1
|
Zhuang X, Xiao F, Chen F, Ni S. HDAC9-mediated deacetylation of CALML6 promotes excessive proliferation of glomerular mesangial cells in IgA nephropathy. Clin Exp Nephrol 2025:10.1007/s10157-024-02620-5. [PMID: 39833449 DOI: 10.1007/s10157-024-02620-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 12/24/2024] [Indexed: 01/22/2025]
Abstract
PURPOSE This study seeks to investigate the fundamental molecular processes through which histone deacetylase 9 (HDAC9) governs the proliferation of glomerular mesangial cells in the context of immunoglobulin A nephropathy (IgAN) and to identify novel targets for clinical research on IgAN. METHODS Data from high-throughput RNA sequencing for IgAN were procured from the Gene Expression Omnibus database to assess the expression profiles and clinical diagnostic significance of histone deacetylase family proteins (HDACs). Blood samples from 20 IgAN patients were employed in RT-qPCR analysis, and the spearman linear regression method was utilized to analyze the clinical correlation. The proliferation of glomerular mesangial cells (GMCs) under the influence of HDAC9 was examined using the 5-ethynyl-2'-deoxyuridine (EdU) assay. Proteins interacting with HDAC9 were predicted utilizing the STRING database. Immunoprecipitation and protein immunoblotting employing anti-acetylated lysine antibodies were conducted to determine the acetylation status of calmodulin-like protein 6 (CALML6). RESULTS Analysis of the GSE141295 dataset revealed a significant upregulation of HDAC9 expression in IgAN and the results of RT-qPCR demonstrated a substantial increase in HDAC9 expression in IgAN patients. Receiver operating characteristic (ROC) analysis indicated that the area under the curve (AUC) value for HDAC9 were 0.845 and Spearman correlation analysis showed that HDAC9 expression was positively correlated with blood levels of blood urea nitrogen (BUN) and serum creatinine (Crea). The EdU cell proliferation assay indicated that HDAC9 facilitated the excessive proliferation of GMCs. The STRING database and recovery experiments identified CALML6 as a downstream effector of HDAC9 in controlling abnormal GMC multiplication. Co-immunoprecipitation assays demonstrated that HDAC9 modulates CALML6 expression through acetylation modification. CONCLUSION HDAC9 is markedly upregulated in IgAN, and it mediates the excessive proliferation of GMCs by regulating the deacetylation of CALML6.
Collapse
Affiliation(s)
- Xingxing Zhuang
- Department of Pharmacy, Chaohu Hospital of Anhui Medical University, No. 64 North Chaohu Road, Chaohu, Anhui, 238000, People's Republic of China
| | - Fei Xiao
- Department of Pharmacy, Chaohu Hospital of Anhui Medical University, No. 64 North Chaohu Road, Chaohu, Anhui, 238000, People's Republic of China
- School of Pharmacy, Anhui Medical University, No. 81 Meishan Road, Hefei, Anhui, 230000, People's Republic of China
| | - Feihu Chen
- School of Pharmacy, Anhui Medical University, No. 81 Meishan Road, Hefei, Anhui, 230000, People's Republic of China.
| | - Shoudong Ni
- Department of Pharmacy, Chaohu Hospital of Anhui Medical University, No. 64 North Chaohu Road, Chaohu, Anhui, 238000, People's Republic of China.
- School of Pharmacy, Anhui Medical University, No. 81 Meishan Road, Hefei, Anhui, 230000, People's Republic of China.
| |
Collapse
|
2
|
Bollain-y-Goytia JJ, Torres-Del-muro FDJ, Hernández-Martínez SP, Avalos-Díaz E, Herrera-Esparza R. suPAR and WT1 modify the adhesion of podocytes and are related to proteinuria in class IV lupus nephritis. J Transl Autoimmun 2023; 7:100216. [PMID: 37868110 PMCID: PMC10587709 DOI: 10.1016/j.jtauto.2023.100216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/02/2023] [Accepted: 10/06/2023] [Indexed: 10/24/2023] Open
Abstract
Introduction Lupus nephritis (LN) affects up to 60 % of the patients with Systemic Lupus Erythematosus (SLE) and renal damage progression is associated with proteinuria, caused in part by the integrity of the glomerular basement membrane (GBM) and by podocyte injury. The soluble urokinase plasminogen activator receptor (suPAR) and Wilms Tumor 1 (WT1) have been related to podocyte effacement and consequently with proteinuria which raises questions about its pathogenic role in LN. Objective Define whether suPAR levels and WT1 expression influence in podocyte anchorage destabilization in LN class IV. Materials and methods This is a cross-sectional study of cases and controls. We studied patients with SLE without renal involvement (n = 12), SLE and LN class IV with proteinuria ≤0.5 g/24 h (n = 12), LN class IV with proteinuria ≥0.5 g/24 h (n = 12) and compared them with renal tissue control (CR) (n = 12) and control sera (CS) (n = 12). The CR was integrated by cadaveric samples without SLE or renal involvement and the CS was integrated by healthy participants. The expression and cellular localization of WT1, urokinase-type plasminogen activator receptor (uPAR), ac-α-tubulin, vimentin, and β3-integrin was assessed by immunohistochemistry (IHC). The concentration of suPAR in serum was analyzed by enzyme-linked immunosorbent assay (ELISA). Results In patients with LN, the activation of anchoring proteins was increased, such as podocyte β3-integrin, as well as the acetylation of alpha-acetyl-tubulin and uPAR, in contrast to the decrease in vimentin; interestingly, the cellular localization of WT1 was cytoplasmic and the number of podocytes per glomerulus decreased. The concentrations of suPAR was increased in patients with LN. Conclusion The destabilization of podocyte anchorage modulated by β3-integrin activation, and tubulin acetylation, associated with decreased WT1 cytoplasmic expression, and increased suPAR levels could be involved in kidney damage in patients with LN class IV.
Collapse
Affiliation(s)
| | | | | | - Esperanza Avalos-Díaz
- Universidad Autónoma de Zacatecas, Department of Immunology, UACB. Guadalupe, Zacatecas, 98615, Mexico
| | - Rafael Herrera-Esparza
- Universidad Autónoma de Zacatecas, Department of Immunology, UACB. Guadalupe, Zacatecas, 98615, Mexico
| |
Collapse
|
3
|
Psarras A, Clarke A. A cellular overview of immunometabolism in systemic lupus erythematosus. OXFORD OPEN IMMUNOLOGY 2023; 4:iqad005. [PMID: 37554724 PMCID: PMC10264559 DOI: 10.1093/oxfimm/iqad005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/16/2023] [Accepted: 05/02/2023] [Indexed: 08/10/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is a complex autoimmune disease, characterized by a breakdown of immune tolerance and the development of autoantibodies against nucleic self-antigens. Immunometabolism is a rapidly expanding scientific field investigating the metabolic programming of cells of the immune system. During the normal immune response, extensive reprogramming of cellular metabolism occurs, both to generate adenosine triphosphate and facilitate protein synthesis, and also to manage cellular stress. Major pathways upregulated include glycolysis, oxidative phosphorylation, the tricarboxylic acid cycle and the pentose phosphate pathway, among others. Metabolic reprogramming also occurs to aid resolution of inflammation. Immune cells of both patients with SLE and lupus-prone mice are characterized by metabolic abnormalities resulting in an altered functional and inflammatory state. Recent studies have described how metabolic reprogramming occurs in many cell populations in SLE, particularly CD4+ T cells, e.g. favouring a glycolytic profile by overactivation of the mechanistic target of rapamycin pathway. These advances have led to an increased understanding of the metabolic changes affecting the inflammatory profile of T and B cells, monocytes, dendritic cells and neutrophils, and how they contribute to autoimmunity and SLE pathogenesis. In the current review, we aim to summarize recent advances in the field of immunometabolism involved in SLE and how these could potentially lead to new therapeutic strategies in the future.
Collapse
Affiliation(s)
- Antonios Psarras
- Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, UK
| | - Alexander Clarke
- Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, UK
| |
Collapse
|
4
|
Kabir F, Atkinson R, Cook AL, Phipps AJ, King AE. The role of altered protein acetylation in neurodegenerative disease. Front Aging Neurosci 2023; 14:1025473. [PMID: 36688174 PMCID: PMC9845957 DOI: 10.3389/fnagi.2022.1025473] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/03/2022] [Indexed: 01/06/2023] Open
Abstract
Acetylation is a key post-translational modification (PTM) involved in the regulation of both histone and non-histone proteins. It controls cellular processes such as DNA transcription, RNA modifications, proteostasis, aging, autophagy, regulation of cytoskeletal structures, and metabolism. Acetylation is essential to maintain neuronal plasticity and therefore essential for memory and learning. Homeostasis of acetylation is maintained through the activities of histone acetyltransferases (HAT) and histone deacetylase (HDAC) enzymes, with alterations to these tightly regulated processes reported in several neurodegenerative diseases including Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS). Both hyperacetylation and hypoacetylation can impair neuronal physiological homeostasis and increase the accumulation of pathophysiological proteins such as tau, α-synuclein, and Huntingtin protein implicated in AD, PD, and HD, respectively. Additionally, dysregulation of acetylation is linked to impaired axonal transport, a key pathological mechanism in ALS. This review article will discuss the physiological roles of protein acetylation and examine the current literature that describes altered protein acetylation in neurodegenerative disorders.
Collapse
|
5
|
Epigenetic regulation of B cells and its role in autoimmune pathogenesis. Cell Mol Immunol 2022; 19:1215-1234. [PMID: 36220996 PMCID: PMC9622816 DOI: 10.1038/s41423-022-00933-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/19/2022] [Indexed: 11/05/2022] Open
Abstract
B cells play a pivotal role in the pathogenesis of autoimmune diseases. Although previous studies have shown many genetic polymorphisms associated with B-cell activation in patients with various autoimmune disorders, progress in epigenetic research has revealed new mechanisms leading to B-cell hyperactivation. Epigenetic mechanisms, including those involving histone modifications, DNA methylation, and noncoding RNAs, regulate B-cell responses, and their dysregulation can contribute to the pathogenesis of autoimmune diseases. Patients with autoimmune diseases show epigenetic alterations that lead to the initiation and perpetuation of autoimmune inflammation. Moreover, many clinical and animal model studies have shown the promising potential of epigenetic therapies for patients. In this review, we present an up-to-date overview of epigenetic mechanisms with a focus on their roles in regulating functional B-cell subsets. Furthermore, we discuss epigenetic dysregulation in B cells and highlight its contribution to the development of autoimmune diseases. Based on clinical and preclinical evidence, we discuss novel epigenetic biomarkers and therapies for patients with autoimmune disorders.
Collapse
|
6
|
Xu N, Liu J, Li X. Lupus nephritis: The regulatory interplay between epigenetic and MicroRNAs. Front Physiol 2022; 13:925416. [PMID: 36187762 PMCID: PMC9523357 DOI: 10.3389/fphys.2022.925416] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
Abstract
MicroRNAs (miRNAs) are endogenous, small, non-coding RNA molecules that act as epigenetic modifiers to regulate the protein levels of target messenger RNAs without altering their genetic sequences. The highly complex role of miRNAs in the epigenetics of lupus nephritis (LN) is increasingly being recognized. DNA methylation and histone modifications are focal points of epigenetic research. miRNAs play a critical role in renal development and physiology, and dysregulation may result in abnormal renal cell proliferation, inflammation, and fibrosis of the kidneys in LN. However, epigenetic and miRNA-mediated regulation are not mutually exclusive. Further research has established a link between miRNA expression and epigenetic regulation in various disorders, including LN. This review summarizes the most recent evidence regarding the interaction between miRNAs and epigenetics in LN and highlights potential therapeutic and diagnostic targets.
Collapse
Affiliation(s)
- Ning Xu
- School of Clinical Medicine, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Jie Liu
- School of Clinical Medicine, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Xiangling Li
- Department of Nephrology, Affiliated Hospital of Weifang Medical University, Weifang, China
- *Correspondence: Xiangling Li,
| |
Collapse
|
7
|
Kovacs-Kasa A, Kovacs L, Cherian-Shaw M, Patel V, Meadows ML, Fulton DJ, Su Y, Verin AD. Inhibition of Class IIa HDACs improves endothelial barrier function in endotoxin-induced acute lung injury. J Cell Physiol 2021; 236:2893-2905. [PMID: 32959895 PMCID: PMC9946131 DOI: 10.1002/jcp.30053] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 08/31/2020] [Accepted: 09/03/2020] [Indexed: 12/21/2022]
Abstract
Acute lung injury (ALI) is an acute inflammatory process arises from a wide range of lung insults. A major cause of ALI is dysfunction of the pulmonary vascular endothelial barrier but the mechanisms involved are incompletely understood. The therapeutic potential of histone deacetylase (HDAC) inhibitors for the treatment of cardiovascular and inflammatory diseases is increasingly apparent, but the mechanisms by which HDACs regulate pulmonary vascular barrier function remain to be resolved. We found that specific Class IIa HDACs inhibitor, TMP269, significantly attenuated the lipopolysaccharide (LPS)-induced human lung microvascular endothelial cells (HLMVEC) barrier compromise in vitro and improved vascular barrier integrity and lung function in murine model of ALI in vivo. TMP269 decreased LPS-induced myosin light chain phosphorylation suggesting the role for Class IIa HDACs in LPS-induced cytoskeleton reorganization. TMP269 did not affect microtubule structure and tubulin acetylation in contrast to the HDAC6-specific inhibitor, Tubastatin A suggesting that Class IIa HDACs and HDAC6 (Class IIb) regulate endothelial cytoskeleton and permeability via different mechanisms. Furthermore, LPS increased the expression of ArgBP2 which has recently been attributed to HDAC-mediated activation of Rho. Depletion of ArgBP2 abolished the ability of LPS to disrupt barrier function in HLMVEC and both TMP269 and Tubastatin A decreased the level of ArgBP2 expression after LPS stimulation suggesting that both Class IIa and IIb HDACs regulate endothelial permeability via ArgBP2-dependent mechanism. Collectively, our data strongly suggest that Class IIa HDACs are involved in LPS-induced ALI in vitro and in vivo via specific mechanism which involved contractile responses, but not microtubule reorganization.
Collapse
Affiliation(s)
- Anita Kovacs-Kasa
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Laszlo Kovacs
- Department of Pharmacology and Toxicology, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Mary Cherian-Shaw
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Vijay Patel
- Department of Cardiothoracic Surgery, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Mary L. Meadows
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - David J. Fulton
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
- Department of Pharmacology and Toxicology, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Yunchao Su
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
- Department of Pharmacology and Toxicology, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
- Department of Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
- Research Service, Charlie Norwood Veterans Affairs Medical Center, Augusta, Georgia, USA
| | - Alexander D. Verin
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
- Department of Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| |
Collapse
|
8
|
Bacalao MA, Satterthwaite AB. Recent Advances in Lupus B Cell Biology: PI3K, IFNγ, and Chromatin. Front Immunol 2021; 11:615673. [PMID: 33519824 PMCID: PMC7841329 DOI: 10.3389/fimmu.2020.615673] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 11/26/2020] [Indexed: 12/18/2022] Open
Abstract
In the autoimmune disease Systemic Lupus Erythematosus (SLE), autoantibodies are formed that promote inflammation and tissue damage. There has been significant interest in understanding the B cell derangements involved in SLE pathogenesis. The past few years have been particularly fruitful in three domains: the role of PI3K signaling in loss of B cell tolerance, the role of IFNγ signaling in the development of autoimmunity, and the characterization of changes in chromatin accessibility in SLE B cells. The PI3K pathway coordinates various downstream signaling molecules involved in B cell development and activation. It is governed by the phosphatases PTEN and SHIP-1. Murine models lacking either of these phosphatases in B cells develop autoimmune disease and exhibit defects in B cell tolerance. Limited studies of human SLE B cells demonstrate reduced expression of PTEN or increased signaling events downstream of PI3K in some patients. IFNγ has long been known to be elevated in both SLE patients and mouse models of lupus. New data suggests that IFNγR expression on B cells is required to develop autoreactive germinal centers (GC) and autoantibodies in murine lupus. Furthermore, IFNγ promotes increased transcription of BCL6, IL-6 and T-bet in B cells, which also promote GC and autoantibody formation. IFNγ also induces epigenetic changes in human B cells. SLE B cells demonstrate significant epigenetic reprogramming, including enhanced chromatin accessibility at transcription factor motifs involved in B cell activation and plasma cell (PC) differentiation as well as alterations in DNA methylation and histone modifications. Histone deacetylase inhibitors limit disease development in murine lupus models, at least in part via their ability to prevent B cell class switching and differentiation into plasma cells. This review will discuss relevant discoveries of the past several years pertaining to these areas of SLE B cell biology.
Collapse
Affiliation(s)
- Maria A. Bacalao
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Anne B. Satterthwaite
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
9
|
Park JK, Jang YJ, Oh BR, Shin J, Bae D, Ha N, Choi YI, Youn GS, Park J, Lee EY, Lee EB, Song YW. Therapeutic potential of CKD-506, a novel selective histone deacetylase 6 inhibitor, in a murine model of rheumatoid arthritis. Arthritis Res Ther 2020; 22:176. [PMID: 32711562 PMCID: PMC7382061 DOI: 10.1186/s13075-020-02258-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 07/02/2020] [Indexed: 12/27/2022] Open
Abstract
OBJECTIVES Histone deacetylase (HDAC) 6 promotes inflammation. We investigated the anti-arthritic effects of CKD-506, a novel HDAC6 inhibitor, in vitro and in a murine model of arthritis as a novel treatment option for rheumatoid arthritis (RA). METHODS HDAC6 was overexpressed in mouse peritoneal macrophages and RAW 264.7 cells, and the effects of a HDAC6 inhibitor CKD-506 on cytokine production and activity of NF-κB and AP-1 signaling were examined. Peripheral blood mononuclear cells (PBMCs) from RA patients and fibroblast-like synoviocytes (FLS) were activated in the presence of CKD-506. Next, regulatory T cells (Tregs) were induced from RA patients and co-cultured with healthy effector T cells (Teffs) and cell proliferation was analyzed by flow cytometry. Finally, the effects of the inhibitor on the severity of arthritis were assessed in a murine model of adjuvant-induced arthritis (AIA). RESULTS Overexpression of HDAC6 induced macrophages to produce TNF-α and IL-6. The inhibitory effect of CKD-506 was mediated via blockade of NF-κB and AP-1 activation. HDAC6 inhibition reduced TNF-α and IL-6 production by activated RA PBMCs. CKD-506 inhibited production of MMP-1, MMP-3, IL-6, and IL-8 by activated FLS. In addition, CKD-506 inhibited proliferation of Teffs directly and indirectly by improving iTreg function. In AIA rats, oral CKD-506 improved clinical arthritis in a dose-dependent manner. A combination of sub-therapeutic CKD-506 and methotrexate exerted a synergistic effect. CONCLUSION The novel HDAC6 inhibitor CKD-506 suppresses inflammatory responses by monocytes/macrophages, improves Treg function, and ameliorates arthritis severity in a murine model of RA. Thus, CKD-506 might be a novel and effective treatment option for RA.
Collapse
Affiliation(s)
- Jin Kyun Park
- Division of Rheumatology, Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Yu Jin Jang
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea
| | - Bo Ram Oh
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea
| | - Jieun Shin
- Department of Pharmacology and Toxicology, CKD Research Institute, CKD Pharmaceutical Company, Seoul, South Korea
| | - Daekwon Bae
- Department of Pharmacology and Toxicology, CKD Research Institute, CKD Pharmaceutical Company, Seoul, South Korea
| | - Nina Ha
- Department of Pharmacology and Toxicology, CKD Research Institute, CKD Pharmaceutical Company, Seoul, South Korea
| | - Young Il Choi
- Department of Pharmacology and Toxicology, CKD Research Institute, CKD Pharmaceutical Company, Seoul, South Korea
| | - Gi Soo Youn
- Department of Biomedical Science and Research Institute for Bioscience & Biotechnology, Hallym University, Chuncheon, South Korea
| | - Jinseu Park
- Department of Biomedical Science and Research Institute for Bioscience & Biotechnology, Hallym University, Chuncheon, South Korea
| | - Eun Young Lee
- Division of Rheumatology, Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Eun Bong Lee
- Division of Rheumatology, Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Yeong Wook Song
- Division of Rheumatology, Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea. .,Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea.
| |
Collapse
|
10
|
Epigenetic Therapy as a Putative Molecular Target to Modulate B Cell Biology and Behavior in the Context of Immunological Disorders. J Immunol Res 2020; 2020:1589191. [PMID: 32090127 PMCID: PMC7031723 DOI: 10.1155/2020/1589191] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/20/2019] [Accepted: 12/21/2019] [Indexed: 12/31/2022] Open
Abstract
Histone Deacetylase- (HDAC-) dependent epigenetic mechanisms have been widely explored in the last decade in different types of malignancies in preclinical studies. This effort led to the discovery and development of a range of new HDAC inhibitors (iHDAC) with different chemical properties and selective abilities. In fact, hematological malignancies were the first ones to have new iHDACs approved for clinical use, such as Vorinostat and Romidepsin for cutaneous T cell lymphoma and panobinostat for multiple myeloma. Besides these promising already approved iHDACs, we highlight a range of studies focusing on the HDAC-dependent epigenetic control of B cell development, behavior, and/or function. Here, we highlight 21 iHDACs which have been studied in the literature in the context of B cell development and/or dysfunction mostly focused on B cell lymphomagenesis. Regardless, we have identified 55 clinical trials using 6 out of 21 iHDACs to approach their putative roles on B cell malignancies; none of them focuses on peritoneal B cell populations. Since cells belonging to this peculiar body compartment, named B1 cells, may contribute to the development of autoimmune pathologies, such as lupus, a better understanding of the HDAC-dependent epigenetic mechanisms that control its biology and behavior might shed light on iHDAC use to manage these immunological dysfunctions. In this sense, iHDACs might emerge as a promising new approach for translational studies in this field. In this review, we discuss a putative role of iHDACs in the modulation of peritoneal B cell subpopulation's balance as well as their role as therapeutic agents in the context of chronic diseases mediated by peritoneal B cells.
Collapse
|
11
|
Sun H, Guo F, Xu L. Downregulation of microRNA-101-3p participates in systemic lupus erythematosus progression via negatively regulating HDAC9. J Cell Biochem 2020; 121:4310-4320. [PMID: 31904179 DOI: 10.1002/jcb.29624] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 12/19/2019] [Indexed: 02/06/2023]
Abstract
This study aimed to investigate the mechanism of microRNA-101-3p (miR-101-3p) on the progression of systemic lupus erythematosus (SLE). The human peripheral blood mononuclear cells (PBMCs) were isolated from whole blood samples of SLE patients and healthy individuals, followed by cell culture and transfection. Moreover, the flow cytometry assay, quantitative real-time reverse-transcription polymerase chain reaction, Western blot, and enzyme-linked immunoassay were used to assess the effect of miR-101-3p on PBMCs. Bioinformatics analysis was conducted to predict the putative target gene of miR-101-3p, luciferase reporter gene assay, and RNA pull-down assay were applied to verify the interaction between them. Compared with healthy individuals, the expression level of miR-101-3p in PBMCs of SLE patients was significantly decreased, whereas interleukin (IL)-17A, IL-6, and interferon (IFN)-γ were remarkably increased (all P < .001). Correlation analyses showed that there were negative correlations between miR-101-3p and IL-17A, IL-6 and IFN-γ. The expression level of miR-101-3p in PBMCs of SLE patients was positively correlated with C3 expression (rs = .4075; P = .0229), while negatively associated with erythrocyte sedimentation rate (ESR) (rs = -.4238; P = .0175) and IgG expression (rs = -.4949; P = .0047). Overexpression of miR-101-3p could inhibit the differentiation of CD4 + T cells into Th17 lineage. Histone deacetylase 9 (HDAC9) was identified as a potential target gene of miR-101-3p. Furthermore, HDAC9 abolished the effect of miR-101-3p on Th17 cell differentiation and IL-17A expression in SLE. In conclusion, downregulated miR-101-3p in PBMCs of SLE patients inhibited Th17 cell differentiation by directly targeting HDAC9, which could be used as a novel therapeutic therapy for SLE treatment.
Collapse
Affiliation(s)
- Huanxia Sun
- Department of Rheumatology, Liaocheng People's Hospital, Liaocheng City, Shandong Province, China
| | - Fei Guo
- Department of Rheumatology and Immunology, The Second People's Hospital of Liaocheng, Linqing City, Shandong Province, China
| | - Liming Xu
- Department of Rheumatology, Liaocheng People's Hospital, Liaocheng City, Shandong Province, China
| |
Collapse
|
12
|
Ren J, Catalina MD, Eden K, Liao X, Read KA, Luo X, McMillan RP, Hulver MW, Jarpe M, Bachali P, Grammer AC, Lipsky PE, Reilly CM. Selective Histone Deacetylase 6 Inhibition Normalizes B Cell Activation and Germinal Center Formation in a Model of Systemic Lupus Erythematosus. Front Immunol 2019; 10:2512. [PMID: 31708928 PMCID: PMC6823248 DOI: 10.3389/fimmu.2019.02512] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 10/08/2019] [Indexed: 01/25/2023] Open
Abstract
Autoantibody production by plasma cells (PCs) plays a pivotal role in the pathogenesis of systemic lupus erythematosus (SLE). The molecular pathways by which B cells become pathogenic PC secreting autoantibodies in SLE are incompletely characterized. Histone deactylase 6 (HDAC6) is a unique cytoplasmic HDAC that modifies the interaction of a number of tubulin- associated proteins; inhibition of HDAC6 has been shown to be beneficial in murine models of SLE, but the downstream pathways accounting for the therapeutic benefit have not been clearly delineated. In the current study, we sought to determine whether selective HDAC6 inhibition would abrogate abnormal B cell activation in SLE. We treated NZB/W lupus mice with the selective HDAC6 inhibitor, ACY-738, for 4 weeks beginning at 20 weeks-of age. After only 4 weeks of treatment, manifestation of lupus nephritis (LN) were greatly reduced in these animals. We then used RNAseq to determine the genomic signatures of splenocytes from treated and untreated mice and applied computational cellular and pathway analysis to reveal multiple signaling events associated with B cell activation and differentiation in SLE that were modulated by HDAC6 inhibition. PC development was abrogated and germinal center (GC) formation was greatly reduced. When the HDAC6 inhibitor-treated lupus mouse gene signatures were compared to human lupus patient gene signatures, the results showed numerous immune, and inflammatory pathways increased in active human lupus were significantly decreased in the HDAC6 inhibitor treated animals. Pathway analysis suggested alterations in cellular metabolism might contribute to the normalization of lupus mouse spleen genomic signatures, and this was confirmed by direct measurement of the impact of the HDAC6 inhibitor on metabolic activities of murine spleen cells. Taken together, these studies show HDAC6 inhibition decreases B cell activation signaling pathways and reduces PC differentiation in SLE and suggest that a critical event might be modulation of cellular metabolism.
Collapse
Affiliation(s)
- Jingjing Ren
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Michelle D Catalina
- AMPEL BioSolutions, Charlottesville, VA, United States.,RILITE Research Institute, Charlottesville, VA, United States
| | - Kristin Eden
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Xiaofeng Liao
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Kaitlin A Read
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States.,Virginia Tech Carilion Research Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Xin Luo
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Ryan P McMillan
- Department of Human Nutrition, Foods, and Exercise, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Matthew W Hulver
- Department of Human Nutrition, Foods, and Exercise, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Matthew Jarpe
- Regenacy Pharmaceuticals, Waltham, MA, United States
| | | | - Amrie C Grammer
- AMPEL BioSolutions, Charlottesville, VA, United States.,RILITE Research Institute, Charlottesville, VA, United States
| | - Peter E Lipsky
- AMPEL BioSolutions, Charlottesville, VA, United States.,RILITE Research Institute, Charlottesville, VA, United States
| | - Christopher M Reilly
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States.,Edward Via College of Osteopathic Medicine, Blacksburg, VA, United States
| |
Collapse
|
13
|
Gatla HR, Muniraj N, Thevkar P, Yavvari S, Sukhavasi S, Makena MR. Regulation of Chemokines and Cytokines by Histone Deacetylases and an Update on Histone Decetylase Inhibitors in Human Diseases. Int J Mol Sci 2019; 20:E1110. [PMID: 30841513 PMCID: PMC6429312 DOI: 10.3390/ijms20051110] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/26/2019] [Accepted: 02/28/2019] [Indexed: 12/12/2022] Open
Abstract
Histone acetyltransferases (HATs) and histone deacetylases (HDACs) counteract with each other to regulate gene expression by altering chromatin structure. Aberrant HDAC activity was reported in many human diseases including wide range of cancers, viral infections, cardiovascular complications, auto-immune diseases and kidney diseases. HDAC inhibitors are small molecules designed to block the malignant activity of HDACs. Chemokines and cytokines control inflammation, immunological and other key biological processes and are shown to be involved in various malignancies. Various HDACs and HDAC inhibitors were reported to regulate chemokines and cytokines. Even though HDAC inhibitors have remarkable anti-tumor activity in hematological cancers, they are not effective in treating many diseases and many patients relapse after treatment. However, the role of HDACs and cytokines in regulating these diseases still remain unclear. Therefore, understanding exact mechanisms and effector functions of HDACs are urgently needed to selectively inhibit them and to establish better a platform to combat various malignancies. In this review, we address regulation of chemokines and cytokines by HDACs and HDAC inhibitors and update on HDAC inhibitors in human diseases.
Collapse
Affiliation(s)
- Himavanth Reddy Gatla
- Department of Pediatric Oncology, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA.
| | - Nethaji Muniraj
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA.
| | - Prashanth Thevkar
- Department of Microbiology, New York University, New York, NY 10016, USA.
| | - Siddhartha Yavvari
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA.
| | - Sahithi Sukhavasi
- Center for Distance Learning, GITAM University, Visakhapatnam, AP 530045, India.
| | - Monish Ram Makena
- Department of Physiology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
14
|
The Impact of Protein Acetylation/Deacetylation on Systemic Lupus Erythematosus. Int J Mol Sci 2018; 19:ijms19124007. [PMID: 30545086 PMCID: PMC6321219 DOI: 10.3390/ijms19124007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 11/30/2018] [Accepted: 12/10/2018] [Indexed: 02/08/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is a chronic inflammatory autoimmune disease in which the body’s immune system mistakenly attacks healthy cells. Although the exact cause of SLE has not been identified, it is clear that both genetics and environmental factors trigger the disease. Identical twins have a 24% chance of getting lupus disease if the other one is affected. Internal factors such as female gender and sex hormones, the major histocompatibility complex (MHC) locus and other genetic polymorphisms have been shown to affect SLE, as well as external, environmental influences such as sunlight exposure, smoking, vitamin D deficiency, and certain infections. Several studies have reported and proposed multiple associations between the alteration of the epigenome and the pathogenesis of autoimmune disease. Epigenetic factors contributing to SLE include microRNAs, DNA methylation status, and the acetylation/deacetylation of histone proteins. Additionally, the acetylation of non-histone proteins can also influence cellular function. A better understanding of non-genomic factors that regulate SLE will provide insight into the mechanisms that initiate and facilitate disease and also contribute to the development of novel therapeutics that can specifically target pathogenic molecular pathways.
Collapse
|
15
|
Shen J, Yin C, Jiang X, Wang X, Yang S, Song G. Aberrant histone modification and inflammatory cytokine production of peripheral CD4+ T cells in patients with oral lichen planus. J Oral Pathol Med 2018; 48:136-142. [PMID: 30329194 PMCID: PMC6588086 DOI: 10.1111/jop.12790] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 09/05/2018] [Accepted: 10/11/2018] [Indexed: 12/13/2022]
Abstract
Backgrounds To investigate alterations in histone modification and histone deacetylases (HDACs) in patients with oral lichen planus (OLP), and to evaluate correlations with inflammatory cytokine production. Methods Global histone H3/H4 acetylation and HDAC activity in CD4+ T cells from 23 patients with OLP and 10 healthy control subjects were examined using spectrophotometry. The mRNA levels of eight members of four classes of HDAC genes were measured by real‐time quantitative polymerase chain reaction. Forty cytokines involved in inflammation were examined with a cytokine array. The correlation between histone modification and cytokine production was analyzed. Results Global histone H3 hypo‐acetylation was observed in OLP patients. Patients with OLP had significantly higher HDACs activity,and higher HDAC6 and HDAC7 mRNA level compared with the controls. Of the 40 cytokines in the cytokine array, eight were significantly increased in OLP patients: interleukin (IL)‐4, IL‐8, IL‐1ra, tumor necrosis factor receptor II (TNFR II), macrophage inflammatory protein 1b (MIP‐1b), fibrosis‐associated tissue inhibitors of metalloproteinase 1 (TIMP)‐1, monocyte chemotactic protein 1 (MCP‐1), and eotaxin‐2. In the OLP group, the acetylation level of histone H3 was negatively correlated with IL‐4 and MCP‐1 production, and the expression of HDAC6 mRNA was positively correlated with MCP‐1 production. In the non‐erosive subgroup, acetylation of histone H3 was negatively correlated with IL‐4, IL‐16, and TIMP‐2 production. In the erosive OLP subgroup, the expression of HDAC7 mRNA was positively correlated with MIP‐1a production. Conclusion Aberrant histone modification of CD4+ T cells in peripheral blood could occur in OLP patients, and possibly affects inflammatory cytokine production.
Collapse
Affiliation(s)
- Jun Shen
- Department of Oral Medicine, Stomatological Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Cao Yin
- Department of Oral Medicine, Stomatological Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiao Jiang
- Department of Oral Medicine, Stomatological Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xuan Wang
- Department of Oral Medicine, Stomatological Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Shujuan Yang
- Department of Oral Pathology, Stomatological Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Guangbao Song
- Department of Oral Medicine, Stomatological Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
16
|
IRF5 is elevated in childhood-onset SLE and regulated by histone acetyltransferase and histone deacetylase inhibitors. Oncotarget 2018; 8:47184-47194. [PMID: 28525378 PMCID: PMC5564555 DOI: 10.18632/oncotarget.17586] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 04/17/2017] [Indexed: 11/25/2022] Open
Abstract
Interferon regulatory factor 5 (IRF5) plays a critical role in the induction of type I interferon, proinflammatory cytokines and chemokines, and participates in the pathogenesis of autoimmune diseases such as systemic lupus erythematosus (SLE). However, the relationship between IRF5 and childhood-onset SLE remains elusive. In the present study, we demonstrated that levels of mRNA expression of IRF5, IFN-α, and Sp1 were significantly increased in childhood-onset SLE, as seen on quantitative real-time PCR, and the expression of Sp1 and IFN-α was positively correlated with IRF5. In addition to being used as antitumor drugs, a number of histone deacetylase inhibitors (HDACi) display potent anti-inflammatory properties; however, their effects on IRF5 expression remain unclear. In this study, we identified that HDACi trichostatin A (TSA) and histone acetyltransferase (HAT)-p300 downregulated IRF5 promoter activity, mRNA expression, and protein level, whereas the HAT-p300/CBP-associated factor had no effect. Moreover, TSA inhibited the production of TNF-α and IL-6 in differentiated THP-1cells. Furthermore, chromatin immunoprecipitation assays revealed that TSA inhibited DNA binding of Sp1, RNA polymerase II, HDAC3, and p300 to the core promoter region of IRF5. Our results suggest that HDACi may have therapeutic potential in patients with autoimmune diseases such as SLE through repression of IRF5 expression.
Collapse
|
17
|
Ren J, Liao X, Vieson MD, Chen M, Scott R, Kazmierczak J, Luo XM, Reilly CM. Selective HDAC6 inhibition decreases early stage of lupus nephritis by down-regulating both innate and adaptive immune responses. Clin Exp Immunol 2017; 191:19-31. [PMID: 28876451 DOI: 10.1111/cei.13046] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2017] [Indexed: 12/25/2022] Open
Abstract
We have demonstrated previously that histone deacetylase (HDAC6) expression is increased in animal models of systemic lupus erythematosus (SLE) and that inhibition of HDAC6 decreased disease. In our current studies, we tested if an orally active selective HDAC6 inhibitor would decrease disease pathogenesis in a lupus mouse model with established early disease. Additionally, we sought to delineate the cellular and molecular mechanism(s) of action of a selective HDAC6 inhibitor in SLE. We treated 20-week-old (early-disease) New Zealand Black (NZB)/White F1 female mice with two different doses of the selective HDAC6 inhibitor (ACY-738) for 5 weeks. As the mice aged, we determined autoantibody production and cytokine levels by enzyme-linked immunosorbent assay (ELISA) and renal function by measuring proteinuria. At the termination of the study, we performed a comprehensive analysis on B cells, T cells and innate immune cells using flow cytometry and examined renal tissue for immune-mediated pathogenesis using immunohistochemistry and immunofluorescence. Our results showed a reduced germinal centre B cell response, decreased T follicular helper cells and diminished interferon (IFN)-γ production from T helper cells in splenic tissue. Additionally, we found the IFN-α-producing ability of plasmacytoid dendritic cells was decreased along with immunoglobulin isotype switching and the generation of pathogenic autoantibodies. Renal tissue showed decreased immunoglobulin deposition and reduced inflammation as judged by glomerular and interstitial inflammation. Taken together, these studies show selective HDAC6 inhibition decreased several parameters of disease pathogenesis in lupus-prone mice. The decrease was due in part to inhibition of B cell development and response.
Collapse
Affiliation(s)
- J Ren
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - X Liao
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - M D Vieson
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - M Chen
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - R Scott
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - J Kazmierczak
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - X M Luo
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - C M Reilly
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.,Edward Via College of Osteopathic Medicine, Blacksburg, VA, USA
| |
Collapse
|
18
|
Tsokos GC, Lo MS, Costa Reis P, Sullivan KE. New insights into the immunopathogenesis of systemic lupus erythematosus. Nat Rev Rheumatol 2017; 12:716-730. [PMID: 27872476 DOI: 10.1038/nrrheum.2016.186] [Citation(s) in RCA: 809] [Impact Index Per Article: 101.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The aetiology of systemic lupus erythematosus (SLE) is multifactorial, and includes contributions from the environment, stochastic factors, and genetic susceptibility. Great gains have been made in understanding SLE through the use of genetic variant identification, mouse models, gene expression studies, and epigenetic analyses. Collectively, these studies support the concept that defective clearance of immune complexes and biological waste (such as apoptotic cells), neutrophil extracellular traps, nucleic acid sensing, lymphocyte signalling, and interferon production pathways are all central to loss of tolerance and tissue damage. Increased understanding of the pathogenesis of SLE is driving a renewed interest in targeted therapy, and researchers are now on the verge of developing targeted immunotherapy directed at treating either specific organ system involvement or specific subsets of patients with SLE. Accordingly, this Review places these insights within the context of our current understanding of the pathogenesis of SLE and highlights pathways that are ripe for therapeutic targeting.
Collapse
Affiliation(s)
- George C Tsokos
- Division of Rheumatology, Beth Israel Deaconess Medical Center, Harvard Medical School, 110 Francis Street, Boston, Massachusetts 02215, USA
| | - Mindy S Lo
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, Massachusetts 02115, USA
| | - Patricia Costa Reis
- Department of Pediatrics, Lisbon Medical School, Lisbon University, Santa Maria Hospital, Avenida Professor Egas Moniz, 1649-035 Lisbon, Portugal
| | - Kathleen E Sullivan
- Division of Allergy and Immunology, The Children's Hospital of Philadelphia, The University of Pennsylvania Perelman School of Medicine, 3615 Civic Center Boulevard, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
19
|
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease mediated by pathogenic autoantibodies directed against nucleoprotein complexes. Beyond the activation of autoreactive B cells, this process involves dysregulation in many other types of immune cells, including CD4+ T cells, dendritic cells, macrophages and neutrophils. Metabolic substrate utilization and integration of cues from energy sensors are critical checkpoints of effector functions in the immune system, with common as well as cell-specific programmes. Patients with SLE and lupus-prone mice present with activated metabolism of CD4+ T cells, and the use of metabolic inhibitors to normalize these features is associated with therapeutic effects. Far less is known about the metabolic requirements of B cells and myeloid cells in SLE. This article reviews current knowledge of the alterations in metabolism of immune cells in patients with SLE and mouse models of lupus in the context of what is known about the metabolic regulation of these cells during normal immune responses. How these alterations might contribute to lupus pathogenesis and how they can be targeted therapeutically are also discussed.
Collapse
Affiliation(s)
- Laurence Morel
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, Florida 32610, USA
| |
Collapse
|
20
|
Selective HDAC inhibitors with potent oral activity against leukemia and colorectal cancer: Design, structure-activity relationship and anti-tumor activity study. Eur J Med Chem 2017; 134:185-206. [PMID: 28415009 DOI: 10.1016/j.ejmech.2017.03.069] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 03/06/2017] [Accepted: 03/27/2017] [Indexed: 02/06/2023]
Abstract
Previously, we reported the discovery of a series of N-hydroxycinnamamide-based HDAC inhibitors, among which compound 11y exhibited high HDAC1/3 selectivity. In this current study, structural derivatization of 11y led to a new series of benzamide based HDAC inhibitors. Most of the compounds exhibited high HDACs inhibitory potency. Compound 11a (with 4-methoxybenzoyl as N-substituent in the cap and 4-(aminomethyl) benzoyl as the linker group) exhibited selectivity against HDAC1 to some extent, and showed potent antiproliferative activity against several tumor cell lines. In vivo studies revealed that compound 11a displayed potent oral antitumor activity in both hematological tumor cell U937 xenograft model and solid tumor cell HCT116 xenograft model with no obvious toxicity. Further modification of benzamide 3, 11a and 19 afforded new thienyl and phenyl compounds (50a, 50b, 63a, 63b and 63c) with dramatic HDAC1 and HDAC2 dual selectivity, and the fluorine containing compound 56, with moderate HDAC3 selectivity.
Collapse
|
21
|
Wu DJ, Adamopoulos IE. Autophagy and autoimmunity. Clin Immunol 2017; 176:55-62. [PMID: 28095319 DOI: 10.1016/j.clim.2017.01.007] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 01/11/2017] [Accepted: 01/12/2017] [Indexed: 12/19/2022]
Abstract
Autophagy is a highly conserved protein degradation pathway from yeasts to humans that is essential for removing protein aggregates and misfolded proteins in healthy cells. Recently, autophagy-related genes polymorphisms have been implicated in several autoimmune diseases including systemic lupus erythematosus, rheumatoid arthritis, psoriasis, and multiple sclerosis. Numerous studies reveal autophagy and autophagy-related proteins also participate in immune regulation. Conditional deletions of autophagy-related proteins in mice have rendered protection from experimental autoimmune encephalomyelitis, and TNF-mediated joint destruction in animal models of multiple sclerosis and experimental arthritis respectively. As autophagy is strongly implicated in immune functions such as removal of intracellular bacteria, inflammatory cytokine secretion, antigen presentation, and lymphocyte development, in this review we summarized current understanding of the roles of autophagy and autophagy proteins in autoimmune diseases.
Collapse
Affiliation(s)
- Dennis J Wu
- Graduate Group in Immunology, University of California at Davis, USA; Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis, USA
| | - Iannis E Adamopoulos
- Graduate Group in Immunology, University of California at Davis, USA; Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis, USA; Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children Northern California, USA.
| |
Collapse
|