr.v7.i1.17] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 11/23/2016] [Accepted: 01/14/2017] [Indexed: 02/07/2023] Open
Abstract
Asthma is an allergic disease, characterized as a recurrent airflow limitation, airway hyperreactivity, and chronic inflammation, involving a variety of cells and cytokines. Reactive oxygen species have been proven to play an important role in asthma. The pathogenesis of oxidative stress in asthma involves an imbalance between oxidant and antioxidant systems that is caused by environment pollutants or endogenous reactive oxygen species from inflammation cells. There is growing evidence that antioxidant treatments that include vitamins and food supplements have been shown to ameliorate this oxidative stress while improving the symptoms and decreasing the severity of asthma. In this review, we summarize recent studies that are related to the mechanisms and biomarkers of oxidative stress, antioxidant treatments in asthma.
Collapse
|
23
|
Affiliation(s)
- Claude A. Piantadosi
- Departments of Medicine, Pathology, and Anesthesiology, Duke University Medical Center, Durham, North Carolina 27710;
| | - Hagir B. Suliman
- Departments of Anesthesiology and Pathology, Duke University School of Medicine, Durham, North Carolina 27710;
| |
Collapse
|
24
|
Rao SS, Mu Q, Zeng Y, Cai PC, Liu F, Yang J, Xia Y, Zhang Q, Song LJ, Zhou LL, Li FZ, Lin YX, Fang J, Greer PA, Shi HZ, Ma WL, Su Y, Ye H. Calpain-activated mTORC2/Akt pathway mediates airway smooth muscle remodelling in asthma. Clin Exp Allergy 2016; 47:176-189. [PMID: 27649066 DOI: 10.1111/cea.12805] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 07/20/2016] [Accepted: 08/09/2016] [Indexed: 12/11/2022]
Abstract
BACKGROUND Allergic asthma is characterized by inflammation and airway remodelling. Airway remodelling with excessive deposition of extracellular matrix (ECM) and larger smooth muscle mass are correlated with increased airway responsiveness and asthma severity. Calpain is a family of calcium-dependent endopeptidases, which plays an important role in ECM remodelling. However, the role of calpain in airway smooth muscle remodelling remains unknown. OBJECTIVE To investigate the role of calpain in asthmatic airway remodelling as well as the underlying mechanism. METHODS The mouse asthma model was made by ovalbumin sensitization and challenge. Calpain conditional knockout mice were studied in the model. Airway smooth muscle cells (ASMCs) were isolated from smooth muscle bundles in airway of rats. Cytokines IL-4, IL-5, TNF-α, and TGF-β1, and serum from patients with asthma were selected to treated ASMCs. Collagen-I synthesis, cell proliferation, and phosphorylation of Akt in ASMCs were analysed. RESULTS Inhibition of calpain using calpain knockout mice attenuated airway smooth muscle remodelling in mouse asthma models. Cytokines IL-4, IL-5, TNF-α, and TGF-β1, and serum from patients with asthma increased collagen-I synthesis, cell proliferation, and phosphorylation of Akt in ASMCs, which were blocked by the calpain inhibitor MDL28170. Moreover, MDL28170 reduced cytokine-induced increases in Rictor protein, which is the most important component of mammalian target of rapamycin complex 2 (mTORC2). Blockage of the mTORC2 signal pathway prevented cytokine-induced phosphorylation of Akt, collagen-I synthesis, and cell proliferation of ASMCs and attenuated airway smooth muscle remodelling in mouse asthma models. CONCLUSIONS AND CLINICAL RELEVANCE Our results indicate that calpain mediates cytokine-induced collagen-I synthesis and proliferation of ASMCs via the mTORC2/Akt signalling pathway, thereby regulating airway smooth muscle remodelling in asthma.
Collapse
Affiliation(s)
- S-S Rao
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Q Mu
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Y Zeng
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - P-C Cai
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - F Liu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - J Yang
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Y Xia
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Q Zhang
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - L-J Song
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - L-L Zhou
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - F-Z Li
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Y-X Lin
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - J Fang
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - P A Greer
- Queen's University Cancer Research Institute, Kingston, ON, Canada
| | - H-Z Shi
- Department of Respiratory and Critical Care Medicine, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - W-L Ma
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Key Laboratory of Pulmonary Diseases, Ministry of Health of China, Wuhan, Hubei, China
| | - Y Su
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Charlie Norwood Veterans Affairs Medical Center, Augusta, GA, USA
| | - H Ye
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Key Laboratory of Pulmonary Diseases, Ministry of Health of China, Wuhan, Hubei, China
| |
Collapse
|
25
|
André DM, Calixto MC, Sollon C, Alexandre EC, Leiria LO, Tobar N, Anhê GF, Antunes E. Therapy with resveratrol attenuates obesity-associated allergic airway inflammation in mice. Int Immunopharmacol 2016; 38:298-305. [PMID: 27344038 DOI: 10.1016/j.intimp.2016.06.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 06/16/2016] [Accepted: 06/17/2016] [Indexed: 02/07/2023]
Abstract
Obesity and insulin resistance have been associated with deterioration in asthma outcomes. High oxidative stress and deficient activation of AMP-activated protein kinase (AMPK) have emerged as important regulators linking insulin resistance and inflammation. This study aimed to evaluate the effects of resveratrol on obesity-associated allergic pulmonary inflammation. Male C57/Bl6 mice fed with high-fat diet to induce obesity (obese group) or standard-chow diet (lean group) were treated or not with resveratrol (100mg/kg/day, two weeks). Mice were sensitized and challenged with ovalbumin (OVA). At 48h thereafter, bronchoalveolar lavage fluid was performed, and lungs collected for morphological studies and Western blot analysis. Treatment of obese mice with resveratrol significantly reduced hyperglycemia and insulin resistance, as well as the body measures (body mass, fat mass, % fat, and body area). OVA-challenge promoted a higher increase in pulmonary eosinophil infiltration in obese compared with lean mice, which was nearly abrogated by resveratrol treatment. Resveratrol markedly increased the phosphorylated AMPK expression in lung tissues of obese compared with lean mice. Resveratrol reduced the p47phox expression and reactive-oxygen species (ROS) production, and elevated the superoxide dismutase (SOD) levels in lung tissues of obese mice. The increased pulmonary levels of TNF-α and inducible nitric oxide synthase (iNOS) in obese mice were also normalized after resveratrol treatment. In lean mice, resveratrol failed to affect the levels of fasting glucose, p47phox, ROS levels, TNF-α, iNOS and phosphorylated AMPK. Resveratrol exhibits protective effects in obesity-associated lung inflammation that is accompanied by local AMPK activation and antioxidant property.
Collapse
Affiliation(s)
- Diana Majolli André
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Marina Ciarallo Calixto
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Carolina Sollon
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Eduardo Costa Alexandre
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Luiz O Leiria
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Natalia Tobar
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Gabriel Forato Anhê
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Edson Antunes
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, SP, Brazil.
| |
Collapse
|
26
|
Jiang J, Zhang Y, Guo Y, Yu C, Chen M, Li Z, Tian S, Sun C. MicroRNA-3127 promotes cell proliferation and tumorigenicity in hepatocellular carcinoma by disrupting of PI3K/AKT negative regulation. Oncotarget 2016; 6:6359-72. [PMID: 25849943 PMCID: PMC4467442 DOI: 10.18632/oncotarget.3438] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Accepted: 01/21/2015] [Indexed: 11/25/2022] Open
Abstract
Recent studies have shown that multiple phosphatases deactivate the PI3K/AKT signaling pathway. Here we demonstrated that, by suppressing multiple phosphatases, miR-3127 promotes growth of hepatocellular carcinoma (HCC). Our study also reveals clinical significance of miR-3127 expression in HCC patients. MiR-3127 expression was markedly upregulated in HCC tissues and cells. Furthermore, high miR-3127 expression was associated with an aggressive phenotype and poor prognosis. MiR-3127 overexpression promoted HCC cell proliferation in vitro and tumor growth in vivo. Also, miR-3127 accelerated G1-S transition by activating AKT/ FOXO1 signaling, by directly targeting the 3' untranslated regions (3`UTR) of pleckstrin homology domain leucine-rich repeat protein phosphatase 1/2 (PHLPP1/2), inositol polyphosphate phosphatase 4A (INPP4A), and inositol polyphosphate-5-phosphatase J (INPP5J) mRNA, repressing their expression. In agreement, the miRNA antagonist antagomir-3127 suppressed HCC cell proliferation and tumor growth by inhibiting the AKT/FOXO1 signaling. Taken together, these findings suggest that silencing miR-3127 might be a potential therapeutic strategy.
Collapse
Affiliation(s)
- Jianxin Jiang
- Department of Hepatobiliary Surgery, Affiliated Hospital of Guiyang Medical College, Guiyang, China
| | - Yi Zhang
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan, China
| | - Yuting Guo
- Department of Hepatobiliary Surgery, Affiliated Hospital of Guiyang Medical College, Guiyang, China
| | - Chao Yu
- Department of Hepatobiliary Surgery, Affiliated Hospital of Guiyang Medical College, Guiyang, China
| | - Meiyuan Chen
- Department of Hepatobiliary Surgery, Affiliated Hospital of Guiyang Medical College, Guiyang, China
| | - Zhu Li
- Department of Hepatobiliary Surgery, Affiliated Hospital of Guiyang Medical College, Guiyang, China
| | - Se Tian
- Department of Hepatobiliary Surgery, Affiliated Hospital of Guiyang Medical College, Guiyang, China
| | - Chengyi Sun
- Department of Hepatobiliary Surgery, Affiliated Hospital of Guiyang Medical College, Guiyang, China
| |
Collapse
|
27
|
Alonso A, Pulido R. The extended human PTPome: a growing tyrosine phosphatase family. FEBS J 2015; 283:1404-29. [PMID: 26573778 DOI: 10.1111/febs.13600] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 10/02/2015] [Accepted: 11/13/2015] [Indexed: 12/13/2022]
Abstract
Tyr phosphatases are, by definition, enzymes that dephosphorylate phospho-Tyr (pTyr) from proteins. This activity is found in several structurally diverse protein families, including the protein Tyr phosphatase (PTP), arsenate reductase, rhodanese, haloacid dehalogenase (HAD) and His phosphatase (HP) families. Most of these families include members with substrate specificity for non-pTyr substrates, such as phospho-Ser/phospho-Thr, phosphoinositides, phosphorylated carbohydrates, mRNAs, or inorganic moieties. A Cys is essential for catalysis in PTPs, rhodanese and arsenate reductase enzymes, whereas this work is performed by an Asp in HAD phosphatases and by a His in HPs, via a catalytic mechanism shared by all of the different families. The category that contains most Tyr phosphatases is the PTP family, which, although it received its name from this activity, includes Ser, Thr, inositide, carbohydrate and RNA phosphatases, as well as some inactive pseudophosphatase proteins. Here, we propose an extended collection of human Tyr phosphatases, which we call the extended human PTPome. The addition of new members (SACs, paladin, INPP4s, TMEM55s, SSU72, and acid phosphatases) to the currently categorized PTP group of enzymes means that the extended human PTPome contains up to 125 proteins, of which ~ 40 are selective for pTyr. We set criteria to ascribe proteins to the extended PTPome, and summarize the more important features of the new PTPome members in the context of their phosphatase activity and their relationship with human disease.
Collapse
Affiliation(s)
- Andrés Alonso
- Instituto de Biología y Genética Molecular (IBGM), CSIC-Universidad de Valladolid, Valladolid, Spain
| | - Rafael Pulido
- Biocruces Health Research Institute, Barakaldo, Spain.,IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
28
|
Agrawal A, Mabalirajan U. Rejuvenating cellular respiration for optimizing respiratory function: targeting mitochondria. Am J Physiol Lung Cell Mol Physiol 2015; 310:L103-13. [PMID: 26566906 DOI: 10.1152/ajplung.00320.2015] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 11/10/2015] [Indexed: 12/26/2022] Open
Abstract
Altered bioenergetics with increased mitochondrial reactive oxygen species production and degradation of epithelial function are key aspects of pathogenesis in asthma and chronic obstructive pulmonary disease (COPD). This motif is not unique to obstructive airway disease, reported in related airway diseases such as bronchopulmonary dysplasia and parenchymal diseases such as pulmonary fibrosis. Similarly, mitochondrial dysfunction in vascular endothelium or skeletal muscles contributes to the development of pulmonary hypertension and systemic manifestations of lung disease. In experimental models of COPD or asthma, the use of mitochondria-targeted antioxidants, such as MitoQ, has substantially improved mitochondrial health and restored respiratory function. Modulation of noncoding RNA or protein regulators of mitochondrial biogenesis, dynamics, or degradation has been found to be effective in models of fibrosis, emphysema, asthma, and pulmonary hypertension. Transfer of healthy mitochondria to epithelial cells has been associated with remarkable therapeutic efficacy in models of acute lung injury and asthma. Together, these form a 3R model--repair, reprogramming, and replacement--for mitochondria-targeted therapies in lung disease. This review highlights the key role of mitochondrial function in lung health and disease, with a focus on asthma and COPD, and provides an overview of mitochondria-targeted strategies for rejuvenating cellular respiration and optimizing respiratory function in lung diseases.
Collapse
Affiliation(s)
- Anurag Agrawal
- CSIR Institute of Genomics and Integrative Biology, Delhi, India
| | | |
Collapse
|
29
|
Zuo L, Lucas K, Fortuna CA, Chuang CC, Best TM. Molecular Regulation of Toll-like Receptors in Asthma and COPD. Front Physiol 2015; 6:312. [PMID: 26617525 PMCID: PMC4637409 DOI: 10.3389/fphys.2015.00312] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Accepted: 10/19/2015] [Indexed: 11/13/2022] Open
Abstract
Asthma and chronic obstructive pulmonary disease (COPD) have both been historically associated with significant morbidity and financial burden. These diseases can be induced by several exogenous factors, such as pathogen-associated molecular patterns (PAMPs) (e.g., allergens and microbes). Endogenous factors, including reactive oxygen species, and damage-associated molecular patterns (DAMPs) recognized by toll-like receptors (TLRs), can also result in airway inflammation. Asthma is characterized by the dominant presence of eosinophils, mast cells, and clusters of differentiation (CD)4+ T cells in the airways, while COPD typically results in the excessive formation of neutrophils, macrophages, and CD8+ T cells in the airways. In both asthma and COPD, in the respiratory tract, TLRs are the primary proteins of interest associated with the innate and adaptive immune responses; hence, multiple treatment options targeting TLRs are being explored in an effort to reduce the severity of the symptoms of these disorders. TLR-mediated pathways for both COPD and asthma have their similarities and differences with regards to cell types and the pro-inflammatory cytotoxins present in the airway. Because of the complex TLR cascade, a variety of treatments have been used to minimize airway hypersensitivity and promote bronchodilation. Although unsuccessful at completely alleviating COPD and severe asthmatic symptoms, new studies are focused on possible targets within the TLR cascade to ameliorate airway inflammation.
Collapse
Affiliation(s)
- Li Zuo
- Radiologic Sciences and Respiratory Therapy Division, The Ohio State University Wexner Medical Center, School of Health and Rehabilitation Sciences, The Ohio State University College of Medicine, Columbus, Ohio State University Columbus, OH, USA ; Interdisciplinary Biophysics Graduate Program, The Ohio State University Columbus, OH, USA
| | - Kurt Lucas
- Multiphase Chemistry Department, Max Planck Institute for Chemistry Mainz, Germany
| | - Christopher A Fortuna
- Radiologic Sciences and Respiratory Therapy Division, The Ohio State University Wexner Medical Center, School of Health and Rehabilitation Sciences, The Ohio State University College of Medicine, Columbus, Ohio State University Columbus, OH, USA
| | - Chia-Chen Chuang
- Radiologic Sciences and Respiratory Therapy Division, The Ohio State University Wexner Medical Center, School of Health and Rehabilitation Sciences, The Ohio State University College of Medicine, Columbus, Ohio State University Columbus, OH, USA ; Interdisciplinary Biophysics Graduate Program, The Ohio State University Columbus, OH, USA
| | - Thomas M Best
- Division of Sports Medicine, Department of Family Medicine, Sports Health and Performance Institute, The Ohio State University Wexner Medical Center Columbus, OH, USA
| |
Collapse
|
30
|
Ni ZH, Tang JH, Chen G, Lai YM, Chen QG, Li Z, Yang W, Luo XM, Wang XB. Resveratrol inhibits mucus overproduction and MUC5AC expression in a murine model of asthma. Mol Med Rep 2015; 13:287-94. [PMID: 26549244 DOI: 10.3892/mmr.2015.4520] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Accepted: 09/16/2015] [Indexed: 11/06/2022] Open
Abstract
Previous in vitro studies have demonstrated that resveratrol is able to significantly inhibit the upregulation of mucin 5AC (MUC5AC), a major component of mucus; thus indicating that resveratrol may have potential in regulating mucus overproduction. However, there have been few studies regarding the resveratrol‑mediated prevention of MUC5AC overproduction in vivo, and the mechanisms by which resveratrol regulates MUC5AC expression have yet to be elucidated. In the present study, an ovalbumin (OVA)‑challenged murine model of asthma was used to assess the effects of resveratrol treatment on mucus production in vivo. The results demonstrated that resveratrol significantly inhibited OVA‑induced airway inflammation and mucus production. In addition, the mRNA and protein expression levels of MUC5AC were increased in the OVA‑challenged mice, whereas treatment with resveratrol significantly inhibited this effect. The expression levels of murine calcium‑activated chloride channel (mCLCA)3, an important key mediator of MUC5AC production, were also reduced following resveratrol treatment. Furthermore, in vitro studies demonstrated that resveratrol significantly inhibited human (h)CLCA1 and MUC5AC expression in a dose‑dependent manner. These results indicated that resveratrol was effective in preventing mucus overproduction and MUC5AC expression in vivo, and its underlying mechanism may be associated with regulation of the mCLCA3/hCLCA1 signaling pathway.
Collapse
Affiliation(s)
- Zhen-Hua Ni
- Central Laboratory, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, P.R. China
| | - Ji-Hong Tang
- Department of Respiratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, P.R. China
| | - Guo Chen
- Department of Respiratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, P.R. China
| | - Yi-Min Lai
- Department of Respiratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, P.R. China
| | - Qing-Ge Chen
- Department of Respiratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, P.R. China
| | - Zao Li
- Department of Respiratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, P.R. China
| | - Wei Yang
- Department of Respiratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, P.R. China
| | - Xu-Min Luo
- Department of Respiratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, P.R. China
| | - Xiong-Biao Wang
- Department of Respiratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, P.R. China
| |
Collapse
|
31
|
Tanaka Y, Yamaguchi M, Suzukawa M, Arai H, Nagase H, Ohta K. Modulation of human basophil activation by resveratrol. Allergol Int 2015; 64 Suppl:S80-2. [PMID: 26344086 DOI: 10.1016/j.alit.2015.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 04/26/2015] [Accepted: 05/07/2015] [Indexed: 12/15/2022] Open
|
32
|
Phosphatidylinositol (3,4) bisphosphate-specific phosphatases and effector proteins: A distinct branch of PI3K signaling. Cell Signal 2015; 27:1789-98. [DOI: 10.1016/j.cellsig.2015.05.013] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 05/16/2015] [Accepted: 05/20/2015] [Indexed: 01/22/2023]
|
33
|
Serafino-Agrusa L, Spatafora M, Scichilone N. Asthma and metabolic syndrome: Current knowledge and future perspectives. World J Clin Cases 2015; 3:285-292. [PMID: 25789301 PMCID: PMC4360500 DOI: 10.12998/wjcc.v3.i3.285] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 11/24/2014] [Accepted: 12/31/2014] [Indexed: 02/05/2023] Open
Abstract
Asthma and obesity are epidemiologically linked; however, similar relationships are also observed with other markers of the metabolic syndrome, such as insulin resistance and dyslipidemia, which cannot be accounted for by increased body mass alone. Obesity appears to be a predisposing factor for the asthma onset, both in adults and in children. In addition, obesity could make asthma more difficult to control and to treat. Although obesity may predispose to increased Th2 inflammation or tendency to atopy, other mechanisms need to be considered, such as those mediated by hyperglycaemia, hyperinsulinemia and dyslipidemia in the context of metabolic syndrome. The mechanisms underlying the association between asthma and metabolic syndrome are yet to be determined. In the past, these two conditions were believed to occur in the same individual without any pathogenetic link. However, the improvement in asthma symptoms following weight reduction indicates a causal relationship. The interplay between these two diseases is probably due to a bidirectional interaction. The purpose of this review is to describe the current knowledge about the possible link between metabolic syndrome and asthma, and explore potential application for future studies and strategic approaches.
Collapse
|
34
|
Chen G, Tang J, Ni Z, Chen Q, Li Z, Yang W, Din J, Luo X, Wang X. Antiasthmatic effects of resveratrol in ovalbumin-induced asthma model mice involved in the upregulation of PTEN. Biol Pharm Bull 2015; 38:507-13. [PMID: 25739523 DOI: 10.1248/bpb.b14-00610] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Resveratrol, a natural polyphenolic compound known for its antioxidative and antiinflammatory effects, exerts antiasthmatic effects, although the mechanism underlying these effects remains elusive. The phosphatase and tensin homology deleted on chromosome ten gene (PTEN) is involved in the pathogenesis of asthma, and PTEN overexpression in asthmatic mice improved asthma symptoms. To investigate whether the antiasthmatic mechanisms of resveratrol correlated with the upregulation of PTEN expression, an ovalbumin (OVA)-induced murine asthma model was used to determine the effectiveness of resveratrol treatment. PTEN mRNA and protein expression was assessed with real-time polymerase chain reaction (PCR) and immunochemistry. To determine whether airway remodeling occurred, the inner airway wall, mucous layer, and smooth muscle areas were each determined using an image analysis system. The lung epithelial cell line 16HBE was used to study the regulation of PTEN expression levels by resveratrol in vitro. Our data demonstrated that resveratrol inhibited OVA-induced airway inflammation and airway remodeling in asthmatic mice. PTEN expression was decreased in the murine asthma model, although the expression of PTEN was restored following treatment with resveratrol. Correlation efficiency analysis showed that PTEN expression was associated with the degree of airway remodeling. Further in vitro studies demonstrated that the inhibition of Sirtuin 1 (SIRT1) activity by a SIRT1 inhibitor and RNA interference decreased PTEN protein expression, while resveratrol attenuated the decreases in PTEN expression induced by the SIRT1 inhibitor. These data suggest the mechanism of the antiasthmatic effects of resveratrol in an OVA-induced murine asthma model, which resulted in the upregulation of PTEN via SIRT1 activation.
Collapse
Affiliation(s)
- Guo Chen
- Department of Respiratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Agrawal A, Prakash YS. Obesity, metabolic syndrome, and airway disease: a bioenergetic problem? Immunol Allergy Clin North Am 2014; 34:785-96. [PMID: 25282291 DOI: 10.1016/j.iac.2014.07.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Multiple studies have determined that obesity increases asthma risk or severity. Metabolic changes of obesity, such as diabetes or insulin resistance, are associated with asthma and poorer lung function. Insulin resistance is also found to increase asthma risk independent of body mass. Conversely, asthma is associated with abnormal glucose and lipid metabolism, insulin resistance, and obesity. Here we review our current understanding of how dietary and lifestyle factors lead to changes in mitochondrial metabolism and cellular bioenergetics, inducing various components of the cardiometabolic syndrome and airway disease.
Collapse
Affiliation(s)
- Anurag Agrawal
- Molecular Immunogenetics Laboratory and Centre of Excellence for Translational Research in Asthma & Lung Disease, CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi 110007, India.
| | - Y S Prakash
- Department of Anesthesiology, Mayo Clinic, Rochester, MN 55905, USA; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
36
|
Lin CH, Shen ML, Zhou N, Lee CC, Kao ST, Wu DC. Protective effects of the polyphenol sesamin on allergen-induced T(H)2 responses and airway inflammation in mice. PLoS One 2014; 9:e96091. [PMID: 24755955 PMCID: PMC3996011 DOI: 10.1371/journal.pone.0096091] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Accepted: 04/03/2014] [Indexed: 01/13/2023] Open
Abstract
Allergic asthma is a lifelong airway condition that affects people of all ages. In recent decades, asthma prevalence continues to increase globally, with an estimated number of 250,000 annual deaths attributed to the disease. Although inhaled corticosteroids and β-adrenergic receptor agonists are the primary therapeutic avenues that effectively reduce asthma symptoms, profound side effects may occur in patients with long-term treatments. Therefore, development of new therapeutic strategies is needed as alternative or supplement to current asthma treatments. Sesamin is a natural polyphenolic compound with strong anti-oxidative effects. Several studies have reported that sesamin is effective in preventing hypertension, thrombotic tendency, and neuroinflammation. However, it is still unknown whether sesamin can reduce asthma-induced allergic inflammation and airway hyperresponsiveness (AHR). Our study has revealed that sesamin exhibited significant anti-inflammatory effects in ovalbumin (OVA)-induced murine asthma model. We found that treatments with sesamin after OVA sensitization and challenge significantly decreased expression levels of interleukin-4 (IL-4), IL-5, IL-13, and serum IgE. The numbers of total inflammatory cells and eosinophils in BALF were also reduced in the sesamin-treated animals. Histological results demonstrated that sesamin attenuated OVA-induced eosinophil infiltration, airway goblet cell hyperplasia, mucus occlusion, and MUC5AC expression in the lung tissue. Mice administered with sesamin showed limited increases in AHR compared with mice receiving vehicle after OVA challenge. OVA increased phosphorylation levels of IκB-α and nuclear expression levels of NF-κB, both of which were reversed by sesamin treatments. These data indicate that sesamin is effective in treating allergic asthma responses induced by OVA in mice.
Collapse
Affiliation(s)
- Ching-Huei Lin
- Translational Medicine Research Center, China Medical University Hospital, Taichung, Taiwan
- Graduate Institute of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Mei-Lin Shen
- Translational Medicine Research Center, China Medical University Hospital, Taichung, Taiwan
- Graduate Institute of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Ning Zhou
- Translational Medicine Research Center, China Medical University Hospital, Taichung, Taiwan
- Graduate Institute of Clinical Medical Science, China Medicine University, Taichung, Taiwan
| | - Chen-Chen Lee
- Department of Microbiology and Immunology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Shung-Te Kao
- Graduate Institute of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Dong Chuan Wu
- Translational Medicine Research Center, China Medical University Hospital, Taichung, Taiwan
- Graduate Institute of Clinical Medical Science, China Medicine University, Taichung, Taiwan
| |
Collapse
|
37
|
Mabalirajan U, Ghosh B. Mitochondrial dysfunction in metabolic syndrome and asthma. J Allergy (Cairo) 2013; 2013:340476. [PMID: 23840225 PMCID: PMC3687506 DOI: 10.1155/2013/340476] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 05/21/2013] [Indexed: 01/15/2023] Open
Abstract
Though severe or refractory asthma merely affects less than 10% of asthma population, it consumes significant health resources and contributes significant morbidity and mortality. Severe asthma does not fell in the routine definition of asthma and requires alternative treatment strategies. It has been observed that asthma severity increases with higher body mass index. The obese-asthmatics, in general, have the features of metabolic syndrome and are progressively causing a significant burden for both developed and developing countries thanks to the westernization of the world. As most of the features of metabolic syndrome seem to be originated from central obesity, the underlying mechanisms for metabolic syndrome could help us to understand the pathobiology of obese-asthma condition. While mitochondrial dysfunction is the common factor for most of the risk factors of metabolic syndrome, such as central obesity, dyslipidemia, hypertension, insulin resistance, and type 2 diabetes, the involvement of mitochondria in obese-asthma pathogenesis seems to be important as mitochondrial dysfunction has recently been shown to be involved in airway epithelial injury and asthma pathogenesis. This review discusses current understanding of the overlapping features between metabolic syndrome and asthma in relation to mitochondrial structural and functional alterations with an aim to uncover mechanisms for obese-asthma.
Collapse
Affiliation(s)
- Ulaganathan Mabalirajan
- Molecular Immunogenetics Laboratory and Centre of Excellence for Translational Research in Asthma & Lung Disease, CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi 110007, India
| | - Balaram Ghosh
- Molecular Immunogenetics Laboratory and Centre of Excellence for Translational Research in Asthma & Lung Disease, CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi 110007, India
| |
Collapse
|
38
|
Rehman R, Bhat YA, Panda L, Mabalirajan U. TRPV1 inhibition attenuates IL-13 mediated asthma features in mice by reducing airway epithelial injury. Int Immunopharmacol 2013; 15:597-605. [PMID: 23453702 DOI: 10.1016/j.intimp.2013.02.010] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 02/08/2013] [Accepted: 02/08/2013] [Indexed: 12/19/2022]
Abstract
Even though neurogenic axis is well known in asthma pathogenesis much attention had not been given on this aspect. Recent studies have reported the importance of TRP channels, calcium-permeable ion channels and key molecules in neurogenic axis, in asthma therapeutics. The role of TRPV1 channels has been underestimated in chronic respiratory diseases as TRPV1 knockout mice of C57BL/6 strains did not attenuate the features of these diseases. However, this could be due to strain differences in the distribution of airway capsaicin receptors. Here, we show that TRPV1 inhibition attenuates IL-13 induced asthma features by reducing airway epithelial injury in BALB/c mice. We found that IL-13 increased not only the lung TRPV1 levels but also TRPV1 expression in bronchial epithelia in BALB/c rather than in C57BL/6 mice. TRPV1 knockdown attenuated airway hyperresponsiveness, airway inflammation, goblet cell metaplasia and subepithelial fibrosis induced by IL-13 in BALB/c mice. Further, TRPV1 siRNA treatment reduced not only the cytosolic calpain and mitochondrial calpain 10 activities in the lung but also bronchial epithelial apoptosis indicating that TRPV1 siRNA might have corrected the intracellular and intramitochondrial calcium overload and its consequent apoptosis. Knockdown of IL-13 in allergen induced asthmatic mice reduced TRPV1, cytochrome c, and activities of calpain and caspase 3 in lung cytosol. Thus, these findings suggest that induction of TRPV1 with IL-13 in bronchial epithelia could lead to epithelial injury in in vivo condition. Since TRPV1 expression is correlated with human asthma severity, TRPV1 inhibition could be beneficial in attenuating airway epithelial injury and asthma features.
Collapse
Affiliation(s)
- Rakhshinda Rehman
- CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi, India
| | | | | | | |
Collapse
|