1
|
Ji C, Hao X, Li Z, Liu J, Yan H, Ma K, Li L, Zhang L. Phillyrin prevents sepsis-induced acute lung injury through inhibiting the NLRP3/caspase-1/GSDMD-dependent pyroptosis signaling pathway. Acta Biochim Biophys Sin (Shanghai) 2024. [PMID: 39394820 DOI: 10.3724/abbs.2024161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2024] Open
Abstract
Acute lung injury (ALI) is a severe pulmonary disorder of sepsis with high clinical incidence and mortality. Nucleotide-binding oligomerization domain-like receptor family pyrin domain containing 3 (NLRP3)-cysteinyl aspartate specific proteinase 1-gasdermin D (GSDMD)-dependent pyroptosis of alveolar epithelial cells (AECs) has emerged as a crucial contributor to ALI during sepsis. Phillyrin (PHI), a natural lignan isolated from the traditional Chinese herbal medicine Forsythia suspensa, has been shown to have anti-inflammatory, antioxidant and antiviral properties. However, little is known about the protective role and potential mechanism of PHI in sepsis-induced ALI, and it is uncertain whether the protective effect of PHI in sepsis-induced ALI is connected to pyroptosis. This study aims to examine the preventive effects of PHI on sepsis-induced ALI via the inhibition of NLRP3/caspase-1/GSDMD-mediated pyroptosis in AECs. Our findings demonstrate that preadministration of PHI successfully reduces sepsis-induced pulmonary edema, systemic/pulmonary inflammation, and pulmonary histological damage in lung tissues, bronchoalveolar lavage fluid, and the serum of septic mice. Intriguingly, PHI preadministration suppresses sepsis-induced protein expressions of pyroptosis-specific markers, especially their active forms. In vitro assays show that PHI pretreatment also protects type II AECs (MLE-12) from lipopolysaccharide-induced pyroptosis by preventing the activation of the pyroptosis signaling pathway. The results from molecular docking and surface plasmon resonance reveal that PHI has a significant affinity for direct binding to the GSDMD protein, suggesting that GSDMD is a potential pharmacological target for PHI. In conclusion, PHI can prevent sepsis-triggered ALI by effectively suppressing the activation of the canonical pyroptosis signaling pathway and pyroptosis of AECs.
Collapse
Affiliation(s)
- Chen Ji
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi 832003, China
| | - Xiaoyan Hao
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi 832003, China
| | - Zhiyi Li
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi 832003, China
| | - Jiaxing Liu
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi 832003, China
| | - Hanyu Yan
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi 832003, China
| | - Ketao Ma
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi 832003, China
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, the first Affiliated Hospital, Shihezi University, Shihezi 832008, China
| | - Ling Li
- Medical Teaching Experimental Center, School of Medicine, Shihezi University, Shihezi 832003, China
| | - Liang Zhang
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi 832003, China
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, the first Affiliated Hospital, Shihezi University, Shihezi 832008, China
| |
Collapse
|
2
|
Batool A, Muddassir M, Shahid K. Synthesis of Hydrazide Derivative of Betulinic Acid, Its Organometallic Complexes, Characterization and Bioassay. Chem Biodivers 2024; 21:e202301275. [PMID: 38194339 DOI: 10.1002/cbdv.202301275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 12/24/2023] [Accepted: 12/29/2023] [Indexed: 01/10/2024]
Abstract
Betulinic acid and its derivatives comprehend an immense prospective toward the development of cytotoxic, antiviral, antimicrobial and antioxidant agents. Cisplatin (cytotoxic drug) divert the attentions to develop organometallic compounds with pronounced biological activities. The current study was aimed for the first time to synthesize, characterize and evaluate biologically a series of metal (Fe, Cu, Zn, Sn and Sb) complexes of betulinic acid hydrazide. First step involved the formation of hydrazide derivative of betulinic acid (ligand) by modification at C-28 carboxylic acid moiety of betulinic acid with hydrazine followed by the synthesis of its metal complexes using salts of different metals (Fe, Cu, Zn, Sn and Sb). Physical state, melting point, Fourier-transform infrared (FT-IR) and 1 H nuclear magnetic resonance (1 H-NMR) spectral techniques were used to characterized the ligand and its metal complexes. Agar well diffusion method and agar tube dilution assay were performed to evaluate its antibacterial and antifungal activities respectively. DPPH assay was carried out to develop antioxidant properties by the reported methods.
Collapse
Affiliation(s)
- Azra Batool
- Department of Pharmaceutical Chemistry, Hamdard Institute of Pharmaceutical Sciences, Hamdard University, Islamabad, Pakistan
| | - Muhammad Muddassir
- Riphah Institute of Pharmaceutical Sciences, Riphah international University, Islamabad
- Department of Quality Control, Amson vaccines and Pharma, Islamabad, Pakistan
| | - Khadija Shahid
- Riphah Institute of Pharmaceutical Sciences, Riphah international University, Islamabad
| |
Collapse
|
3
|
Madej M, Gola J, Chrobak E. Synthesis, Pharmacological Properties, and Potential Molecular Mechanisms of Antitumor Activity of Betulin and Its Derivatives in Gastrointestinal Cancers. Pharmaceutics 2023; 15:2768. [PMID: 38140110 PMCID: PMC10748330 DOI: 10.3390/pharmaceutics15122768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/04/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
Gastrointestinal (GI) cancers are an increasingly common type of malignancy, caused by the unhealthy lifestyles of people worldwide. Limited methods of treatment have prompted the search for new compounds with antitumor activity, in which betulin (BE) is leading the way. BE as a compound is classified as a pentacyclic triterpene of the lupane type, having three highly reactive moieties in its structure. Its mechanism of action is based on the inhibition of key components of signaling pathways associated with proliferation, migration, interleukins, and others. BE also has a number of biological properties, i.e., anti-inflammatory, hepatoprotective, neuroprotective, as well as antitumor. Due to its poor bioavailability, betulin is subjected to chemical modifications, obtaining derivatives with proven enhanced pharmacological and pharmacokinetic properties as a result. The method of synthesis and substituents significantly influence the effect on cells and GI cancers. Moreover, the cytotoxic effect is highly dependent on the derivative as well as the individual cell line. The aim of this study is to review the methods of synthesis of BE and its derivatives, as well as its pharmacological properties and molecular mechanisms of action in colorectal cancer, hepatocellular carcinoma, gastric cancer, and esophageal cancer neoplasms.
Collapse
Affiliation(s)
- Marcel Madej
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland;
- Silesia LabMed, Centre for Research and Implementation, Medical University of Silesia, 40-752 Katowice, Poland
| | - Joanna Gola
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland;
| | - Elwira Chrobak
- Department of Organic Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland;
| |
Collapse
|
4
|
Gouda NA, Alshammari SO, Abourehab MAS, Alshammari QA, Elkamhawy A. Therapeutic potential of natural products in inflammation: underlying molecular mechanisms, clinical outcomes, technological advances, and future perspectives. Inflammopharmacology 2023; 31:2857-2883. [PMID: 37950803 DOI: 10.1007/s10787-023-01366-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 10/06/2023] [Indexed: 11/13/2023]
Abstract
Chronic inflammation is a common underlying factor in many major diseases, including heart disease, diabetes, cancer, and autoimmune disorders, and is responsible for up to 60% of all deaths worldwide. Metformin, statins, and corticosteroids, and NSAIDs (non-steroidal anti-inflammatory drugs) are often given as anti-inflammatory pharmaceuticals, however, often have even more debilitating side effects than the illness itself. The natural product-based therapy of inflammation-related diseases has no adverse effects and good beneficial results compared to substitute conventional anti-inflammatory medications. In this review article, we provide a concise overview of present pharmacological treatments, the pathophysiology of inflammation, and the signaling pathways that underlie it. In addition, we focus on the most promising natural products identified as potential anti-inflammatory therapeutic agents. Moreover, preclinical studies and clinical trials evaluating the efficacy of natural products as anti-inflammatory therapeutic agents and their pragmatic applications with promising outcomes are reviewed. In addition, the safety, side effects and technical barriers of natural products are discussed. Furthermore, we also summarized the latest technological advances in the discovery and scientific development of natural products-based medicine.
Collapse
Affiliation(s)
- Noha A Gouda
- College of Pharmacy, Dongguk University-Seoul, Goyang, Gyeonggi, 10326, Republic of Korea
| | - Saud O Alshammari
- Department of Pharmacognosy and Alternative Medicine, Faculty of Pharmacy, Northern Border University, Rafha, 76321, Saudi Arabia
| | - Mohammed A S Abourehab
- Department of Pharmaceutics, College of Pharmacy, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Qamar A Alshammari
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Northern Border University, Rafha, 76321, Saudi Arabia
| | - Ahmed Elkamhawy
- College of Pharmacy, Dongguk University-Seoul, Goyang, Gyeonggi, 10326, Republic of Korea.
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| |
Collapse
|
5
|
Adepoju FO, Duru KC, Li E, Kovaleva EG, Tsurkan MV. Pharmacological Potential of Betulin as a Multitarget Compound. Biomolecules 2023; 13:1105. [PMID: 37509141 PMCID: PMC10377123 DOI: 10.3390/biom13071105] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/05/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
Betulin is a natural triterpene, usually from birch bark, known for its potential wound-healing properties. Despite having a wide range of pharmacological targets, no studies have proposed betulin as a multitarget compound. Betulin has protective effects against cardiovascular and liver diseases, cancer, diabetes, oxidative stress, and inflammation. It reduces postprandial hyperglycemia by inhibiting α-amylase and α-glucosidase activity, combats tumor cells by inducing apoptosis and inhibiting metastatic proteins, and modulates chronic inflammation by blocking the expression of proinflammatory cytokines via modulation of the NFκB and MAPKs pathways. Given its potential to influence diverse biological networks with high target specificity, it can be hypothesized that betulin may eventually become a new lead for drug development because it can modify a variety of pharmacological targets. The summarized research revealed that the diverse beneficial effects of betulin in various diseases can be attributed, at least in part, to its multitarget anti-inflammatory activity. This review focuses on the natural sources, pharmacokinetics, pharmacological activity of betulin, and the multi-target effects of betulin on signaling pathways such as MAPK, NF-κB, and Nrf2, which are important regulators of the response to oxidative stress and inflammation in the body.
Collapse
Affiliation(s)
- Feyisayo O Adepoju
- Department of Technology for Organic Synthesis, Chemical Technology Institute, Ural Federal University, Mira 19, 620002 Yekaterinburg, Russia
| | - Kingsley C Duru
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ 08854-8021, USA
| | - Erguang Li
- Medical School, Nanjing University, Nanjing, 22 Hankou Road, Nanjing 210093, China
| | - Elena G Kovaleva
- Department of Technology for Organic Synthesis, Chemical Technology Institute, Ural Federal University, Mira 19, 620002 Yekaterinburg, Russia
| | | |
Collapse
|
6
|
Zeng J, Zhao G. α-Hederin regulates macrophage polarization to relieve sepsis-induced lung and liver injuries in mice. Open Med (Wars) 2023; 18:20230695. [PMID: 37251537 PMCID: PMC10224612 DOI: 10.1515/med-2023-0695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 03/13/2023] [Accepted: 03/20/2023] [Indexed: 05/31/2023] Open
Abstract
Sepsis is one of the most fatal inflammatory diseases with multiple organ failure caused by pathological infection. α-Hederin, a monodesmosidic triterpenoid saponin, has many biological activities including anti-inflammation. This study aimed to investigate the effect of α-Hederin on lung and liver injuries in septic mice. Mice underwent cecal ligation and puncture-induced sepsis were intraperitoneally injected with 0.3 or 3 mg/kg α-Hederin. α-Hederin treatment dose-dependently attenuated the lung and liver injuries in septic mice. Correspondingly, α-Hederin significantly decreased malondialdehyde production, increased the levels of superoxide dismutase and glutathione in lung tissues, reduced serum alanine aminotransferase and aspartate aminotransferase activities, and suppressed the levels of TNF-α and IL-6 in both tissues and in the serum. Moreover, α-Hederin augmented CD206 level and inhibited the productions of CD86 and iNOS in lung and liver tissues of septic mice. Importantly, p-p65/p65 was suppressed, whereas IκB was elevated by α-Hederin. In conclusion, α-Hederin could improve the lung and liver injuries in mice with sepsis by regulating macrophage M1/M2 polarization and inhibiting the activation of NF-κB signaling pathway.
Collapse
Affiliation(s)
- Junan Zeng
- Department of Neonatology, Northwest Women’s and Children’s Hospital, Xi’an, Shaanxi Province, 710061, P.R. China
| | - Guangyu Zhao
- Department of Pediatrics, Xi’an Central Hospital, Xi’an, Shaanxi Province, 710003, P.R. China
| |
Collapse
|
7
|
Kim EN, Jeong GS. Inhibitory Effect of Periodontitis through C/EBP and 11β-Hydroxysteroid Dehydrogenase Type 1 Regulation of Betulin Isolated from the Bark of Betula platyphylla. Pharmaceutics 2022; 14:pharmaceutics14091868. [PMID: 36145616 PMCID: PMC9502078 DOI: 10.3390/pharmaceutics14091868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/19/2022] [Accepted: 09/01/2022] [Indexed: 12/05/2022] Open
Abstract
Periodontitis is an infectious inflammatory disease of the tissues around the tooth that destroys connective tissue and is characterized by loss of periodontal ligaments and alveolar bone. Currently, surgical methods for the treatment of periodontitis have limitations and new treatment strategies are needed. Therefore, this study evaluated the efficacy of the compound betulin isolated from bark of Betula platyphylla on the inhibition of periodontitis in vitro and in vivo periodontitis induction models. In the study, betulin inhibited pro-inflammatory mediators, such as tumor necrosis factor, interleukin-6, inducible nitric oxide synthase, and cyclooxygenase-2, in human periodontal ligament cells stimulated with Porphyromonas gingivalis lipopolysaccharide (PG-LPS). In addition, it showed an anti-inflammatory effect by down-regulating 11β-hydroxysteroid dehydrogenase type 1 and transcription factor C/EBP β produced by PG-LPS. Moreover, PG-LPS inhibited the osteogenic induction of human periodontal ligament cells. The protein and mRNA levels of osteogenic markers, such as inhibited osteopontin (OPN) and runt-related transcription factor 2 (RUNX2), were regulated by betulin. In addition, the efficacy of betulin was demonstrated in a typical in vivo model of periodontitis induced by PG-LPS, and the results showed through hematoxylin & eosin staining and micro-computed tomography that the administration of betulin alleviated alveolar bone loss and periodontal inflammation caused by PG-LPS. Therefore, this study proved the efficacy of the compound betulin isolated from B. platyphylla in the inhibition of periodontitis and alveolar bone loss, two important strategies for the treatment of periodontitis, suggesting the potential as a new treatment for periodontitis.
Collapse
|
8
|
Grymel M, Lalik A, Kazek-Kęsik A, Szewczyk M, Grabiec P, Erfurt K. Design, Synthesis and Preliminary Evaluation of the Cytotoxicity and Antibacterial Activity of Novel Triphenylphosphonium Derivatives of Betulin. Molecules 2022; 27:molecules27165156. [PMID: 36014398 PMCID: PMC9416257 DOI: 10.3390/molecules27165156] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/04/2022] [Accepted: 08/10/2022] [Indexed: 11/16/2022] Open
Abstract
For several decades, natural products have been widely researched and their native scaffolds are the basis for the design and synthesis of new potential therapeutic agents. Betulin is an interesting biologically attractive natural parent molecule with a high safety profile and can easily undergo a variety of structural modifications. Herein, we describe the synthesis of new molecular hybrids of betulin via covalent linkage with an alkyltriphenylphosphonium moiety. The proposed strategy enables the preparation of semi-synthetic derivatives (28-TPP⊕ BN and 3,28-bisTPP⊕ BN) from betulin through simple transformations in high yields. The obtained results showed that the presence of a lipophilic cation improved the solubility of the tested analogs compared to betulin, and increased their cytotoxicity. Among the triphenylphosphonium derivatives tested, analogs 7a (IC50 of 5.56 µM) and 7b (IC50 of 5.77 µM) demonstrated the highest cytotoxicity against the colorectal carcinoma cell line (HCT 116). TPP⊕-conjugates with betulin showed antimicrobial properties against Gram-positive reference Staphylococcus aureus ATCC 25923 and Staphylococcus epidermidis ATCC 12228 bacteria, at a 200 µM concentration in water. Hence, the conjugation of betulin's parent backbone with a triphenylphosphonium moiety promotes transport through the hydrophobic barriers of the mitochondrial membrane, making it a promising strategy to improve the bioavailability of natural substances.
Collapse
Affiliation(s)
- Mirosława Grymel
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100 Gliwice, Poland
- Department of Chemical Organic Technology and Petrochemistry, Silesian University of Technology, B. Krzywoustego 4, 44-100 Gliwice, Poland
- Biotechnology Center, Silesian University of Technology, B. Krzywoustego 8, 44-100 Gliwice, Poland
- Correspondence: ; Tel.: +48-032-237-1873; Fax: +48-032-237-2094
| | - Anna Lalik
- Biotechnology Center, Silesian University of Technology, B. Krzywoustego 8, 44-100 Gliwice, Poland
- Department of Systems Biology and Engineering, Silesian University of Technology, Akademicka 16, 44-100 Gliwice, Poland
| | - Alicja Kazek-Kęsik
- Department of Inorganic, Analytical Chemistry and Electrochemistry, Silesian University of Technology, B. Krzywoustego 6, 44-100 Gliwice, Poland
| | - Marietta Szewczyk
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100 Gliwice, Poland
| | - Patrycja Grabiec
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100 Gliwice, Poland
| | - Karol Erfurt
- Department of Chemical Organic Technology and Petrochemistry, Silesian University of Technology, B. Krzywoustego 4, 44-100 Gliwice, Poland
| |
Collapse
|
9
|
Siraj MA, Islam MA, Al Fahad MA, Kheya HR, Xiao J, Simal-Gandara J. Cancer Chemopreventive Role of Dietary Terpenoids by Modulating Keap1-Nrf2-ARE Signaling System—A Comprehensive Update. APPLIED SCIENCES 2021; 11:10806. [DOI: 10.3390/app112210806] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
ROS, RNS, and carcinogenic metabolites generate excessive oxidative stress, which changes the basal cellular status and leads to epigenetic modification, genomic instability, and initiation of cancer. Epigenetic modification may inhibit tumor-suppressor genes and activate oncogenes, enabling cells to have cancer promoting properties. The nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor that in humans is encoded by the NFE2L2 gene, and is activated in response to cellular stress. It can regulate redox homoeostasis by expressing several cytoprotective enzymes, including NADPH quinine oxidoreductase, heme oxygenase-1, UDP-glucuronosyltransferase, glutathione peroxidase, glutathione-S-transferase, etc. There is accumulating evidence supporting the idea that dietary nutraceuticals derived from commonly used fruits, vegetables, and spices have the ability to produce cancer chemopreventive activity by inducing Nrf2-mediated detoxifying enzymes. In this review, we discuss the importance of these nutraceuticals in cancer chemoprevention and summarize the role of dietary terpenoids in this respect. This approach was taken to accumulate the mechanistic function of these terpenoids to develop a comprehensive understanding of their direct and indirect roles in modulating the Keap1-Nrf2-ARE signaling system.
Collapse
Affiliation(s)
- Md Afjalus Siraj
- Department of Pharmaceutical Sciences, Daniel K. Inouye College of Pharmacy, University of Hawaii at Hilo, Hilo, HI 96720, USA
| | - Md. Arman Islam
- Pharmacy Discipline, Life Science School, Khulna University, Khulna 9208, Bangladesh
| | - Md. Abdullah Al Fahad
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan 31151, Korea
| | - Habiba Rahman Kheya
- Department of Sociology, Faculty of Social Sciences, University of Dhaka, Dhaka 1000, Bangladesh
| | - Jianbo Xiao
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo—Ourense Campus, E32004 Ourense, Spain
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo—Ourense Campus, E32004 Ourense, Spain
| |
Collapse
|
10
|
Eisa NH, El-Sherbiny M, Abo El-Magd NF. Betulin alleviates cisplatin-induced hepatic injury in rats: Targeting apoptosis and Nek7-independent NLRP3 inflammasome pathways. Int Immunopharmacol 2021; 99:107925. [PMID: 34217992 DOI: 10.1016/j.intimp.2021.107925] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 06/21/2021] [Accepted: 06/23/2021] [Indexed: 02/07/2023]
Abstract
Cisplatin is a chemotherapeutic agent that induces multiorgan toxicity side effect due to induction of inflammation, apoptosis and disruption of intracellular antioxidant pathways. Betulin is a natural triterpenoid that has been shown to counteract cisplatin-induced nephrotoxicity. In this study, we investigated the ameliorative effect of betulin against cisplatin-promoted hepatotoxicity in rats. Moreover, we studied the molecular mechanism underlying betulin's effect. Single intraperitoneal injection (i.p.) of 10 mg/kg of cisplatin, was used to induce acute liver injury in rats. To assess betulin effect, a dose of 8 mg/kg (i.p.) was daily administered for 10 days. Betulin significantly improved serum Aspartate transaminase (AST), Alanine transaminase (ALT), albumin and total bilirubin levels in comparison with cisplatin group. Histopathologically, betulin restored cisplatin-deteriorated liver structural features and hepatic fibrosis. Mechanistically, betulin reduced hepatic oxidative stress as indicated by increased total antioxidant capacity and decreased malondialdehyde levels compared to cisplatin group. In addition, betulin reduced hepatic inflammation via significant inhibition of NOD-like receptor pyrin domain-containing protein 3 (NLRP3) inflammasome, caspase-1 and interleukin-1β (IL-1β) levels. Intriguingly, betulin did not affect the expression levels of the mitotic kinase NIMA-related kinase 7 (Nek7), an NLRP3 interacting/activating protein. Last, Betulin induced anti-apoptotic effects as denoted by significant downregulation of P53 and Bax apoptotic proteins, upregulation of the anti-apoptotic protein, BCL2 and reduction of caspases 8, -9 and -3. This study is the first to provide evidence that betulin might be beneficial as a safe therapeutic approach to manage cisplatin-induced hepatotoxicity via targeting inflammatory and apoptotic pathways.
Collapse
Affiliation(s)
- Nada H Eisa
- Biochemistry Department, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt.
| | - Mohamed El-Sherbiny
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, Riyadh, Saudi Arabia; Department of Anatomy, Faculty of Medicine, Mansoura University, Mansoura, Egypt.
| | - Nada F Abo El-Magd
- Biochemistry Department, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt.
| |
Collapse
|
11
|
Herbal Active Ingredients: Potential for the Prevention and Treatment of Acute Lung Injury. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5543185. [PMID: 34258266 PMCID: PMC8245226 DOI: 10.1155/2021/5543185] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 06/15/2021] [Indexed: 02/06/2023]
Abstract
Acute lung injury (ALI) is a life-threatening clinical syndrome with high morbidity and mortality. The main pathological features of ALI are increased alveolar-capillary membrane permeability, edema, uncontrolled migration of neutrophils to the lungs, and diffuse alveolar damage, resulting in acute hypoxemic respiratory failure. Glucocorticoids, aspirin, and other anti-inflammatory drugs are commonly used to treat ALI. Respiratory supports, such as a ventilator, are used to alleviate hypoxemia. Many treatment methods are available, but they cannot significantly ameliorate the quality of life of patients with ALI and reduce mortality rates. Herbal active ingredients, such as flavonoids, terpenoids, saponins, alkaloids, and quinonoids, exhibit advantages for ALI prevention and treatment, but the underlying mechanism needs further study. This paper summarizes the role of herbal active ingredients in anti-ALI therapy and progresses in the understanding of their mechanisms. The work also provides some references and insights for the discovery and development of novel drugs for ALI prevention and treatment.
Collapse
|
12
|
Niewolik D, Bednarczyk-Cwynar B, Ruszkowski P, Sosnowski TR, Jaszcz K. Bioactive Betulin and PEG Based Polyanhydrides for Use in Drug Delivery Systems. Int J Mol Sci 2021; 22:1090. [PMID: 33499242 PMCID: PMC7865682 DOI: 10.3390/ijms22031090] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/17/2021] [Accepted: 01/19/2021] [Indexed: 11/22/2022] Open
Abstract
In the course of this study, a series of novel, biodegradable polyanhydrides based on betulin disuccinate and dicarboxylic derivatives of poly(ethylene glycol) were prepared by two-step polycondensation. These copolymers can be used as carriers in drug delivery systems, in the form of microspheres. Betulin and its derivatives exhibit a broad spectrum of biological activity, including cytotoxic activity, which makes them promising substances for use as therapeutic agents. Microspheres that were prepared from betulin based polyanhydrides show promising properties for use in application in drug delivery systems, including inhalation systems. The obtained copolymers release the active substance-betulin disuccinate-as a result of hydrolysis under physiological conditions. The use of a poly(ethylene glycol) derivative as a co-monomer increases the solubility and bioavailability of the obtained compounds. Microspheres with diameters in the range of 0.5-25 µm were prepared by emulsion solvent evaporation method and their physicochemical and aerodynamic properties were analyzed. The morphological characteristics of the microspheres depended on the presence of poly(ethylene glycol) (PEG) segment within the structure of polyanhydrides. The porosity of the particles depended on the amount and molecular weight of the PEG used and also on the speed of homogenization. The most porous particles were obtained from polyanhydrides containing 20% wt. of PEG 600 by using a homogenization speed of 18,000 rpm.
Collapse
Affiliation(s)
- Daria Niewolik
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, M. Strzody 9, 44-100 Gliwice, Poland;
| | - Barbara Bednarczyk-Cwynar
- Department of Organic Chemistry, Poznan University of Medical Science, Grunwaldzka 6, 60-780 Poznan, Poland;
| | - Piotr Ruszkowski
- Department of Pharmacology, Poznan University of Medical Science, Rokietnicka 5a, 60-806 Poznan, Poland;
| | - Tomasz R. Sosnowski
- Faculty of Chemical and Process Engineering, Warsaw University of Technology, Warynskiego 1, 00-645 Warsaw, Poland;
| | - Katarzyna Jaszcz
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, M. Strzody 9, 44-100 Gliwice, Poland;
| |
Collapse
|
13
|
He YQ, Zhou CC, Yu LY, Wang L, Deng JL, Tao YL, Zhang F, Chen WS. Natural product derived phytochemicals in managing acute lung injury by multiple mechanisms. Pharmacol Res 2021; 163:105224. [PMID: 33007416 PMCID: PMC7522693 DOI: 10.1016/j.phrs.2020.105224] [Citation(s) in RCA: 208] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/15/2020] [Accepted: 09/22/2020] [Indexed: 12/14/2022]
Abstract
Acute lung injury (ALI) and its more severe form, acute respiratory distress syndrome (ARDS) as common life-threatening lung diseases with high mortality rates are mostly associated with acute and severe inflammation in lungs. With increasing in-depth studies of ALI/ARDS, significant breakthroughs have been made, however, there are still no effective pharmacological therapies for treatment of ALI/ARDS. Especially, the novel coronavirus pneumonia (COVID-19) is ravaging the globe, and causes severe respiratory distress syndrome. Therefore, developing new drugs for therapy of ALI/ARDS is in great demand, which might also be helpful for treatment of COVID-19. Natural compounds have always inspired drug development, and numerous natural products have shown potential therapeutic effects on ALI/ARDS. Therefore, this review focuses on the potential therapeutic effects of natural compounds on ALI and the underlying mechanisms. Overall, the review discusses 159 compounds and summarizes more than 400 references to present the protective effects of natural compounds against ALI and the underlying mechanism.
Collapse
Affiliation(s)
- Yu-Qiong He
- Institute of Chinese Materia Madica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Can-Can Zhou
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Lu-Yao Yu
- Institute of Chinese Materia Madica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Liang Wang
- Institute of Chinese Materia Madica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jiu-Ling Deng
- Institute of Chinese Materia Madica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yu-Long Tao
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Feng Zhang
- Institute of Chinese Materia Madica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China.
| | - Wan-Sheng Chen
- Institute of Chinese Materia Madica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China.
| |
Collapse
|
14
|
Grymel M, Pastuch-Gawołek G, Lalik A, Zawojak M, Boczek S, Krawczyk M, Erfurt K. Glycoconjugation of Betulin Derivatives Using Copper-Catalyzed 1,3-Dipolar Azido-Alkyne Cycloaddition Reaction and a Preliminary Assay of Cytotoxicity of the Obtained Compounds. Molecules 2020; 25:molecules25246019. [PMID: 33353244 PMCID: PMC7766341 DOI: 10.3390/molecules25246019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 02/06/2023] Open
Abstract
Pentacyclic lupane-type triterpenoids, such as betulin and its synthetic derivatives, display a broad spectrum of biological activity. However, one of the major drawbacks of these compounds as potential therapeutic agents is their high hydrophobicity and low bioavailability. On the other hand, the presence of easily transformable functional groups in the parent structure makes betulin have a high synthetic potential and the ability to form different derivatives. In this context, research on the synthesis of new betulin derivatives as conjugates of naturally occurring triterpenoid with a monosaccharide via a linker containing a heteroaromatic 1,2,3-triazole ring was presented. It has been shown that copper-catalyzed 1,3-dipolar azide-alkyne cycloaddition reaction (CuAAC) provides an easy and effective way to synthesize new molecular hybrids based on natural products. The chemical structures of the obtained betulin glycoconjugates were confirmed by spectroscopic analysis. Cytotoxicity of the obtained compounds was evaluated on a human breast adenocarcinoma cell line (MCF-7) and colorectal carcinoma cell line (HCT 116). The obtained results show that despite the fact that the obtained betulin glycoconjugates do not show interesting antitumor activity, the idea of adding a sugar unit to the betulin backbone may, after some modifications, turn out to be correct and allow for the targeted transport of betulin glycoconjugates into the tumor cells.
Collapse
Affiliation(s)
- Mirosława Grymel
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100 Gliwice, Poland; (G.P.-G.); (M.Z.); (S.B.); (M.K.)
- Biotechnology Center, Silesian University of Technology, B. Krzywoustego 8, 44-100 Gliwice, Poland;
- Correspondence: ; Tel.: +48-032-237-1873
| | - Gabriela Pastuch-Gawołek
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100 Gliwice, Poland; (G.P.-G.); (M.Z.); (S.B.); (M.K.)
- Biotechnology Center, Silesian University of Technology, B. Krzywoustego 8, 44-100 Gliwice, Poland;
| | - Anna Lalik
- Biotechnology Center, Silesian University of Technology, B. Krzywoustego 8, 44-100 Gliwice, Poland;
- Department of Systems Biology and Engineering, Silesian University of Technology, Akademicka 16, 44-100 Gliwice, Poland
| | - Mateusz Zawojak
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100 Gliwice, Poland; (G.P.-G.); (M.Z.); (S.B.); (M.K.)
| | - Seweryn Boczek
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100 Gliwice, Poland; (G.P.-G.); (M.Z.); (S.B.); (M.K.)
| | - Monika Krawczyk
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100 Gliwice, Poland; (G.P.-G.); (M.Z.); (S.B.); (M.K.)
- Biotechnology Center, Silesian University of Technology, B. Krzywoustego 8, 44-100 Gliwice, Poland;
| | - Karol Erfurt
- Department of Chemical Organic Technology and Petrochemistry, Silesian University of Technology, B. Krzywoustego 4, 44-100 Gliwice, Poland;
| |
Collapse
|
15
|
Grymel M, Zawojak M, Adamek J. Triphenylphosphonium Analogues of Betulin and Betulinic Acid with Biological Activity: A Comprehensive Review. JOURNAL OF NATURAL PRODUCTS 2019; 82:1719-1730. [PMID: 31141361 DOI: 10.1021/acs.jnatprod.8b00830] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Naturally occurring pentacyclic lupane triterpenoids such as betulin (1) or betulinic acid (2) and their synthetic derivatives display a broad spectrum of biological activities and, therefore, have been the subject of great interest. However, the use of these compounds as potential therapeutic agents is limited by their low bioavailability, high hydrophobicity, and insufficient intracellular accumulation. In this context, research on modifications of the parent structures that will improve their pharmacokinetic properties is particularly important. In the past few years, methods of synthesis as well as cytotoxic and antiparasitic properties of a series of lupane triterpenoids modified by introducing one or two triphenylphosphonium moieties at the C-2, C-3, C-28, or C-30 positions by carbon-carbon or ester bonds have been described. The presence of triphenylphosphonium groups affects not only physical properties but also the mechanism of action of a potential drug. This review summarizes published findings on synthetic methods and biological properties of the triphenylphosphonium derivatives of betulin and betulinic acid.
Collapse
Affiliation(s)
- Mirosława Grymel
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology , Silesian University of Technology , 44-100 Gliwice , Poland
- Biotechnology Center of Silesian University of Technology , 44-100 Gliwice , Poland
| | - Mateusz Zawojak
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology , Silesian University of Technology , 44-100 Gliwice , Poland
| | - Jakub Adamek
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology , Silesian University of Technology , 44-100 Gliwice , Poland
- Biotechnology Center of Silesian University of Technology , 44-100 Gliwice , Poland
| |
Collapse
|
16
|
Kiliç V. Piceatannol Mediated Modulation of Oxidative Stress and Regeneration in the Liver of Endotoxemic Mice. J Med Food 2019; 22:594-601. [PMID: 30874461 DOI: 10.1089/jmf.2018.0201] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Liver plays a pivotal role in host defense mechanisms related to endotoxemia. However, liver dysfunction often occurs in early sepsis. This study investigated the hepatoprotective potential of natural stilbenoid piceatannol (PIC) in lipopolysaccharide (LPS)-induced endotoxemic mice. Swiss Albino mice were divided into four groups: Control (C), LPS administrated (LPS), PIC administrated (PIC), and LPS administrated/PIC preadministrated (LPS+PIC) animals. PIC was administrated intraperitoneally (i.p.) at the dose of 4 mg/kg/day during 7 days. Endotoxemia was induced with a single i.p. administration of LPS at the dose of 4 mg/kg. Superoxide dismutase (SOD), catalase (CAT) and lipid peroxidation (LP) levels, light microscopic pathology, and genotoxicity were investigated. Proliferating cell nuclear antigen and SQSTM1/p62 immunofluorescence were measured. PIC preadministration restored SOD activity, reduced LP and genotoxicity. However, moderate level of oxidative stress (OS) had been progressed in PIC preadministrated animals depending upon prolonged autophagic response and selective degradation of CAT. Positive OS stimulated liver regeneration by upregulating oval cells' and downregulating hepatocytes' proliferation and resulted in the maintanence of hepatic tissue integrity in PIC preadministrated animals. These results suggested that PIC may be a useful hepatoprotective agent in LPS-induced endotoxemia as a modulator of OS and genotoxicity, as an inducer of autophagy, and as a promoter of liver regeneration.
Collapse
Affiliation(s)
- Volkan Kiliç
- Department of Biology, Faculty of Science, Eskişehir Technical University, Eskişehir, Turkey
| |
Collapse
|
17
|
Tsai CW, Tsai RT, Liu SP, Chen CS, Tsai MC, Chien SH, Hung HS, Lin SZ, Shyu WC, Fu RH. Neuroprotective Effects of Betulin in Pharmacological and Transgenic Caenorhabditis elegans Models of Parkinson's Disease. Cell Transplant 2018; 26:1903-1918. [PMID: 29390878 PMCID: PMC5802634 DOI: 10.1177/0963689717738785] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Parkinson’s disease (PD) is the second most common degenerative disorder of the central nervous system in the elderly. It is characterized by progressive loss of dopaminergic neurons in the substantia nigra pars compacta, as well as by motor dysfunction. Although the causes of PD are not well understood, aggregation of α-synuclein (α-syn) in neurons contributes to this disease. Current therapeutics for PD provides satisfactory symptom relief but not a cure. Treatment strategies include attempts to identify new drugs that will prevent or arrest the progressive course of PD by correcting disease-specific pathogenic process. Betulin is derived from the bark of birch trees and possesses anticancer, antimicrobial, and anti-inflammatory properties. The aim of the present study was to evaluate the potential for betulin to ameliorate PD features in Caenorhabditis elegans (C. elegans) models. We demonstrated that betulin diminished α-syn accumulation in the transgenic C. elegans model. Betulin also reduced 6-hydroxydopamine-induced dopaminergic neuron degeneration, reduced food-sensing behavioral abnormalities, and reversed life-span decreases in a pharmacological C. elegans model. Moreover, we found that the enhancement of proteasomes activity by promoting rpn1 expression and downregulation of the apoptosis pathway gene, egl-1, may be the molecular mechanism for betulin-mediated protection against PD pathology. Together, these findings support betulin as a possible treatment for PD and encourage further investigations of betulin as an antineurodegenerative agent.
Collapse
Affiliation(s)
- Chia-Wen Tsai
- 1 Department of Nutrition, China Medical University, Taichung, Taiwan
| | - Rong-Tzong Tsai
- 2 Institute of Biochemistry, Microbiology and Immunology, Chung Shan Medical University, Taichung, Taiwan
| | - Shih-Ping Liu
- 3 Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.,4 Translational Medicine Research Center, China Medical University Hospital, Taichung, Taiwan
| | - Chang-Shi Chen
- 5 Department of Biochemical and Molecular Biology, National Cheng Kung University, Tainan, Taiwan
| | - Min-Chen Tsai
- 3 Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Shao-Hsuan Chien
- 3 Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Huey-Shan Hung
- 3 Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.,4 Translational Medicine Research Center, China Medical University Hospital, Taichung, Taiwan
| | - Shinn-Zong Lin
- 6 Bioinnovation Center, Tzu Chi foundation, Department of Neurosurgery, Buddhist Tzu Chi General Hospital, Tzu Chi University, Hualien, Taiwan
| | - Woei-Cherng Shyu
- 3 Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.,4 Translational Medicine Research Center, China Medical University Hospital, Taichung, Taiwan
| | - Ru-Huei Fu
- 3 Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.,4 Translational Medicine Research Center, China Medical University Hospital, Taichung, Taiwan.,7 Department of Psychology, Asia University, Taichung, Taiwan
| |
Collapse
|
18
|
Jafari Hajati R, Payamnoor V, Ahmadian Chashmi N, Ghasemi Bezdi K. Improved accumulation of betulin and betulinic acid in cell suspension culture of Betula pendula roth by abiotic and biotic elicitors. Prep Biochem Biotechnol 2018; 48:867-876. [DOI: 10.1080/10826068.2018.1514514] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Razieh Jafari Hajati
- Faculty of forest sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
- Traditinal Medicine Clinical Trial Research Center, Shahed University, Tehran, Iran
| | - Vahide Payamnoor
- Faculty of forest sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | | | - Kamal Ghasemi Bezdi
- Agricultural research, Education and Extension Oranization (AREEO), Cotton Research Institute of Iran, Gorgan, Iran
| |
Collapse
|
19
|
Zhu C, Chen T, Liu B. Inhibitory effects of miR-25 targeting HMGB1 on macrophage secretion of inflammatory cytokines in sepsis. Oncol Lett 2018; 16:5027-5033. [PMID: 30250569 PMCID: PMC6144916 DOI: 10.3892/ol.2018.9308] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Accepted: 02/23/2018] [Indexed: 01/07/2023] Open
Abstract
High mobility group box 1 (HMGB1) can promote the migration of macrophages and the release of inflammatory cytokines, functions associated with the occurrence of sepsis. The role of microRNA (miR)-25 in the targeted regulation of HMGB1 expression and the release of macrophage inflammatory cytokines remains uncharacterized. The present study investigated the association between miR-25, HMGB1 and sepsis by analyzing the expression of miR-25 and HMGB1 in patients with sepsis. The present study also investigated whether miR-25 serves a role in targeting the regulation of HMGB1 expression and macrophage inflammatory factor release. Patients with sepsis were selected from the Intensive Care Unit, and serum levels of HMGB1. The expression of miR-25 and HMGB1 in serum and peripheral blood mononuclear cells (PBMCs) was compared. Macrophages were cultured in vitro and divided into 5 groups following treatment with lipopolysaccharide (LPS). The expression levels of miR-25, HMGB1, phosphorylated (p-)p65, tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and HMGB-1 were compared, and the migration ability of cells was investigated by Transwell assays. Compared with the healthy controls, patients with sepsis exhibited elevated expression of HMGB1 and decreased expression of miR-25 in serum and PBMCs. Following treatment with LPS, the expression of HMGB1 and p-p65 was elevated, and the expression of miR-25 was decreased in macrophages compared with untreated cells. Following transfection with miR-25 mimics and/or short interfering RNA-HMGB1, the expression of HMGB1 in macrophages decreased significantly, the expression of p-p65, HMGB-1, TNF-α and IL-6 in the culture solution were also decreased, and the migration ability of macrophages was attenuated. The present study suggests that miR-25 attenuated the induction of HMGB1 by LPS, decreased the activity of nuclear factor-κB and the transcriptional activation of TNF-α and IL-6, and suppressed the migration of macrophages. Inhibiting expression of miR-25 may serve a role in upregulating HMGB1 expression, promoting the secretion of inflammatory cytokines and resulting in sepsis.
Collapse
Affiliation(s)
- Chunyan Zhu
- Intensive Care Unit, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Ting Chen
- Intensive Care Unit, The Second People's Hospital of Hefei, Hefei, Anhui 230032, P.R. China
| | - Bao Liu
- Intensive Care Unit, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei, Anhui 230032, P.R. China
| |
Collapse
|
20
|
Suman P, Patel A, Solano L, Jampana G, Gardner ZS, Holt CM, Jonnalagadda SC. Synthesis and cytotoxicity of Baylis-Hillman template derived betulinic acid-triazole conjugates. Tetrahedron 2017. [DOI: 10.1016/j.tet.2016.11.056] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
21
|
Pozharitskaya ON, Karlina MV, Shikov AN, Kosman VM, Makarov VG, Casals E, Rosenholm JM. Pharmacokinetics and Tissue Disposition of Nanosystem-Entrapped Betulin After Endotracheal Administration to Rats. Eur J Drug Metab Pharmacokinet 2017; 42:327-332. [PMID: 27155877 DOI: 10.1007/s13318-016-0340-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
BACKGROUND AND OBJECTIVES Betulin is a triterpene extracted from the cork layer of the outer bark of Betula spp. It has a wide spectrum of pharmacological activities, including being lung protective; however, its bioavailability is low. To increase its bioavailability, betulin was entrapped in a nanosystem (BN). In this study, we investigated the pharmacokinetics and tissue distribution of nanosystem-entrapped betulin after single dose endotracheal administration to rats. METHOD Betulin was nanosystem-entrapped using a solvent exchange technique. The surface morphology and size of the nanosystem were characterized by transmission electron microscopy and dynamic light scattering. The plasma and tissue concentrations of betulin were determined using a validated high-performance liquid chromatography method. RESULTS The highest concentration of betulin was found in lungs and liver, and the lowest in the heart. Betulin did not penetrate highly vascularized tissues or tissue with an average degree of vascularization, nor did it cross the blood-brain barrier. Tissue availability in the lungs was 1.3 times higher for BN than for free betulin. Betulin was detected in the bloodstream at 15 min after administration of BN compared with only at 1 h after administration of free betulin. Penetration of betulin in the liver tissue was characterized by a high degree of intensity both for BN and free betulin. Betulin in the heart tissue was detected in much smaller quantities than in the liver. CONCLUSION Entrapment of betulin in nanosystem form shows promise as a novel strategy in the treatment of pulmonary diseases.
Collapse
Affiliation(s)
- Olga N Pozharitskaya
- Saint Petersburg Institute of Pharmacy, Leningrad Region, Vsevolozhsky District, 188663, Kuzmolovo P 245, Russia
| | - Marina V Karlina
- Saint Petersburg Institute of Pharmacy, Leningrad Region, Vsevolozhsky District, 188663, Kuzmolovo P 245, Russia
| | - Alexander N Shikov
- Saint Petersburg Institute of Pharmacy, Leningrad Region, Vsevolozhsky District, 188663, Kuzmolovo P 245, Russia.
| | - Vera M Kosman
- Saint Petersburg Institute of Pharmacy, Leningrad Region, Vsevolozhsky District, 188663, Kuzmolovo P 245, Russia
| | - Valery G Makarov
- Saint Petersburg Institute of Pharmacy, Leningrad Region, Vsevolozhsky District, 188663, Kuzmolovo P 245, Russia
| | - Eudald Casals
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, BioCity (3rd Floor), Tykistökatu 6A, 20520, Turku, Finland
| | - Jessica M Rosenholm
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, BioCity (3rd Floor), Tykistökatu 6A, 20520, Turku, Finland
| |
Collapse
|
22
|
Ci X, Zhou J, Lv H, Yu Q, Peng L, Hua S. Betulin exhibits anti-inflammatory activity in LPS-stimulated macrophages and endotoxin-shocked mice through an AMPK/AKT/Nrf2-dependent mechanism. Cell Death Dis 2017; 8:e2798. [PMID: 28518138 PMCID: PMC5520743 DOI: 10.1038/cddis.2017.39] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 01/11/2017] [Accepted: 01/12/2017] [Indexed: 12/14/2022]
Abstract
Continued oxidative stress can lead to chronic inflammation, which in turn could mediate most chronic diseases including cancer. Nuclear factor erythroid 2-related factor (Nrf2), a critical transcriptional activator for antioxidative responses, has envolved to be an attractive drug target for the treatment or prevention of human diseases. In the present study, we investigated the effects and mechanisms of betulin on Nrf2 activation and its involvement in the lipopolysaccharide (LPS)-triggered inflammatory system. In macrophages, betulin activated the Nrf2 signaling pathway and increased Nrf2-targeted antioxidant and detoxifying enzymes, including NADPH, quinine oxidoreductase 1 (NQO1), heme oxygenase-1 (HO-1), γ-glutamyl cysteine synthetase catalytic subunit (GCLC) and modifier subunit (GCLM) in a dose and time dependent manner. Importantly, we found betulin-induced activation of Nrf2 is AMPK/AKT/GSK3β dependent, as pharmacologically inactivating AMPK blocked the activating effect of betulin on AKT, GSK3β and Nrf2. Furthermore, betulin attenuated LPS-induced inflammatory mediators (iNOS and COX-2) and MAPK inflammatory signaling pathway. The effect of betulin on HO-1 and NQO1 upregulation, iNOS and COX-2 the downregulation, and survival time extension was largely weakened when Nrf2 was depleted in vitro and in vivo. Our results demonstrate that the AMPK/AKT/Nrf2 pathways are essential for the anti-inflammatory effects of betulin in LPS-stimulated macrophages and endotoxin-shocked mice.
Collapse
Affiliation(s)
- Xinxin Ci
- Institute of Translational Medicine, Department of Respiratory Medicine, The First Hospital, Jilin University, Changchun 130001, China
| | - Junfeng Zhou
- Department of Dermatology and Venereology, The First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Hongming Lv
- Institute of Translational Medicine, Department of Respiratory Medicine, The First Hospital, Jilin University, Changchun 130001, China
| | - Qinlei Yu
- Institute of Translational Medicine, Department of Respiratory Medicine, The First Hospital, Jilin University, Changchun 130001, China
| | - Liping Peng
- Institute of Translational Medicine, Department of Respiratory Medicine, The First Hospital, Jilin University, Changchun 130001, China
| | - Shucheng Hua
- Institute of Translational Medicine, Department of Respiratory Medicine, The First Hospital, Jilin University, Changchun 130001, China
| |
Collapse
|
23
|
Zhou YQ, Weng XF, Dou R, Tan XS, Zhang TT, Fang JB, Wu XW. Betulin from Hedyotis hedyotidea ameliorates concanavalin A-induced and T cell-mediated autoimmune hepatitis in mice. Acta Pharmacol Sin 2017; 38:201-210. [PMID: 27796295 DOI: 10.1038/aps.2016.102] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Accepted: 08/26/2016] [Indexed: 12/18/2022] Open
Abstract
Hedyotis hedyotidea has been used in traditional Chinese medicine for the treatment of autoimmune diseases. However, the mechanisms underlying for the effect remain unknown. We previously showed that, among 11 compounds extracted from H hedyotidea, betulin produced the strongest suppressive effect on T cell activation. Here, we examined the hepatoprotective effects of betulin against acute autoimmune hepatitis in mice and the mechanisms underlying the effects. Freshly isolated mouse splenocytes were stimulated with concanavalin A (Con A, 5 μg/mL) in the presence of betulin, the cell proliferation was assessed with CSFE-dilution assay. Mice were injected with betulin (10, 20 mg·kg-1·d-1, ip) for 3 d. One hour after the last injection, the mice were injected with Con A (15 mg/kg, iv) to induce acute hepatitis. Blood samples and liver tissues were harvested at 10 h after Con A injection, and serum transaminase levels and liver histopathology were detected; serum levels of proinflammatory cytokines, hepatic T lymphocyte ratios, and functional statuses of conventional T and NKT cells were also analyzed. Betulin (16 and 32 μmol/L) dose-dependently suppressed the proliferation of Con A-stimulated mouse splenocytes in vitro. In Con A-challenged mice, preinjection with betulin (20 mg·kg-1·d-1) significantly decreased the levels of proinflammatory cytokines IFN-γ, TNF-α and IL-6, and ameliorated liver injury. Furthermore, pretreatment with betulin (20 mg·kg-1·d-1) significantly inhibited the Con A-induced activation of NKT and conventional T cells, and decreased production of proinflammatory cytokines IFN-γ, TNF-α and IL-6 in these two cell populations. Betulin has immunomodulatory effect on overly activated conventional T and NKT cells and exerts hepatoprotective action in mouse autoimmune hepatitis. The findings provide evidence for the use of H hedyotidea and its constituent betulin in the treatment of autoimmune diseases.
Collapse
|
24
|
Jonnalagadda S, Suman P, Morgan D, Seay J. Recent Developments on the Synthesis and Applications of Betulin and Betulinic Acid Derivatives as Therapeutic Agents. STUDIES IN NATURAL PRODUCTS CHEMISTRY 2017. [DOI: 10.1016/b978-0-444-63930-1.00002-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
25
|
Ra HJ, Lee HJ, Jo HS, Nam DC, Lee YB, Kang BH, Moon DK, Kim DH, Lee CJ, Hwang SC. Betulin suppressed interleukin-1β-induced gene expression, secretion and proteolytic activity of matrix metalloproteinase in cultured articular chondrocytes and production of matrix metalloproteinase in the knee joint of rat. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2016; 21:19-26. [PMID: 28066137 PMCID: PMC5214907 DOI: 10.4196/kjpp.2017.21.1.19] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 08/18/2016] [Accepted: 08/19/2016] [Indexed: 12/31/2022]
Abstract
We investigated whether betulin affects the gene expression, secretion and proteolytic activity of matrix metalloproteinase-3 (MMP-3) in primary cultured rabbit articular chondrocytes, as well as in vivo production of MMP-3 in the rat knee joint to evaluate the potential chondroprotective effect of betulin. Rabbit articular chondrocytes were cultured and reverse transcription-polymerase chain reaction (RT-PCR) was used to measure interleukin-1β (IL-1β)-induced gene expression of MMP-3, MMP-1, MMP-13, a disintegrin and metalloproteinase with thrombospondin motifs-4 (ADAMTS-4), ADAMTS-5 and type II collagen. Effect of betulin on IL-1β-induced secretion and proteolytic activity of MMP-3 was investigated using western blot analysis and casein zymography, respectively. Effect of betulin on MMP-3 protein production was also examined in vivo. The results were as follows: (1) betulin inhibited the gene expression of MMP-3, MMP-1, MMP-13, ADAMTS-4, and ADAMTS-5, but increased the gene expression of type II collagen; (2) betulin inhibited the secretion and proteolytic activity of MMP-3; (3) betulin suppressed the production of MMP-3 protein in vivo. These results suggest that betulin can regulate the gene expression, secretion, and proteolytic activity of MMP-3, by directly acting on articular chondrocytes.
Collapse
Affiliation(s)
- Ho Jong Ra
- Department of Orthopedic Surgery, Gangneung Asan Hospital, College of Medicine, University of Ulsan, Gangneung 25440, Korea
| | - Hyun Jae Lee
- Department of Health Management, Sahmyook University, Seoul 01795, Korea
| | - Ho Seung Jo
- Department of Orthopedic Surgery and Institute of Health Sciences, School of Medicine and Hospital, Gyeongsang National University, Jinju 52727, Korea
| | - Dae Cheol Nam
- Department of Orthopedic Surgery and Institute of Health Sciences, School of Medicine and Hospital, Gyeongsang National University, Jinju 52727, Korea
| | - Young Bok Lee
- Department of Orthopedic Surgery and Institute of Health Sciences, School of Medicine and Hospital, Gyeongsang National University, Jinju 52727, Korea
| | - Byeong Hun Kang
- Department of Orthopedic Surgery and Institute of Health Sciences, School of Medicine and Hospital, Gyeongsang National University, Jinju 52727, Korea
| | - Dong Kyu Moon
- Department of Orthopedic Surgery and Institute of Health Sciences, School of Medicine and Hospital, Gyeongsang National University, Jinju 52727, Korea
| | - Dong Hee Kim
- Department of Orthopedic Surgery and Institute of Health Sciences, School of Medicine and Hospital, Gyeongsang National University, Jinju 52727, Korea
| | - Choong Jae Lee
- Department of Pharmacology, School of Medicine, Chungnam National University, Daejeon 35015, Korea
| | - Sun-Chul Hwang
- Department of Orthopedic Surgery and Institute of Health Sciences, School of Medicine and Hospital, Gyeongsang National University, Jinju 52727, Korea
| |
Collapse
|