1
|
Vroom MM, Dodart JC. Active Immunotherapy for the Prevention of Alzheimer's and Parkinson's Disease. Vaccines (Basel) 2024; 12:973. [PMID: 39340005 PMCID: PMC11435640 DOI: 10.3390/vaccines12090973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/30/2024] Open
Abstract
Neurodegenerative diseases (ND) give rise to significant declines in motor, autonomic, behavioral, and cognitive functions. Of these conditions, Alzheimer's disease (AD) and Parkinson's disease (PD) are the most prevalent, impacting over 55 million people worldwide. Given the staggering financial toll on the global economy and their widespread manifestation, NDs represent a critical issue for healthcare systems worldwide. Current treatment options merely seek to provide symptomatic relief or slow the rate of functional decline and remain financially inaccessible to many patients. Indeed, no therapy has yet demonstrated the potential to halt the trajectory of NDs, let alone reverse them. It is now recognized that brain accumulation of pathological variants of AD- or PD-associated proteins (i.e., amyloid-β, Tau, α-synuclein) begins years to decades before the onset of clinical symptoms. Accordingly, there is an urgent need to pursue therapies that prevent the neurodegenerative processes associated with pathological protein aggregation long before a clinical diagnosis can be made. These therapies must be safe, convenient, and affordable to ensure broad coverage in at-risk populations. Based on the need to intervene long before clinical symptoms appear, in this review, we present a rationale for greater investment to support the development of active immunotherapy for the prevention of the two most common NDs based on their safety profile, ability to specifically target pathological proteins, as well as the significantly lower costs associated with manufacturing and distribution, which stands to expand accessibility to millions of people globally.
Collapse
Affiliation(s)
- Madeline M Vroom
- Vaxxinity, Inc., Space Life Sciences Lab, 505 Odyssey Way, Merritt Island, FL 32953, USA
| | - Jean-Cosme Dodart
- Vaxxinity, Inc., Space Life Sciences Lab, 505 Odyssey Way, Merritt Island, FL 32953, USA
| |
Collapse
|
2
|
Abucayon EG, Barrientos RC, Torres OB, Sweeney S, Whalen C, Matyas GR. A Liquid Chromatography High-Resolution Tandem Mass Spectrometry Method to Quantify QS-21 Adjuvant and Its Degradation Products in Liposomal Drug Formulations. ACS OMEGA 2023; 8:21016-21025. [PMID: 37323401 PMCID: PMC10268291 DOI: 10.1021/acsomega.3c01877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/12/2023] [Indexed: 06/17/2023]
Abstract
Identification and quantification of an active adjuvant and its degradation product/s in drug formulations are important to ensure drug product safety and efficacy. QS-21 is a potent adjuvant that is currently involved in several clinical vaccine trials and a constituent of licensed vaccines against malaria and shingles. In an aqueous milieu, QS-21 undergoes pH- and temperature-dependent hydrolytic degradation to form a QS-21 HP derivative that may occur during manufacturing and/or long-term storage. Intact QS-21 and deacylated QS-21 HP elicit different immune response profiles; thus, it is imperative to monitor QS-21 degradation in vaccine adjuvant formulation. To date, a suitable quantitative analytical method for QS-21 and its degradation product in drug formulations is not available in the literature. In view of this, a new liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed and qualified to accurately quantify the active adjuvant QS-21 and its degradation product (QS-21 HP) in liposomal drug formulations. The method was qualified according to the FDA Guidance for Industry: Q2(R1). Study results showed that the described method presents good specificity for QS-21 and QS-21 HP detection in a liposomal matrix, good sensitivity characterized by the limit of detection (LOD)/limit of quantitation (LOQ) in the nanomolar range, linear regressions with correlation coefficients, R2 > 0.999, recoveries in the range of 80-120%, and precise detection and quantification with % relative standard deviation (RSD) < 6% for QS-21 and < 9% for the QS-21 HP impurity assay. The described method was successfully used to accurately evaluate in-process and product release samples of the Army Liposome Formulation containing QS-21 (ALFQ).
Collapse
Affiliation(s)
- Erwin G. Abucayon
- U.S.
Military HIV Research Program, Walter Reed
Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, Maryland 20910, United States
- Henry
M. Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Drive, Bethesda, Maryland 20817, United States
| | - Rodell C. Barrientos
- U.S.
Military HIV Research Program, Walter Reed
Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, Maryland 20910, United States
- Henry
M. Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Drive, Bethesda, Maryland 20817, United States
| | - Oscar B. Torres
- U.S.
Military HIV Research Program, Walter Reed
Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, Maryland 20910, United States
- Henry
M. Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Drive, Bethesda, Maryland 20817, United States
| | - Scott Sweeney
- Avanti
Polar Lipids, Part of Croda International, 700 Industrial Park Drive, Alabaster, Alabama 35007, United States
| | - Connor Whalen
- U.S.
Military HIV Research Program, Walter Reed
Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, Maryland 20910, United States
- Oak
Ridge Institute for Science and Education, Oak Ridge, Tennessee 37831, United States
| | - Gary R. Matyas
- U.S.
Military HIV Research Program, Walter Reed
Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, Maryland 20910, United States
| |
Collapse
|
3
|
Chen K, Wang N, Zhang X, Wang M, Liu Y, Shi Y. Potentials of saponins-based adjuvants for nasal vaccines. Front Immunol 2023; 14:1153042. [PMID: 37020548 PMCID: PMC10067588 DOI: 10.3389/fimmu.2023.1153042] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 03/07/2023] [Indexed: 03/22/2023] Open
Abstract
Respiratory infections are a major public health concern caused by pathogens that colonize and invade the respiratory mucosal surface. Nasal vaccines have the advantage of providing protection at the primary site of pathogen infection, as they induce higher levels of mucosal secretory IgA antibodies and antigen-specific T and B cell responses. Adjuvants are crucial components of vaccine formulation that enhance the immunogenicity of the antigen to confer long-term and effective protection. Saponins, natural glycosides derived from plants, shown potential as vaccine adjuvants, as they can activate the mammalian immune system. Several licensed human vaccines containing saponins-based adjuvants administrated through intramuscular injection have demonstrated good efficacy and safety. Increasing evidence suggests that saponins can also be used as adjuvants for nasal vaccines, owing to their safety profile and potential to augment immune response. In this review, we will discuss the structure-activity-relationship of saponins, their important role in nasal vaccines, and future prospects for improving their efficacy and application in nasal vaccine for respiratory infection.
Collapse
Affiliation(s)
- Kai Chen
- Department of Radiology and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- West China Biopharmaceutical Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ning Wang
- West China Biopharmaceutical Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiaomin Zhang
- West China Biopharmaceutical Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Meng Wang
- West China Biopharmaceutical Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yanyu Liu
- West China Biopharmaceutical Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yun Shi
- West China Biopharmaceutical Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- *Correspondence: Yun Shi,
| |
Collapse
|
4
|
Cui X, Ma X, Li C, Meng H, Han C. A review: structure-activity relationship between saponins and cellular immunity. Mol Biol Rep 2023; 50:2779-2793. [PMID: 36583783 DOI: 10.1007/s11033-022-08233-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 12/22/2022] [Indexed: 12/31/2022]
Abstract
Saponins, which exhibit many different biological and pharmacological activities, are present in a wide range of plant species and in some marine organisms. Notably, the researchers have found that saponins can activate the immune system in mammals. The strength of this function is closely related to the chemical structure of saponins. The present study of the structure-activity relationship suggests that aglycones, glycochains on aglycones and special functional groups of saponins affect the immune activity of saponins. This paper reviews the effects of different saponins on cellular immunity. As well as the structure-activity relationship of saponins. It is hoped that the information integrated in this paper will provide readers with information on the effects of saponins on cellular immunity and promote the further study of these compounds.
Collapse
Affiliation(s)
- Xuetao Cui
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China
| | - Xumin Ma
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China
| | - Chunhai Li
- Department of Radiology, Cheeloo College of Medicine, Qilu Hospital, Shandong University, Jinan, 250012, China
| | - Hong Meng
- Department of Radiology, Cheeloo College of Medicine, Qilu Hospital, Shandong University, Jinan, 250012, China
| | - Chunchao Han
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China.
| |
Collapse
|
5
|
Alving CR, Rao M, Matyas GR. Similarities and differences of chemical compositions and physical and functional properties of adjuvant system 01 and army liposome formulation with QS21. Front Immunol 2023; 14:1102524. [PMID: 36761767 PMCID: PMC9905621 DOI: 10.3389/fimmu.2023.1102524] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 01/05/2023] [Indexed: 01/26/2023] Open
Abstract
A vaccine adjuvant known as Adjuvant System 01 (AS01) consists of liposomes containing a mixture of natural congeners of monophosphoryl lipid A (MPL®) obtained from bacterial lipopolysaccharide, and a tree saponin known as QS21. Two vaccines containing AS01 as the adjuvant have been licensed, including a malaria vaccine (Mosquirix®) approved by World Health. Organization and European Medicines Agency for use in sub-Saharan Africa, and a shingles vaccine (Shingrix®) approved by the U.S. Food and Drug Administration. The success of the AS01 vaccine adjuvant has led to the development of another liposomal vaccine adjuvant, referred to as Army Liposome Formulation with QS21 (ALFQ). Like AS01, ALFQ consists of liposomes containing monophosphoryl lipid A (as a synthetic molecule known as 3D-PHAD®) and QS21 as adjuvant constituents, and the polar headgroups of the liposomes of AS01 and ALFQ are similar. We compare here AS01 with ALFQ with respect to their similar and different liposomal chemical structures and physical characteristics with a goal of projecting some of the likely mechanisms of safety, side effects, and mechanisms of adjuvanticity. We hypothesize that some of the side effects exhibited in humans after injection of liposome-based vaccines might be caused by free fatty acid and lysophospholipid released by enzymatic attack of liposomal phospholipid by phospholipase A2 at the injection site or systemically after injection.
Collapse
Affiliation(s)
- Carl R Alving
- Laboratory of Adjuvant and Antigen Research, U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Mangala Rao
- Laboratory of Adjuvant and Antigen Research, U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Gary R Matyas
- Laboratory of Adjuvant and Antigen Research, U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| |
Collapse
|
6
|
Tallei TE, Fatimawali, Yelnetty A, Niode NJ, Kusumawaty D, Kepel BJ, Rahimah S, Effendi Y, Idroes R, Tumilaar SG, Mahmud S, Emran TB. Prediction of the activity of carbohydrate moiety of bromelain as immunomodulator using an in silico approach. AIP CONFERENCE PROCEEDINGS 2023. [DOI: 10.1063/5.0103885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
7
|
Marciani DJ. Effects of N-acylation on the immune adjuvanticity of analogs of the Quillaja saponins derivative GPI-0100. Vaccine 2022; 40:4169-4173. [DOI: 10.1016/j.vaccine.2022.05.084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 04/06/2022] [Accepted: 05/28/2022] [Indexed: 10/18/2022]
|
8
|
Natural and Synthetic Saponins as Vaccine Adjuvants. Vaccines (Basel) 2021; 9:vaccines9030222. [PMID: 33807582 PMCID: PMC8001307 DOI: 10.3390/vaccines9030222] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 12/20/2022] Open
Abstract
Saponin adjuvants have been extensively studied for their use in veterinary and human vaccines. Among them, QS-21 stands out owing to its unique profile of immunostimulating activity, inducing a balanced Th1/Th2 immunity, which is valuable to a broad scope of applications in combating various microbial pathogens, cancers, and other diseases. It has recently been approved for use in human vaccines as a key component of combination adjuvants, e.g., AS01b in Shingrix® for herpes zoster. Despite its usefulness in research and clinic, the cellular and molecular mechanisms of QS-21 and other saponin adjuvants are poorly understood. Extensive efforts have been devoted to studies for understanding the mechanisms of QS-21 in different formulations and in different combinations with other adjuvants, and to medicinal chemistry studies for gaining mechanistic insights and development of practical alternatives to QS-21 that can circumvent its inherent drawbacks. In this review, we briefly summarize the current understandings of the mechanism underlying QS-21’s adjuvanticity and the encouraging results from recent structure-activity-relationship (SAR) studies.
Collapse
|
9
|
Bashiri S, Koirala P, Toth I, Skwarczynski M. Carbohydrate Immune Adjuvants in Subunit Vaccines. Pharmaceutics 2020; 12:E965. [PMID: 33066594 PMCID: PMC7602499 DOI: 10.3390/pharmaceutics12100965] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/08/2020] [Accepted: 10/12/2020] [Indexed: 12/17/2022] Open
Abstract
Modern subunit vaccines are composed of antigens and a delivery system and/or adjuvant (immune stimulator) that triggers the desired immune responses. Adjuvants mimic pathogen-associated molecular patterns (PAMPs) that are typically associated with infections. Carbohydrates displayed on the surface of pathogens are often recognized as PAMPs by receptors on antigen-presenting cells (APCs). Consequently, carbohydrates and their analogues have been used as adjuvants and delivery systems to promote antigen transport to APCs. Carbohydrates are biocompatible, usually nontoxic, biodegradable, and some are mucoadhesive. As such, carbohydrates and their derivatives have been intensively explored for the development of new adjuvants. This review assesses the immunological functions of carbohydrate ligands and their ability to enhance systemic and mucosal immune responses against co-administered antigens. The role of carbohydrate-based adjuvants/delivery systems in the development of subunit vaccines is discussed in detail.
Collapse
Affiliation(s)
- Sahra Bashiri
- School of Chemistry and Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia; (S.B.); (P.K.)
| | - Prashamsa Koirala
- School of Chemistry and Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia; (S.B.); (P.K.)
| | - Istvan Toth
- School of Chemistry and Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia; (S.B.); (P.K.)
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
- School of Pharmacy, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Mariusz Skwarczynski
- School of Chemistry and Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia; (S.B.); (P.K.)
| |
Collapse
|
10
|
Škalamera Đ, Kim H, Zhang P, Michalek SM, Wang P. Impact of C28 Oligosaccharide on Adjuvant Activity of QS-7 Analogues. J Org Chem 2020; 85:15837-15848. [PMID: 32463234 DOI: 10.1021/acs.joc.0c00359] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We have synthesized a number of Quillaja saponaria Molina (QS) saponin analogues with a different C28 sugar unit, which features either 3,4-diacetyl groups or a 3,4-cyclic carbonate group at the reducing end fucoside to mimic the naturally occurring saponin adjuvant QS-7. Immunological evaluations of these analogues in BALB/c mice indicate that truncating the C28 oligosaccharide of the natural product to the tetrasaccharide (as in 5d (β)) could retain the adjuvant's activity in enhancing IgG1 and IgG2a productions, albeit the activity is lower than that of QS-21. Further truncation or changing stereochemistry of glycosidic linkage between the tetrasaccharide and the triterpenoid quillaic acid (QA) core or within the tetrasaccharide eliminated the saponins' adjuvant activity in terms of IgG production. On the other hand, increasing resemblance to QS-7 increased adjuvant activity and led to saponin 3's similar IgG1 and IgG2a activities to QS-21's, indicating that the unique adjuvant activities of QS saponins are determined by their specific structures.
Collapse
|
11
|
Plant terpenoid metabolism co-opts a component of the cell wall biosynthesis machinery. Nat Chem Biol 2020; 16:740-748. [PMID: 32424305 DOI: 10.1038/s41589-020-0541-x] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 04/03/2020] [Indexed: 01/06/2023]
Abstract
Glycosylation is one of the most prevalent molecular modifications in nature. Single or multiple sugars can decorate a wide range of acceptors from proteins to lipids, cell wall glycans and small molecules, dramatically affecting their activity. Here, we discovered that by 'hijacking' an enzyme of the cellulose synthesis machinery involved in cell wall assembly, plants evolved cellulose synthase-like enzymes (Csls) and acquired the capacity to glucuronidate specialized metabolites, that is, triterpenoid saponins. Apparently, endoplasmic reticulum-membrane localization of Csls and of other pathway proteins was part of evolving a new glycosyltransferase function, as plant metabolite glycosyltransferases typically act in the cytosol. Discovery of glucuronic acid transferases across several plant orders uncovered the long-pursued enzymatic reaction in the production of a low-calorie sweetener from licorice roots. Our work opens the way for engineering potent saponins through microbial fermentation and plant-based systems.
Collapse
|
12
|
Alving CR, Peachman KK, Matyas GR, Rao M, Beck Z. Army Liposome Formulation (ALF) family of vaccine adjuvants. Expert Rev Vaccines 2020; 19:279-292. [PMID: 32228108 PMCID: PMC7412170 DOI: 10.1080/14760584.2020.1745636] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 03/17/2020] [Indexed: 12/19/2022]
Abstract
Introduction: From its earliest days, the US. military has embraced the use of vaccines to fight infectious diseases. The Army Liposome Formulation (ALF) has been a pivotal innovation as a vaccine adjuvant that provides excellent safety and potency and could lead to dual-use military and civilian benefits. For protection of personnel against difficult disease threats found in many areas of the world, Army vaccine scientists have created novel liposome-based vaccine adjuvants.Areas covered: ALF consists of liposomes containing saturated phospholipids, cholesterol, and monophosphoryl lipid A (MPLA) as an immunostimulant. ALF exhibited safety and strong potency in many vaccine clinical trials. Improvements based on ALF include: ALF adsorbed to aluminum hydroxide (ALFA); ALF containing QS21 saponin (ALFQ); and ALFQ adsorbed to aluminum hydroxide (ALFQA). Preclinical safety and efficacy studies with ALF, LFA, ALFQ, and ALFQA are discussed in preparation for upcoming vaccine trials targeting malaria, HIV-1, bacterial diarrhea, and opioid addiction.Expert opinion: The introduction of ALF in the 1980s stimulated commercial interest in vaccines to infectious diseases, and therapeutic vaccines to cancer, and Alzheimer's disease. It is likely that ALF, ALFA, and ALFQ, will provide momentum for new types of modern vaccines with improved efficacy and safety.
Collapse
Affiliation(s)
- Carl R. Alving
- Laboratory of Adjuvant & Antigen Research, US Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD, USA
| | - Kristina K. Peachman
- Laboratory of Adjuvant & Antigen Research, US Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Drive, Bethesda, MD 20817, USA
| | - Gary R. Matyas
- Laboratory of Adjuvant & Antigen Research, US Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD, USA
| | - Mangala Rao
- Laboratory of Adjuvant & Antigen Research, US Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD, USA
| | - Zoltan Beck
- Laboratory of Adjuvant & Antigen Research, US Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Drive, Bethesda, MD 20817, USA
| |
Collapse
|
13
|
Wang P, Škalamera Đ, Sui X, Zhang P, Michalek SM. Synthesis and Evaluation of QS-7-Based Vaccine Adjuvants. ACS Infect Dis 2019; 5:974-981. [PMID: 30920199 DOI: 10.1021/acsinfecdis.9b00039] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
We have designed and synthesized two analogs (5 and 6) of QS-7, a natural saponin compound isolated from Quillaja saponaria (QS) Molina tree bark. The only structural difference between compound 5 and 6 is that 5 is acetylated at the 3- and 4-O positions of the quillaic acid C28 fucosyl unit while 6 is not. However, the two analogs show significantly different immunostimulant profiles. Compound 5 may potentiate a mixed Th1/Th2 (Th, T helper cells) immune response against the specific antigens while compound 6 may only induce a Th2-biased immunity. These results suggest that the 3- and/or 4-O acetyl groups of the fucosyl unit may play an important role in tuning the adjuvanticity of the QS-7 analogs, and compound 5 can serve as a structurally defined synthetic adjuvant when a mixed Th1/Th2 immune responses is desired.
Collapse
|
14
|
Reichert CL, Salminen H, Weiss J. Quillaja Saponin Characteristics and Functional Properties. Annu Rev Food Sci Technol 2019; 10:43-73. [DOI: 10.1146/annurev-food-032818-122010] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Consumer concerns about synthetically derived food additives have increased current research efforts to find naturally occurring alternatives. This review focuses on a group of natural surfactants, the Quillaja saponins, that can be extracted from the Quillaja saponaria Molina tree. Quillaja saponins are triterpenoid saponins comprising a hydrophobic quillaic acid backbone and hydrophilic sugar moieties. Commercially available Quillaja saponin products and their composition and properties are described, and the technofunctionality of Quillaja saponins in a variety of food, cosmetic, and pharmaceutical product applications is discussed. These applications make use of the biological and interfacial activities of Quillaja saponins and their ability to form and stabilize colloidal structures such as emulsions, foams, crystallized lipid particles, heteroaggregates, and micelles. Further emphasis is given to the complexation and functional properties of Quillaja saponins with other cosurfactants to create mixed surfactant systems, an approach that has the potential to facilitate new interfacial structures and novel functionalities.
Collapse
Affiliation(s)
- Corina L. Reichert
- Department of Food Physics and Meat Science, Institute of Food Science and Biotechnology, University of Hohenheim, 70599 Stuttgart, Germany
| | - Hanna Salminen
- Department of Food Physics and Meat Science, Institute of Food Science and Biotechnology, University of Hohenheim, 70599 Stuttgart, Germany
| | - Jochen Weiss
- Department of Food Physics and Meat Science, Institute of Food Science and Biotechnology, University of Hohenheim, 70599 Stuttgart, Germany
| |
Collapse
|
15
|
Acylated and deacylated quillaja saponin-21 adjuvants have opposite roles when utilized for immunization of C57BL/6 mice model with MOG 35-55 peptide. Mult Scler Relat Disord 2019; 29:68-82. [PMID: 30685444 DOI: 10.1016/j.msard.2019.01.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 01/09/2019] [Accepted: 01/10/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND The majority of patients with multiple sclerosis (MS) suffer from central neuropathic pain (CNP). Using experimental autoimmune encephalomyelitis (EAE) model, only a few experiments were performed to assess pain behaviors in MS. To address this issue, complete Freund's adjuvant (CFA) was replaced with an acylated triterpene glycoside saponin adjuvant named quillaja saponin-21 (QS-21) to develop CNP in the EAE mouse model. The deacylated form of QS-21, named QT-0101, has been suggested to have an immunomodulatory effect. Thus, QT-0101 was used as a vaccine adjuvant to modulate the immune system against myelin oligodendrocyte glycoprotein (MOG35-55) antigen. METHODS In this study, C57BL/6 mice, except for mice in the negative control (PBS) and MOG groups, were divided into three groups and immunized by MOG35-55 emulsified with CFA, QS-21, or QT-0101 adjuvants, respectively. Thermal hyperalgesia, as a CNP clinical manifestation, through the Hot Plate test and the clinical signs, was assessed for 60 days after immunization. On days 21 and 60, mice were sacrificed and the frequency of TCD4+, TCD8+, IL-17+, IL-4+, and CD25+/FoxP3+ cells population in the total splenocytes population was assessed by flow cytometry. Infiltration of Leukocytes into the brain and demyelination of white matter were also evaluated by histopathologic studies. RESULTS Our results revealed that unlike the MOG+QT-0101 group, the MOG+QS-21 and MOG+CFA groups represented clinical symptoms that mimic the mild relapsing-remitting and monophasic models, respectively. Thermal hyperalgesia, as a CNP clinical manifestation, developed in the bilateral hind paws in the MOG+CFA and MOG+QS-21 mice groups during the onset of neurologic deficits, but it is maintained until completion of the study only in MOG+QS-21 mice group. The frequency of TCD4+, TCD8+ and IL-17+ cells population in the MOG+QS-21 and MOG+CFA mice groups, as well as IL-4+ and CD25+/Foxp3+ cells population in the MOG+QT-0101 mice group, significantly increased in comparison with the PBS mice group. Infiltration of inflammatory cells increased significantly in the MOG+QS-21 and MOG+CFA mice groups compared with the PBS mice group. Demyelination of white matter was identified significantly only in the MOG+CFA mice group compared with the PBS mice group. CONCLUSION These results showed that QS-21 is a suitable adjuvant for the establishment of a mild relapsing-remitting EAE model for CNP development and open a new avenue to future pre-clinical and clinical research studies related to CNP treatment. Nevertheless, QT-0101 seems to have the potential to act as a vaccine adjuvant with immunomodulatory property against auto-antigens.
Collapse
|
16
|
Hellman S, Hjertner B, Morein B, Fossum C. The adjuvant G3 promotes a Th1 polarizing innate immune response in equine PBMC. Vet Res 2018; 49:108. [PMID: 30348190 PMCID: PMC6389152 DOI: 10.1186/s13567-018-0602-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 10/01/2018] [Indexed: 12/11/2022] Open
Abstract
The immunomodulatory effect of a new particulate adjuvant, G3, alone or in combination with agonists to TLR2/1 or TLR5 was evaluated in cultures of equine PBMC. Exposure to the G3 adjuvant up-regulated genes encoding IFN-γ, IL-1β, IL-6, IL-8, IL-12p40 and IL-23p19 in the majority of the horses tested, indicating that the G3 adjuvant induced a pro-inflammatory and Th1 dominated profile. In accordance, genes encoding IL-13, IL-4, IL-10 and TGF-β remained unaffected and genes encoding IFN-α, IL-17A and TNF-α were only occasionally and weakly induced. The two TLR agonists Pam3CSK4 (TLR2/1) and FliC (TLR5) induced cytokine profiles characterized by a clear induction of IL-10 as well as up-regulation of the genes encoding IL-1β, IL-6 and IL-8. The presence of G3 modified this response, in particular by reducing the FliC and Pam3CSK4 induced production of IL-10. Furthermore, G3 acted in synergy with Pam3CSK4 in enhancing the production of IFN-γ whereas G3 combined with FliC increased the gene expression of IL-8. Thus, the G3 adjuvant seems to have the capacity to promote a Th1 polarizing innate immune response in eqPBMC, both by favouring IFN-γ production and by reducing production of IL-10 induced by co-delivered molecules. These features make G3 an interesting candidate to further evaluate for its potential as an adjuvant in equine vaccines.
Collapse
Affiliation(s)
- Stina Hellman
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, SLU, Box 7028, 750 07, Uppsala, Sweden.
| | - Bernt Hjertner
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, SLU, Box 7028, 750 07, Uppsala, Sweden
| | - Bror Morein
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, SLU, Box 7028, 750 07, Uppsala, Sweden
| | - Caroline Fossum
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, SLU, Box 7028, 750 07, Uppsala, Sweden
| |
Collapse
|
17
|
Marciani DJ. Elucidating the Mechanisms of Action of Saponin-Derived Adjuvants. Trends Pharmacol Sci 2018; 39:573-585. [PMID: 29655658 DOI: 10.1016/j.tips.2018.03.005] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 03/08/2018] [Accepted: 03/16/2018] [Indexed: 12/14/2022]
Abstract
Numerous triterpenoid saponins are adjuvants that modify the activities of T cells and antigen-presenting cells, like dendritic cells (DCs). Saponins can induce either proinflammatory Th1/Th2 or sole anti-inflammatory Th2 immunities. Structure-activity relationships (SARs) have shown that imine-forming carbonyl groups are needed for T cell activation leading to induction of Th1/Th2 immunities. While saponins having different triterpenoid aglycons and oligosaccharide chains can activate DCs to induce Th1/Th2 immunoresponses, fucopyranosyl residues from their oligosaccharides by binding to the DC-SIGN receptor can bias DCs toward a sole Th2 immunity. Here we discuss the mechanisms of action of these saponins in view of new information, which may serve as a basis to design improved adjuvants and related drugs.
Collapse
Affiliation(s)
- Dante J Marciani
- Qantu Therapeutics, Inc., 612 East Main Street, Lewisville, TX 75057, USA.
| |
Collapse
|
18
|
Martins YA, Tsuchida CJ, Antoniassi P, Demarchi IG. Efficacy and Safety of the Immunization with DNA for Alzheimer's Disease in Animal Models: A Systematic Review from Literature. J Alzheimers Dis Rep 2017; 1:195-217. [PMID: 30480238 PMCID: PMC6159633 DOI: 10.3233/adr-170025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2017] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a neurodegenerative disease that does not have a proven cure; however, one of the most promising strategies for its treatment has been DNA vaccines. OBJECTIVE The present review is aimed to report the new developments of the efficacy and safety of DNA vaccines for AD in animal models. METHOD The method PRISMA was used for this review. The article search was made in the electronic databases PubMed, LILACS, and Scopus using the descriptors ''Alzheimer disease" and ''Vaccine, DNA". Articles published between January 2001 and September 2017 in English, Portuguese, and Spanish were included. RESULTS Upon the consensus, the researchers identified 28 original articles. The studies showed satisfying results as for the decrease of amyloid plaques in mouse, rabbits, and monkeys brains using mostly the DNA Aβ42 vaccine, AV-1955, and AdPEDI-(Aβ1-6)11, mainly with a gene gun. In addition to a reduction in tau by the first DNA vaccine (AV-1980D) targeting this protein. The use of adjuvants and boosters also had positive results as they increased the destruction of the amyloid plaques and induced an anti-inflammatory response profile without side effects. CONCLUSION The results of DNA vaccines targeting the amyloid-β and the tau protein with or without adjuvants and boosters were promising in reducing amyloid plaques and tau protein without side effects in animals. Although there are many vaccines being tested in animals, few reach clinical trials. Thus, as a future perspective, we suggest that clinical studies should be conducted with vaccines that have been promising in animal models (e.g., DNA Aβ42 vaccine, AV-1955, and AdPEDI-(Aβ1-6)11).
Collapse
|
19
|
|
20
|
Marciani DJ. A retrospective analysis of the Alzheimer's disease vaccine progress - The critical need for new development strategies. J Neurochem 2016; 137:687-700. [PMID: 26990863 DOI: 10.1111/jnc.13608] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 02/25/2016] [Accepted: 02/26/2016] [Indexed: 12/16/2022]
Abstract
The promising results obtained with aducanumab and solanezumab against Alzheimer's disease (AD) strengthen the vaccine approach to prevent AD, despite of the many clinical setbacks. It has been problematic to use conjugated peptides with Th1/Th2 adjuvants to induce immune responses against conformational epitopes formed by Aβ oligomers, which is critical to induce protective antibodies. Hence, vaccination should mimic natural immunity by using whole or if possible conjugated antigens, but biasing the response to Th2 with anti-inflammatory adjuvants. Also, selection of the carrier and cross-linking agents is important to prevent suppression of the immune response against the antigen. That certain compounds having phosphorylcholine or fucose induce a sole Th2 immunity would allow antigens with T-cell epitopes without inflammatory autoimmune reactions to be used. Another immunization method is DNA vaccines combined with antigenic ones, which favors the clonal selection and expansion of high affinity antibodies needed for immune protection, but this also requires Th2 immunity. Since AD transgenic mouse models have limited value for immunogen selection as shown by the clinical studies, screening may require the use of validated antibodies and biophysical methods to identify the antigens that would be most likely recognized by the human immune system and thus capable to stimulate a protective antibody response. To induce an anti-Alzheimer's disease protective immunity and prevent possible damage triggered by antigens having B-cell epitopes-only, whole antigens might be used; while inducing Th2 immunity with sole anti-inflammatory fucose-based adjuvants. This approach would avert a damaging systemic inflammatory immunity and the suppression of immunoresponse against the antigen because of carrier and cross-linkers; immune requirements that extend to DNA vaccines.
Collapse
|