1
|
Shehata AH, Anter AF, Mohamed Naguib Abdel Hafez S, Rn Ibrahim A, Kamel ES, Ahmed ASF. Pioglitazone ameliorates sepsis-associated encephalopathy through SIRT1 signaling pathway. Int Immunopharmacol 2024; 139:112757. [PMID: 39067401 DOI: 10.1016/j.intimp.2024.112757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/21/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024]
Abstract
Sepsis is a severe immune response to an infection. It is associated with multiple organ dysfunction syndrome (MODs) along with systemic and neuronal inflammatory response. This study focused on the acute neurologic dysfunction associated with sepsis by exploring the role of PPARγ/SIRT1 pathway against sepsis. We studied the role of this axis in ameliorating sepsis-associated encephalopathy (SAE) and its linked neurobehavioral disorders by using pioglitazone (PIO). This PPARγ agonist showed neuroprotective actions in neuroinflammatory disorders. Sepsis was induced in mice by LPS (10 mg/kg). Survival rate and MODs were assessed. Furthermore, behavioral deficits, cerebral oxidative, inflammatory, and apoptotic markers, and the cerebral expression level of SIRT1 were determined. In this study, we observed that PIO attenuated sepsis-induced cerebral injury. PIO significantly enhanced survival rate, attenuated MODs, and systemic inflammatory response in septic mice. PIO also promoted cerebral SIRT1 expression and reduced cerebral activation of microglia, oxidative stress, HMGB, iNOS, NLRP3 and caspase-3 along with an obvious improvement in behavioral deficits and cerebral pathological damage induced by LPS. Most of the neuroprotective effects of PIO were abolished by EX-527, a SIRT1 inhibitor. These results highlight that the neuroprotective effect of PIO in SAE is mainly SIRT1-dependent.
Collapse
Affiliation(s)
- Alaa H Shehata
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Aliaa F Anter
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Minia, Egypt
| | | | - Ahmed Rn Ibrahim
- Department of Biochemistry, Faculty of Pharmacy, Minia University, Minia, Egypt; Department of Clinical Pharmacy, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Eman S Kamel
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, USA; Department of Clinical Pharmacy, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Al-Shaimaa F Ahmed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Minia, Egypt.
| |
Collapse
|
2
|
Jamshed L, Jamshed S, Frank RA, Hewitt LM, Thomas PJ, Holloway AC. Assessing Receptor Activation in 2D and 3D Cultured Hepatocytes: Responses to a Single Compound and a Complex Mixture. TOXICS 2024; 12:631. [PMID: 39330559 PMCID: PMC11436198 DOI: 10.3390/toxics12090631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/07/2024] [Accepted: 08/22/2024] [Indexed: 09/28/2024]
Abstract
Responding to global standards and legislative updates in Canada, including Bill S-5 (2023), toxicity testing is shifting towards more ethical, in vitro methods. Traditional two-dimensional (2D) monolayer cell cultures, limited in replicating the complex in vivo environment, have prompted the development of more relevant three-dimensional (3D) spheroidal hepatocyte cultures. This study introduces the first 3D spheroid model for McA-RH7777 cells, assessing xenobiotic receptor activation, cellular signaling, and toxicity against dexamethasone and naphthenic acid (NA)-fraction components; NAFCs. Our findings reveal that 3D McA-RH7777 spheroids demonstrate enhanced sensitivity and more uniform dose-response patterns in gene expression related to xenobiotic metabolism (AhR and PPAR) for both single compounds and complex mixtures. Specifically, 3D cultures showed significant gene expression changes upon dexamethasone exposure and exhibited varying degrees of sensitivity and resistance to the apoptotic effects induced by NAFCs, in comparison to 2D cultures. The optimization of 3D culture conditions enhances the model's physiological relevance and enables the identification of genomic signatures under varied exposures. This study highlights the potential of 3D spheroid cultures in providing a more accurate representation of the liver's microenvironment and advancing our understanding of cellular mechanisms in toxicity testing.
Collapse
Affiliation(s)
- Laiba Jamshed
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, ON L8S 4L8, Canada; (L.J.); (S.J.)
| | - Shanza Jamshed
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, ON L8S 4L8, Canada; (L.J.); (S.J.)
| | - Richard A. Frank
- Water Science and Technology Directorate, Environment and Climate Change Canada, Burlington, ON L7S 1A1, Canada; (R.A.F.); (L.M.H.)
| | - L. Mark Hewitt
- Water Science and Technology Directorate, Environment and Climate Change Canada, Burlington, ON L7S 1A1, Canada; (R.A.F.); (L.M.H.)
| | - Philippe J. Thomas
- Environment and Climate Change Canada, National Wildlife Research Centre, Ottawa, ON K1S 5B6, Canada;
| | - Alison C. Holloway
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, ON L8S 4L8, Canada; (L.J.); (S.J.)
| |
Collapse
|
3
|
Briganti S, Mosca S, Di Nardo A, Flori E, Ottaviani M. New Insights into the Role of PPARγ in Skin Physiopathology. Biomolecules 2024; 14:728. [PMID: 38927131 PMCID: PMC11201613 DOI: 10.3390/biom14060728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
Peroxisome proliferator-activated receptor gamma (PPARγ) is a transcription factor expressed in many tissues, including skin, where it is essential for maintaining skin barrier permeability, regulating cell proliferation/differentiation, and modulating antioxidant and inflammatory responses upon ligand binding. Therefore, PPARγ activation has important implications for skin homeostasis. Over the past 20 years, with increasing interest in the role of PPARs in skin physiopathology, considerable effort has been devoted to the development of PPARγ ligands as a therapeutic option for skin inflammatory disorders. In addition, PPARγ also regulates sebocyte differentiation and lipid production, making it a potential target for inflammatory sebaceous disorders such as acne. A large number of studies suggest that PPARγ also acts as a skin tumor suppressor in both melanoma and non-melanoma skin cancers, but its role in tumorigenesis remains controversial. In this review, we have summarized the current state of research into the role of PPARγ in skin health and disease and how this may provide a starting point for the development of more potent and selective PPARγ ligands with a low toxicity profile, thereby reducing unwanted side effects.
Collapse
Affiliation(s)
| | | | | | - Enrica Flori
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy; (S.B.); (S.M.); (A.D.N.); (M.O.)
| | | |
Collapse
|
4
|
Díaz A, D’Attilio L, Penas F, Bongiovanni B, Massa E, Cevey A, Santucci N, Bottasso O, Goren N, Bay ML. Studies on the contribution of PPAR Gamma to tuberculosis physiopathology. Front Cell Infect Microbiol 2023; 13:1067464. [PMID: 37187471 PMCID: PMC10178487 DOI: 10.3389/fcimb.2023.1067464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 04/06/2023] [Indexed: 05/17/2023] Open
Abstract
Introduction Tuberculosis (TB) is a major health problem characterized by an immuno-endocrine imbalance: elevated plasma levels of cortisol and pro- and anti-inflammatory mediators, as well as reduced levels of dehydroepiandrosterone. The etiological agent, Mycobacterium tuberculosis (Mtb), is captured by pulmonary macrophages (Mf), whose activation is necessary to cope with the control of Mtb, however, excessive activation of the inflammatory response also leads to tissue damage. Glucocorticoids (GC) are critical elements to counteract the immunoinflammatory reaction, and peroxisome proliferator-activated receptors (PPARs) are also involved in this regard. The primary forms of these receptors are PPARϒ, PPARα, and PPARβ/δ, the former being the most involved in anti-inflammatory responses. In this work, we seek to gain some insight into the contribution of PPARϒ in immuno-endocrine-metabolic interactions by focusing on clinical studies in pulmonary TB patients and in vitro experiments on a Mf cell line. Methods and results We found that TB patients, at the time of diagnosis, showed increased expression of the PPARϒ transcript in their peripheral blood mononuclear cells, positively associated with circulating cortisol and related to disease severity. Given this background, we investigated the expression of PPARϒ (RT-qPCR) in radiation-killed Mtb-stimulated human Mf. The Mtb stimulation of Mf derived from the human line THP1 significantly increased the expression of PPARϒ, while the activation of this receptor by a specific agonist decreased the expression of pro- and anti-inflammatory cytokines (IL-1β and IL-10). As expected, the addition of GC to stimulated cultures reduced IL-1β production, while cortisol treatment together with the PPARϒ agonist lowered the levels of this proinflammatory cytokine in stimulated cultures. The addition of RU486, a glucocorticoid receptor antagonist, only reversed the inhibition produced by the addition of GC. Conclusion The current results provide a stimulating background for further analysis of the interconnection between PPARs and steroid hormones in the context of Mtb infection.
Collapse
Affiliation(s)
- Ariana Díaz
- Facultad de Ciencias Médicas, Instituto de Inmunología Clínica y Experimental de Rosario (IDICER), CONICET - Universidad Nacional de Rosario, Rosario, Argentina
| | - Luciano D’Attilio
- Facultad de Ciencias Médicas, Instituto de Inmunología Clínica y Experimental de Rosario (IDICER), CONICET - Universidad Nacional de Rosario, Rosario, Argentina
| | - Federico Penas
- Facultad de Medicina, Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), CONICET - Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Bettina Bongiovanni
- Facultad de Ciencias Médicas, Instituto de Inmunología Clínica y Experimental de Rosario (IDICER), CONICET - Universidad Nacional de Rosario, Rosario, Argentina
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Estefanía Massa
- Facultad de Ciencias Médicas, Instituto de Inmunología Clínica y Experimental de Rosario (IDICER), CONICET - Universidad Nacional de Rosario, Rosario, Argentina
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Agata Cevey
- Facultad de Medicina, Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), CONICET - Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Natalia Santucci
- Facultad de Ciencias Médicas, Instituto de Inmunología Clínica y Experimental de Rosario (IDICER), CONICET - Universidad Nacional de Rosario, Rosario, Argentina
| | - Oscar Bottasso
- Facultad de Ciencias Médicas, Instituto de Inmunología Clínica y Experimental de Rosario (IDICER), CONICET - Universidad Nacional de Rosario, Rosario, Argentina
| | - Nora Goren
- Facultad de Medicina, Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), CONICET - Universidad de Buenos Aires, Buenos Aires, Argentina
| | - María Luisa Bay
- Facultad de Ciencias Médicas, Instituto de Inmunología Clínica y Experimental de Rosario (IDICER), CONICET - Universidad Nacional de Rosario, Rosario, Argentina
- *Correspondence: María Luisa Bay,
| |
Collapse
|
5
|
Morgan LV, Petry F, Scatolin M, de Oliveira PV, Alves BO, Zilli GAL, Volfe CRB, Oltramari AR, de Oliveira D, Scapinello J, Müller LG. Investigation of the anti-inflammatory effects of stigmasterol in mice: insight into its mechanism of action. Behav Pharmacol 2021; 32:640-651. [PMID: 34657071 DOI: 10.1097/fbp.0000000000000658] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Stigmasterol is a phytosterol that presents pharmacologic properties. However, its anti-inflammatory mechanism and antinociceptive effect are not yet elucidated. Thus, the present study aimed to investigate the anti-inflammatory and antinociceptive activities of stigmasterol and its mechanism of action in mice. The antinociceptive activity was assessed by the acetic acid-induced writhing test, formalin test, and hot plate test. The anti-inflammatory activity was investigated by carrageenan-induced peritonitis and paw edema induced by arachidonic acid. The involvement of glucocorticoid receptors in the mechanism of stigmasterol anti-inflammatory action was investigated by molecular docking, also by pretreating mice with RU-486 (glucocorticoid receptor antagonist) in the acetic acid-induced writhing test. Mice motor coordination was evaluated by the rota-rod test and the locomotor activity by the open field test. The lowest effective dose of stigmasterol was standardized at 10 mg/kg (p.o.). It prevented abdominal writhes and paw licking, but it did not increase the latency time in the hot plate test, suggesting that stigmasterol does not show an antinociceptive effect in response to a thermal stimulus. Stigmasterol decreased leukocyte infiltration in peritonitis assay and reduced paw edema elicited by arachidonic acid. Molecular docking suggested that stigmasterol interacts with the glucocorticoid receptor. Also, RU-486 prevented the effect of stigmasterol in the acetic-acid abdominal writhing test, which might indicate the contribution of glucocorticoid receptors in the mechanism of stigmasterol action. Stigmasterol reduced the number of crossings but did not impair mice's motor coordination. Our results show that stigmasterol presents anti-inflammatory effects probably mediated by glucocorticoid receptors.
Collapse
Affiliation(s)
| | - Fernanda Petry
- Graduate Program in Environmental Sciences, Community University of Chapecó Region (Unochapecó), Chapecó, Santa Catarina
| | - Mikaela Scatolin
- Area of Health Sciences, Community University of Chapecó Region (Unochapecó)
| | | | | | | | | | - Amanda Rebonatto Oltramari
- Area of Environmental and Exact Sciences, Community University of Chapecó Region (Unochapecó), Chapecó, Santa Catarina, Brazil
| | - Débora de Oliveira
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis
| | - Jaqueline Scapinello
- Area of Environmental and Exact Sciences, Community University of Chapecó Region (Unochapecó), Chapecó, Santa Catarina, Brazil
| | - Liz Girardi Müller
- Area of Health Sciences, Community University of Chapecó Region (Unochapecó)
- Graduate Program in Environmental Sciences, Community University of Chapecó Region (Unochapecó), Chapecó, Santa Catarina
| |
Collapse
|
6
|
Houshmand G, Naghizadeh B, Ghorbanzadeh B, Ghafouri Z, Goudarzi M, Mansouri MT. Celecoxib inhibits acute edema and inflammatory biomarkers through peroxisome proliferator-activated receptor-γ in rats. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2021; 23:1544-1550. [PMID: 33489027 PMCID: PMC7811815 DOI: 10.22038/ijbms.2020.43995.10315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Objective(s): Celecoxib (CLX), a selective cyclooxygenase-II (COX-2) inhibitor, has been used for management of several inflammatory disorders. The present study aimed to explore the role of peroxisome proliferator-activated receptor-gamma (PPARγ) in CLX induced anti-inflammatory response in rats. Materials and Methods: Carrageenan-induced paw edema was used as an acute inflammation model. Rats were treated with various intra-peritoneal (IP) doses of CLX (0.3–30 mg/kg) and pioglitazone (PGL; PPARγ agonist, 1–20 mg/kg) alone or in combination. Amounts of PPARγ, COX-2, and prostaglandin E2 (PGE2) in paw tissue, and extents of TNF-α and IL-10 in serum were measured. Moreover, levels of oxidative stress parameters as malondialdehyde (MDA), glutathione (GSH), glutathione peroxidase (GPx) activity in the cortex, hippocampus, and paw tissues were also determined. Results: CLX and PGL dose-dependent administration (IP), alone or in combination reduced carrageenan-induced paw edema. Further, both agents, alone or in combination, reduced either the amounts of COX-2, PGE2, and MDA in the inflamed paw, and the levels of TNF-α in serum which were elevated by carrageenan. Both drugs also increased both levels of PPARγ, GSH, GPx activity in paws, and serum levels of IL-10 that were decreased by carrageenan. Intraplantar injection of GW-9662 (IPL), a selective PPARγ antagonist, inhibited all biochemical modifications caused by both single and combined drug treatments. Conclusion: CLX produced its anti-inflammatory effects probably through PPARγ receptor activation. Besides, increased anti-inflammatory effects of CLX with PGL suggest that their combination might be applied for the clinical management of inflammation especially in patients suffering from diabetes.
Collapse
Affiliation(s)
- Gholamreza Houshmand
- Department of Pharmacology, School of Medicine, Mazandaran University of Medical Sciences (MAZUMS), Sari, Iran
| | - Bahareh Naghizadeh
- Department of Anesthesiology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Behnam Ghorbanzadeh
- Department of Pharmacology, School of Medicine, Dezful University of Medical Sciences, Dezful, Iran
| | - Zahra Ghafouri
- Department of Biochemistry Biophysics and Genetics, School of Medicine, Mazandaran University of Medical Sciences (MAZUMS), Sari, Iran
| | - Mehdi Goudarzi
- Medicinal Plant Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Toxicology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Taghi Mansouri
- Department of Anesthesiology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.,Toxicology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
7
|
Gebreab KY, Eeza MNH, Bai T, Zuberi Z, Matysik J, O'Shea KE, Alia A, Berry JP. Comparative toxicometabolomics of perfluorooctanoic acid (PFOA) and next-generation perfluoroalkyl substances. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:114928. [PMID: 32540561 DOI: 10.1016/j.envpol.2020.114928] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 05/08/2020] [Accepted: 05/31/2020] [Indexed: 05/09/2023]
Abstract
Owing to environmental health concerns, a number of per- and polyfluoroalkyl substances (PFAS) have been phased-out, and increasingly replaced by various chemical analogs. Most prominent among these replacements are numerous perfluoroether carboxylic acids (PFECA). Toxicity, and environmental health concerns associated with these next-generation PFAS, however, remains largely unstudied. The zebrafish embryo was employed, in the present study, as a toxicological model system to investigate toxicity of a representative sample of PFECA, alongside perfluorooctanoic acid (PFOA) as one of the most widely used, and best studied, of the "legacy" PFAS. In addition, high-resolution magic angle spin (HRMAS) NMR was utilized for metabolic profiling of intact zebrafish embryos in order to characterize metabolic pathways associated with toxicity of PFAS. Acute embryotoxicity (i.e., lethality), along with impaired development, and variable effects on locomotory behavior, were observed for all PFAS in the zebrafish model. Median lethal concentration (LC50) was significantly correlated with alkyl chain-length, and toxic concentrations were quantitatively similar to those reported previously for PFAS. Metabolic profiling of zebrafish embryos exposed to selected PFAS, specifically including PFOA and two representative PFECA (i.e., GenX and PFO3TDA), enabled elaboration of an integrated model of the metabolic pathways associated with toxicity of these representative PFAS. Alterations of metabolic profiles suggested targeting of hepatocytes (i.e., hepatotoxicity), as well as apparent modulation of neural metabolites, and moreover, were consistent with a previously proposed role of mitochondrial disruption and peroxisome proliferator-activated receptor (PPAR) activation as reflected by dysfunctions of carbohydrate, lipid and amino acid metabolism, and consistent with a previously proposed contribution of PFAS to metabolic syndrome. Taken together, it was generally concluded that toxicity of PFECA is quantitatively and qualitatively similar to PFOA, and these analogs, likewise, represent potential concerns as environmental toxicants.
Collapse
Affiliation(s)
- Kiflom Y Gebreab
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, USA
| | - Muhamed N H Eeza
- Institute for Medical Physics and Biophysics, University of Leipzig, Leipzig, Germany; Institute for Analytical Chemistry, University of Leipzig, Leipzig, Germany
| | - Tianyu Bai
- Institute for Medical Physics and Biophysics, University of Leipzig, Leipzig, Germany; Institute for Analytical Chemistry, University of Leipzig, Leipzig, Germany
| | - Zain Zuberi
- The School of Pharmacy and Pharmaceutical Sciences, Trinity College, Dublin, Ireland
| | - Jörg Matysik
- Institute for Analytical Chemistry, University of Leipzig, Leipzig, Germany
| | - Kevin E O'Shea
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, USA
| | - A Alia
- Institute for Medical Physics and Biophysics, University of Leipzig, Leipzig, Germany; Leiden Institute of Chemistry, Leiden University, 2333, Leiden, the Netherlands
| | - John P Berry
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, USA.
| |
Collapse
|
8
|
Liu K, Zhang X, Wei W, Liu X, Tian Y, Han H, Zhang L, Wu W, Chen J. Myostatin/SMAD4 signaling-mediated regulation of miR-124-3p represses glucocorticoid receptor expression and inhibits adipocyte differentiation. Am J Physiol Endocrinol Metab 2019; 316:E635-E645. [PMID: 30576242 DOI: 10.1152/ajpendo.00405.2018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The mechanism of adipocyte regulation specifically in muscle and the influence of muscle tissue on intramuscular fat deposition are unknown. Our previous studies have shown that myostatin, a myokine, is involved in inhibiting the differentiation of preadipocytes and may be a potential regulator that affects the deposition of intramuscular fat. Myostatin inhibited adipogenesis by downregulating the expression of glucocorticoid receptor (GR) in porcine preadipocytes. However, the mechanism of regulation is not yet clear. In this study, we demonstrate microRNA (miR-124-3p) mediates regulation of GR by myostatin. We found that miR-124-3p can target GR 3'-UTR and negatively regulate GR expression. We demonstrate that overexpression of miR-124-3p can reduce differentiation of 3T3-L1 cells by inhibiting GR, and vice versa. The expression of miR-124-3p was upregulated in 3T3-L1 cells treated with myostatin. Further study revealed that myostatin also promotes the expression of SMAD4 and its transfer and localization to the nucleus. The activated myostatin/SMAD4 signal promotes the expression of miR-124-3p by SMAD4 binding to the promoter region of miR-124-3p. When myostatin or SMAD4 activity is inhibited, the upregulation of miR-124-3p is also inhibited. All of these findings suggested that myostatin could inhibit adipogenic differentiation of 3T3-L1 cells by activating miR-124-3p to inhibit GR. These data may provide an explanation for how myostatin signaling affects intramuscular fat deposition in a tissue-specific manner.
Collapse
Affiliation(s)
- Kaiqing Liu
- College of Animal Science and Technology, Nanjing Agricultural University , Nanjing , China
| | - Xinbao Zhang
- College of Animal Science and Technology, Nanjing Agricultural University , Nanjing , China
| | - Wei Wei
- College of Animal Science and Technology, Nanjing Agricultural University , Nanjing , China
| | - Xin Liu
- College of Animal Science and Technology, Nanjing Agricultural University , Nanjing , China
| | - Ye Tian
- College of Animal Science and Technology, Nanjing Agricultural University , Nanjing , China
| | - Haiyin Han
- College of Animal Science and Technology, Nanjing Agricultural University , Nanjing , China
| | - Lifan Zhang
- College of Animal Science and Technology, Nanjing Agricultural University , Nanjing , China
| | - Wangjun Wu
- College of Animal Science and Technology, Nanjing Agricultural University , Nanjing , China
| | - Jie Chen
- College of Animal Science and Technology, Nanjing Agricultural University , Nanjing , China
| |
Collapse
|
9
|
Deckers J, Bougarne N, Mylka V, Desmet S, Luypaert A, Devos M, Tanghe G, Van Moorleghem J, Vanheerswynghels M, De Cauwer L, Thommis J, Vuylsteke M, Tavernier J, Lambrecht BN, Hammad H, De Bosscher K. Co-Activation of Glucocorticoid Receptor and Peroxisome Proliferator-Activated Receptor-γ in Murine Skin Prevents Worsening of Atopic March. J Invest Dermatol 2017; 138:1360-1370. [PMID: 29288652 DOI: 10.1016/j.jid.2017.12.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 12/06/2017] [Accepted: 12/11/2017] [Indexed: 12/18/2022]
Abstract
Children with atopic dermatitis show an increased risk to develop asthma later in life, a phenomenon referred to as "atopic march," which emphasizes the need for secondary prevention therapies. This study aimed to investigate whether relief of skin inflammation by glucocorticoids and peroxisome proliferator-activated receptor agonists might influence the subsequent development of asthma in a murine model for the atopic march in which mice were repeatedly exposed to house dust mite via the skin, followed by exposure to house dust mite in lungs. To abrogate atopic dermatitis, mice received topical treatment with glucocorticoid receptor/peroxisome proliferator-activated receptor-γ agonists. Nuclear receptor ligand effects were assessed on primary keratinocytes and dendritic cells, as central players in skin inflammation. Prior house dust mite-induced skin inflammation aggravates allergic airway inflammation and induces a mixed T helper type 2/T helper type 17 response in the lungs. Cutaneous combined activation of glucocorticoid receptor/peroxisome proliferator-activated receptor-γ reduced skin inflammation to a higher extent compared to single activation. Additive anti-inflammatory effects were more prominent in dendritic cells, as compared to keratinocytes. Alleviation of allergic skin inflammation by activation of glucocorticoid receptor/peroxisome proliferator-activated receptor-γ appeared insufficient to avoid the allergic immune response in the lungs, but efficiently reduced asthma severity by counteracting the Th17 response. Glucocorticoid receptor/peroxisome proliferator-activated receptor-γ co-activation represents a potent remedy against allergic skin inflammation and worsening of atopic march.
Collapse
Affiliation(s)
- Julie Deckers
- Nuclear Receptor Lab, Ghent University, Ghent, Belgium; Receptor Research Laboratories, VIB Center for Medical Biotechnology, Department of Biochemistry, Ghent University, Ghent, Belgium; Laboratory of Immunoregulation, VIB Center for Inflammation Research, Department of Internal Medicine, Ghent University, Ghent, Belgium
| | - Nadia Bougarne
- Nuclear Receptor Lab, Ghent University, Ghent, Belgium; Receptor Research Laboratories, VIB Center for Medical Biotechnology, Department of Biochemistry, Ghent University, Ghent, Belgium
| | - Viacheslav Mylka
- Nuclear Receptor Lab, Ghent University, Ghent, Belgium; Receptor Research Laboratories, VIB Center for Medical Biotechnology, Department of Biochemistry, Ghent University, Ghent, Belgium
| | - Sofie Desmet
- Nuclear Receptor Lab, Ghent University, Ghent, Belgium; Receptor Research Laboratories, VIB Center for Medical Biotechnology, Department of Biochemistry, Ghent University, Ghent, Belgium
| | - Astrid Luypaert
- Nuclear Receptor Lab, Ghent University, Ghent, Belgium; Receptor Research Laboratories, VIB Center for Medical Biotechnology, Department of Biochemistry, Ghent University, Ghent, Belgium
| | - Michael Devos
- Molecular Signaling and Cell Death Unit, VIB Center for Inflammation Research, Department for Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Giel Tanghe
- Molecular Signaling and Cell Death Unit, VIB Center for Inflammation Research, Department for Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Justine Van Moorleghem
- Laboratory of Immunoregulation, VIB Center for Inflammation Research, Department of Internal Medicine, Ghent University, Ghent, Belgium
| | - Manon Vanheerswynghels
- Laboratory of Immunoregulation, VIB Center for Inflammation Research, Department of Internal Medicine, Ghent University, Ghent, Belgium
| | - Lode De Cauwer
- Nuclear Receptor Lab, Ghent University, Ghent, Belgium; Receptor Research Laboratories, VIB Center for Medical Biotechnology, Department of Biochemistry, Ghent University, Ghent, Belgium
| | - Jonathan Thommis
- Nuclear Receptor Lab, Ghent University, Ghent, Belgium; Receptor Research Laboratories, VIB Center for Medical Biotechnology, Department of Biochemistry, Ghent University, Ghent, Belgium
| | | | - Jan Tavernier
- Receptor Research Laboratories, VIB Center for Medical Biotechnology, Department of Biochemistry, Ghent University, Ghent, Belgium
| | - Bart N Lambrecht
- Laboratory of Immunoregulation, VIB Center for Inflammation Research, Department of Internal Medicine, Ghent University, Ghent, Belgium
| | - Hamida Hammad
- Laboratory of Immunoregulation, VIB Center for Inflammation Research, Department of Internal Medicine, Ghent University, Ghent, Belgium
| | - Karolien De Bosscher
- Nuclear Receptor Lab, Ghent University, Ghent, Belgium; Receptor Research Laboratories, VIB Center for Medical Biotechnology, Department of Biochemistry, Ghent University, Ghent, Belgium.
| |
Collapse
|
10
|
Houshmand G, Mansouri MT, Naghizadeh B, Hemmati AA, Hashemitabar M. Potentiation of indomethacin-induced anti-inflammatory response by pioglitazone in carrageenan-induced acute inflammation in rats: Role of PPARγ receptors. Int Immunopharmacol 2016; 38:434-42. [PMID: 27376854 DOI: 10.1016/j.intimp.2016.06.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Revised: 06/08/2016] [Accepted: 06/24/2016] [Indexed: 02/06/2023]
Abstract
This study aimed to assess the interaction between anti-inflammatory effects of pioglitazone (peroxysome proliferator activated receptor-gamma (PPARγ) agonist, PGL), and indomethacin (cyclooxygenase (COX) inhibitor, IND) and to evaluate the possible underlying mechanisms. Paw edema induced by carrageenan was used to induce inflammation. Different doses of IND (0.3-10mg/kg) and PGL (1-20mg/kg) alone or in combination were administered intraperitoneally to rats. Paw tissue levels of PPARγ, COX-2, and prostaglandin E2 and serum levels of TNF-α and IL-10 were also estimated. Doses of IND and PGL showed a statistically significant anti-inflammatory effect. Combination of a non-effective dose of IND (0.3mg/kg) with increasing doses of PGL (1-10mg/kg) resulted in potentiated anti-inflammation and vise versa. IND, PGL and the combination were able to reduce the COX-2, PGE2 contents and TNF-α level. Moreover, all these treatments caused elevation in PPARγ levels and IL-10 levels. However, when the rats were pre-treated with GW-9662 (a selective PPARγ antagonist), all the anti-inflammation and alterations in the biochemical factors were antagonized. These results showed that PGL markedly enhanced the anti-inflammatory activity of IND and this effect mediated partly at least, through PPARγ. Possible mechanisms of the interaction were that PGL stimulates the PPARγ and inhibits COX-2 by those cytokines that trigger the PPARγ and also inhibit COX-2. This study suggests that combination therapy with pioglitazone and indomethacin may provide an alternative for the clinical control of inflammation especially in patients with diabetes.
Collapse
Affiliation(s)
- Gholamreza Houshmand
- Dept. of Pharmacology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences (AJUMS), Ahvaz, Iran
| | - Mohammad Taghi Mansouri
- Dept. of Pharmacology, School of Medicine, Physiology Research Center, Ahvaz Jundishapur University of Medical Sciences (AJUMS), Ahvaz, Iran.
| | - Bahareh Naghizadeh
- Dept. of Pharmacology, School of Medicine, Physiology Research Center, Ahvaz Jundishapur University of Medical Sciences (AJUMS), Ahvaz, Iran
| | - Ali Asghar Hemmati
- Dept. of Pharmacology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences (AJUMS), Ahvaz, Iran
| | - Mahmoud Hashemitabar
- Dept. of Anatomical Sciences, School of Medicine, Ahvaz Jundishapur University of Medical Sciences (AJUMS), Ahvaz, Iran
| |
Collapse
|
11
|
Agrawal S, Chanley MA, Westbrook D, Nie X, Kitao T, Guess AJ, Benndorf R, Hidalgo G, Smoyer WE. Pioglitazone Enhances the Beneficial Effects of Glucocorticoids in Experimental Nephrotic Syndrome. Sci Rep 2016; 6:24392. [PMID: 27142691 PMCID: PMC4855145 DOI: 10.1038/srep24392] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 03/21/2016] [Indexed: 12/25/2022] Open
Abstract
Glucocorticoids are the primary therapy for nephrotic syndrome (NS), but have serious side effects and are ineffective in ~20-50% of patients. Thiazolidinediones have recently been suggested to be renoprotective, and to modulate podocyte glucocorticoid-mediated nuclear receptor signaling. We hypothesized that thiazolidinediones could enhance glucocorticoid efficacy in NS. We found that puromycin aminonucleoside-induced proteinuria in rats was significantly reduced by both high-dose glucocorticoids (79%) and pioglitazone (61%), but not low-dose glucocorticoids (25%). Remarkably, pioglitazone + low-dose glucocorticoids also reduced proteinuria (63%) comparably to high-dose glucocorticoids, whereas pioglitazone + high-dose glucocorticoids reduced proteinuria to almost control levels (97%). Molecular analysis revealed that both glucocorticoids and pioglitazone enhanced glomerular synaptopodin and nephrin expression, and reduced COX-2 expression, after injury. Furthermore, the glomerular phosphorylation of glucocorticoid receptor and Akt, but not PPARγ, correlated with treatment-induced reductions in proteinuria. Notably, clinical translation of these findings to a child with refractory NS by the addition of pioglitazone to the treatment correlated with marked reductions in both proteinuria (80%) and overall immunosuppression (64%). These findings together suggest that repurposing pioglitazone could potentially enhance the proteinuria-reducing effects of glucocorticoids during NS treatment.
Collapse
Affiliation(s)
- S Agrawal
- Center for Clinical and Translational Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - M A Chanley
- Center for Clinical and Translational Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - D Westbrook
- James and Connie Maynard Children's Hospital, Greenville, NC, USA
| | - X Nie
- Center for Clinical and Translational Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - T Kitao
- Center for Clinical and Translational Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - A J Guess
- Center for Clinical and Translational Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - R Benndorf
- Center for Clinical and Translational Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA.,Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - G Hidalgo
- James and Connie Maynard Children's Hospital, Greenville, NC, USA.,Department of Pediatrics, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - W E Smoyer
- Center for Clinical and Translational Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA.,Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
12
|
Yao X, Su T, Verkman AS. Clobetasol promotes remyelination in a mouse model of neuromyelitis optica. Acta Neuropathol Commun 2016; 4:42. [PMID: 27117475 PMCID: PMC4845317 DOI: 10.1186/s40478-016-0309-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 04/07/2016] [Indexed: 12/14/2022] Open
Abstract
Neuromyelitis optica (NMO) is an inflammatory demyelinating disease of the central nervous system that can produce marked neurological deficit. Current NMO therapies include immunosuppressants, plasma exchange and B-cell depletion. Here, we evaluated 14 potential remyelinating drugs emerging from prior small molecule screens done to identify drugs for repurposing in multiple sclerosis and other demyelinating neurological diseases. Compounds were initially evaluated in oligodendrocyte precursor cell (OPC) and cerebellar slice cultures, and then in a mouse model of NMO produced by intracerebral injection of anti-AQP4 autoantibody (AQP4-IgG) and human complement characterized by demyelination with minimal axonal damage. The FDA-approved drug clobetasol promoted differentiation in OPC cultures and remyelination in cerebellar slice cultures and in mice. Intraperitoneal administration of 2 mg/kg/day clobetasol reduced myelin loss by ~60 %, even when clobetasol was administered after demyelination occurred. Clobetasol increased the number of mature oligodendrocytes within lesions without significantly altering initial astrocyte damage or inflammation. These results provide proof-of-concept for the potential utility of a remyelinating approach in the treatment of NMO.
Collapse
|
13
|
Tronino D, Russo R, Ostacolo C, Mazzolari A, De Caro C, Avagliano C, Laneri S, La Rana G, Sacchi A, Della Valle F, Vistoli G, Calignano A. Improvement of Topical Palmitoylethanolamide Anti-Inflammatory Activity by Pegylated Prodrugs. Mol Pharm 2015; 12:3369-79. [PMID: 26289562 DOI: 10.1021/acs.molpharmaceut.5b00397] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A small library of polyethylene glycol esters of palmitoylethanolamide (PEA) was synthesized with the aim of improving the pharmacokinetic profile of the parent drug after topical administration. Synthesized prodrugs were studied for their skin accumulation, pharmacological activities, in vitro chemical stability, and in silico enzymatic hydrolysis. Prodrugs proved to be able to delay and prolong the pharmacological activity of PEA by modification of its skin accumulation profile. Pharmacokinetic improvements were particularly evident when specific structural requirements, such as flexibility and reduced molecular weight, were respected. Some of the synthesized prodrugs prolonged the pharmacological effects 5 days following topical administration, while a formulation composed by PEA and two pegylated prodrugs showed both rapid onset and long-lasting activity, suggesting the potential use of polyethylene glycol prodrugs of PEA as a suitable candidate for the treatment of skin inflammatory diseases.
Collapse
Affiliation(s)
- Diana Tronino
- Department of Pharmacy, University of Naples Federico II , Via D. Montesano 49, 80131 Naples, Italy
| | - Roberto Russo
- Department of Pharmacy, University of Naples Federico II , Via D. Montesano 49, 80131 Naples, Italy
| | - Carmine Ostacolo
- Department of Pharmacy, University of Naples Federico II , Via D. Montesano 49, 80131 Naples, Italy
| | - Angelica Mazzolari
- Department of Pharmaceutical Sciences "Pietro Pratesi", University of Milan , Via Mangiagalli 25, 20133 Milan, Italy
| | - Carmen De Caro
- Department of Pharmacy, University of Naples Federico II , Via D. Montesano 49, 80131 Naples, Italy
| | - Carmen Avagliano
- Department of Pharmacy, University of Naples Federico II , Via D. Montesano 49, 80131 Naples, Italy
| | - Sonia Laneri
- Department of Pharmacy, University of Naples Federico II , Via D. Montesano 49, 80131 Naples, Italy
| | - Giovanna La Rana
- Department of Pharmacy, University of Naples Federico II , Via D. Montesano 49, 80131 Naples, Italy
| | - Antonia Sacchi
- Department of Pharmacy, University of Naples Federico II , Via D. Montesano 49, 80131 Naples, Italy
| | | | - Giulio Vistoli
- Department of Pharmaceutical Sciences "Pietro Pratesi", University of Milan , Via Mangiagalli 25, 20133 Milan, Italy
| | - Antonio Calignano
- Department of Pharmacy, University of Naples Federico II , Via D. Montesano 49, 80131 Naples, Italy
| |
Collapse
|