1
|
Niri P, Saha A, Polopalli S, Kumar M, Das S, Saha B, Goyary D, Bhutia YD, Karmakar S, Kishor S, Rahaman S, Chattopadhyay P. β-Caryophyllene attenuates oxidative stress and inflammatory response in LPS induced acute lung injury by targeting ACE2/MasR and Nrf2/HO-1/NF-κB axis. Biochem Biophys Res Commun 2025; 746:151286. [PMID: 39756207 DOI: 10.1016/j.bbrc.2024.151286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 12/19/2024] [Accepted: 12/31/2024] [Indexed: 01/07/2025]
Abstract
Acute lung injury (ALI) and its severe form, acute respiratory distress syndrome (ARDS), is a clinical syndrome that can cause pulmonary edema, inflammation, oxidative stress, and immunological dysregulations. β-Caryophyllene (BCP), a natural bicyclic sesquiterpene, possesses a variety of pharmacological properties and has the potential to be a therapeutic agent. This study aimed to comprehend the effect of BCP on Nrf2/HO-1/NF-κB and ACE2/MasR axis in a rat model of ALI by lipopolysaccharide (LPS) and the underlying mechanisms during this process. The study also examined pulmonary edema, BALF, and cytokine production to investigate inflammation and oxidative stress. In the LPS group, Western blot analysis showed decreased Nrf2/HO-1 and ACE2/MasR, including increased lung edema, elevated vascular permeability, neutrophil infiltration in BALF, increased cytokine levels, and histological changes. In comparison to the LPS group, BCP dramatically reduced lung edema, vascular permeability, and histological changes. Additionally, by lowering malondialdehyde and myeloperoxidase activity in lung tissues, it also reduced oxidative stress. BCP boosted IL-10 production and decreased the levels of pro-inflammatory cytokines and neutrophil infiltration. BCP administration decreased VEGF-A and SP-D expression, subsequently lowering NF-κB activation and cytokine production. Further, BCP altered ACE2 expression, indicating its involvement by activating the ACE2/Angiotensin (1-7)/MasR axis. In addition, BCP could stimulate the Nrf2/HO-1 anti-oxidant axis to suppress NF-κB and reduce inflammation. BCP modulation of the ACE2/MasR and Nrf2/HO-1/NF-κB axis impedes the course of ALI by influencing immunological response including but not limited to oxidative stress, the influx of neutrophils, and cytokine production. Hence, BCP may act as a potential candidate for management of ALI.
Collapse
Affiliation(s)
- Pakter Niri
- Division of Pharmaceutical Technology, Defence Research Laboratory, DRDO, Tezpur, Assam, 784001, India; Department of Chemical Technology, University of Calcutta, Kolkata, 700009, India
| | - Achintya Saha
- Department of Chemical Technology, University of Calcutta, Kolkata, 700009, India
| | - Subramanyam Polopalli
- Division of Pharmaceutical Technology, Defence Research Laboratory, DRDO, Tezpur, Assam, 784001, India; Department of Chemical Technology, University of Calcutta, Kolkata, 700009, India
| | - Mohit Kumar
- Division of Pharmaceutical Technology, Defence Research Laboratory, DRDO, Tezpur, Assam, 784001, India
| | - Sanghita Das
- Division of Pharmaceutical Technology, Defence Research Laboratory, DRDO, Tezpur, Assam, 784001, India; Department of Chemical Technology, University of Calcutta, Kolkata, 700009, India
| | - Bidisha Saha
- Division of Pharmaceutical Technology, Defence Research Laboratory, DRDO, Tezpur, Assam, 784001, India
| | - Danswrang Goyary
- Division of Pharmaceutical Technology, Defence Research Laboratory, DRDO, Tezpur, Assam, 784001, India
| | - Yangchen Doma Bhutia
- Division of Pharmaceutical Technology, Defence Research Laboratory, DRDO, Tezpur, Assam, 784001, India
| | - Sanjeev Karmakar
- Division of Pharmaceutical Technology, Defence Research Laboratory, DRDO, Tezpur, Assam, 784001, India
| | - Sumit Kishor
- Division of Pharmaceutical Technology, Defence Research Laboratory, DRDO, Tezpur, Assam, 784001, India
| | - Saidur Rahaman
- Division of Pharmaceutical Technology, Defence Research Laboratory, DRDO, Tezpur, Assam, 784001, India
| | - Pronobesh Chattopadhyay
- Division of Pharmaceutical Technology, Defence Research Laboratory, DRDO, Tezpur, Assam, 784001, India.
| |
Collapse
|
2
|
Lim JJ, Choi HS, Kim H. Anti-pneumoconiosis effect of schisantherin A in PMA-induced A549 cells and SiO 2/TiO 2nanoparticles-induced acute pulmonary injury in mice. Eur J Pharmacol 2024; 982:176938. [PMID: 39181224 DOI: 10.1016/j.ejphar.2024.176938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 07/26/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
There has been significant global interest in respiratory health driven by the coronavirus disease (COVID-19) and severe environmental pollution. This study explored the potential of schisantherin A (SchA), a compound derived from Schisandra chinensis, to protect against acute pneumoconiosis. We assessed the effects of SchA on phorbol 12-myristate 13-acetate (PMA)-stimulated A549 alveolar epithelial cells and SiO2/TiO2-induced pulmonary injury in mice. In A549 cells, SchA significantly decreased pro-inflammatory mediators such as inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and interleukin (IL)-8 levels. SchA-mediated reduction in inflammatory mediators was associated with the downregulation of PMA-stimulated nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and mitogen-activated protein kinase (MAPK) signaling activation. In SiO2/TiO2-induced lung-injured mice, SchA administration significantly reduced MUC5AC production in lung tissue. SchA administration significantly downregulated the overexpression of NK-κB and the subsequent production of COX-2, iNOS, and NOD-like receptor pyrin domain-containing protein 3 (NLRP3) inflammasomes. It significantly suppressed expected increases in total cell numbers and pro-inflammatory cytokines, including tumor necrosis factor-alpha (TNF-α) and IL-1β in the bronchoalveolar lavage fluid (BALF) in SiO2/TiO2-stimulated mice. In contrast, the SiO2/TiO2-mediated decrease in IL-10 levels was significantly improved by SchA treatment. These fundamental results can be used to develop potential treatments involving SchA for acute pneumoconiosis.
Collapse
Affiliation(s)
- Jeong-Ju Lim
- Department of Public Health Science, Korea University, Anam-ro 145, Seongbuk-gu, Seoul 02841, Republic of Korea.
| | - Hyeon-Son Choi
- Department of Food Nutrition, Sangmyung University, Hongjimun 2-gil 20, Jongno-gu, Seoul 03016, Republic of Korea.
| | - Hoon Kim
- Department of Food and Nutrition, Chung Ang University, Seodong-daero 4726, Daedeok-myeon, Anseong 17546, Republic of Korea.
| |
Collapse
|
3
|
Zhang W, Ma L, Xie W, Li X, Zhang J, Sun J. Advances in the application of traditional Chinese medicine during the COVID-19 recovery period: A review. Medicine (Baltimore) 2024; 103:e37683. [PMID: 38579075 PMCID: PMC10994423 DOI: 10.1097/md.0000000000037683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 03/01/2024] [Indexed: 04/07/2024] Open
Abstract
Since the emergence of the Coronavirus Disease 2019 (COVID-19) outbreak, significant advancements has been made in research, from limited knowledge about the disease to the development of a vaccine. Although the severity of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) appears to be decreasing and the threat of COVID-19 is waning, there have been widespread concerns about persistent symptoms or sequelae experienced by some patients even after recovering from COVID-19. Traditional Chinese medicine (TCM) has shown favorable treatment outcomes during the onset of COVID-19, and extensive studies have been carried out to explore the efficacy of TCM interventions during the COVID-19 recovery period. The purpose of this review is to comprehensively analyze these studies and provide new insights for the prevention and treatment of the post-COVID-19 condition.
Collapse
Affiliation(s)
- Weixin Zhang
- Collaborative Innovation Center for Biomedicines, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Linlin Ma
- School of Medical Technology, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Wei Xie
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Xingxing Li
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, China
- Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Juhua Zhang
- Collaborative Innovation Center for Biomedicines, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Ji Sun
- Collaborative Innovation Center for Biomedicines, Shanghai University of Medicine and Health Sciences, Shanghai, China
- College of Nursing and Allied Health Sciences, St. Paul University Manila, Manila, Philippines
| |
Collapse
|
4
|
Koc K, Ozek NS, Aysin F, Demir O, Yilmaz A, Yilmaz M, Geyikoglu F, Erol HS. Hispidulin exerts a protective effect against oleic acid induced-ARDS in the rat via inhibition of ACE activity and MAPK pathway. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024; 34:755-766. [PMID: 36624973 DOI: 10.1080/09603123.2023.2166023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 01/02/2023] [Indexed: 06/17/2023]
Abstract
This study investigates the protective role of Hispidulin on acute respiratory distress syndrome (ARDS) in rats. Rats were divided into three groups: control, ARDS, ARDS+ Hispidulin. The ARDS models were established by injecting rats with oleic acid. Hispidulin (100 mg/kg) was injected i.p. an hour before ARDS. Myeloperoxidase (MPO), Interleukin-8 (IL-8), Mitogen-activated protein kinases (MAPK), Lipid Peroxidation (LPO), Superoxide Dismutase (SOD), Glutathione (GSH), and Angiotensin-converting enzyme (ACE) were determined by ELISA. Tumor necrosis factor-alpha (TNF-α) expression was described by RT-qPCR. Caspase-3 immunostaining was performed to evaluate apoptosis. Compared with the model group, a significant decrease was observed in the MPO, IL-8, MAPK, ACE, LPO levels, and TNF-α expression in the ARDS+ Hispidulin group. Moreover, reduced caspase-3 immunoreactivity and activity of ACE were detected in the Hispidulin+ARDS group. The protective effect of Hispidulin treatment may act through inhibition of the ACE activity and then regulation of inflammatory cytokine level and alteration of apoptosis.
Collapse
Affiliation(s)
- Kubra Koc
- Department of Biology, Faculty of Science, Ataturk University, Erzurum, Turkey
| | - Nihal Simsek Ozek
- Department of Biology, Faculty of Science, Ataturk University, Erzurum, Turkey
- East Anatolian High Technology Research and Application Center (DAYTAM), Ataturk University, Erzurum, Turkey
| | - Ferhunde Aysin
- Department of Biology, Faculty of Science, Ataturk University, Erzurum, Turkey
- East Anatolian High Technology Research and Application Center (DAYTAM), Ataturk University, Erzurum, Turkey
| | - Ozlem Demir
- Department of Histology and Embryology, Faculty of Medicine, Erzincan Binali Yıldırım University, Erzincan, Turkey
| | - Asli Yilmaz
- Department of Molecular Biology and Genetics, Faculty of Science, Atatürk University, Erzurum, Turkey
| | - Mehmet Yilmaz
- Department of Nanoscience and Nanoengineering, Atatürk University, Erzurum, Turkey
| | - Fatime Geyikoglu
- Department of Biology, Faculty of Science, Ataturk University, Erzurum, Turkey
| | - Huseyin Serkan Erol
- Department of Biochemistry, Kastamonu University, Faculty of Veterinary Medicine, Kastamonu, TURKEY
| |
Collapse
|
5
|
Kim Y, Lee S, Choi YA, Chung JM, Kim EN, Lee B, Kim SY, Jeong GS, Kim SH. Magnolia kobus DC leaf ethanol extract alleviated lipopolysaccharide-induced acute lung inflammation by suppressing NF-κB and Nrf2 signaling. JOURNAL OF HERBMED PHARMACOLOGY 2024; 13:90-100. [DOI: 10.34172/jhp.2024.48116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/25/2023] [Indexed: 01/05/2025] Open
Abstract
Introduction: Magnolia kobus DC has been used as herbal medicine to treat coughs and is known to exert biological effects such as anti-inflammatory, antioxidant, and antibacterial properties. We aimed to define the pharmacological effects of M. kobus leaf ethanol extract (MLEE) on acute lung inflammation and explore the underlying mechanisms of action. Methods: For in vitro investigations, RAW 264.7 cells were pretreated with MLEE (1, 10, and 100 μg/mL) and stimulated with lipopolysaccharide (LPS). For in vivo investigations, BALB/c mice were intratracheally administered with LPS for 24 hours after injection of MLEE (0.3, 3, and 30 mg/kg). Hematoxylin and eosin staining was used for histopathology analysis of lung tissue. The phytochemical constituents of MLEE were analyzed using high-performance liquid chromatography. Results: In RAW 264.7 cells, MLEE reduced the activation of the inflammatory mediators (inducible nitric oxide synthase and cyclooxygenase-2) and the nuclear translocation of nuclear factor (NF)-κB and nuclear factor erythroid-2-related factor 2 (Nrf2). The intraperitoneal injection of MLEE (30 mg/kg) attenuated interstitial edema and immune cell infiltration in LPS-induced acute lung inflammation. MLEE also inhibited the activation of cyclooxygenase-2, NF-κB, and Nrf2 in the lung tissue. Conclusion: Taken together, MLEE exerted an anti-inflammatory effect by inhibiting inflammatory and oxidative mediators on acute lung inflammation suggesting that it might be used as a natural drug for treating acute lung inflammatory diseases.
Collapse
Affiliation(s)
- Yeyoung Kim
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu 41944, South Korea
| | - Soyoung Lee
- Immunoregulatory Materials Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 56212, South Korea
| | - Young-Ae Choi
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu 41944, South Korea
| | - Jae-Min Chung
- Department of Gardens Education, Korea National Arboretum, Pocheon 11186, South Korea
| | - Eun-Nam Kim
- College of Pharmacy, Chungnam National University, Daejeon 34134, South Korea
| | - Byungheon Lee
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Daegu 41944, South Korea
| | - Sang-Yong Kim
- DMZ Botanic Garden, Korea National Arboretum, Yanggu 24564, South Korea
| | - Gil-Saeng Jeong
- College of Pharmacy, Chungnam National University, Daejeon 34134, South Korea
| | - Sang-Hyun Kim
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu 41944, South Korea
| |
Collapse
|
6
|
Mi X, Zhang Z, Cheng J, Xu Z, Zhu K, Ren Y. Cardioprotective effects of Schisantherin A against isoproterenol-induced acute myocardial infarction through amelioration of oxidative stress and inflammation via modulation of PI3K-AKT/Nrf2/ARE and TLR4/MAPK/NF-κB pathways in rats. BMC Complement Med Ther 2023; 23:277. [PMID: 37542250 PMCID: PMC10401759 DOI: 10.1186/s12906-023-04081-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 07/10/2023] [Indexed: 08/06/2023] Open
Abstract
BACKGROUND AND AIMS The scientific community is concerned about cardiovascular disease mortality and morbidity, especially myocardial infarction (MI). Schisantherin A (SCA), a dibenzocyclooctadiene lignan monomer found in S. chinensis fruits has cardiovascular advantages such as increasing NO production in isolated rat thoracic aorta and reducing heart damage caused by ischemia-reperfusion (I/R) through decreasing apoptosis. The present study was undertaken to explore the potential effects of SCA on ISO-induced myocardial infarction in rats. METHODS Rats were randomly allocated to four groups: control; ISO-treated, and two additional groups of ISO + SCA (5 or 10 mg/kg body weight). All SCA-treated groups were administered with SCA for 20 days and all ISO groups were challenged with ISO on days 19 and 20. RESULTS SCA significantly attenuated ISO-induced rise in heart/body weight ratio, myocardial infarct size, and cardiac functional biomarkers (CK-MB, cTnI and BNP). SCA pre- and co-treatment resulted in a significant reduction in oxidative stress (via MDA, NO and GSH and increased activities of SOD, CAT and GPx) and inflammation (via decreased levels of TNF-α, IL-6 and IL-1β) markers when compared to the same levels in cardiac tissue of ISO-treated rats. This study also showed that SCA protects ISO-induced oxidative stress and inflammation by activating the PI3K-AKT/Nrf2/ARE pathway and suppressing TLR4/MAPK/NF-κB pathways. Furthermore, SCA treatment protected histopathological alterations observed in only ISO-treated cardiac transverse sections of rats. CONCLUSION In conclusion, the findings of this study suggest that SCA protects against cardiac injury in the ISO-induced MI model of rats.
Collapse
Affiliation(s)
- Xiaolong Mi
- Department of Cardiovascular Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China
- Department of Cardiovascular Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhijun Zhang
- Department of Cardiovascular Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China.
- Department of Cardiovascular Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Jinfang Cheng
- Department of Cardiovascular Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China
- Department of Cardiovascular Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zheng Xu
- Department of Cardiovascular Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China
- Department of Cardiovascular Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Kaiyi Zhu
- Department of Cardiovascular Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China
- Department of Cardiovascular Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yunxia Ren
- Department of Cardiovascular Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China
- Department of Cardiovascular Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| |
Collapse
|
7
|
Jafernik K, Ekiert H, Szopa A. Schisandra henryi-A Rare Species with High Medicinal Potential. Molecules 2023; 28:molecules28114333. [PMID: 37298808 DOI: 10.3390/molecules28114333] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/21/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
Schisandra henryi (Schisandraceae) is a plant species endemic to Yunnan Province in China and is little known in Europe and America. To date, few studies, mainly performed by Chinese researchers, have been conducted on S. henryi. The chemical composition of this plant is dominated by lignans (dibenzocyclooctadiene, aryltetralin, dibenzylbutane), polyphenols (phenolic acids, flavonoids), triterpenoids, and nortriterpenoids. The research on the chemical profile of S. henryi showed a similar chemical composition to S. chinensis-a globally known pharmacopoeial species with valuable medicinal properties whichis the best-known species of the genus Schisandra. The whole genus is characterized by the presence of the aforementioned specific dibenzocyclooctadiene lignans, known as "Schisandra lignans". This paper was intended to provide a comprehensive review of the scientific literature published on the research conducted on S. henryi, with particular emphasis on the chemical composition and biological properties. Recently, a phytochemical, biological, and biotechnological study conducted by our team highlighted the great potential of S. henryi in in vitro cultures. The biotechnological research revealed the possibilities of the use of biomass from S. henryi as an alternative to raw material that cannot be easily obtained from natural sites. Moreover, the characterization of dibenzocyclooctadiene lignans specific to the Schisandraceae family was provided. Except for several scientific studies which have confirmed the most valuable pharmacological properties of these lignans, hepatoprotective and hepatoregenerative, this article also reviews studies that have confirmed the anti-inflammatory, neuroprotective, anticancer, antiviral, antioxidant, cardioprotective, and anti-osteoporotic effects and their application for treating intestinal dysfunction.
Collapse
Affiliation(s)
- Karolina Jafernik
- Chair and Department of Pharmaceutical Botany, Faculty of Pharmacy, Collegium Medicum, Jagiellonian University, Medyczna 9 Street, 30-688 Kraków, Poland
| | - Halina Ekiert
- Chair and Department of Pharmaceutical Botany, Faculty of Pharmacy, Collegium Medicum, Jagiellonian University, Medyczna 9 Street, 30-688 Kraków, Poland
| | - Agnieszka Szopa
- Chair and Department of Pharmaceutical Botany, Faculty of Pharmacy, Collegium Medicum, Jagiellonian University, Medyczna 9 Street, 30-688 Kraków, Poland
| |
Collapse
|
8
|
Zhao Y, Zhu L. Oral Lingzhi or Reishi Medicinal Mushroom Ganoderma lucidum (Agaricomycetes) Spore Powder Ameliorates Murine Colitis by Inhibiting Key Kinases Phosphorylation in MAPK Pathway. Int J Med Mushrooms 2023; 25:39-48. [PMID: 37830195 DOI: 10.1615/intjmedmushrooms.2023049699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
The compound ganoderma lucidum spore powder (GLSP) has emerged as an anti-inflammatory and anti-oxidative regulator. In this study, we explored the roles of GLSP against dextran sulfate sodium (DSS)-induced mouse colitis that can mimic human inflammatory bowel disease (IBD). GLSP was administered by oral gavage at a dosage of 150 mg/kg/day to the acute colitis mice induced by DSS. The DSS-induced mouse weight loss, colonic shortening, diarrhea and bloody stool were observably alleviated after GLSP treatment. The lesion of macroscopic and microscopic signs of the disease was reduced significantly and DSS-induced gut barrier dysfunction was restored via increasing the level of claudin-1, ZO1, Occu, and ZO2 with GLSP. Meanwhile, the levels of IL-6, TNF-α, IL-1β, and IL-18 in the colon were reduced in the GLSP-treated groups. In addition, phosphorylation of the MAPKs ERK1/2, p38, and AKT was suppressed after GLSP treatment. All these results demonstrated that GLSP owned a protective effect on DSS-induced colitis by inhibition of MAPK pathway, which provides a promising therapeutic approach for the treatment of colitis.
Collapse
Affiliation(s)
- Yingying Zhao
- Department of Gastroenterology, The First Affiliated Hospital of Shandong First Medical University, Shandong, P.R. China
| | - Liangchen Zhu
- Department of Internal Medicine, Tongji Hospital Affiliated to Tongji University, Shanghai, P.R. China
| |
Collapse
|
9
|
Li F, Li B, Liu J, Wei X, Qiang T, Mu X, Wang Y, Qi Y, Zhang B, Liu H, Xiao P. Anti-asthmatic fraction screening and mechanisms prediction of Schisandrae Sphenantherae Fructus based on a combined approach. Front Pharmacol 2022; 13:902324. [PMID: 36172200 PMCID: PMC9511055 DOI: 10.3389/fphar.2022.902324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 08/17/2022] [Indexed: 12/02/2022] Open
Abstract
Objective: Schisandrae Sphenantherae Fructus (SSF) is a traditional Chinese medicine used to treat coughs and pulmonary inflammatory diseases. However, the pharmacodynamic material basis and mechanisms for SSF in asthma treatment remain unclear. This study aims to screen the anti-asthmatic fraction and verify the pharmacodynamic material basis, predict the potential mechanism, and verify the interaction ability between compounds and core targets. Methods: First, three fractions from SSF were compared in terms of composition, comparison, and anti-asthmatic effects. Then, the ultra-performance liquid chromatography-quadrupole/time-of-flight-mass spectrometry/mass spectrometry (UPLC-Q/TOF-MS/MS) strategy was used to identify the compounds from the active fraction, and the anti-asthmatic efficacy of the active fraction was further studied by the ovalbumin (OVA)-induced asthma murine model. Finally, network pharmacology and molecular methods were used to study the relationships between active compounds, core targets, and key pathways of PEF in asthma treatments. Results: The petroleum ether fraction (PEF) of SSF showed better effects and could significantly diminish lung inflammation and mitigate the level of serum immunoglobulin E (IgE), interleukin (IL)-4, IL-5, IL-6, IL-13, and IL-17 in mice. A total of 26 compounds from the PEF were identified, among which the main compounds are lignans and triterpenes. Moreover, 21 active compounds, 129 overlap-ping targets, and 10 pathways were screened by network pharmacology tools. The top five core targets may play a great role in asthma treatment. Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis suggested that the PEF can treat asthma by acting on multiple asthma pathological processes, including the IL-17 signaling pathway, T helper (Th) 17 cell differentiation, and the calcium signaling pathway. Molecular docking was performed to evaluate the interactions of the protein–ligand binding, and most docked complexes had a good binding ability. Conclusion: The present results might contribute to exploring the active compounds with anti-asthmatic activity.
Collapse
Affiliation(s)
- Fan Li
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bin Li
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Engineering Research Center of Traditional Chinese Medicine Resource, Peking Union Medical College, Institute of Medicinal Plant Development, Ministry of Education, Chinese Academy of Medical Sciences, Beijing, China
| | - Jiushi Liu
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Engineering Research Center of Traditional Chinese Medicine Resource, Peking Union Medical College, Institute of Medicinal Plant Development, Ministry of Education, Chinese Academy of Medical Sciences, Beijing, China
| | - Xueping Wei
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Engineering Research Center of Traditional Chinese Medicine Resource, Peking Union Medical College, Institute of Medicinal Plant Development, Ministry of Education, Chinese Academy of Medical Sciences, Beijing, China
| | - Tingyan Qiang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xinlu Mu
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yumeng Wang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Yaodong Qi
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Engineering Research Center of Traditional Chinese Medicine Resource, Peking Union Medical College, Institute of Medicinal Plant Development, Ministry of Education, Chinese Academy of Medical Sciences, Beijing, China
| | - Bengang Zhang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Engineering Research Center of Traditional Chinese Medicine Resource, Peking Union Medical College, Institute of Medicinal Plant Development, Ministry of Education, Chinese Academy of Medical Sciences, Beijing, China
| | - Haitao Liu
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Engineering Research Center of Traditional Chinese Medicine Resource, Peking Union Medical College, Institute of Medicinal Plant Development, Ministry of Education, Chinese Academy of Medical Sciences, Beijing, China
- *Correspondence: Haitao Liu,
| | - Peigen Xiao
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Engineering Research Center of Traditional Chinese Medicine Resource, Peking Union Medical College, Institute of Medicinal Plant Development, Ministry of Education, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
10
|
The Role of Nrf2 in Pulmonary Fibrosis: Molecular Mechanisms and Treatment Approaches. Antioxidants (Basel) 2022; 11:antiox11091685. [PMID: 36139759 PMCID: PMC9495339 DOI: 10.3390/antiox11091685] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/21/2022] [Accepted: 08/26/2022] [Indexed: 11/21/2022] Open
Abstract
Pulmonary fibrosis is a chronic, progressive, incurable interstitial lung disease with high mortality after diagnosis and remains a global public health problem. Despite advances and breakthroughs in understanding the pathogenesis of pulmonary fibrosis, there are still no effective methods for the prevention and treatment of pulmonary fibrosis. The existing treatment options are imperfect, expensive, and have considerable limitations in effectiveness and safety. Hence, there is an urgent need to find novel therapeutic targets. The nuclear factor erythroid 2-related factor 2 (Nrf2) is a central regulator of cellular antioxidative responses, inflammation, and restoration of redox balance. Accumulating reports reveal that Nrf2 activators exhibit potent antifibrosis effects and significantly attenuate pulmonary fibrosis in vivo and in vitro. This review summarizes the current Nrf2-related knowledge about the regulatory mechanism and potential therapies in the process of pulmonary fibrosis. Nrf2 orchestrates the activation of multiple protective genes that target inflammation, oxidative stress, fibroblast–myofibroblast differentiation (FMD), and epithelial–mesenchymal transition (EMT), and the mechanisms involve Nrf2 and its downstream antioxidant, Nrf2/HO−1/NQO1, Nrf2/NOX4, and Nrf2/GSH signaling pathway. We hope to indicate potential for Nrf2 system as a therapeutic target for pulmonary fibrosis.
Collapse
|
11
|
Arleevskaya M, Takha E, Petrov S, Kazarian G, Renaudineau Y, Brooks W, Larionova R, Korovina M, Valeeva A, Shuralev E, Mukminov M, Kravtsova O, Novikov A. Interplay of Environmental, Individual and Genetic Factors in Rheumatoid Arthritis Provocation. Int J Mol Sci 2022; 23:ijms23158140. [PMID: 35897715 PMCID: PMC9329780 DOI: 10.3390/ijms23158140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 02/05/2023] Open
Abstract
In this review, we explore systemization of knowledge about the triggering effects of non-genetic factors in pathogenic mechanisms that contribute to the development of rheumatoid arthritis (RA). Possible mechanisms involving environmental and individual factors in RA pathogenesis were analyzed, namely, infections, mental stress, sleep deprivation ecology, age, perinatal and gender factors, eating habits, obesity and smoking. The non-genetic factors modulate basic processes in the body with the impact of these factors being non-specific, but these common challenges may be decisive for advancement of the disease in the predisposed body at risk for RA. The provocation of this particular disease is associated with the presence of congenital loci minoris resistentia. The more frequent non-genetic factors form tangles of interdependent relationships and, thereby, several interdependent external factors hit one vulnerable basic process at once, either provoking or reinforcing each other. Understanding the specific mechanisms by which environmental and individual factors impact an individual under RA risk in the preclinical stages can contribute to early disease diagnosis and, if the factor is modifiable, might be useful for the prevention or delay of its development.
Collapse
Affiliation(s)
- Marina Arleevskaya
- Central Research Laboratory, Kazan State Medical Academy, 420012 Kazan, Russia; (E.T.); (S.P.); (G.K.); (R.L.); (M.K.); (A.V.); (E.S.); (M.M.)
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russia;
- Correspondence: ; Tel.: +7-89172-886-679; Fax: +7-843-238-5413
| | - Elena Takha
- Central Research Laboratory, Kazan State Medical Academy, 420012 Kazan, Russia; (E.T.); (S.P.); (G.K.); (R.L.); (M.K.); (A.V.); (E.S.); (M.M.)
| | - Sergey Petrov
- Central Research Laboratory, Kazan State Medical Academy, 420012 Kazan, Russia; (E.T.); (S.P.); (G.K.); (R.L.); (M.K.); (A.V.); (E.S.); (M.M.)
- Institute of Environmental Sciences, Kazan (Volga Region) Federal University, 420008 Kazan, Russia
| | - Gevorg Kazarian
- Central Research Laboratory, Kazan State Medical Academy, 420012 Kazan, Russia; (E.T.); (S.P.); (G.K.); (R.L.); (M.K.); (A.V.); (E.S.); (M.M.)
| | - Yves Renaudineau
- Department of Immunology, CHU Toulouse, INSERM U1291, CNRS U5051, University Toulouse IIII, 31000 Toulouse, France;
| | - Wesley Brooks
- Department of Chemistry, University of South Florida, Tampa, FL 33620, USA;
| | - Regina Larionova
- Central Research Laboratory, Kazan State Medical Academy, 420012 Kazan, Russia; (E.T.); (S.P.); (G.K.); (R.L.); (M.K.); (A.V.); (E.S.); (M.M.)
| | - Marina Korovina
- Central Research Laboratory, Kazan State Medical Academy, 420012 Kazan, Russia; (E.T.); (S.P.); (G.K.); (R.L.); (M.K.); (A.V.); (E.S.); (M.M.)
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russia;
| | - Anna Valeeva
- Central Research Laboratory, Kazan State Medical Academy, 420012 Kazan, Russia; (E.T.); (S.P.); (G.K.); (R.L.); (M.K.); (A.V.); (E.S.); (M.M.)
| | - Eduard Shuralev
- Central Research Laboratory, Kazan State Medical Academy, 420012 Kazan, Russia; (E.T.); (S.P.); (G.K.); (R.L.); (M.K.); (A.V.); (E.S.); (M.M.)
- Institute of Environmental Sciences, Kazan (Volga Region) Federal University, 420008 Kazan, Russia
| | - Malik Mukminov
- Central Research Laboratory, Kazan State Medical Academy, 420012 Kazan, Russia; (E.T.); (S.P.); (G.K.); (R.L.); (M.K.); (A.V.); (E.S.); (M.M.)
- Institute of Environmental Sciences, Kazan (Volga Region) Federal University, 420008 Kazan, Russia
| | - Olga Kravtsova
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russia;
| | - Andrey Novikov
- Mathematical Center, Sobolev Instiute of Mathematics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia;
| |
Collapse
|
12
|
Research Progress on the Pharmacological Action of Schisantherin A. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:6420865. [PMID: 35190748 PMCID: PMC8858060 DOI: 10.1155/2022/6420865] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/23/2021] [Accepted: 01/21/2022] [Indexed: 11/18/2022]
Abstract
Schisantherin A (Sch A) is a dibenzocyclooctadiene lignan monomer isolated from the fruit of Schisandra chinensis (Turcz.) Baill. (S. chinensis). At present, many studies have shown that Sch A has a wide range of pharmacological effects, including its anti-Parkinson and anti-inflammatory effects and ability to protect the liver, protect against ischemia-reperfusion (I/R) injury, suppress osteoclast formation, and improve learning and memory. Its mechanism may be related to the antioxidant, anti-inflammatory, and antiapoptotic properties of Sch A through the MAPK, NF-κB, AKT/GSK3β, and PI3K/AKT pathways. This is the first review of the recent studies on the pharmacological mechanism of Sch A.
Collapse
|
13
|
Wang C, Liu AL, Wu HZ, Yang YF. Prediction the Molecular Mechanism of Shengmai Injection in Acute Treatment of COVID-19 Based on Network Pharmacology. Nat Prod Commun 2022; 17:1934578X221075075. [PMID: 35136386 PMCID: PMC8814618 DOI: 10.1177/1934578x221075075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 01/05/2022] [Indexed: 01/03/2023] Open
Abstract
Objective: To predict the mechanism of Shengmai Injection (SMI) in the acute treatment of COVID-19 by network pharmacology and molecular docking. Methods: Search the compounds in the Traditional Chinese Medicine Systems Pharmacology (TCMSP), and screen them by Drug-like properties (DL) and Oral bioavailability (OB); Using PharmMapper database and GeneCards database to collect compounds targets and COVID-19 targets, and using UniProt database to standardize the names of target genes; Using DAVID database for KEGG pathway annotation and GO bioinformatics analysis; Using Cytoscape 3.8.2 software and STRING 10.5 database to construct “Component-Target-Pathway” network and Protein-Protein Interaction network (PPI); Using molecular docking to predict the binding ability of key compounds and key proteins. Results: A total of 34 active components, 38 core targets and 180 signaling pathways were screened out. The results of molecular docking showed that Schisantherin A and Moupinamide have strong binding with EGFR and MAPK1. Conclusion: The key active compounds of SMI in the treatment of COVID-19 may be Schisantherin A and Moupinamide, and the molecular mechanism may be related to key targets such as EGFR and MAPK1, and may be involved in the PI3K-Akt signaling pathway and MAPK signaling pathway.
Collapse
Affiliation(s)
- Chen Wang
- Hubei University of Chinese Medicine, Wuhan, 430065, China
- Key Laboratory of Traditional Chinese Medicine Resources and Chemistry of Hubei
Province, Wuhan, 430065, China
| | - Ao-lei Liu
- Hubei University of Chinese Medicine, Wuhan, 430065, China
- Key Laboratory of Traditional Chinese Medicine Resources and Chemistry of Hubei
Province, Wuhan, 430065, China
| | - He-zhen Wu
- Hubei University of Chinese Medicine, Wuhan, 430065, China
- Key Laboratory of Traditional Chinese Medicine Resources and Chemistry of Hubei
Province, Wuhan, 430065, China
| | - Yan-fang Yang
- Hubei University of Chinese Medicine, Wuhan, 430065, China
- Key Laboratory of Traditional Chinese Medicine Resources and Chemistry of Hubei
Province, Wuhan, 430065, China
| |
Collapse
|
14
|
Huang S, Zhang D, Li Y, Fan H, Liu Y, Huang W, Deng C, Wang W, Song X. Schisandra sphenanthera: A Comprehensive Review of its Botany, Phytochemistry, Pharmacology, and Clinical Applications. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2021; 49:1577-1622. [PMID: 34559620 DOI: 10.1142/s0192415x21500749] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Schisandra sphenanthera Rehd. et Wils (S. sphenanthera) is a single species of Schisandra genus, Magnoliaceae family, and it is a famous medicinal herb mostly growing in southern China, China Taiwan and Vietnam. S. sphenanthera is usually used for the treatments of hepatitis, Alzheimer's disease, renal transplantation, osteoporosis, and insomnia. In present studies, approximately 310 natural constituents have been isolated from S. sphenanthera, including lignans, triterpenes, volatile oils, and polysaccharides, which were mainly obtained from the fruits and stems of S. sphenanthera. Pharmocological studies have shown that the extracts and monomeric compounds of S. sphenanthera possessed wide-range bioactivities, such as antitumor, anti-oxidant, anti-inflammatory, osteoblastic, immune regulation, neuroprotective, kidney protection, hepatoprotective, and antiviral activities. However, resource availability, quality control measures, in-depth in vivo pharmacological study, and clinical application are still insufficient and deserve further studies. This review systematically summarized literatures on the botany, phytochemistry, pharmacology, development utilization, and clinical application of S. sphenanthera, in hopes of provide a useful reference for researchers for further studies of this plant.
Collapse
Affiliation(s)
- Shiqi Huang
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xian Yang, Shaanxi 712046, P. R. China
| | - Dongdong Zhang
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xian Yang, Shaanxi 712046, P. R. China
| | - Yuze Li
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xian Yang, Shaanxi 712046, P. R. China
| | - Hao Fan
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xian Yang, Shaanxi 712046, P. R. China
| | - Yuanyuan Liu
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xian Yang, Shaanxi 712046, P. R. China
| | - Wenli Huang
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xian Yang, Shaanxi 712046, P. R. China
| | - Chong Deng
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xian Yang, Shaanxi 712046, P. R. China
| | - Wei Wang
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xian Yang, Shaanxi 712046, P. R. China
| | - Xiaomei Song
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xian Yang, Shaanxi 712046, P. R. China
| |
Collapse
|
15
|
Dikmen N, Cellat M, Etyemez M, İşler CT, Uyar A, Aydın T, Güvenç M. Ameliorative Effects of Oleuropein on Lipopolysaccharide-Induced Acute Lung Injury Model in Rats. Inflammation 2021; 44:2246-2259. [PMID: 34515957 DOI: 10.1007/s10753-021-01496-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 05/24/2021] [Accepted: 05/31/2021] [Indexed: 12/21/2022]
Abstract
Acute lung injury (ALI) is one of the most common causes of death in diseases with septic shock. Oleuropein, one of the important components of olive leaf, has antioxidant and anti-inflammatory effects. The objective of this study was to investigate the effects of oleuropein on lipopolysaccharide (LPS)-induced ALI in rats. Oleuropein was administered to rats at a dose of 200 mg/kg for 20 days and LPS was given through intratracheal administration to induce ALI. The study was terminated after 12 h. The results showed that in the group treated with oleuropein, inflammatory cytokines and oxidative stress decreased in serum, bronchoalveolar lavage fluid (BALF), and lung tissue, and there were significant improvements in the picture of acute interstitial pneumonia (AIP) caused by LPS in histopathological examination. Based on the findings of the present study, oleuropein showed protective effects against LPS-induced ALI.
Collapse
Affiliation(s)
- Nursel Dikmen
- Department of Chest Diseases, Faculty of Medicine, University of Hatay Mustafa Kemal, 31060, Antakya, Hatay, Turkey.
| | - Mustafa Cellat
- Department of Physiology, Faculty of Veterinary Medicine, University of Hatay Mustafa Kemal, Antakya, Hatay, Turkey
| | - Muhammed Etyemez
- Department of Physiology, Faculty of Veterinary Medicine, University of Hatay Mustafa Kemal, Antakya, Hatay, Turkey
| | - Cafer Tayer İşler
- Department of Surgery, Faculty of Veterinary Medicine, University of Hatay Mustafa Kemal, Antakya, Hatay, Turkey
| | - Ahmet Uyar
- Department of Pathology, Faculty of Veterinary Medicine, University of Hatay Mustafa Kemal, Antakya, Hatay, Turkey
| | - Tuba Aydın
- Department of Pharmacognosy, Faculty of Pharmacy, Ağrı İbrahim Çeçen University, Agri, Turkey
| | - Mehmet Güvenç
- Department of Physiology, Faculty of Veterinary Medicine, University of Hatay Mustafa Kemal, Antakya, Hatay, Turkey
| |
Collapse
|
16
|
Wu Q, Liu C, Zhang J, Xiao W, Yang F, Yu Y, Li T, Wang Y. Schisandra chinensis polysaccharide protects against cyclosporin A-induced liver injury by promoting hepatocyte proliferation. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
17
|
Timalsina D, Pokhrel KP, Bhusal D. Pharmacologic Activities of Plant-Derived Natural Products on Respiratory Diseases and Inflammations. BIOMED RESEARCH INTERNATIONAL 2021; 2021:1636816. [PMID: 34646882 PMCID: PMC8505070 DOI: 10.1155/2021/1636816] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 09/20/2021] [Indexed: 12/24/2022]
Abstract
Respiratory inflammation is caused by an air-mediated disease induced by polluted air, smoke, bacteria, and viruses. The COVID-19 pandemic is also a kind of respiratory disease, induced by a virus causing a serious effect on the lungs, bronchioles, and pharynges that results in oxygen deficiency. Extensive research has been conducted to find out the potent natural products that help to prevent, treat, and manage respiratory diseases. Traditionally, wider floras were reported to be used, such as Morus alba, Artemisia indica, Azadirachta indica, Calotropis gigantea, but only some of the potent compounds from some of the plants have been scientifically validated. Plant-derived natural products such as colchicine, zingerone, forsythiaside A, mangiferin, glycyrrhizin, curcumin, and many other compounds are found to have a promising effect on treating and managing respiratory inflammation. In this review, current clinically approved drugs along with the efficacy and side effects have been studied. The study also focuses on the traditional uses of medicinal plants on reducing respiratory complications and their bioactive phytoconstituents. The pharmacological evidence of lowering respiratory complications by plant-derived natural products has been critically studied with detailed mechanism and action. However, the scientific validation of such compounds requires clinical study and evidence on animal and human models to replace modern commercial medicine.
Collapse
Affiliation(s)
- Deepak Timalsina
- Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu 44618, Nepal
| | | | - Deepti Bhusal
- Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu 44618, Nepal
| |
Collapse
|
18
|
Ma J, Gong Q, Pan X, Guo P, He L, You Y. Depletion of Fractalkine ameliorates renal injury and Treg cell apoptosis via the p38MAPK pathway in lupus-prone mice. Exp Cell Res 2021; 405:112704. [PMID: 34126056 DOI: 10.1016/j.yexcr.2021.112704] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 06/05/2021] [Accepted: 06/08/2021] [Indexed: 11/20/2022]
Abstract
Fractalkine (FKN) is a chemokine with several roles, including chemotaxis; adhesion; and immune damage, which also participates in cell inflammation and apoptosis and responds to the pathogenesis of autoimmune diseases. Given the involvement of regulatory T cells (Treg) cells in autoimmune diseases, this study investigated the regulatory mechanism of FKN in renal injury and Treg apoptosis via the p38 mitogen-activated protein kinase (p38MAPK) signaling pathway in lupus-prone mice. Lupus was induced in BALB/c female mice by injection of pristane, followed by isolation of CD4+CD25+ Treg cells from the spleen of lupus model mice. To deplete FKN, mice received injection of an anti-FKN antibody, and Treg cells were transfected with FKN small-interfering RNA. Lupus mice and Treg cells were treated with the p38MAPK inhibitor SB203580 and activator U-46619, respectively, and urine protein and serum urea nitrogen, creatinine, and autoantibodies were measured and renal histopathological changes analyzed. We determined levels of FKN, phosphorylated p38 (p-p38), and forkhead box P3 (FOXP3) in renal tissue and Treg cells, and analyzed apoptosis rates and levels of key apoptotic factors in Treg cells. The renal FKN and p-p38 levels increased, whereas renal FOXP3 level decreased in lupus-prone mice. Treatment with the anti-FKN antibody and the p38MAPK inhibitor ameliorated proteinuria and renal function, significantly reducing serum autoantibody, renal FKN, and p-p38 levels while increasing renal FOXP3 level in lupus-prone mice. Moreover, FKN knockdown and administration of the p38MAPK inhibitor reduced apoptosis and levels of pro-apoptotic factors, increased levels of anti-apoptotic factors, and suppressed activation of p38MAPK signaling in Treg cells derived from lupus model mice. Furthermore, treatment with the p38MAPK activator U-46619 had the opposite effect on these cells. These data indicated that depletion of FKN ameliorated renal injury and Treg cell apoptosis via inhibition of p38MAPK signaling in lupus nephritis, suggesting that targeting FKN represents a potential therapeutic strategy for treating Lupus nephritis.
Collapse
Affiliation(s)
- Jingxue Ma
- Department of Nephrology, Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi Zhuang Autonomous Region, China
| | - Qiming Gong
- Department of Nephrology, Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi Zhuang Autonomous Region, China
| | - Xiuhong Pan
- Department of Nephrology, Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi Zhuang Autonomous Region, China
| | - Pengwei Guo
- Department of Nephrology, Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi Zhuang Autonomous Region, China
| | - Linlin He
- Department of Nephrology, Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi Zhuang Autonomous Region, China
| | - Yanwu You
- Department of Nephrology, Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi Zhuang Autonomous Region, China.
| |
Collapse
|
19
|
Zhan Y, Yang C, Zhang Q, Yao L. Silent information regulator type-1 mediates amelioration of inflammatory response and oxidative stress in lipopolysaccharide-induced acute respiratory distress syndrome. J Biochem 2021; 169:613-620. [PMID: 33481000 DOI: 10.1093/jb/mvaa150] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 12/15/2020] [Indexed: 11/13/2022] Open
Abstract
Silent information regulator type-1 (SIRT1) is crucial during the development of acute respiratory distress syndrome (ARDS). We aimed to explore whether SIRT1 activation could protect against ARDS. SIRT1 was activated by its agonist SRT1720. ARDS was induced by intraperitoneal injection of 5 mg/kg lipopolysaccharide (LPS). Lung injuries were determined by the lung wet/dry ratio, inflammatory cells in the broncho-alveolar lavage fluid (BALF) and histological analysis. Inflammatory cytokine release was detected by enzyme-linked immunosorbent assay. The accumulation of neutrophils was detected by myeloperoxidase activity. Oxidative stress was evaluated by malondialdehyde, reduced glutathione, superoxide dismutase and catalase activities. The protein expression levels were detected using western blot. SIRT1 activation, either by SRT1720 administration or recombinant SIRT1, expression eliminated high-dose LPS-induced mortality in mice, attenuated lung injury, influenced cytokine release in BALF and decreased oxidative stress in the lung tissues of ARDS mice. Mechanically, SRT1720 administration inhibited p65 phosphorylation in the lung tissues of ARDS mice. SIRT1 ameliorates inflammatory response and oxidative stress in LPS-induced ARDS.
Collapse
Affiliation(s)
| | - Chunjian Yang
- Department of General Surgery, The Second People's Hospital of Hefei, No. 246 Heping Road, Yaohai District, Hefei 230011, Anhui, China
| | | | - Li Yao
- Department of Intensive Care Unit
| |
Collapse
|
20
|
Wang H, Che J, Cui K, Zhuang W, Li H, Sun J, Chen J, Wang C. Schisantherin A ameliorates liver fibrosis through TGF-β1mediated activation of TAK1/MAPK and NF-κB pathways in vitro and in vivo. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 88:153609. [PMID: 34126414 DOI: 10.1016/j.phymed.2021.153609] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 05/10/2021] [Accepted: 05/18/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUD Schisandra chinensis, a traditional Chinese medicine for liver protection, can significantly improve liver fibrosis. However, it is still unclear which active components in Schisandra chinensis play an anti-fibrosis role. PURPOSE The purpose of present study was to observe the anti-fibrosis effect of schisantherin A (SCA) on liver fibrosis and explore its underlying mechanism. METHODS The liver fibrosis model of mice was constructed by the progressive intraperitoneal injection of thioacetamide (TAA), and SCA (1, 2, and 4 mg/kg) was administered by gavage for 5 weeks. The biochemical indicators and inflammatory cytokines were measured, changes in the pathology of the mice liver were observed by hematoxylin & eosin (H&E) and Masson stainings for studying the anti-fibrosis effect of SCA. A hepatic stellate cell (HSCs) activation model induced by transforming growth factor-β1 (TGF-β1) was established, and the effect of SCA on the HSCs proliferation was observed by MTT assay. The expressions of target proteins related to transforming growth factor-β-activated kinase 1 (TAK1)/mitogen-activated protein kinase (MAPK) and nuclear factor-κB (NF-κB) pathways were evaluated by western blotting, immunohistochemistry or immunofluorescence analysis, to explore the potential mechanism of SCA. RESULTS SCA could significantly ameliorate the pathological changes of liver tissue induced by TAA, and reduce the serum transaminase level, the hydroxyproline level and the expression of α-smooth muscle actin (α-SMA) and collagen 1A1 (COL1A1) proteins in the liver tissue. SCA could significantly lower the levels of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and interleukin-6 (IL-6) in the serum and liver tissue, and down-regulate the expression of target proteins related to TAK1/MAPK and NF-κB pathways in the liver tissue. The in vitro studies demonstrated that SCA significantly inhibited the proliferation and activation of HCS-T6 cells induced by TGF-β1, decreased TNF-α and IL-6 levels, and inhibited the TAK1 activation induced by TGF-β1 and then the expression of MAPK and NF-κB signaling pathway-related proteins. CONCLUSION Together, SCA can ameliorate the liver fibrosis induced by TAA and the HSC-T6 cell activation induced by TGF-β1 in mice, and its mechanism may be to inhibit the HSCs activation and inflammatory response by inhibiting TGF-β1 mediated TAK1/MAPK and signal pathways.
Collapse
Affiliation(s)
- Haili Wang
- Department of Hepatology, Affiliated Hospital of Beihua University, Jilin, Jilin Province, 132013, China
| | - Jinying Che
- Department of Pharmacology, College of Pharmacy, Beihua University, No. 3999 Binjiang East Road, Jilin, Jilin Province, 132013, China
| | - Kai Cui
- Department of Oncology, Affiliated Hospital, Beihua University, Jilin, Jilin Province, 132013, China
| | - Wenyue Zhuang
- Department of Molecular Biology Test Technique, College of Medical Technology, Beihua University, Jilin, Jilin Province, 132013, China
| | - He Li
- Department of Pharmacology, College of Pharmacy, Beihua University, No. 3999 Binjiang East Road, Jilin, Jilin Province, 132013, China
| | - Jinghui Sun
- Department of Pharmacology, College of Pharmacy, Beihua University, No. 3999 Binjiang East Road, Jilin, Jilin Province, 132013, China
| | - Jianguang Chen
- Department of Pharmacology, College of Pharmacy, Beihua University, No. 3999 Binjiang East Road, Jilin, Jilin Province, 132013, China
| | - Chunmei Wang
- Department of Pharmacology, College of Pharmacy, Beihua University, No. 3999 Binjiang East Road, Jilin, Jilin Province, 132013, China.
| |
Collapse
|
21
|
He YQ, Zhou CC, Yu LY, Wang L, Deng JL, Tao YL, Zhang F, Chen WS. Natural product derived phytochemicals in managing acute lung injury by multiple mechanisms. Pharmacol Res 2021; 163:105224. [PMID: 33007416 PMCID: PMC7522693 DOI: 10.1016/j.phrs.2020.105224] [Citation(s) in RCA: 208] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/15/2020] [Accepted: 09/22/2020] [Indexed: 12/14/2022]
Abstract
Acute lung injury (ALI) and its more severe form, acute respiratory distress syndrome (ARDS) as common life-threatening lung diseases with high mortality rates are mostly associated with acute and severe inflammation in lungs. With increasing in-depth studies of ALI/ARDS, significant breakthroughs have been made, however, there are still no effective pharmacological therapies for treatment of ALI/ARDS. Especially, the novel coronavirus pneumonia (COVID-19) is ravaging the globe, and causes severe respiratory distress syndrome. Therefore, developing new drugs for therapy of ALI/ARDS is in great demand, which might also be helpful for treatment of COVID-19. Natural compounds have always inspired drug development, and numerous natural products have shown potential therapeutic effects on ALI/ARDS. Therefore, this review focuses on the potential therapeutic effects of natural compounds on ALI and the underlying mechanisms. Overall, the review discusses 159 compounds and summarizes more than 400 references to present the protective effects of natural compounds against ALI and the underlying mechanism.
Collapse
Affiliation(s)
- Yu-Qiong He
- Institute of Chinese Materia Madica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Can-Can Zhou
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Lu-Yao Yu
- Institute of Chinese Materia Madica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Liang Wang
- Institute of Chinese Materia Madica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jiu-Ling Deng
- Institute of Chinese Materia Madica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yu-Long Tao
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Feng Zhang
- Institute of Chinese Materia Madica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China.
| | - Wan-Sheng Chen
- Institute of Chinese Materia Madica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China.
| |
Collapse
|
22
|
Zhuang W, Zhao N, Li D, Su X, Wang Y, Chen J, Li Z. Schisantherin A Inhibits Pulmonary Fibrosis via Regulating ERK Signaling Pathway. Nat Prod Commun 2020. [DOI: 10.1177/1934578x20948359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
There is no effective method for treating pulmonary fibrosis (PF) until now. This study investigated the anti-fibrotic effect of schisantherin A (SCA) extracted from Schisandra chinensis and its potential molecular mechanism in PF. A bleomycin-induced PF mouse model in vivo and transforming growth factor (TGF)-β1-induced A549 epithelial-mesenchymal transition (EMT) cell model in vitro were used for assessing the anti-fibrotic effect of SCA. Histopathological examination was conducted after hematoxylin and eosin and Masson staining. The level of TGF-β1 was tested by ELISA. The expression levels of α-smooth muscle actin, E-cadherin, and inflammatory cytokines (COX2, IL-1β, IL-6, and TNF-α) were determined by quantitative reverse transcription polymerase chain reaction and Western blot. The expression of extracellular signal-regulated kinase (ERK) was tested in lung tissues and cells by Western blot. The in vivo experiments revealed that SCA treatment markedly improved body weight and pulmonary index and reformed the destruction of the lung tissue structure. We observed that SCA inhibited the process of TGF-β1-induced EMT in the in vitro experiments. Inflammatory cytokines were reduced greatly in lung tissues and cells by SCA. Our study also indicated that SCA decreased phosphorylated ERK. It was concluded that SCA can attenuate PF by regulating the ERK signaling pathway, which suggests that SCA may be used as a potential therapeutic drug for PF.
Collapse
Affiliation(s)
- Wenyue Zhuang
- Department of Molecular Biology Test Technique, College of Medical Technology, Beihua University, Jilin, China
| | - Na Zhao
- Department of Molecular Biology Test Technique, College of Medical Technology, Beihua University, Jilin, China
| | - Di Li
- Department of Molecular Biology Test Technique, College of Medical Technology, Beihua University, Jilin, China
| | - Xiaoming Su
- Department of Molecular Biology Test Technique, College of Medical Technology, Beihua University, Jilin, China
| | - Yueyang Wang
- Department of Molecular Biology Test Technique, College of Medical Technology, Beihua University, Jilin, China
| | - Jianguang Chen
- Department of Pharmacology, College of Pharmacy, Beihua University, Jilin, China
| | - Zhengyi Li
- Department of Clinical Examination Basis, Laboratory Academy, Jilin Medical University, China
| |
Collapse
|
23
|
Gui Y, Yang Y, Xu D, Tao S, Li J. Schisantherin A attenuates sepsis-induced acute kidney injury by suppressing inflammation via regulating the NRF2 pathway. Life Sci 2020; 258:118161. [PMID: 32730835 DOI: 10.1016/j.lfs.2020.118161] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/16/2020] [Accepted: 07/24/2020] [Indexed: 12/11/2022]
Abstract
AIMS Tubulointerstitial inflammation is recognized as a key determinant of progressive sepsis-induced acute kidney injury (AKI). Schisantherin A (SchA) has been shown to be capable of regulating inflammatory processes. In the present study, we explored the possibility of SchA in preventing lipopolysaccharide (LPS)-induced kidney inflammation and injury. MATERIALS AND METHODS AKI was induced by a single intraperitoneal injection of LPS in CD1 mice, administration of SchA was used for treatment. The protective effect of SchA on renal function and inflammation were analyzed respectively; the NRK-52E cell line was employed for the in vitro study and relative molecular mechanism was explored. KEY FINDINGS Administration with SchA markedly attenuated LPS-induced damage on renal function and histopathological changes of the kidney. Additionally, pretreatment with SchA could inhibit the expression of inflammatory factors in the kidneys. In NRK-52E cells, SchA treatment significantly inhibited LPS-induced NF-κB activation and pro-inflammatory cytokine expression. Moreover, SchA could promote NRF2 pathway activation, and further blockade of NRF2 activation reversed the SchA-induced inhibition of NF-κB activation. SIGNIFICANCE These presented results indicated that SchA may have great potential for protecting against sepsis-induced AKI.
Collapse
Affiliation(s)
- Yuan Gui
- Division of Nephrology, Department of Medicine, University of Iowa Carver College of Medicine, Iowa City, IA 52242, United States of America
| | - Youjing Yang
- School of Public Health, Medical College of Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, China
| | - Deyu Xu
- Department of Nephrology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Shasha Tao
- School of Public Health, Medical College of Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, China.
| | - Jianzhong Li
- Department of Nephrology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China.
| |
Collapse
|
24
|
Ko IG, Hwang JJ, Chang BS, Kim SH, Jin JJ, Hwang L, Kim CJ, Choi CW. Polydeoxyribonucleotide ameliorates lipopolysaccharide-induced acute lung injury via modulation of the MAPK/NF-κB signaling pathway in rats. Int Immunopharmacol 2020; 83:106444. [PMID: 32234670 DOI: 10.1016/j.intimp.2020.106444] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/07/2020] [Accepted: 03/23/2020] [Indexed: 11/17/2022]
Abstract
Acute lung injury (ALI) is characterized by disruption of the alveolar-capillary membrane resulting in pulmonary edema and accumulation of associated proteinaceous alveolar exudate. Initiation of ALI upregulates tumor necrosis factor-α (TNF-α), which activates nuclear factor-kappa B (NF-κB) and mitogen-activated protein kinases (MAPK) that induce various pro-inflammatory mediators. Polydexyribonucleotide (PDRN) is an adenosine A2A receptor agonist that exerts anti-inflammatory effects by suppressing the production of pro-inflammatory cytokines and apoptosis. We investigated the therapeutic efficiency of PDRN on ALI induced by lipopolysaccharide (LPS) in rats. ALI was induced by intratracheal instillation of LPS (5 mg/kg) in 200 μL saline. The PDRN treatment group received a single intraperitoneal injection of 500 μL saline including PDRN (8 mg/kg) 1 h after ALI induction. To confirm the involvement of the adenosine A2A receptor in PDRN, 8 mg/kg 7-dimethyl-1-propargylxanthine (DMPX) was applied with PDRN treatment. Rats were then sacrificed 12 h after PDRN and DMPX treatments. Intratracheal administration of LPS caused lung tissue damage and significantly increased the lung injury scores and levels of pro-inflammatory cytokines, and apoptotic factors. In addition, MAPK/NF-κB signaling factors were increased by ALI initiation. PDRN treatment potently suppressed expressions of MAPK/NF-κB signaling factors compared to the PDRN + DMPX co-treated group. These alterations led to a reduction of pro-inflammatory cytokines, apoptotic factors, and NF-κB and MAPK signaling, which promoted the recovery of damaged lung tissue. PDRN therapy demonstrated therapeutic effects for LPS-induced ALI compared to the non-treated and DMPX-treated groups. Therefore, PDRN may be used as a therapy for initial treatment of ALI.
Collapse
Affiliation(s)
- Il-Gyu Ko
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jae Joon Hwang
- Department of Pulmonary and Critical Care Medicine, Kyung Hee University Hospital at Gangdong, Seoul 05278, Republic of Korea
| | - Bok Soon Chang
- Department of Pulmonary and Critical Care Medicine, Kyung Hee University Hospital at Gangdong, Seoul 05278, Republic of Korea
| | - Sang-Hoon Kim
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jun-Jang Jin
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Lakkyong Hwang
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Chang-Ju Kim
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Cheon Woong Choi
- Department of Pulmonary and Critical Care Medicine, Kyung Hee University Hospital at Gangdong, Seoul 05278, Republic of Korea.
| |
Collapse
|
25
|
Wang Z, Yu K, Hu Y, Su F, Gao Z, Hu T, Yang Y, Cao X, Qian F. Schisantherin A induces cell apoptosis through ROS/JNK signaling pathway in human gastric cancer cells. Biochem Pharmacol 2019; 173:113673. [PMID: 31629709 DOI: 10.1016/j.bcp.2019.113673] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 10/15/2019] [Indexed: 02/07/2023]
Abstract
Gastric cancer is one of the most lethal cancers with unmet clinical treatment and low 5-year survival rate. Schisantherin A is a major compound derived from Fructusschisandrae while its anti-tumor role remains nearly unknown. Here, we reported that schisantherin A had an anti-proliferation effect on gastric cancer cell lines MKN45 and SGC-7901. Schisantherin A induced cell cycle arrest at G2/M phase and cell apoptosis, and inhibited cell migration in gastric cancer MKN45 and SGC7901 cells. Meanwhile, upregulation of cleaved caspase-9, cleaved caspase-3 and cleaved PARP were accompanied with the loss of mitochondrial membrane potential (MMP). Moreover, schisantherin A induced ROS-dependent JNK phosphorylation with higher ROS production. The JNK inhibitor and ROS scavenger NAC rescued the cell apoptosis and cycle inhibition elicited by schisantherin A. Furthermore, the expression level of antioxidant factor Nrf2 was suppressed by schisantherin A. These findings suggest that schisantherin A possesses an anti-tumor activity via activation of ROS/JNK with Nrf2 inhibition, indicating that schisantherin A is a promising chemotherapeutic candidate for gastric cancer.
Collapse
Affiliation(s)
- Zishu Wang
- Department of Medical Oncology, First Affiliated Hospital of Bengbu Medical College, Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu, Anhui Province 233004, PR China
| | - Kaikai Yu
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, PR China.
| | - Yudong Hu
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, PR China.
| | - Fang Su
- Department of Medical Oncology, First Affiliated Hospital of Bengbu Medical College, Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu, Anhui Province 233004, PR China
| | - Zhenyuan Gao
- Department of Medical Oncology, First Affiliated Hospital of Bengbu Medical College, Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu, Anhui Province 233004, PR China
| | - Ting Hu
- Department of Medical Oncology, First Affiliated Hospital of Bengbu Medical College, Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu, Anhui Province 233004, PR China
| | - Yang Yang
- Department of Medical Oncology, First Affiliated Hospital of Bengbu Medical College, Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu, Anhui Province 233004, PR China
| | - Xiangliao Cao
- Department of Medical Oncology, First Affiliated Hospital of Bengbu Medical College, Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu, Anhui Province 233004, PR China
| | - Feng Qian
- Department of Medical Oncology, First Affiliated Hospital of Bengbu Medical College, Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu, Anhui Province 233004, PR China; Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, PR China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou 221004, PR China.
| |
Collapse
|
26
|
Xin X, Yao D, Zhang K, Han S, Liu D, Wang H, Liu X, Li G, Huang J, Wang J. Protective effects of Rosavin on bleomycin-induced pulmonary fibrosis via suppressing fibrotic and inflammatory signaling pathways in mice. Biomed Pharmacother 2019; 115:108870. [PMID: 31026730 DOI: 10.1016/j.biopha.2019.108870] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 03/26/2019] [Accepted: 04/09/2019] [Indexed: 12/31/2022] Open
Abstract
Idiopathic Pulmonary fibrosis (IPF) is diagnosed as a life-threatening, progressive and incurable lung disease characterized by accumulation of extracellular matrix and myofibroblasts, resulting in the function degradation and structural alterations in normal lung parenchyma. Notably, Pulmonary Fibrosis has been considering as a difficult problem in clinical with high mortality and effective treatment strategies. Rosavin, a benzylPropylene glycoside, is isolated from Rhodiola rosea L., exhibiting nootropic, anti-depressant, anti-cancer, anti-inflammatory and anti-oxidative activities. In this study, we attended to elucidate the pharmacological activity of Rosavin for treatment of pulmonary fibrosis induced by bleomycin in mice. The results indicated that Rosavin could significantly ameliorate the lung index and Pathological structure of mice with Pulmonary fibrosis by bleomycin-induced. Additionally, Rosavin could evidently decreased inflammatory cells infiltration in bronchoalveolar lavage fluid and pro-inflammatory cytokines expression in lung tissue specimens induced by bleomycin. Rosavin could down-regulate the expression of hydroxyproline and malondialdehyde and increased the activities of superoxide dismutase, glutathione peroxidase in lung tissue. The expression of Nrf2 were increased, and the expression of NF-κB p65, TGF-β1 and α-SMA were inhibited. The findings revealed the protective effects and the primary mechanism of rosavin on bleomycin-induced pulmonary fibrosis, which provided a scientific foundation for Rosavin as a promising candidate for Pulmonary fibrosis treatment.
Collapse
Affiliation(s)
- Xiaobin Xin
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, College of Pharmacy, Shihezi University, Shihezi, 832002, China
| | - Dahong Yao
- Shenzhen Honghui Biopharmaceutical Co., Ltd. Shenzhen 518000, China; Department of Pharmacology, School of Medicine, Shenzhen University, Shenzhen, 518060, China
| | - Ke Zhang
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, College of Pharmacy, Shihezi University, Shihezi, 832002, China.
| | - Shuai Han
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, College of Pharmacy, Shihezi University, Shihezi, 832002, China
| | - Danni Liu
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, College of Pharmacy, Shihezi University, Shihezi, 832002, China
| | - Hangyu Wang
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, College of Pharmacy, Shihezi University, Shihezi, 832002, China
| | - Xueying Liu
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, College of Pharmacy, Shihezi University, Shihezi, 832002, China
| | - Guoyu Li
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, College of Pharmacy, Shihezi University, Shihezi, 832002, China
| | - Jian Huang
- Shenzhen Honghui Biopharmaceutical Co., Ltd. Shenzhen 518000, China
| | - Jinhui Wang
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, College of Pharmacy, Shihezi University, Shihezi, 832002, China; Shenzhen Honghui Biopharmaceutical Co., Ltd. Shenzhen 518000, China.
| |
Collapse
|
27
|
Mu X, Xu X, Guo X, Yang P, Du J, Mi N, Cheng T, Lu L, Qi X, Wang X, Ning J, Zhang W, Ye J. Identification and characterization of chemical constituents in Dengzhan Shengmai Capsule and their metabolites in rat plasma by ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1108:54-64. [PMID: 30682539 DOI: 10.1016/j.jchromb.2019.01.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 01/15/2019] [Accepted: 01/16/2019] [Indexed: 02/08/2023]
Abstract
Dengzhan Shengmai Capsule (DZSMC) is a traditional Chinese medicine (TCM) formula with remarkable clinical effect in the treatment of stroke sequelae. Exploring the components of DZSMC and detecting the absorbed prototype constituents and metabolites in blood are of great significance to clarify the effective substances of this prescription. Here, a reliable method using ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-QTOF/MS) was established for the comprehensive analysis of chemical constituents of DZSMC and their metabolites in rat plasma after gastric perfusion. Two acquisition modes, including MSE mode and Fast DDA mode, were performed for acquiring more precursor ions and cleaner precursor-product ions background during the study of constituents of DZSMC. As a result, a total of 125 constituents were unambiguously characterized or tentatively identified. For the first time, a total of 92 components, including 44 prototype components and 48 metabolites were unambiguously or tentatively identified in rat plasma. The metabolic pathways included phase I reactions (hydration, hydrogenation, oxidation, demethylation and hydroxylation) and phase II reactions (conjugation with glucuronide, sulfate and methyl). Furthermore, the metabolites from caffeic acid and scutellarin were characterized and validated by phase II metabolic reactions in vitro, which could be established as a simulated in vivo environment of metabolites identification and verification of TCM formula. It is the first systematic study on metabolism of DZSMC in vivo and could also provide a valid analytical strategy for characterization of the chemical compounds and metabolites of TCM formula.
Collapse
Affiliation(s)
- Xuemei Mu
- State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai 201203, China
| | - Xike Xu
- College of Pharmacy, The Second Military Medical University, Shanghai 200433, China
| | - Xin Guo
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Peiming Yang
- State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai 201203, China
| | - Jiang Du
- Yunnan Biovalley Pharmaceutical Co., Ltd., Yunnan 650503, China
| | - Nan Mi
- State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai 201203, China
| | - Taofang Cheng
- College of Pharmacy, The Second Military Medical University, Shanghai 200433, China
| | - Lu Lu
- College of Pharmacy, The Second Military Medical University, Shanghai 200433, China
| | - Xiaopo Qi
- College of Pharmacy, The Second Military Medical University, Shanghai 200433, China
| | - Xinyu Wang
- College of Pharmacy, The Second Military Medical University, Shanghai 200433, China
| | - Jing Ning
- College of Pharmacy, The Second Military Medical University, Shanghai 200433, China
| | - Weidong Zhang
- State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai 201203, China; College of Pharmacy, The Second Military Medical University, Shanghai 200433, China; Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Ji Ye
- College of Pharmacy, The Second Military Medical University, Shanghai 200433, China.
| |
Collapse
|
28
|
Yan X, Li Y, Choi YH, Wang C, Piao Y, Ye J, Jiang J, Li L, Xu H, Cui Q, Yan G, Jin M. Protective Effect and Mechanism of Alprostadil in Acute Respiratory Distress Syndrome Induced by Oleic Acid in Rats. Med Sci Monit 2018; 24:7186-7198. [PMID: 30296789 PMCID: PMC6190919 DOI: 10.12659/msm.909678] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND This study investigated the role and mechanism of alprostadil in acute respiratory distress syndrome (ARDS) induced by oleic acid (OA) in rats. MATERIAL AND METHODS Sprague-Dawley rats were randomly divided into control, OA model, and OA + Alprostadil (2.5, 5, and 10 μg/kg, respectively) groups. The ARDS model was induced by femoral vein injection of OA, and alprostadil was administrated immediately. Lung injury was evaluated by lung wet-dry weight ratio (W/D) and histological analyses. Expressions of ACE, inflammatory mediators, apoptotic-related proteins, and proteins in the MAPKs and NF-κB signaling pathways were determined by Western blot or immunohistochemical staining. RESULTS Compared with the control group, the OA model group had significantly increased W/D, lung injury score, and collagen deposition at 3 h after OA injection. However, alprostadil (10 μg/kg) treatment significantly reduced OA-induced elevation of these indicators. Additionally, OA-induced expression of TNF-α and IL-1β were suppressed by alprostadil. The OA-induced activation of nuclear factor (NF) κB p65 was also reduced by alprostadil. Furthermore, we found that Alprostadil had an inhibitory effect on the phosphorylation of JNK, ERK1/2, and p38 MAPKs. Alprostadil inhibited Bax but increased Bcl-2, indicating a suppressive role in apoptosis. Remarkably increased expression of ACE in the OA model group was observed, which was decreased by alprostadil. CONCLUSIONS Alprostadil has a protective effect on ARDS induced by OA in rats, possibly through inhibiting apoptosis, suppressing the activation of MAPKs and NF-κB signaling pathways, and decreasing ACE protein expression. Therefore, the use of alprostadil in clinical ARDS treatment is promising.
Collapse
Affiliation(s)
- Xiujuan Yan
- Intensive Care Unit, Yanbian University Hospital, Yanji, Jilin, China (mainland)
| | - Yingxiu Li
- College of Marine Science, Shandong University (Weihai), Weihai, Shandong, China (mainland)
| | - Yun Ho Choi
- Department of Anatomy, Medical School, Institute for Medical Sciences, Chonbuk National University, Jeonju, Jeonbuk, South Korea
| | - Chongyang Wang
- Department of Anatomy, Histology, and Embryology, Yanbian University Medical College, Yanji, Jilin, China (mainland)
| | - Yihua Piao
- Intensive Care Unit, Yanbian University Hospital, Yanji, Jilin, China (mainland)
| | - Jing Ye
- Department of Anatomy, Histology, and Embryology, Yanbian University Medical College, Yanji, Jilin, China (mainland)
| | - Jingzhi Jiang
- Department of Anatomy, Histology, and Embryology, Yanbian University Medical College, Yanji, Jilin, China (mainland)
| | - Liangchang Li
- Department of Anatomy, Medical School, Institute for Medical Sciences, Chonbuk National University, Jeonju, Jeonbuk, South Korea
| | - Huixian Xu
- Intensive Care Unit, Yanbian University Hospital, Yanji, Jilin, China (mainland)
| | - Qingsong Cui
- Intensive Care Unit, Yanbian University Hospital, Yanji, Jilin, China (mainland)
| | - Guanghai Yan
- Department of Anatomy, Histology, and Embryology, Yanbian University Medical College, Yanji, Jilin, China (mainland)
| | - Minggen Jin
- Intensive Care Unit, Yanbian University Hospital, Yanji, Jilin, China (mainland)
| |
Collapse
|
29
|
Huang L, Zhang X, Ma X, Zhang D, Li D, Feng J, Pan X, Lü J, Wang X, Liu X. Berberine alleviates endothelial glycocalyx degradation and promotes glycocalyx restoration in LPS-induced ARDS. Int Immunopharmacol 2018; 65:96-107. [PMID: 30308440 DOI: 10.1016/j.intimp.2018.10.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 09/30/2018] [Accepted: 10/02/2018] [Indexed: 02/08/2023]
Abstract
In the pathogenesis of acute respiratory distress syndrome (ARDS), an increase in vascular endothelial permeability may trigger pulmonary edema and ultimately lead to respiratory failure. Endothelial glycocalyx damage is an important factor that causes an increase in vascular endothelial permeability. Berberine (BBR) is an isoquinoline alkaloid extracted from Coptis chinensis, a plant used in traditional Chinese medicine that exerts multiple pharmacological effects. In this study, pretreatment with BBR inhibited the increase in vascular endothelial permeability in mice with lipopolysaccharide (LPS)-induced ARDS. BBR pretreatment inhibited the shedding of syndecan-1 (SDC-1) and heparan sulfate (HS), which are important components of the endothelial glycocalyx that lessen endothelial glycocalyx damage. BBR further significantly inhibited increases in important endothelial glycocalyx damage factors, including reactive oxygen species (ROS), heparanase (HPA), and matrix metalloproteinase 9 (MMP9) in LPS-induced ARDS mice and in LPS-stimulated human umbilical vein endothelial cells. BBR pretreatment also decreased the production of pro-inflammatory cytokines TNF-α, IL-1β, IL-6, and inhibited NF-κB signaling pathway activation in LPS-induced ARDS. In addition, BBR promoted the recovery of SDC-1 and HS content in injured endothelial glycocalyx after LPS treatment and accelerated its restoration. This is the first report of BBR maintaining the integrity of endothelial glycocalyx. These results provide a new theoretical basis for the use of BBR in the treatment of ARDS and other diseases related to endothelial glycocalyx damage.
Collapse
Affiliation(s)
- Lina Huang
- Department of Cell Biology, Binzhou Medical University, Yantai 264003, Shandong Province, China
| | - Xiaohua Zhang
- Department of Biotechnology, Binzhou Medical University, Yantai 264003, Shandong Province, China
| | - Xiaohong Ma
- Department of Respirator Medicine, Affiliated Hospital of Binzhou Medical University Binzhou, Binzhou 256603, Shandong Province, China
| | - Dong Zhang
- Department of Respirator Medicine, Affiliated Hospital of Binzhou Medical University Binzhou, Binzhou 256603, Shandong Province, China
| | - Dongxiao Li
- Department of Respirator Medicine, Affiliated Hospital of Binzhou Medical University Binzhou, Binzhou 256603, Shandong Province, China
| | - Jiali Feng
- Department of Respirator Medicine, Affiliated Hospital of Binzhou Medical University Binzhou, Binzhou 256603, Shandong Province, China
| | - Xinjie Pan
- Department of Cell Biology, Binzhou Medical University, Yantai 264003, Shandong Province, China
| | - Junhong Lü
- Division of Physical Biology and CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Xiaozhi Wang
- Department of Respirator Medicine, Affiliated Hospital of Binzhou Medical University Binzhou, Binzhou 256603, Shandong Province, China
| | - Xiangyong Liu
- Department of Cell Biology, Binzhou Medical University, Yantai 264003, Shandong Province, China.
| |
Collapse
|
30
|
Zhang X, Wang T, Yuan ZC, Dai LQ, Zeng N, Wang H, Liu L, Wen FQ. Mitochondrial peptides cause proinflammatory responses in the alveolar epithelium via FPR-1, MAPKs, and AKT: a potential mechanism involved in acute lung injury. Am J Physiol Lung Cell Mol Physiol 2018; 315:L775-L786. [PMID: 30188748 DOI: 10.1152/ajplung.00466.2017] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Acute lung injury (ALI) is characterized by alveolar epithelial damage and uncontrolled pulmonary inflammation. Mitochondrial damage-associated molecular patterns (DAMPs), including mitochondrial peptides [ N-formyl peptides (NFPs)], are released during cell injury and death and induce inflammation by unclear mechanisms. In this study, we have investigated the role of mitochondrial DAMPs (MTDs), especially NFPs, in alveolar epithelial injury and lung inflammation. In murine models of ALI, high levels of mitochondrial NADH dehydrogenase 1 in bronchoalveolar lavage fluid (BALF) were associated with lung injury scores and increased formyl peptide receptor (FPR)-1 expression in the alveolar epithelium. Cyclosporin H (CsH), a specific inhibitor of FPR1, inhibited lung inflammation in the ALI models. Both MTDs and NFPs upon intratracheal challenge caused accumulation of neutrophils into the alveolar space with elevated BALF levels of mouse chemokine KC, interleukin-1β, and nitric oxide and increased pulmonary FPR-1 levels. CsH significantly attenuated MTDs or NFP-induced inflammatory lung injury and activation of MAPK and AKT pathways. FPR1 expression was present in rat primary alveolar epithelial type II cells (AECIIs) and was increased by MTDs. CsH inhibited MTDs or NFP-induced CINC-1/IL-8 release and phosphorylation of p38, JNK, and AKT in rat AECII and human cell line A549. Inhibitors of MAPKs and AKT also suppressed MTD-induced IL-8 release and NF-κB activation. Collectively, our data indicate an important role of the alveolar epithelium in initiating immune responses to MTDs released during ALI. The potential mechanism may involve increase of IL-8 production in MTD-activated AECII through FPR-1 and its downstream MAPKs, AKT, and NF-κB pathways.
Collapse
Affiliation(s)
- Xue Zhang
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China and Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University , Chengdu , China.,Luoyang Orthopedic Hospital of Henan Province, Orthopedic Hospital of Henan Province , Luoyang , China
| | - Tao Wang
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China and Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University , Chengdu , China
| | - Zhi-Cheng Yuan
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China and Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University , Chengdu , China
| | - Lu-Qi Dai
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China and Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University , Chengdu , China
| | - Ni Zeng
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China and Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University , Chengdu , China
| | - Hao Wang
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China and Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University , Chengdu , China
| | - Lian Liu
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China and Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University , Chengdu , China
| | - Fu-Qiang Wen
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China and Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University , Chengdu , China
| |
Collapse
|
31
|
Li C, Chen T, Zhou H, Feng Y, Hoi MPM, Ma D, Zhao C, Zheng Y, Lee SMY. BHDPC Is a Novel Neuroprotectant That Provides Anti-neuroinflammatory and Neuroprotective Effects by Inactivating NF-κB and Activating PKA/CREB. Front Pharmacol 2018; 9:614. [PMID: 29988625 PMCID: PMC6027181 DOI: 10.3389/fphar.2018.00614] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 05/22/2018] [Indexed: 12/31/2022] Open
Abstract
Microglia-mediated neuroinflammatory responses are inevitable and important pathological processes in several kinds of disorder of the central nervous system (CNS). Therefore, alleviating activated microglia-induced inflammatory process might be a valuable therapeutic approach to neuroinflammation-related diseases. In the present study, we investigated BHDPC, a novel neuroprotectant discovered in our previous study that had anti-inflammatory effects under neuroinflammatory conditions. First, we found that BHDPC could inhibit neuroinflammatory responses and promote microglial M2 phenotype polarization in both lipopolysaccharide (LPS)-activated BV-2 microglia l cells. Furthermore, BHDPC provided protective actions against neuroinflammation-induced neurotoxicity in HT22 mouse hippocampal cells co-cultured with activated BV-2 microglia. Further experiments demonstrated that BHDPC could suppress LPS-induced activation of transcription factor nuclear factor kappa B (NF-κB) via interfering with the degradation of the inhibitor of kappa B (IκB) and phosphorylation of IκB, the IκB kinase (IKK). Moreover, we also found that BHDPC could induce phosphorylation of cAMP-dependent protein kinase A (PKA) and cAMP-response element-binding protein (CREB) in BV-2 microglial cells. Also, using the PKA-specific inhibitor, we found that BHDPC-induced CREB phosphorylation was dependent on PKA, which also contributed to BHDPC-mediated anti-inflammation and neuroprotection.
Collapse
Affiliation(s)
- Chuwen Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Tongkai Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China.,Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hefeng Zhou
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Yu Feng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Maggie P M Hoi
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Dan Ma
- Department of Clinical Neurosciences, Wellcome Trust-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Chao Zhao
- Department of Clinical Neurosciences, Wellcome Trust-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Ying Zheng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Simon M Y Lee
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| |
Collapse
|
32
|
Li B, Li D, Wang Y, Meng X, Sun X, Tian J, Shi L, Ma F. Schisantherin A alleviated alcohol-induced liver injury by the regulation of alcohol metabolism and NF-kB pathway. Exp Anim 2018; 67:451-461. [PMID: 29806627 PMCID: PMC6219874 DOI: 10.1538/expanim.18-0021] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Schisantherin A (SinA), one of the most abundant active ingredients of Schisandra chinensis, was reported to protect and benefit the liver, however, its effect on alcohol-induced liver injury (ALI) was still not clear. In the present study, an ALI mice model was induced by feeding mice an alcohol-containing liquid diet for four weeks. Then, 100 mg/kg or 200 mg/kg SinA was administered to mice every day by gavage for the last two weeks. Histopathological analysis showed that alcohol-induced liver lipid vacuoles were reduced by SinA. The activities of aspartate aminotransferase (AST, 61.90 ± 14.65 vs. 93.65 ± 20.50, 50.46 ± 13.21 vs. 93.65 ± 20.50) and alanine transaminase (ALT, 41.29 ± 9.20 vs. 64.04 ± 18.13, 36.52 ± 7.71 vs. 64.04 ± 18.13) in the serum of ALI mice were significantly reduced by 100 mg/kg or 200 mg/kg SinA when compared with control mice. Alcohol-induced oxidative stress and the inflammatory response in the liver were suppressed by SinA in a dose-dependent manner. Meanwhile, treatment with SinA decreased alcohol dehydrogenase (ADH) activity and increased acetaldehyde dehydrogenase (ALDH) activity in ALI mice. Alcohol-induced upregulation of CYP2E1 and CYP1A2 in the liver was inhibited by SinA. Further, SinA suppressed activation of the NF-kB pathway in ALI mice. In conclusion, our findings demonstrate that SinA is able to protect against ALI, and this may be, at least in part, caused by regulation of alcohol metabolism and the NF-kB pathway. Our data suggest a therapeutic potential of SinA in the treatment of ALI.
Collapse
Affiliation(s)
- Bin Li
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, People's Republic of China
| | - Dongnan Li
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, People's Republic of China
| | - Yuehua Wang
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, People's Republic of China
| | - Xianjun Meng
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, People's Republic of China
| | - Xiyun Sun
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, People's Republic of China
| | - Jinlong Tian
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, People's Republic of China
| | - Lin Shi
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, People's Republic of China
| | - Fengming Ma
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, People's Republic of China
| |
Collapse
|
33
|
Chang HY, Chen YC, Lin JG, Lin IH, Huang HF, Yeh CC, Chen JJ, Huang GJ. Asatone Prevents Acute Lung Injury by Reducing Expressions of NF-κB, MAPK and Inflammatory Cytokines. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2018; 46:651-671. [DOI: 10.1142/s0192415x18500349] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Asatone is an active component extracted from the Chinese herb Radix et Rhizoma Asari. Our preliminary studies have indicated that asatone has an anti-inflammatory effect on RAW 264.7 culture cells challenged with lipopolysaccharide (LPS). Acute lung injury (ALI) has high morbidity and mortality rates due to the onset of serious lung inflammation and edema. Whether asatone prevents ALI LPS-induced requires further investigation. In vitro studies revealed that asatone at concentrations of 2.5–20[Formula: see text][Formula: see text]g/mL drastically prevented cytotoxicity and concentration-dependently reduced NO production in the LPS-challenged macrophages. In an in vivo study, the intratracheal administration of LPS increased the lung wet/dry ratio, myeloperoxidase activity, total cell counts, white blood cell counts, NO, iNOS, COX, TNF-[Formula: see text], IL-1[Formula: see text], and IL-6 in the bronchoalveolar lavage fluid as well as mitogen-activated protein kinases in the lung tissues. Pretreatment with asatone could reverse all of these effects. Asatone markedly reduced the levels of TNF-[Formula: see text] and IL-6 in the lung and liver, but not in the kidney of mice. By contrast, LPS reduced anti-oxidative enzymes and inhibited NF-[Formula: see text]B activations, whereas asatone increased anti-oxidative enzymes in the bronchoalveolar lavage fluid and NF-[Formula: see text]B activations in the lung tissues. Conclusively, asatone can prevent ALI through various anti-inflammatory modalities, including the major anti-inflammatory pathways of NF-[Formula: see text]B and mitogen-activated protein kinases. These findings suggest that asatone can be applied in the treatment of ALI.
Collapse
Affiliation(s)
- Heng-Yuan Chang
- School of Post-Baccalaureate Chinese Medicine, Tzu Chi University, Hualien 970, Taiwan
| | - Yi-Chuan Chen
- School of Post-Baccalaureate Chinese Medicine, Tzu Chi University, Hualien 970, Taiwan
| | - Jaung-Geng Lin
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung 404, Taiwan
| | - I-Hsin Lin
- School of Post-Baccalaureate Chinese Medicine, Tzu Chi University, Hualien 970, Taiwan
| | - Hui-Fen Huang
- School of Post-Baccalaureate Chinese Medicine, Tzu Chi University, Hualien 970, Taiwan
- Department of Chinese Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taipei 231, Taiwan
| | - Chia-Chou Yeh
- School of Post-Baccalaureate Chinese Medicine, Tzu Chi University, Hualien 970, Taiwan
- Department of Chinese Medicine, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chia-Yi 622, Taiwan
| | - Jian-Jung Chen
- School of Post-Baccalaureate Chinese Medicine, Tzu Chi University, Hualien 970, Taiwan
- Department of Chinese Medicine, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung 427, Taiwan
| | - Guan-Jhong Huang
- School of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Chinese Medicine, China Medical University, Taichung 404, Taiwan
| |
Collapse
|
34
|
Li Z, He X, Liu F, Wang J, Feng J. A review of polysaccharides from Schisandra chinensis and Schisandra sphenanthera: Properties, functions and applications. Carbohydr Polym 2018; 184:178-190. [DOI: 10.1016/j.carbpol.2017.12.058] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 12/03/2017] [Accepted: 12/20/2017] [Indexed: 12/17/2022]
|
35
|
Liu XY, Xu HX, Li JK, Zhang D, Ma XH, Huang LN, Lü JH, Wang XZ. Neferine Protects Endothelial Glycocalyx via Mitochondrial ROS in Lipopolysaccharide-Induced Acute Respiratory Distress Syndrome. Front Physiol 2018. [PMID: 29520236 PMCID: PMC5826949 DOI: 10.3389/fphys.2018.00102] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Damage to the endothelial glycocalyx is a critical factor in increased pulmonary vascular permeability, which is the basic pathological feature of acute respiratory distress syndrome (ARDS). Neferine (Nef), a bisbenzylisoquinoline alkaloid isolated from green seed embryos of Nelumbo nucifera Gaertn, has extensive pharmacological activity. In this study, we showed that Nef reduced lung-capillary permeability, down-regulated the production of cytokines (IL-1β, IL-6, TNF-α, and IL-10) and inhibited the activation of the NF-κB signaling pathway in mice with lipopolysaccharide (LPS)-induced ARDS. Further analysis indicated that Nef provided protection against endothelial glycocalyx degradation in LPS-induced ARDS mice (in vivo) and in LPS-stimulated human umbilical vein endothelial cells (in vitro). The glycocalyx-protective effect of Nef may be initiated by suppressing the production of mitochondrial ROS (mtROS) and decreasing oxidative damage. Nef was also found to promote glycocalyx restoration by accelerating the removal of mtROS in endothelial cells in LPS-induced ARDS. These results suggested the potential of Nef as a therapeutic agent for ARDS associated with Gram-negative bacterial infections and elucidated the mechanisms underlying the protection and restoration of the endothelial glycocalyx.
Collapse
Affiliation(s)
- Xiang-Yong Liu
- Department of Cell Biology, Binzhou Medical University, Yantai, China
| | - Hai-Xiao Xu
- Department of Respirator Medicine and Intensive Care Unit, Affiliated Hospital of Binzhou Medical University, Binzhou, China
| | - Jian-Kui Li
- Department of Respirator Medicine and Intensive Care Unit, Affiliated Hospital of Binzhou Medical University, Binzhou, China
| | - Dong Zhang
- Department of Respirator Medicine and Intensive Care Unit, Affiliated Hospital of Binzhou Medical University, Binzhou, China
| | - Xiao-Hong Ma
- Department of Respirator Medicine and Intensive Care Unit, Affiliated Hospital of Binzhou Medical University, Binzhou, China
| | - Li-Na Huang
- Department of Cell Biology, Binzhou Medical University, Yantai, China
| | - Jun-Hong Lü
- Division of Physical Biology and CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China
| | - Xiao-Zhi Wang
- Department of Cell Biology, Binzhou Medical University, Yantai, China.,Department of Respirator Medicine and Intensive Care Unit, Affiliated Hospital of Binzhou Medical University, Binzhou, China.,Division of Physical Biology and CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
36
|
Zhang H, Jia R, Wang F, Qiu G, Qiao P, Xu X, Wu D. Catalpol protects mice against Lipopolysaccharide/D-galactosamine-induced acute liver injury through inhibiting inflammatory and oxidative response. Oncotarget 2017; 9:3887-3894. [PMID: 29423091 PMCID: PMC5790508 DOI: 10.18632/oncotarget.23242] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 12/01/2017] [Indexed: 01/10/2023] Open
Abstract
The purpose of this study was to investigate the protective effect of catalpol on Lipopolysaccharide (LPS)/D-galactosamine (D-gal)-induced acute liver injury in mice. The mouse model was established by injection of LPS and D-gal. Catalpol (2.5, 5, 10 mg/kg) were pretreated intraperitoneally 1 h before LPS and D-gal. The survival rate, AST, ALT, MDA, MPO activity, hepatic tissue histology, TNF-α level, and NF-κB activation were assayed. The results revealed that catalpol dose-dependently elevated the survival rate. Furthermore, catalpol reduced the activities of AST, ALT, MDA, and MPO. The production of TNF-α was also inhibited by treatment of catalpol. In addition, catalpol inhibited LPS/D-gal-induced NF-κB activation. The expression of Nrf2 and HO-1 were up-regulated by treatment of catalpol. These results indicated that pretreatment with catalpol could attenuate LPS/D-gal-induced acute liver injury in mice and the underlying mechanism may due to the inhibition of NF-κB signaling pathway and the activation of Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Haogang Zhang
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Ruichun Jia
- Department of Blood Transfusion, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Fujing Wang
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Gongcai Qiu
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Pengfei Qiao
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Xunzheng Xu
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Dequan Wu
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China
| |
Collapse
|
37
|
Shi YW, Zhang XC, Chen C, Tang M, Wang ZW, Liang XM, Ding F, Wang CP. Schisantherin A attenuates ischemia/reperfusion-induced neuronal injury in rats via regulation of TLR4 and C5aR1 signaling pathways. Brain Behav Immun 2017; 66:244-256. [PMID: 28690033 DOI: 10.1016/j.bbi.2017.07.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 06/25/2017] [Accepted: 07/05/2017] [Indexed: 01/24/2023] Open
Abstract
Toll-like receptor 4 (TLR4) and C5aR1 (CD88) have been recognized as potential therapeutic targets for the reduction of inflammation and secondary damage and improvement of outcome after ischemia and reperfusion (I/R). The inflammatory responses which induce cell apoptosis and necrosis after I/R brain injury lead to a limited process of neural repair. To further comprehend how these targets function in I/R state, we investigated the pathological changes and TLR4 and C5aR1 signaling pathways in vitro and in vivo models of I/R brain injury in this study. Meanwhile, we explored the roles of schisantherin A on I/R brain injury, and whether it exerted neuroprotective effects by regulating the TLR4 and C5aR1 signaling pathways or not. The results showed that schisantherin A significantly reduced the neuronal apoptosis induced by oxygen and glucose deprivation and reperfusion (OGD/R) injury in primary culture of rat cortical neurons. Also, schisantherin A alleviated neurological deficits, reduced infarct volume, attenuated oxidation stress, inflammation and apoptosis in ischemic parietal cortex of rats after middle cerebral artery occlusion and reperfusion (MCAO/R) injury. Moreover, the activated TLR4 and C5aR1 signaling pathways were inhibited by schisantherin A treatment. In conclusion, TLR4 and C5aR1 played a vital role during I/R brain injury in rats, and schisantherin A exhibited neuroprotective effects by TLR4 and C5aR1 signaling pathways. These findings also provided new insights that would aid in elucidating the effect of schisantherin A against cerebral I/R and support the development of schisantherin A as a potential treatment for ischemic stroke.
Collapse
Affiliation(s)
- Yun Wei Shi
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, No. 19, Qixiu Road, Nantong, Jiangsu 226001, PR China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, PR China
| | - Xiao Chuan Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, No. 19, Qixiu Road, Nantong, Jiangsu 226001, PR China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, PR China
| | - Chen Chen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, No. 19, Qixiu Road, Nantong, Jiangsu 226001, PR China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, PR China
| | - Miao Tang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, No. 19, Qixiu Road, Nantong, Jiangsu 226001, PR China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, PR China
| | - Zhi Wei Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, No. 19, Qixiu Road, Nantong, Jiangsu 226001, PR China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, PR China; Department of Pharmacology, University of California, Irvine, CA 92697, USA
| | - Xin Miao Liang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, No. 19, Qixiu Road, Nantong, Jiangsu 226001, PR China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, PR China; Dalian Institute of Chemical Physics, the Chinese Academy of Sciences, Dalian, Liaoning 116023, PR China.
| | - Fei Ding
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, No. 19, Qixiu Road, Nantong, Jiangsu 226001, PR China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, PR China.
| | - Cai Ping Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, No. 19, Qixiu Road, Nantong, Jiangsu 226001, PR China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, PR China.
| |
Collapse
|
38
|
Kim EJ, Jang M, Lee MJ, Choi JH, Lee SJ, Kim SK, Jang DS, Cho IH. Schisandra chinensis Stem Ameliorates 3-Nitropropionic Acid-Induced Striatal Toxicity via Activation of the Nrf2 Pathway and Inhibition of the MAPKs and NF-κB Pathways. Front Pharmacol 2017; 8:673. [PMID: 29033839 PMCID: PMC5627181 DOI: 10.3389/fphar.2017.00673] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 09/08/2017] [Indexed: 01/04/2023] Open
Abstract
The beneficial value of the stems of Schisandra chinensis (SSC) in neurological diseases is unclear. We examined whether SSC aqueous extract (SSCE) alleviates striatal toxicity in a 3-nitropropionic acid (3-NPA)-induced mouse model of Huntington's disease (HD). SSCE (75, 150, or 300 mg/kg/day, p.o.) was given daily before or after 3-NPA treatment. Pre- and onset-treatment with SSCE displayed a significant protective effect and pretreatment was more effective as assessed by neurological scores and survival rate. These effects were related to reductions in mean lesion area, cell death, succinate dehydrogenase activity, microglial activation, and protein expression of inflammatory factors including interleukin (IL)-1β, IL-6, tumor necrosis factor-alpha, inducible nitric oxide synthase, and cyclooxygenase-2 in the striatum after 3-NPA treatment. Pretreatment with SSCE stimulated the nuclear factor erythroid 2-related factor 2 pathway and inhibited phosphorylation of the mitogen-activated protein kinase and nuclear factor-kappa B signaling pathways in the striatum after 3-NPA treatment. The gomisin A and schizandrin components of SSCE significantly reduced the neurological impairment and lethality induced by 3-NPA treatment. These results indicate for the first time that SSCE may effectively prevent 3-NPA-induced striatal toxicity during a wide therapeutic time window through anti-oxidative and anti-inflammatory activities. SSCE has potential value in preventive and therapeutic strategies for HD-like symptoms.
Collapse
Affiliation(s)
- Eun-Jeong Kim
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, South Korea.,Brain Korea 21 Plus Program, Graduate School, Kyung Hee University, Seoul, South Korea.,Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Minhee Jang
- Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University, Seoul, South Korea.,Department of Cancer Preventive Material Development, Graduate School, Kyung Hee University, Seoul, South Korea
| | - Min Jung Lee
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, South Korea.,Brain Korea 21 Plus Program, Graduate School, Kyung Hee University, Seoul, South Korea.,Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Jong Hee Choi
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, South Korea.,Brain Korea 21 Plus Program, Graduate School, Kyung Hee University, Seoul, South Korea.,Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Sung Joong Lee
- Department of Neuroscience and Physiology, Dental Research Institute, School of Dentistry, Seoul National University, Seoul, South Korea
| | - Sun Kwang Kim
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Dae Sik Jang
- Department of Life and Nanopharmaceutical Sciences, College of Pharmacy, Kyung Hee University, Seoul, South Korea
| | - Ik-Hyun Cho
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, South Korea.,Brain Korea 21 Plus Program, Graduate School, Kyung Hee University, Seoul, South Korea.,Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University, Seoul, South Korea.,Institute of Korean Medicine, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| |
Collapse
|
39
|
Schisantherin A protects against liver ischemia-reperfusion injury via inhibition of mitogen-activated protein kinase pathway. Int Immunopharmacol 2017; 47:28-37. [DOI: 10.1016/j.intimp.2017.03.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 03/06/2017] [Accepted: 03/20/2017] [Indexed: 02/06/2023]
|
40
|
Lipopolysaccharide-Binding Protein Downregulates Fractalkine through Activation of p38 MAPK and NF- κB. Mediators Inflamm 2017. [PMID: 28634422 PMCID: PMC5467387 DOI: 10.1155/2017/9734837] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Background LBP and fractalkine are known to be involved in the pathogenesis of ARDS. This study investigated the relationship between LBP and fractalkine in LPS-induced A549 cells and rat lung tissue in an ARDS rat model. Methods A549 cells were transfected with LBP or LBP shRNA plasmid DNA or pretreated with SB203580 or SC-514 following LPS treatment. An ARDS rat model was established using LPS with or without LBPK95A, SB203580, or SC-514 treatment. RT-PCR, western blotting, ELISA, immunofluorescence, coimmunoprecipitation, and immunohistochemical staining were used to study the expression of fractalkine and LBP and p38 MAPK and p65 NF-κB activities. Results LPS increased LBP and reduced fractalkine. LBP overexpression further decreased LPS-induced downregulation of fractalkine and p38 MAPK and p65 NF-κB activation; LBP gene silencing, SB203580, and SC-514 suppressed LPS-induced downregulation of fractalkine and p38 MAPK and p65 NF-κB activation in A549 cells. LBP and fractalkine in lung tissue were increased and decreased, respectively, following LPS injection. LBPK95A, SB203580, and SC-514 ameliorated LPS-induced rat lung injury and suppressed LPS-induced downregulation of fractalkine by decreasing phospho-p38 MAPK and p65 NF-κB. Conclusions The results indicate that LBP downregulates fractalkine expression in LPS-induced A549 cells and in an ARDS rat model through activation of p38 MAPK and NF-κB.
Collapse
|
41
|
Cavidine Ameliorates Lipopolysaccharide-Induced Acute Lung Injury via NF-κB Signaling Pathway in vivo and in vitro. Inflammation 2017; 40:1111-1122. [DOI: 10.1007/s10753-017-0553-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
42
|
Kim HP, Lim H, Kwon YS. Therapeutic Potential of Medicinal Plants and Their Constituents on Lung Inflammatory Disorders. Biomol Ther (Seoul) 2017; 25:91-104. [PMID: 27956716 PMCID: PMC5340533 DOI: 10.4062/biomolther.2016.187] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 09/21/2016] [Accepted: 10/04/2016] [Indexed: 12/16/2022] Open
Abstract
Acute bronchitis and chronic obstructive pulmonary diseases (COPD) are essentially lung inflammatory disorders. Various plant extracts and their constituents showed therapeutic effects on several animal models of lung inflammation. These include coumarins, flavonoids, phenolics, iridoids, monoterpenes, diterpenes and triterpenoids. Some of them exerted inhibitory action mainly by inhibiting the mitogen-activated protein kinase pathway and nuclear transcription factor-κB activation. Especially, many flavonoid derivatives distinctly showed effectiveness on lung inflammation. In this review, the experimental data for plant extracts and their constituents showing therapeutic effectiveness on animal models of lung inflammation are summarized.
Collapse
Affiliation(s)
- Hyun Pyo Kim
- College of Pharmacy, Kangwon National University, Chuncheon 24341,
Republic of Korea
| | - Hyun Lim
- College of Pharmacy, Kangwon National University, Chuncheon 24341,
Republic of Korea
| | - Yong Soo Kwon
- College of Pharmacy, Kangwon National University, Chuncheon 24341,
Republic of Korea
| |
Collapse
|
43
|
Jiang Y, Zeng Y, Huang X, Qin Y, Luo W, Xiang S, Sooranna SR, Pinhu L. Nur77 attenuates endothelin-1 expression via downregulation of NF-κB and p38 MAPK in A549 cells and in an ARDS rat model. Am J Physiol Lung Cell Mol Physiol 2016; 311:L1023-L1035. [PMID: 27765761 PMCID: PMC5206403 DOI: 10.1152/ajplung.00043.2016] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 10/03/2016] [Indexed: 02/07/2023] Open
Abstract
Acute respiratory distress syndrome (ARDS) is characterized by inflammatory injury to the alveolar and capillary barriers that results in impaired gas exchange and severe acute respiratory failure. Nuclear orphan receptor Nur77 has emerged as a regulator of gene expression in inflammation, and its role in the pathogenesis of ARDS is not clear. The objective of this study is to investigate the potential role of Nur77 and its underlying mechanism in the regulation of endothelin-1 (ET-1) expression in lipopolysaccharide (LPS)-induced A549 cells and an ARDS rat model. We demonstrate that LPS induced Nur77 expression and nuclear export in A549 cells. Overexpression of Nur77 markedly decreased basal and LPS-induced ET-1 expression in A549 cells, whereas knockdown of Nur77 increased the ET-1 expression. LPS-induced phosphorylation and nuclear translocation of NF-κB and p38 MAPK were blocked by Nur77 overexpression and augmented by Nur77 knockdown in A549 cells. In vivo, LPS induced Nur77 expression in lung in ARDS rats. Pharmacological activation of Nur77 by cytosporone B (CsnB) inhibited ET-1 expression in ARDS rats, decreased LPS-induced phosphorylation of NF-κB and p38 MAPK, and relieved lung, liver, and kidney injury. Pharmacological deactivation of Nur77 by 1,1-bis-(3'-indolyl)-1-(p-hydroxyphenyl)methane (DIM-C-pPhOH, C-DIM8) had no effect on ET-1 expression and lung injury. These results indicated that Nur77 decreases ET-1 expression by suppressing NF-κB and p38 MAPK in LPS-stimulated A549 cells in vitro, and, in an LPS-induced ARDS rat model, CsnB reduced ET-1 expression and lung injury in ARDS rats.
Collapse
MESH Headings
- A549 Cells
- Active Transport, Cell Nucleus/drug effects
- Animals
- Cell Nucleus/drug effects
- Cell Nucleus/metabolism
- Disease Models, Animal
- Down-Regulation/drug effects
- Endothelin-1/metabolism
- Kidney/drug effects
- Kidney/pathology
- Lipopolysaccharides/pharmacology
- Liver/drug effects
- Liver/pathology
- Lung/drug effects
- Lung/metabolism
- Male
- NF-kappa B/metabolism
- Nuclear Receptor Subfamily 4, Group A, Member 1/agonists
- Nuclear Receptor Subfamily 4, Group A, Member 1/genetics
- Nuclear Receptor Subfamily 4, Group A, Member 1/metabolism
- Phenylacetates/pharmacology
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rats, Sprague-Dawley
- Respiratory Distress Syndrome/enzymology
- Respiratory Distress Syndrome/genetics
- Respiratory Distress Syndrome/pathology
- p38 Mitogen-Activated Protein Kinases/metabolism
Collapse
Affiliation(s)
- Yujie Jiang
- The First Clinical Medical College of Jinan University, Guangzhou, Guangdong Province, China
- Department of Respiratory Medicine
| | - Yi Zeng
- Department of Central Laboratory, Youjiang Medical University for Nationalities, Baise, Guangxi, China
| | - Xia Huang
- The First Clinical Medical College of Jinan University, Guangzhou, Guangdong Province, China
- Department of Respiratory Medicine
| | - Yueqiu Qin
- Department of Digestive, Youjiang Medical University for Nationalities, Baise, Guangxi, China; Youjiang Medical University for Nationalities, Baise, Guangxi, China
| | | | - Shulin Xiang
- Department of Intensive Care Unit, the People's Hospital of Guangxi, Nanning, Guangxi, China
| | - Suren R Sooranna
- Department of Surgery and Cancer, Imperial College London, Chelsea and Westminster Hospital, London, United Kingdon; and
| | - Liao Pinhu
- Department of Intensive Care Medicine, Youjiang Medical University for Nationalities, Baise, Guangxi, China
| |
Collapse
|
44
|
Alpinetin attenuates inflammatory responses by suppressing TLR4 and NLRP3 signaling pathways in DSS-induced acute colitis. Sci Rep 2016; 6:28370. [PMID: 27321991 PMCID: PMC4913257 DOI: 10.1038/srep28370] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 06/03/2016] [Indexed: 12/15/2022] Open
Abstract
Alpinetin, a composition of Alpinia katsumadai Hayata, has been reported to have a number of biological properties, such as antibacterial, antitumor and other important therapeutic activities. However, the effect of alpinetin on inflammatory bowel disease (IBD) has not yet been reported. The purpose of this study was to investigate the anti-inflammatory effect and mechanism of alpinetin on dextran sulfate sodium (DSS)-induced colitis in mice. In vivo, DSS-induced mice colitis model was established by giving mice drinking water containing 5% (w/v) DSS for 7 days. Alpinetin (25, 50 and 100 mg/kg) were administered once a day by intraperitoneal injection 3 days before DSS treatment. In vitro, phorbol myristate acetate (PMA)-differentiated monocytic THP-1 macrophages were treated with alpinetin and stimulated by lipopolysaccharide (LPS). The results showed that alpinetin significantly attenuated diarrhea, colonic shortening, histological injury, myeloperoxidase (MPO) activity and the expressions of tumor necrosis factor (TNF-α) and interleukin (IL-1β) production in mice. In vitro, alpinetin markedly inhibited LPS-induced TNF-α and IL-1β production, as well as Toll-like receptor 4 (TLR4) mediated nuclear transcription factor-kappaB (NF-κB) and NOD-like receptor protein 3 (NLRP3) inflammasome activation. In conclusion, this study demonstrated that alpinetin had protective effects on DSS-induced colitis and may be a promising therapeutic reagent for colitis treatment.
Collapse
|
45
|
Qiang Y, Liang G, Yu L. Human amniotic mesenchymal stem cells alleviate lung injury induced by ischemia and reperfusion after cardiopulmonary bypass in dogs. J Transl Med 2016; 96:537-46. [PMID: 26927516 DOI: 10.1038/labinvest.2016.37] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 01/06/2016] [Accepted: 01/18/2016] [Indexed: 12/20/2022] Open
Abstract
Transplantation of mesenchymal stem cells may inhibit pathological immune processes contributing to ischemia/reperfusion (I/R) injury. This study aimed to assess the capacity of human amniotic MSC (hAMSCs) to ameliorate I/R injury in a dog model of cardiopulmonary bypass (CPB). Dissociated hAMSCs were cultured ex vivo, and their immunophenotypes were assessed by flow cytometry and immunohistochemistry. A dog model of CPB was established by surgical blockage of the aorta for 1 h. Dogs either underwent mock surgery (Sham group), CPB (model group), or CPB, followed by femoral injection of 2 × 10(7) hAMSCs (n=6). Anti-human nuclei staining revealed hAMSCs in the lungs 3 h after surgery. Oxygen index (OI) and respiratory index (RI) of arterial blood were measured using a biochemical analyzer. Venous blood TNF-α, IL-8, MMP-9, and IL-10 concentrations were measured by ELISA. Pathological changes in the lung were assessed by light microscopy. Third-generation-cultured hAMSCs expressed high levels of CD29, CD44, CD49D, CD73, and CD166 levels, but low CD34 or CD45 amounts and their cytoplasm contained Vimentin. In CPB model animals, OI was elevated and RI reduced; TNF-α, IL-8, and MMP-9 levels were elevated, and IL-10 levels reduced within 3h (P<0.05), but hAMSC transplantation significantly ameliorated these changes (P<0.05). Pathological changes observed in the hAMSC group were significantly less severe than those in the CPB group. In conclusion, hAMSC transplantation can downregulate proinflammatory factors and reduce MMP-9 levels, whereas upregulating the anti-inflammatory molecule IL-10, thus reducing I/R lung injury in a dog model of CPB.
Collapse
Affiliation(s)
- Yong Qiang
- Department of Cardiothoracic Surgery, Nanjing General Hospital of Nanjing Military Command, Nanjing, Jiangsu Province, China
| | - Guiyou Liang
- Department of Thoracic and Cardiovascular Surgery, Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou, China
| | - Limei Yu
- Key Laboratory of Cell Engineering in Guizhou Province, Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou, China
| |
Collapse
|
46
|
Liao S, Zhou K, Li D, Xie X, Jun F, Wang J. Schisantherin A suppresses interleukin-1β-induced inflammation in human chondrocytes via inhibition of NF-κB and MAPKs activation. Eur J Pharmacol 2016; 780:65-70. [PMID: 26997368 DOI: 10.1016/j.ejphar.2016.03.032] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Revised: 03/14/2016] [Accepted: 03/16/2016] [Indexed: 11/27/2022]
Abstract
Osteoarthritis is a degenerative joint disease that is characterized by the inflammation of synovium. Schisantherin A (SchA), a dibenzocyclooctadiene lignan isolated from the fruit of Schisandra sphenanthera, has been shown to have anti-inflammatory activity. The aim of this study was to investigate the anti-inflammatory effects of SchA on interleukin-1β (IL-1β)-stimulated human osteoarthritis chondrocytes. Human osteoarthritis chondrocytes were pretreated with SchA 1h before IL-1β treatment. The effects of SchA on NO, PGE2, iNOS, COX-2, and TNF-α production were detected in this study. The production of MMP-1, MMP3, MMP13 were measured by ELISA. The expression of NF-κB and MAPKs were detected by western blotting. Our results showed that SchA inhibited IL-1β-induced NO, PGE2, and TNF-α production in a dose-dependent manner. Moreover, IL-1β-induced MMP1, MMP3, and MMP13 expression were significantly inhibited by treatment of SchA. In addition, SchA significantly inhibited IL-1β-induced NF-κB and MAPKs activation. Taken together, these results suggest that SchA exhibits anti-inflammatory effects against IL-1β-stimulated chondrocytes by blocking NF-κB and MAPKs signaling pathways.
Collapse
Affiliation(s)
- Shiyao Liao
- Department of Traumatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, PR China
| | - Kai Zhou
- Department of Orthopedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, PR China
| | - Dequan Li
- Department of Traumatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, PR China
| | - Xuemeng Xie
- Department of Minimally Invasive Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, PR China
| | - Fang Jun
- Department of Traumatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, PR China
| | - Jing Wang
- Department of Orthopedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, PR China.
| |
Collapse
|
47
|
Li KC, Ho YL, Chen CY, Hsieh WT, Chang YS, Huang GJ. Lobeline improves acute lung injury via nuclear factor-κB-signaling pathway and oxidative stress. Respir Physiol Neurobiol 2015; 225:19-30. [PMID: 26702732 DOI: 10.1016/j.resp.2015.12.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 12/09/2015] [Accepted: 12/10/2015] [Indexed: 11/16/2022]
Abstract
Acute lung injury (ALI) is a severe, life-threatening medical condition whose pathogenesis is linked to neutrophil infiltration of the lung. Activation and recruitment of neutrophils to the lung is mostly attributed to the production of chemokines NO, IL-6, for instance. This study aims to investigate lobeline ability in reducing NO production, and nitric oxide synthase (iNOs) expression. Lobeline was tested by inhibiting phosphorylation of mitogen-activated protein kinases (MAPKs), NF-κB and IκBα in LPS-stimulated RAW 264.7 cells. When RAW 264.7 macrophages were given lobeline with LPS, a significant concentration-dependent inhibition of NO production was detected. In vivo tests, mice were either treated with normal saline, 10mg/kg dexmethasone or 5, 10, 20mg/kg lobeline intraperitoneally, and after an hour, the administration of 5mg/kg of LPS was given intratracheally. External performance, cytokines, MAPK pathways and antioxidative enzymes (AOEs) were also carried out to evaluate the effects of these drugs. This is the first investigation in which lobeline was found to effectively inhibit acute lung edema, which may provide a potential target for treating ALI. Lobeline may utilize MAPKs pathways as well as AOEs activity to attenuate LPS-induced nonspecific pulmonary inflammation.
Collapse
Affiliation(s)
- Kun-Cheng Li
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Pharmacy, China Medical University, Taichung 404, Taiwan
| | - Yu-Ling Ho
- Department of Nursing, Hungkuang University, Taichung 433, Taiwan
| | - Cing-Yu Chen
- Department of Pharmacy, College of Pharmacy, China Medical University, Taichung, Taiwan
| | - Wen-Tsong Hsieh
- Department of Pharmacology, School of Medicine, China Medical University, Taichung 404, Taiwan
| | - Yuan-Shiun Chang
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Pharmacy, China Medical University, Taichung 404, Taiwan; Chinese Crude Drug Pharmacy, China Medical University Hospital, Taichung 404, Taiwan.
| | - Guan-Jhong Huang
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Pharmacy, China Medical University, Taichung 404, Taiwan.
| |
Collapse
|
48
|
E Q, Tang M, Zhang X, Shi Y, Wang D, Gu Y, Li S, Liang X, Wang Z, Wang C. Protection of seven dibenzocyclooctadiene lignans fromSchisandra chinensisagainst serum and glucose deprivation injury in SH-SY5Y cells. Cell Biol Int 2015; 39:1418-24. [DOI: 10.1002/cbin.10537] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 08/15/2015] [Indexed: 01/05/2023]
Affiliation(s)
- Qun E
- Department of Pathology; School of Medicine; Nantong University; Nantong 226001 P. R. China
| | - Miao Tang
- Co-innovation Center of Neuroregeneration; Nantong University; Nantong 226001 P. R. China
- Jiangsu Key Laboratory of Neuroregeneration; Nantong University; Nantong 226001 P. R. China
| | - XiaoChuan Zhang
- Co-innovation Center of Neuroregeneration; Nantong University; Nantong 226001 P. R. China
- Jiangsu Key Laboratory of Neuroregeneration; Nantong University; Nantong 226001 P. R. China
| | - YunWei Shi
- Co-innovation Center of Neuroregeneration; Nantong University; Nantong 226001 P. R. China
- Jiangsu Key Laboratory of Neuroregeneration; Nantong University; Nantong 226001 P. R. China
| | - DanDan Wang
- Co-innovation Center of Neuroregeneration; Nantong University; Nantong 226001 P. R. China
- Jiangsu Key Laboratory of Neuroregeneration; Nantong University; Nantong 226001 P. R. China
| | - Yun Gu
- Co-innovation Center of Neuroregeneration; Nantong University; Nantong 226001 P. R. China
- Jiangsu Key Laboratory of Neuroregeneration; Nantong University; Nantong 226001 P. R. China
| | - ShiYing Li
- Co-innovation Center of Neuroregeneration; Nantong University; Nantong 226001 P. R. China
- Jiangsu Key Laboratory of Neuroregeneration; Nantong University; Nantong 226001 P. R. China
| | - XinMiao Liang
- Co-innovation Center of Neuroregeneration; Nantong University; Nantong 226001 P. R. China
- Jiangsu Key Laboratory of Neuroregeneration; Nantong University; Nantong 226001 P. R. China
- Dalian Institute of Chemical Physics; The Chinese Academy of Sciences; Dalian 116023 P. R. China
| | - ZhiWei Wang
- Co-innovation Center of Neuroregeneration; Nantong University; Nantong 226001 P. R. China
- Jiangsu Key Laboratory of Neuroregeneration; Nantong University; Nantong 226001 P. R. China
- Department of Pharmacology; University of California; Irvine California 92697 USA
| | - CaiPing Wang
- Co-innovation Center of Neuroregeneration; Nantong University; Nantong 226001 P. R. China
- Jiangsu Key Laboratory of Neuroregeneration; Nantong University; Nantong 226001 P. R. China
| |
Collapse
|
49
|
Aeffner F, Bolon B, Davis IC. Mouse Models of Acute Respiratory Distress Syndrome: A Review of Analytical Approaches, Pathologic Features, and Common Measurements. Toxicol Pathol 2015; 43:1074-92. [PMID: 26296628 DOI: 10.1177/0192623315598399] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Acute respiratory distress syndrome (ARDS) is a severe pulmonary reaction requiring hospitalization, which is incited by many causes, including bacterial and viral pneumonia as well as near drowning, aspiration of gastric contents, pancreatitis, intravenous drug use, and abdominal trauma. In humans, ARDS is very well defined by a list of clinical parameters. However, until recently no consensus was available regarding the criteria of ARDS that should be evident in an experimental animal model. This lack was rectified by a 2011 workshop report by the American Thoracic Society, which defined the main features proposed to delineate the presence of ARDS in laboratory animals. These should include histological changes in parenchymal tissue, altered integrity of the alveolar capillary barrier, inflammation, and abnormal pulmonary function. Murine ARDS models typically are defined by such features as pulmonary edema and leukocyte infiltration in cytological preparations of bronchoalveolar lavage fluid and/or lung sections. Common pathophysiological indicators of ARDS in mice include impaired pulmonary gas exchange and histological evidence of inflammatory infiltrates into the lung. Thus, morphological endpoints remain a vital component of data sets assembled from animal ARDS models.
Collapse
Affiliation(s)
- Famke Aeffner
- Flagship Biosciences Inc., Westminster, Colorado, USA
| | - Brad Bolon
- The Ohio State University, College of Veterinary Medicine, Department of Veterinary Biosciences, Columbus, Ohio, USA GEMpath Inc., Longmont, Colorado, USA
| | | |
Collapse
|
50
|
Ma MM, Li Y, Liu XY, Zhu WW, Ren X, Kong GQ, Huang X, Wang LP, Luo LQ, Wang XZ. Cyanidin-3-O-Glucoside Ameliorates Lipopolysaccharide-Induced Injury Both In Vivo and In Vitro Suppression of NF-κB and MAPK Pathways. Inflammation 2015; 38:1669-82. [DOI: 10.1007/s10753-015-0144-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|