1
|
Abd-Eldayem AM, Makram SM, Messiha BAS, Abd-Elhafeez HH, Abdel-Reheim MA. Cyclosporine-induced kidney damage was halted by sitagliptin and hesperidin via increasing Nrf2 and suppressing TNF-α, NF-κB, and Bax. Sci Rep 2024; 14:7434. [PMID: 38548778 PMCID: PMC10978894 DOI: 10.1038/s41598-024-57300-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 03/16/2024] [Indexed: 04/01/2024] Open
Abstract
Cyclosporine A (CsA) is employed for organ transplantation and autoimmune disorders. Nephrotoxicity is a serious side effect that hampers the therapeutic use of CsA. Hesperidin and sitagliptin were investigated for their antioxidant, anti-inflammatory, and tissue-protective properties. We aimed to investigate and compare the possible nephroprotective effects of hesperidin and sitagliptin. Male Wistar rats were utilized for induction of CsA nephrotoxicity (20 mg/kg/day, intraperitoneally for 7 days). Animals were treated with sitagliptin (10 mg/kg/day, orally for 14 days) or hesperidin (200 mg/kg/day, orally for 14 days). Blood urea, serum creatinine, albumin, cystatin-C (CYS-C), myeloperoxidase (MPO), and glucose were measured. The renal malondialdehyde (MDA), glutathione (GSH), catalase, and SOD were estimated. Renal TNF-α protein expression was evaluated. Histopathological examination and immunostaining study of Bax, Nrf-2, and NF-κB were performed. Sitagliptin or hesperidin attenuated CsA-mediated elevations of blood urea, serum creatinine, CYS-C, glucose, renal MDA, and MPO, and preserved the serum albumin, renal catalase, SOD, and GSH. They reduced the expressions of TNF-α, Bax, NF-κB, and pathological kidney damage. Nrf2 expression in the kidney was raised. Hesperidin or sitagliptin could protect the kidney against CsA through the mitigation of oxidative stress, apoptosis, and inflammation. Sitagliptin proved to be more beneficial than hesperidin.
Collapse
Affiliation(s)
- Ahmed M Abd-Eldayem
- Department of Medical Pharmacology, Faculty of Medicine, Assiut University, Assiut, Egypt.
- Department of Pharmacology, Faculty of Medicine, Merit University, Sohâg, Egypt.
| | | | | | - Hanan H Abd-Elhafeez
- Department of Cell and Tissue, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - Mustafa Ahmed Abdel-Reheim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef, Egypt
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra, Saudi Arabia
| |
Collapse
|
2
|
Taha M, Elazab ST, Baokbah TAS, Al-Kushi AG, Mahmoud ME, Abdelbagi O, Qusty NF, El-Shenbaby I, Babateen O, Badawy AM, Ibrahim MM. Palliative Role of Zamzam Water against Cyclosporine-Induced Nephrotoxicity through Modulating Autophagy and Apoptosis Crosstalk. TOXICS 2023; 11:377. [PMID: 37112604 PMCID: PMC10144806 DOI: 10.3390/toxics11040377] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/09/2023] [Accepted: 04/14/2023] [Indexed: 06/19/2023]
Abstract
Cyclosporine (CsA) is considered one of the main components of treatment protocols for organ transplantation owing to its immunosuppressive effect. However, its use is very restricted due to its nephrotoxic effect. ZW is an alkaline fluid rich in various trace elements and has a great ability to stimulate antioxidant processes. This study aimed to investigate the possible mitigating effect of ZW on CsA-induced nephrotoxicity and its underlying mechanisms. Forty rats were allocated into four groups (n = 10): a control group, ZW group, cyclosporine A group (injected subcutaneously (SC) with CsA (20 mg/kg/day)), and cyclosporine A+ Zamzam water group (administered CsA (SC) and ZW as their only drinking water (100 mL/cage/day) for 21 days). Exposure to CsA significantly (p < 0.001) increased the serum creatinine level, lipid peroxidation marker level (malondialdehyde; MDA), and the expression of apoptotic markers procaspase-8, caspase-8, caspase- 9, calpain, cytochrome c, caspas-3, P62, and mTOR in renal tissues. Meanwhile, it markedly decreased (p< 0.001) the autophagic markers (AMPK, ULK-I, ATag5, LC3, and Beclin-1), antiapoptotic Bcl-2, and antioxidant enzymes. Moreover, the administration of CsA caused histological alterations in renal tissues. ZW significantly (p < 0.001) reversed all the changes caused by CsA and conclusively achieved a positive outcome in restraining CsA-induced nephrotoxicity, as indicated by the restoration of the histological architecture, improvement of renal function, inhibition of apoptosis, and enhancement of autophagy via the AMPK/mTOR pathway.
Collapse
Affiliation(s)
- Medhat Taha
- Department of Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
- Department of Anatomy, Al-Qunfudah Medical College, Umm Al-Qura University, Al-Qunfudah 28814, Saudi Arabia
| | - Sara T. Elazab
- Department of Pharmacology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Tourki A. S. Baokbah
- Department of Medical Emergency Services, College of Health Sciences-AlQunfudah, Umm Al-Qura University, Al-Qunfudah 28814, Saudi Arabia
| | - Abdullah G. Al-Kushi
- Department of Human Anatomy, Faculty of Medicine, Umm Al-Qura University, Makkah, Mecca 24382, Saudi Arabia
| | - Mohamed Ezzat Mahmoud
- Histology Department, Damietta Faculty of Medicine, Al-Azhar University, Damietta 34711, Egypt
| | - Omer Abdelbagi
- Department of Pathology, Qunfudah Faculty of Medicine, Umm-Al-Qura University Kingdom of Saudi Arabia, Makka 24382, Saudi Arabia
| | - Naeem F. Qusty
- Medical Laboratories Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah 24382, Saudi Arabia
| | - Ibrahim El-Shenbaby
- Clinical Pharmacology Department, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Omar Babateen
- Department of physiology, Faculty of Medicine, Umm Al-Qura University, Makkah 24382, Saudi Arabia
| | - Alaa. M. Badawy
- Department of Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Mohie Mahmoud Ibrahim
- Department of Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
3
|
Cytoprotective remedies for ameliorating nephrotoxicity induced by renal oxidative stress. Life Sci 2023; 318:121466. [PMID: 36773693 DOI: 10.1016/j.lfs.2023.121466] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/27/2023] [Accepted: 01/27/2023] [Indexed: 02/11/2023]
Abstract
AIMS Nephrotoxicity is the hallmark of anti-neoplastic drug metabolism that causes oxidative stress. External chemical agents and prescription drugs release copious amounts of free radicals originating from molecular oxidation and unless sustainably scavenged, they stimulate membrane lipid peroxidation and disruption of the host antioxidant mechanisms. This review aims to provide a comprehensive collection of potential cytoprotective remedies in surmounting the most difficult aspect of cancer therapy as well as preventing renal oxidative stress by other means. MATERIALS AND METHODS Over 400 published research and review articles spanning several decades were scrutinised to obtain the relevant data which is presented in 3 categories; sources, mechanisms, and mitigation of renal oxidative stress. KEY-FINDINGS Drug and chemical-induced nephrotoxicity commonly manifests as chronic or acute kidney disease, nephritis, nephrotic syndrome, and nephrosis. Renal replacement therapy requirements and mortalities from end-stage renal disease are set to rapidly increase in the next decade for which 43 different cytoprotective compounds which have the capability to suppress experimental nephrotoxicity are described. SIGNIFICANCE The renal system performs essential homeostatic functions that play a significant role in eliminating toxicants, and its accumulation and recurrence in nephric tissues results in tubular degeneration and subsequent renal impairment. Global statistics of the latest chronic kidney disease prevalence is 13.4 % while the end-stage kidney disease requiring renal replacement therapy is 4-7 million per annum. The remedial compounds discussed herein had proven efficacy against nephrotoxicity manifested consequent to impaired antioxidant mechanisms in preclinical models produced by renal oxidative stress activators.
Collapse
|
4
|
Arab HH, Eid AH, Gad AM, Yahia R, Mahmoud AM, Kabel AM. Inhibition of oxidative stress and apoptosis by camel milk mitigates cyclosporine-induced nephrotoxicity: Targeting Nrf2/HO-1 and AKT/eNOS/NO pathways. Food Sci Nutr 2021; 9:3177-3190. [PMID: 34136182 PMCID: PMC8194908 DOI: 10.1002/fsn3.2277] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 03/02/2021] [Accepted: 03/22/2021] [Indexed: 02/05/2023] Open
Abstract
Cyclosporine (CsA) is a widely used immunosuppressive agent that incurs marked nephrotoxicity in the clinical setting. Thus, there is a need for finding safe/effective agents that can attenuate CsA-induced kidney injury. Meanwhile, the underlying mechanisms for CsA-associated nephrotoxicity are inadequately investigated, in particular, the AKT/eNOS/NO pathway. Here, the present work aimed to explore the potential of camel milk, a natural product with distinguished antioxidant/anti-inflammatory actions, to ameliorate CsA-induced nephrotoxicity in rats. The molecular mechanisms related to renal oxidative aberrations and apoptosis were studied, including Nrf2/HO-1 and AKT/eNOS/NO pathways. The kidney tissues were inspected using histopathology, ELISA, Western blotting, and immunohistochemistry. The present findings demonstrated that camel milk (10 ml/kg) significantly lowered creatine, BUN, and NGAL nephrotoxicity markers and the aberrant histopathology, with similar efficacy to the reference quercetin. Moreover, camel milk suppressed the renal oxidative stress, as evidenced by significantly lowering NOX-1 and lipid peroxides and significantly augmenting the renal antioxidant moieties (GSH, GPx, and SOD), thereby, driving the restoration of Nrf2/HO-1 pathway. Meanwhile, camel milk counteracted the pro-apoptotic reactions by significantly lowering Bax protein expression, caspase-3 activity/cleavage, and PARP cleavage, alongside significantly increasing the expression of the proliferation signal PCNA. Regarding the anti-apoptotic AKT/eNOS/NO pathway, camel milk activated its signaling by significantly increasing the protein expression of PI3Kp110, p-AKT(Ser473)/total AKT, and p-eNOS (Ser1177)/total eNOS besides significantly boosting the renoprotective NO levels. In conclusion, these findings reveal that camel milk may be a promising candidate for the alleviation of CsA-induced nephrotoxicity.
Collapse
Affiliation(s)
- Hany H. Arab
- Department of Pharmacology and ToxicologyCollege of PharmacyTaif UniversityTaifSaudi Arabia
| | - Ahmed H. Eid
- Department of PharmacologyEgyptian Drug Authority (EDA), formerly NODCARGizaEgypt
| | - Amany M. Gad
- Department of PharmacologyEgyptian Drug Authority (EDA), formerly NODCARGizaEgypt
- Department of Pharmacology and ToxicologyFaculty of PharmacySinai UniversityEl IsmailiaEgypt
| | - Rania Yahia
- Department of PharmacologyEgyptian Drug Authority (EDA), formerly NODCARGizaEgypt
| | - Ayman M. Mahmoud
- Zoology Department, Faculty of ScienceBeni‐Suef UniversityBeni‐SuefEgypt
- Biotechnology DepartmentResearch Institute of Medicinal and Aromatic PlantsBeni‐Suef UniversityBeni‐SuefEgypt
| | - Ahmed M. Kabel
- Department of PharmacologyFaculty of MedicineTanta UniversityTantaEgypt
| |
Collapse
|
5
|
Mostafa HES, Alaa El-Din EA, El-Shafei DA, Abouhashem NS, Abouhashem AA. Protective roles of thymoquinone and vildagliptin in manganese-induced nephrotoxicity in adult albino rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:31174-31184. [PMID: 33595798 DOI: 10.1007/s11356-021-12997-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 02/11/2021] [Indexed: 06/12/2023]
Abstract
Despite being important in the body's mechanisms, excessive accumulation of manganese (Mn) can induce severe toxicity in vital organs of the body. Thymoquinone (TQ) is extracted from Nigella sativa seeds which recently gained popularity as dietary supplements and plant-based antioxidants. Vildagliptin (VLD) is a dipeptidyl peptidase IV (DPPIV) inhibitor, approved as anti-hyperglycemic agents with cardioprotective and renoprotective effects. The present study aimed to investigate the nephrotoxicity of Mn and the potential protective effects of thymoquinone and vildagliptin. Sixty-four adult male albino rats were equally divided into 8 groups: group I (control, received no medication), group II (vehicle, received normal saline), group III (TQ, 50 mg/kg/day), group IV (VLD, 10 mg/kg/day), group V (MnCl2, 50 mg/kg/day), group VI (Mn+TQ), group VII (Mn+VLD), and group VIII (Mn+TQ+VLD). Groups VI, VII, and VIII, received the same previously mentioned doses. All drugs were orally gavaged for 12 weeks. Manganese administration resulted in an elevation in the levels of serum and tissues Mn, blood glucose, serum urea, creatinine, tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and reduction in insulin, kidney superoxide dismutase (SOD), glutathione (GSH), and interleukin-10. Histopathological structural renal damage was detected associated with strong positive immunoexpression of caspase-3. On the other hand, individual or combined TQ and VLD administration with Mn significantly decreased the serum and tissue levels of Mn, declined the blood glucose, inflammatory markers, oxidative stress markers, ameliorated the histopathological effects, and down-regulated the immunoexpression of caspase-3. In conclusion, TQ and VLD co-administration elicited protective effects against Mn-induced nephrotoxicity.
Collapse
Affiliation(s)
- Heba El-Sayed Mostafa
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Eman Ahmed Alaa El-Din
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Zagazig University, Zagazig, 44519, Egypt.
| | - Dalia Abdallah El-Shafei
- Department of Community, Environmental & Occupational Medicine, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Nehal S Abouhashem
- Department of Pathology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Aisha Abdallah Abouhashem
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Zagazig University, Zagazig, 44519, Egypt
| |
Collapse
|
6
|
Camel Milk Mitigates Cyclosporine-Induced Renal Damage in Rats: Targeting p38/ERK/JNK MAPKs, NF-κB, and Matrix Metalloproteinases. BIOLOGY 2021; 10:biology10050442. [PMID: 34067576 PMCID: PMC8156933 DOI: 10.3390/biology10050442] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/30/2021] [Accepted: 05/12/2021] [Indexed: 12/11/2022]
Abstract
Renal damage is a devastating adverse effect for cyclosporine; a widely used immunosuppressant drug. The present work examined the potential of camel milk, a natural agent with marked anti-inflammatory/antioxidant properties, to attenuate cyclosporine-induced renal injury. The kidney tissue was examined with the aid of Western blotting, immunohistochemistry, biochemical assays, including colorimetric and ELISA kits. The present findings revealed that camel milk (10 mL/kg/day; for 3 weeks by gavage) significantly lowered serum creatinine, BUN, and KIM-1 renal dysfunction markers. Mechanistically, camel milk inhibited renal inflammation, as seen by significant decrease of the pro-inflammatory cytokines (MCP-1, TNF-α, IL-1β, and IL-18) and extracellular degradation signals (MMP-2 and MMP-9) and enhanced the generation of the anti-inflammatory IL-10. Moreover, it inhibited the upstream pro-inflammatory p38/ERK/JNK MAPK pathway by lowering the phosphorylation of the 3 subfamilies of MAPKs (p38 MAPK, JNK1/2, and ERK1/2). Furthermore, camel milk curbed the NF-κB pathway activation by downregulating the protein expression of activated NF-κBp65, p-NF-κBp65, and p-IκBα proteins. Additionally, camel milk inhibited renal oxidative stress by lowering the MPO activity and augmenting the reduced/oxidized glutathione ratio and total antioxidant capacity. These findings propose that camel milk may be a promising agent that inhibits cyclosporine-triggered renal inflammation via curtailing the p38/ERK/JNK MAPK and NF-κB pathways, matrix metalloproteinases, and pro-inflammatory cytokines.
Collapse
|
7
|
A Novel Dipeptidyl Peptidase-4 Inhibitor DA-1229 Ameliorates Tubulointerstitial Fibrosis in Cyclosporine Nephrotoxicity in Mice. Life (Basel) 2021; 11:life11030251. [PMID: 33803842 PMCID: PMC8003165 DOI: 10.3390/life11030251] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/14/2021] [Accepted: 03/16/2021] [Indexed: 01/15/2023] Open
Abstract
Cyclosporine A (CyA) is an immunosuppressive agent that induces nephrotoxicity with long-term treatment. The roles of DPP-4 and its inhibitors in cyclosporine nephrotoxicity are not fully understood. Therefore, we investigated the effects of a novel DPP-4 inhibitor, DA-1229, on the progression of renal disease in an experimental cyclosporine nephrotoxicity model. Chronic cyclosporine nephrotoxicity was induced in six-week-old male ICR mice by subcutaneous injections of CyA at a dose of 30 mg/kg for four weeks. Animals were treated with DA-1229 at a dose of 300 mg/kg per day in food for four weeks. Although DPP-4 activity did not increase in the kidneys of mice with induced cyclosporine nephrotoxicity, DA-1229 treatment significantly suppressed DPP-4 activity in both plasma and renal tissues. DPP-4 inhibition by DA-1229 led to significantly decreased albuminuria and urinary excretion of 8-isoprosatane. DPP-4 inhibition also substantially suppressed pro-inflammatory effects, profibrotic molecules, and macrophage infiltration, and led to the improvement in renal structural changes. Our results suggest that DPP-4 inhibition by DA-1229 provides renoprotective effects in an animal model of cyclosporine nephrotoxicity via antioxidant, anti-inflammatory, and anti-fibrotic mechanisms. DPP-4 inhibition may be a useful new therapeutic approach for the management of progressive renal disease in cyclosporine nephrotoxicity.
Collapse
|
8
|
Schmid F, Mayer C, Büttner-Herold M, von Hörsten S, Amann K, Daniel C. CD161a-positive natural killer (NK) cells and α-smooth muscle actin-positive myofibroblasts were upregulated by extrarenal DPP4 in a rat model of acute renal rejection. Diabetes Res Clin Pract 2021; 173:108691. [PMID: 33549675 DOI: 10.1016/j.diabres.2021.108691] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 01/04/2021] [Accepted: 01/24/2021] [Indexed: 12/29/2022]
Abstract
AIMS Systemic inhibition of dipeptidyl peptidase 4 (DPP4) showed a protective effect in several transplant models. Here we assessed the specific role of extrarenal DPP4 in renal transplant rejection. METHODS Kidneys from wildtype (wt) F344 rats were either transplanted in wt Dark Agouti or congenic rats not expressing DPP4. The remaining, not transplanted donor kidney served as healthy controls. To investigate early inflammatory events rats were sacrificed 3 days after transplantation and kidneys were evaluated for inflammatory cells, capillary rarefaction, proliferation, apoptosis and myofibroblasts by immunohistochemistry. RESULTS Capillary ERG-1-positive endothelial cells were significantly more abundant in renal cortex when transplanted into DPP4 deficient compared to wt recipients. In contrast, TGF-ß and myofibroblasts were reduced by more than 25% in kidneys transplanted into DPP4 deficient compared to wt recipients. Numbers of CD161a-positive NK-cells were significantly lower in allografts in DPP4 deficient compared to wt recipients. Numbers of all other investigated immune cells were not affected by the lack of extrarenal DPP4. CONCLUSION In early transplant rejection extrarenal DPP4 is involved in the recruitment of NK-cells and early fibrosis. Beneficial effects were less pronounced than reported for systemic DPP4 inhibition, indicating that renal DPP4 is an important player in transplantation-mediated injury.
Collapse
Affiliation(s)
- Franziska Schmid
- Department of Nephropathology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Christina Mayer
- Department of Nephropathology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Maike Büttner-Herold
- Department of Nephropathology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Stephan von Hörsten
- Department of Experimental Therapy, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Kerstin Amann
- Department of Nephropathology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Christoph Daniel
- Department of Nephropathology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
9
|
Komeili M, Noorbakhsh F, Esmaili J, Muhammadnejad A, Hassanzadeh G, Dehpour AR, Goudarzi R, Partoazar A. Combination therapy of phosphatidylserine liposome with cyclosporine A improves nephrotoxicity and attenuates delayed-type hypersensitivity response. Life Sci 2020; 265:118780. [PMID: 33217444 DOI: 10.1016/j.lfs.2020.118780] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 11/15/2020] [Accepted: 11/15/2020] [Indexed: 01/06/2023]
Abstract
This study aimed to evaluate the antioxidant capacity of phosphatidylserine liposome (PS) against oxidative stress due to cyclosporine A (CsA) and concurrent administration of PS and CsA on the attenuation of immune response. The effect of oral PS was evaluated on biochemical and oxidative renal markers and histopathology of nephrotic rats receiving CsA. The effect of co-administration of PS with CsA was also assessed on DTH (delayed-type hypersensitivity) reaction of immunized rats. The cytokines production level of IL-2 (Interleukin-2) and IFN-γ (Interferon gamma) was measured in immunized rat's splenocytes. PS treatment significantly (P < 0.05) reduced Cr and BUN of serum and MDA (malondialdehyde) in kidney tissue, and increased SOD (superoxide dismutase) and CAT (Catalase) of kidney tissue in CsA-nephrotic rats. Histopathology data indicated significantly (P < 0.05) nephrotoxicity improvement after 25-day treatment with PS. Furthermore, CsA plus PS administration significantly reduced DTH response and cytokines production of IL-2 and IFN-γ in immunized rats. In conclusion, coadministration of CsA plus PS may overcome oxidative stress and improve the performance of organ transplantation or autoimmune therapy.
Collapse
Affiliation(s)
- Monika Komeili
- Department of Pharmacy, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Farshid Noorbakhsh
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran 1416753955, Iran
| | - Jamileh Esmaili
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahad Muhammadnejad
- Cancer Biology Research Center, Cancer Institute of Iran, Tehran University of Medical Sciences, Tehran, Iran
| | - Gholamreza Hassanzadeh
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Reza Dehpour
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ramin Goudarzi
- Division of Research and Development, Pharmin USA, LLC, San Jose, USA
| | - Alireza Partoazar
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
10
|
Sayed NH, Fathy N, Kortam MA, Rabie MA, Mohamed AF, Kamel AS. Vildagliptin Attenuates Huntington's Disease through Activation of GLP-1 Receptor/PI3K/Akt/BDNF Pathway in 3-Nitropropionic Acid Rat Model. Neurotherapeutics 2020; 17:252-268. [PMID: 31728850 PMCID: PMC7007456 DOI: 10.1007/s13311-019-00805-5] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Vildagliptin (Vilda), a dipeptidyl peptidase-4 (DPP-4) inhibitor, has been highlighted as a promising therapeutic agent for neurodegenerative diseases as Alzheimer's and Parkinson's diseases. Vilda's effect is mostly linked to PI3K/Akt signaling in CNS. Moreover, PI3K/Akt activation reportedly enhanced survival and dampened progression of Huntington's disease (HD). However, Vilda's role in HD is yet to be elucidated. Thus, the aim of the study is to uncover the potentiality of Vilda in HD and unfold its link with PI3K/Akt pathway in 3-nitropropionic acid (3NP) rat model. Rats were randomly assigned into 4 groups; group 1 received saline, whereas, groups 2, 3 and 4 received 3NP (10 mg/kg/day; i.p.) for 14 days, concomitantly with Vilda (5 mg/kg/day; p.o.) in groups 3 and 4, and wortmannin (WM), a PI3K inhibitor, (15 μg/kg/day; i.v.) in group 4. Vilda improved cognitive and motor perturbations induced by 3NP, as confirmed by striatal histopathological specimens and immunohistochemical examination of GFAP. The molecular signaling of Vilda was estimated by elevation of GLP-1 level and protein expressions of survival proteins; p85/p55 (pY458/199)-PI3K, pS473-Akt. Together, it boosted striatal neurotrophic factors and receptor; pS133-CREB, BDNF, pY515-TrKB, which subsequently maintained mitochondrial integrity, as indicated by enhancing both SDH and COX activities, and the redox modulators; Sirt1, Nrf2. Such neuroprotection restored imbalance of neurotransmitters through increasing GABA and suppressing glutamate as well PDE10A. These effects were reversed by WM pre-administration. In conclusion, Vilda purveyed significant anti-Huntington effect which may be mediated, at least in part, via activation of GLP-1/PI3K/Akt pathway in 3NP rat model.
Collapse
Affiliation(s)
- Noha H Sayed
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Governorate, Giza, Egypt
| | - Nevine Fathy
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Governorate, Giza, Egypt.
| | - Mona A Kortam
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Governorate, Giza, Egypt
| | - Mostafa A Rabie
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Governorate, Giza, Egypt
| | - Ahmed F Mohamed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Governorate, Giza, Egypt
| | - Ahmed S Kamel
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Governorate, Giza, Egypt
| |
Collapse
|
11
|
Protective Effects of Gemigliptin, a Dipeptidyl Peptidase-4 Inhibitor, against Cisplatin-Induced Nephrotoxicity in Mice. Mediators Inflamm 2017; 2017:4139439. [PMID: 29317794 PMCID: PMC5727799 DOI: 10.1155/2017/4139439] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Accepted: 10/19/2017] [Indexed: 12/24/2022] Open
Abstract
Dipeptidyl peptidase-4 (DPP-4) inhibitors are widely used antihyperglycemic agents for the treatment of type 2 diabetes mellitus. Recently, the pleiotropic actions of DPP-4 inhibitors have drawn much attention. In the present study, we aimed to examine whether gemigliptin, a recently developed DPP-4 inhibitor, could protect against cisplatin-induced nephrotoxicity. We showed that pretreatment with gemigliptin attenuated cisplatin-induced renal dysfunction, as shown by analysis of plasma creatinine levels and blood urea nitrogen and histological damage. Elevated plasma levels of active glucagon-like peptide-1 were observed in gemigliptin-pretreated mice after cisplatin treatment, compared to that in cisplatin alone-treated mice. Gemigliptin attenuated cisplatin-induced apoptotic cell death, as assessed by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling and Western blot analysis in the kidneys. Gemigliptin also decreased the plasma levels of tumor necrosis factor-α and monocyte chemoattractant protein-1 and attenuated nuclear staining of nuclear factor kappa-B p65 in the kidneys. In addition, gemigliptin increased the protein expression of heme oxygenase-1 (HO-1) and NAD(P)H:quinone oxidoreductase 1 (NQO1) in the kidneys of cisplatin-treated mice. Taken together, these results suggest that pretreatment with gemigliptin protects against cisplatin-induced nephrotoxicity in mice, possibly via inhibition of apoptotic cell death and inflammatory responses through induction of HO-1 and NQO1 expression.
Collapse
|
12
|
Renal outcomes with dipeptidyl peptidase-4 inhibitors. DIABETES & METABOLISM 2017; 44:101-111. [PMID: 29146035 DOI: 10.1016/j.diabet.2017.07.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 07/11/2017] [Accepted: 07/14/2017] [Indexed: 02/06/2023]
Abstract
Dipeptidyl peptidase-4 inhibitors (DPP-4is) are increasingly being used in the management of type 2 diabetes (T2D). The present review summarizes the current knowledge of the effects of DPP-4is on renal outcomes by analyzing the experimental preclinical data, the effects of DPP-4is on urinary albumin-creatinine ratios (UACRs) and estimated glomerular filtration rates (eGFRs) from observational studies and clinical trials, and renal events (including kidney failure requiring renal replacement therapy) in recent large prospective cardiovascular outcome trials. Renal protection has been demonstrated in various animal models that have implicated different underlying mechanisms independent of glucose control, whereas prevention of new onset microalbuminuria and/or progression of albuminuria has been reported in some clinical studies, but with no significant effects on eGFR in most of them. The long-term clinical effects of DPP-4is on renal outcomes and the development of end-stage renal disease remain largely unknown and, thus, demand further investigations in prospective trials and long-term observational studies. In conclusion, despite promising results in animal models, data on surrogate biological markers of renal function and clinical renal outcomes remain rather scanty in patients with T2D, and mostly demonstrate the safety rather than true efficacy of DPP-4is.
Collapse
|
13
|
Maerckx C, Lombard CA, Tondreau T, Najimi M, Wallemacq P, Sokal EM. Cyclosporine A disposition, hepatic and renal tolerance in Wistar rat. Immunopharmacol Immunotoxicol 2016; 38:390-394. [PMID: 27600635 DOI: 10.1080/08923973.2016.1233979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Cyclosporine A, a potent calcineurin inhibitor, has been widely used in organ transplantation and in the treatment of autoimmune diseases. It has, however, been shown to induce serious renal and hepatic side effects. The drug is also used in preclinical studies, but with little published information on the optimal dose and route of administration in rodents. Objectives of this study were to identify efficient and safe doses of cyclosporine A in rodent and to assess its effects on hepatic and renal functions. For this purpose, we tested the effects of different doses and administration routes of cyclosporine A (5, 2.5 and 1 mg/kg) administered during 28 days intraperitoneally, or by gastric feeding on Wistar rats. Our data indicate that rats injected intraperitoneally with 5 mg/kg/2d (every two days) exhibited trough cyclosporine A levels within known therapeutic range in human, but were subject to blood cyclosporine A accumulation, whereas the 5 mg/kg/d gavage resulted in only a small cyclosporine A accumulation over time. In both cases this accumulation was not deleterious to renal and hepatic functions, as shown by transaminase, urea, creatinine and bilirubin measurements.
Collapse
Affiliation(s)
- C Maerckx
- a Laboratory of Pediatric Hepatology and Cell Therapy, Institut de Recherche Clinique et Expérimentale (IREC) , Université Catholique de Louvain , Brussels , Belgium
| | - C A Lombard
- a Laboratory of Pediatric Hepatology and Cell Therapy, Institut de Recherche Clinique et Expérimentale (IREC) , Université Catholique de Louvain , Brussels , Belgium
| | - T Tondreau
- a Laboratory of Pediatric Hepatology and Cell Therapy, Institut de Recherche Clinique et Expérimentale (IREC) , Université Catholique de Louvain , Brussels , Belgium
| | - M Najimi
- a Laboratory of Pediatric Hepatology and Cell Therapy, Institut de Recherche Clinique et Expérimentale (IREC) , Université Catholique de Louvain , Brussels , Belgium
| | - P Wallemacq
- b Louvain Center for Toxicology and Applied Pharmacology , Université Catholique de Louvain , Brussels , Belgium
| | - E M Sokal
- a Laboratory of Pediatric Hepatology and Cell Therapy, Institut de Recherche Clinique et Expérimentale (IREC) , Université Catholique de Louvain , Brussels , Belgium
| |
Collapse
|
14
|
Abstract
Glucagon like peptide-1 (GLP-1) analogues and dipeptidyl peptidase-4 (DPP-4) inhibitors are new classes of hypoglycemic agents with numerous pleiotropic effects. The review summarises data about the influence of GLP-1 analogues and DPP-4 inhibitors on structural and functional changes in diabetic kidneys. Growing evidence indicates that the kidney is one of the loci of the effects and degradation of GLP-1. The potency of the effects of GLP-1 in diabetic kidneys can be reduced by decrease in GLP-1 receptor expression or enhancement of GLP-1 degradation. In experimental models of diabetic nephropathy and non-diabetic renal injury, GLP-1 analogues and DPP-4 inhibitors slow the development of kidney fibrosis and prevent the decline of kidney function. The mechanisms of protective effect include hyperglycaemia reduction, enhancement of sodium excretion, suppression of inflammatory and fibrogenic signalling pathways, reduction of oxidative stress and apoptosis in the kidneys. In clinical studies, the urinary albumin excretion reduction rate while using the GLP-1 analogue and DPP-4 inhibitor treatment was demonstrated in patients with type 2 diabetes. Long-term impact of these agents on renal function in diabetes needs further investigations.
Collapse
|