1
|
Schulz H, Abdelfattah F, Heinrich A, Melnik D, Sandt V, Krüger M, Wehland M, Hoffmann P, Cortés-Sánchez JL, Evert M, Evert K, Grimm D. Omics Investigations of Prostate Cancer Cells Exposed to Simulated Microgravity Conditions. Biomolecules 2025; 15:303. [PMID: 40001606 PMCID: PMC11853236 DOI: 10.3390/biom15020303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/06/2025] [Accepted: 02/13/2025] [Indexed: 02/27/2025] Open
Abstract
Prostate cancer (PC) is the most diagnosed cancer in males across the globe. Following the formation of metastasis, PC is linked to a notable decline in both prognosis and survival rates. Three-dimensional multicellular spheroids (MCSs) of a prostate adenocarcinoma cell line were generated in a three-day simulated microgravity environment (s-µg) to serve as a model for metastasis and to derive transcriptional and epigenetic PC candidates from molecular biological changes. With an FDR of 10-3, we detected the most differentially expressed genes in the two comparisons' adherent cells (AD) to MCSs (N = 751 genes) and 1g control cells to MCSs (N = 662 genes). In these two comparisons, genes related to cell cycle, angiogenesis, cell adhesion, and extracellular space were consistently found to be significantly enriched in GO annotations. Furthermore, at a 5% FDR significance level, we were able to identify 11,090 genome-wide differentially methylated positions (DMPs) and one differentially methylated region in the SRMS gene in the 1g vs. AD comparison, as well as an additional 10,797 DMPs in the 1g vs. MCSs comparison. Finally, we identified five s-µg-related positive enrichments of transcription factor binding sites for AR, IRF1, IRF2, STAT1, STAT2, and FOXJ3 close to the DMPs.
Collapse
Affiliation(s)
- Herbert Schulz
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, 39106 Magdeburg, Germany (M.K.)
- Research Group “Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen” (MARS), Otto von Guericke University, 39106 Magdeburg, Germany;
| | - Fatima Abdelfattah
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, 39106 Magdeburg, Germany (M.K.)
| | - Anna Heinrich
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, 39106 Magdeburg, Germany (M.K.)
| | - Daniela Melnik
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, 39106 Magdeburg, Germany (M.K.)
- Research Group “Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen” (MARS), Otto von Guericke University, 39106 Magdeburg, Germany;
| | - Viviann Sandt
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, 39106 Magdeburg, Germany (M.K.)
| | - Marcus Krüger
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, 39106 Magdeburg, Germany (M.K.)
- Research Group “Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen” (MARS), Otto von Guericke University, 39106 Magdeburg, Germany;
| | - Markus Wehland
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, 39106 Magdeburg, Germany (M.K.)
- Research Group “Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen” (MARS), Otto von Guericke University, 39106 Magdeburg, Germany;
| | - Per Hoffmann
- Institute of Human Genetics, University Hospital of Bonn, 53127 Bonn, Germany
- Human Genomics Research Group, Department of Biomedicine, University Hospital Basel, 4031 Basel, Switzerland
| | - José Luis Cortés-Sánchez
- Research Group “Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen” (MARS), Otto von Guericke University, 39106 Magdeburg, Germany;
- Institute of Anatomy, Medical Faculty, Otto-von-Guericke-University Magdeburg, Leipziger Straße 44, 39120 Magdeburg, Germany
| | - Matthias Evert
- Institute for Pathology, University Regensburg, 93053 Regensburg, Germany
| | - Katja Evert
- Institute for Pathology, University Regensburg, 93053 Regensburg, Germany
| | - Daniela Grimm
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, 39106 Magdeburg, Germany (M.K.)
- Research Group “Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen” (MARS), Otto von Guericke University, 39106 Magdeburg, Germany;
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
| |
Collapse
|
2
|
He E, Li Y, Zhao R, Kong Q, Shao Y, Wang C, Liu B, Jiang Y, Liu Q, Cui H. IL7 as a Risk Factor for Prostate Cancer: Implications for T Cell Apoptosis and Infiltration in the Tumor Microenvironment. Prostate 2025; 85:315-323. [PMID: 39593187 DOI: 10.1002/pros.24830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/23/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024]
Abstract
BACKGROUND Prostate cancer's complex interplay with the immune microenvironment prompted an investigation into immune-related pathogenic mechanisms and potential therapeutic targets. METHODS Within the GSE176031 data set, Seurat meticulously dissected single-cell profiles from radical prostatectomy patients. Leveraging CellMarker and SingleR cell identities were precisely annotated. Then, monocle traced pseudotime trajectories, illuminating cellular paths, complemented by CellChat's insights into intricate intercellular communications. Furthermore, mendelian randomization (MR) robustly substantiated causal associations within prostate cancer contexts. RESULTS Employing single-cell analysis on intraoperative tumor and normal tissue, we identified 15 distinct cell types, notably observing a significant T cell reduction in tumor samples. Intercellular communication analysis revealed multiple pathways between epithelial cells and T cells, highlighting interleukin (IL)-IL7R-IL2RG interactions. IL7R, crucial in T cell apoptosis, showed differential expression across T cell development stages. Patients with IL7 amplification had poorer outcomes (p < 0.05), supported by MR in two cohorts (ieu-b-4809 cohort: odds ratio [OR] = 1.005, p = 0.002, 95% confidence interval [CI] [1.002-1.008]; ebi-a-GCST90018905: OR = 1.063, p = 0.032, 95% CI [1.005-1.125]), confirming IL7 as a prostate cancer risk factor. CONCLUSIONS These findings suggest T cell depletion via IL7-IL7R signaling may drive prostate cancer progression, offering novel therapeutic insights.
Collapse
Affiliation(s)
- Enyang He
- Tianjin Medical University, Tianjin, China
- Graduate School of Tianjin Medical University, Tianjin, China
| | - Yaowen Li
- Tianjin Medical University, Tianjin, China
- The First Central Hospital of Tianjin, Tianjin, China
| | - Rui Zhao
- Tianjin Medical University, Tianjin, China
- General Hospital of Tianjin Medical University, Tianjin, China
| | - Qinyan Kong
- West China Hospital of Sichuan University, Chengdu, China
| | - Yi Shao
- Tianjin Medical University, Tianjin, China
- The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Cong Wang
- Tianjin Medical University, Tianjin, China
- General Hospital of Tianjin Medical University, Tianjin, China
| | - Baoqun Liu
- Tianjin Medical University, Tianjin, China
- The First Central Hospital of Tianjin, Tianjin, China
| | - Yvhang Jiang
- Tianjin Medical University, Tianjin, China
- General Hospital of Tianjin Medical University, Tianjin, China
| | - Qian Liu
- Tianjin Medical University, Tianjin, China
- The First Central Hospital of Tianjin, Tianjin, China
| | - Hualei Cui
- Tianjin Medical University, Tianjin, China
- Graduate School of Tianjin Medical University, Tianjin, China
| |
Collapse
|
3
|
Yang B, Zeng X, Wang H, Feng J, Hou S. Serum Matrix Metalloproteinases and Risk of Urologic Cancers: A Bidirectional Mendelian Randomization Study. Am J Mens Health 2025; 19:15579883241311229. [PMID: 39930792 PMCID: PMC11811975 DOI: 10.1177/15579883241311229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/11/2024] [Accepted: 12/16/2024] [Indexed: 02/13/2025] Open
Abstract
Many observational epidemiological studies have reported an association between matrix metalloproteinases (MMPs) and urologic cancers. However, the causal relationship between these two phenotypes remains uncertain. This study aims to examine the bidirectional causal relationship between serum MMPs and three urologic cancers: kidney, prostate, and bladder cancer. Using data from large-scale genome-wide association studies (GWAS), we employed two-sample Mendelian randomization (MR) methods to assess the causal relationship between serum MMPs and urologic cancers. We performed inverse variance-weighted MR as the primary method for calculating the overall effects of multiple instruments, while implementing additional MR methods and sensitivity analyses. Odds ratios (ORs) were employed to evaluate the causal relationship between serum MMPs and urologic cancers risk. Our findings indicated a causal relationship between serum MMP-3 levels and prostate cancer risk (OR = 1.07, 95% confidence interval [CI] = [1.02, 1.11], p = .003). There was a possible causal relationship between serum MMP-1 and prostate cancer (OR = 0.95, 95% CI = [0.92, 0.99], p = .02). Serum MMP-1 may also increase the risk of bladder cancer (OR = 1.24, 95% CI = [1.04, 1.49], p = .016). We did not find significant associations of the remaining MMPs with prostate, bladder, and kidney cancer. In reverse MR, no significant results were observed supporting the effect of urologic cancers on MMPs (p > .05). Our study provides evidence of a potential causal relationship between serum MMPs and both prostate cancer and bladder cancer. However, large-scale studies are necessary to confirm and reveal the underlying mechanisms of this association.
Collapse
Affiliation(s)
- BoWen Yang
- Oncology, Dongguan Hospital of Guangzhou University of Chinese Medicine, Dongguan, Guangdong, China
- Graduate School of Guangzhou, University of Traditional Chinese Medicine, Guangzhou, China
| | - XiaoYu Zeng
- Clinical Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - HanYu Wang
- Clinical Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - JiuHuan Feng
- Oncology, Dongguan Hospital of Guangzhou University of Chinese Medicine, Dongguan, Guangdong, China
| | - ShuFang Hou
- Oncology, Dongguan Hospital of Guangzhou University of Chinese Medicine, Dongguan, Guangdong, China
| |
Collapse
|
4
|
Liang J, Zhu L, Li J, Wu K, Zhang M, Ma S, Chen X, Xia B. Comprehensive analysis to identify IL7R as a immunotherapy biomarker from pan-cancer analysis to in vitro validation. Discov Oncol 2024; 15:509. [PMID: 39347891 PMCID: PMC11442881 DOI: 10.1007/s12672-024-01357-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 09/17/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND Immunotherapy faces a major challenge in treatment resistance, highlighting the need for efficacy biomarkers identification. The tumor microenvironment (TME) significantly influences treatment outcomes, necessitating molecular TME exploration to address immunotherapy resistance. METHODS The study initially pinpointed IL7R as a pivotal TME gene and then examined its impact on TME's CD8 + T cells at the single-cell level. Bulk-RNA analysis investigated IL7R function, immune cell infiltration related to IL7R in TCGA pan-cancer samples with its expression verified in clinical samples through immunohistochemistry. Genome instability and immune-related molecular expression associated with IL7R were also assessed. Furthermore, the clinical efficacy of IL7R was evaluated in various immunotherapy treatment cohorts. RESULTS Our single-cell analyses and cell-cased experiment revealed that T cells with high IL7R expression tended to be non-terminal and correlated with favorable immunotherapy responses. High IL7R expression corresponded to increased immune and stromal cell signiture, immune pathway enrichment, and an immune-inflamed environment in Bulk-RNA analysis and immunohistochemistry verification. These patients exhibited higher proportions of memory T cells and M1 cells within the TME, along with frequent genome instability and immune molecular upregulation. While IL7R had varied prognostic impact across the TCGA dataset, patients with high IL7R expression showed extended survival under immunotherapy. CONCLUSION IL7R plays a critical role in shaping TME diversity across cancer types and holds promise as a relevant biomarker for predicting immunotherapy benefits.
Collapse
Affiliation(s)
- Jiafeng Liang
- Department of Thoracic Oncology, Hangzhou Cancer Hospital, Hangzhou, 310002, China
| | - Lucheng Zhu
- Department of Thoracic Oncology, Hangzhou Cancer Hospital, Hangzhou, 310002, China
| | - Jiawei Li
- Department of Thoracic Oncology, Hangzhou Cancer Hospital, Hangzhou, 310002, China
| | - Kan Wu
- Department of Thoracic Oncology, Hangzhou Cancer Hospital, Hangzhou, 310002, China
| | - Minna Zhang
- Department of Thoracic Oncology, Hangzhou Cancer Hospital, Hangzhou, 310002, China
| | - Shenglin Ma
- Department of Thoracic Oncology, Hangzhou Cancer Hospital, Hangzhou, 310002, China
| | - Xueqin Chen
- Department of Thoracic Oncology, Hangzhou Cancer Hospital, Hangzhou, 310002, China.
| | - Bing Xia
- Department of Thoracic Oncology, Hangzhou Cancer Hospital, Hangzhou, 310002, China.
| |
Collapse
|
5
|
Zhu S, He J, Yin L, Zhou J, Lian J, Ren Y, Zhang X, Yuan J, Wang G, Li X. Matrix metalloproteinases targeting in prostate cancer. Urol Oncol 2024; 42:275-287. [PMID: 38806387 DOI: 10.1016/j.urolonc.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/07/2024] [Accepted: 05/06/2024] [Indexed: 05/30/2024]
Abstract
Prostate cancer (PCa) is one of the most common tumors affecting men all over the world. PCa has brought a huge health burden to men around the world, especially for elderly men, but its pathogenesis is unclear. In prostate cancer, epigenetic inheritance plays an important role in the development, progression, and metastasis of the disease. An important role in cancer invasion and metastasis is played by matrix metalloproteinases (MMPs), zinc-dependent proteases that break down extracellular matrix. We review two important forms of epigenetic modification and the role of matrix metalloproteinases in tumor regulation, both of which may be of significant value as novel biomarkers for early diagnosis and prognosis monitoring. The author considers that both mechanisms have promising therapeutic applications for therapeutic agent research in prostate cancer, but that efforts should be made to mitigate or eliminate the side effects of drug therapy in order to maximize quality of life of patients. The understanding of epigenetic modification, MMPs, and their inhibitors in the functional regulation of prostate cancer is gradually advancing, it will provide a new technical means for the prevention of prostate cancer, early diagnosis, androgen-independent prostate cancer treatment, and drug research.
Collapse
Affiliation(s)
- Shuying Zhu
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, PR China
| | - Jing He
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, PR China
| | - Liliang Yin
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, PR China
| | - Jiawei Zhou
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, PR China
| | - Jiayi Lian
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, PR China
| | - Yanli Ren
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China
| | - Xinling Zhang
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, PR China
| | - Jinghua Yuan
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, PR China
| | - Gang Wang
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, PR China
| | - Xiaoping Li
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, PR China.
| |
Collapse
|
6
|
Zhang Z, Wang J, Teng M, Yan X, Liu Q. The role of serum interleukins in Cancer: A Multi-center Mendelian Randomization study. Int Immunopharmacol 2024; 137:112520. [PMID: 38901247 DOI: 10.1016/j.intimp.2024.112520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/02/2024] [Accepted: 06/16/2024] [Indexed: 06/22/2024]
Abstract
The occurrence of cancer is often accompanied by immune evasion and tumor-promoting inflammation, with interleukins (IL) playing a pivotal role in the immune-inflammatory mechanism. However, the precise contribution of serum interleukins in cancer remains elusive. We obtained GWAS summary data for 35 interleukins from eight independent large-scale serum proteome studies of European ancestry populations and for 23 common cancers from the FinnGen Consortium. We then conducted a multicenter Mendelian Randomization (MR) study to explore the relationship between systemic inflammatory status and cancers. 24 causal associations between interleukins and cancers were supported by multicenter data, 18 of which were reported for the first time. Our results indicated that IL-1α (Hodgkin lymphoma), IL-5 (bladder cancer), IL-7 (prostate cancer), IL-11 (bone malignant tumor), IL-16 (lung cancer), IL-17A (pancreatic cancer), IL-20 (bladder cancer), IL-22 (lymphocytic leukemia), IL-34 (breast cancer), IL-36β (prostate cancer), and IL-36γ (liver cancer) were risk factors for related cancers. Conversely, IL-9 (malignant neoplasms of the corpus uteri), IL-17C (liver cancer), and IL-31 (colorectal cancer, bladder cancer, pancreatic cancer, and cutaneous melanoma) exhibited protective effects against related cancers. Notably, the dual effects of serum interleukins were also observed. IL-18 acted as a risk factor for prostate cancer, however, was a protective factor against laryngeal cancer. Similarly, IL-19 promoted the development of lung cancer and myeloid leukemia, while conferring protection against Breast, cervical, and thyroid cancers. Our study confirmed the genetic association between multiple serum interleukins and cancers. Immune and anti-inflammatory strategies targeting these associations provide opportunities for prevention and treatment.
Collapse
Affiliation(s)
- Zheng Zhang
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi Province, China
| | - Jiachen Wang
- Department of Joint Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi Province, China
| | - Menghao Teng
- Department of Orthopedics, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi Province, China
| | - Xinyang Yan
- Department of Neurosurgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi Province, China
| | - Qingguang Liu
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi Province, China.
| |
Collapse
|
7
|
Ullah A, Jiao W, Shen B. The role of proinflammatory cytokines and CXC chemokines (CXCL1-CXCL16) in the progression of prostate cancer: insights on their therapeutic management. Cell Mol Biol Lett 2024; 29:73. [PMID: 38745115 PMCID: PMC11094955 DOI: 10.1186/s11658-024-00591-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 05/06/2024] [Indexed: 05/16/2024] Open
Abstract
Reproductive cancers are malignancies that develop in the reproductive organs. One of the leading cancers affecting the male reproductive system on a global scale is prostate cancer (PCa). The negative consequences of PCa metastases endure and are severe, significantly affecting mortality and life quality for those who are affected. The association between inflammation and PCa has captured interest for a while. Inflammatory cells, cytokines, CXC chemokines, signaling pathways, and other elements make up the tumor microenvironment (TME), which is characterized by inflammation. Inflammatory cytokines and CXC chemokines are especially crucial for PCa development and prognosis. Cytokines (interleukins) and CXC chemokines such as IL-1, IL-6, IL-7, IL-17, TGF-β, TNF-α, CXCL1-CXCL6, and CXCL8-CXCL16 are thought to be responsible for the pleiotropic effects of PCa, which include inflammation, progression, angiogenesis, leukocyte infiltration in advanced PCa, and therapeutic resistance. The inflammatory cytokine and CXC chemokines systems are also promising candidates for PCa suppression and immunotherapy. Therefore, the purpose of this work is to provide insight on how the spectra of inflammatory cytokines and CXC chemokines evolve as PCa develops and spreads. We also discussed recent developments in our awareness of the diverse molecular signaling pathways of these circulating cytokines and CXC chemokines, as well as their associated receptors, which may one day serve as PCa-targeted therapies. Moreover, the current status and potential of theranostic PCa therapies based on cytokines, CXC chemokines, and CXC receptors (CXCRs) are examined.
Collapse
Affiliation(s)
- Amin Ullah
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Wang Jiao
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Bairong Shen
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
8
|
Stankovic KM, Batts S, Welling DB, Vasilijic S. Immune Profiling of Secreted Factors from Human Vestibular Schwannoma Cells and Tumor-associated Macrophages. Laryngoscope 2024; 134 Suppl 5:S1-S14. [PMID: 37776249 DOI: 10.1002/lary.31067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/27/2023] [Accepted: 09/12/2023] [Indexed: 10/02/2023]
Abstract
OBJECTIVES This study compared the immune-related secretory capacity of human vestibular schwannoma (VS) and tumor-assisted macrophages (TAMs) with their normal counterparts (Schwann cells [SC] and peripheral blood monocyte-derived macrophages [Mo-MFs], respectively), and examined relationships with presurgical hearing and tumor size. METHODS VS tumors (n = 16), auditory nerve (n = 1), blood (n = 9), and great auricular nerves (n = 3) were used. SCs (S100B+ ) and TAMs (CD68+ ) were isolated from VS tissue for culture. The secreted levels of 65 immune-related factors were measured and compared using unpaired t-tests with Welch correction (schwannoma vs. SCs) or Mann-Whitney tests (TAMs and Mo-MFs). Associations between factor concentration and word recognition (WR), pure-tone average (PTA), and tumor size were evaluated with Spearman correlation. RESULTS Secreted factors with significantly higher concentrations in schwannoma versus SC supernatants included IL-2 and BAFF, whereas MMP-1, IL-6, FGF-2, VEGF-A, MIP-3α, and GRO-α concentrations were significantly higher in TAMs versus Mo-MFs (all p < 0.05). Worse WR was significantly associated with higher secretion of fractalkine, eotaxin-3, CD30, and IL-16 by VS cells; IP-10, eotaxin-3, multiple interleukins, GM-CSF, SCF, and CD30 by TAMs; and TNF-α and MIP-1α by Mo-MFs (all p < 0.05). Worse PTA was significantly correlated with higher secretion of IL-16 by VS cells (p < 0.05). Larger tumor size was significantly correlated with higher secretion of eotaxin by VS cells, and of IL-7, IL-21, and LIF by TAMs (all p = 0.017). CONCLUSIONS Differential secretion of immune-related factors was observed in schwannoma versus normal SCs and in TAMs versus Mo-MFs, some of which were correlated with worse hearing and larger VS tumors. LEVEL OF EVIDENCE N/A Laryngoscope, 134:S1-S14, 2024.
Collapse
Affiliation(s)
- Konstantina M Stankovic
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Palo Alto, California, U.S.A
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, California, U.S.A
- Wu Tsai Neuroscience Institute, Stanford University, Palo Alto, California, U.S.A
- Department of Otolaryngology-Head and Neck Surgery at Massachusetts Eye and Ear and, Harvard Medical School, Boston, Massachusetts, U.S.A
| | - Shelley Batts
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Palo Alto, California, U.S.A
| | - D Bradley Welling
- Department of Otolaryngology-Head and Neck Surgery at Massachusetts Eye and Ear and, Harvard Medical School, Boston, Massachusetts, U.S.A
| | - Sasa Vasilijic
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Palo Alto, California, U.S.A
- Department of Otolaryngology-Head and Neck Surgery at Massachusetts Eye and Ear and, Harvard Medical School, Boston, Massachusetts, U.S.A
| |
Collapse
|
9
|
Zhou H, Cai Z, Yang Q, Yang X, Chen J, Huang T. Inflammatory cytokines and two subtypes of breast cancer: A two-sample mendelian randomization study. PLoS One 2023; 18:e0293230. [PMID: 37910571 PMCID: PMC10619764 DOI: 10.1371/journal.pone.0293230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 09/29/2023] [Indexed: 11/03/2023] Open
Abstract
BACKGROUND Breast cancer is a common cancer type that leads to cancer-related deaths among women. HER2-positive breast cancer, in particular, is associated with poor prognosis due to its high aggressiveness, increased risk of recurrence, and metastasis potential. Previous observational studies have explored potential associations between inflammatory cytokines and the risk of two breast cancer subtypes (HER2-positive and HER2-negative), but the results have been inconsistent. To further elucidate the causal relationship between inflammatory cytokines and the two breast cancer subtypes, we conducted a two-sample Mendelian randomization (MR) study. METHODS We employed a two-sample bidirectional MR analysis using publicly available genome-wide association study (GWAS) statistics. After obtaining instrumental variables, we conducted MR analyses using five different methods to ensure the reliability of our results. Additionally, we performed tests for heterogeneity and horizontal pleiotropy. Subsequently, we conducted a reverse MR study by reversing exposure and outcome variables. RESULTS Evidence from our IVW analysis revealed that genetically predicted levels of IL-5 [odds ratio (OR): 1.18, 95% confidence interval (CI): 1.04-1.35, P = 0.012], IL-7 (OR: 1.11, 95% CI: 1.01-1.22, P = 0.037), and IL-16 (OR: 1.13, 95% CI: 1.02-1.25, P = 0.025) were associated with an increased risk of HER2-positive breast cancer. Conversely, IL-10 (OR: 1.14, 95% CI: 1.03-1.26, P = 0.012) was associated with an increased risk of HER2-negative breast cancer. These results showed no evidence of heterogeneity or horizontal pleiotropy (P > 0.05). Results from the reverse MR analysis indicated no potential causal association between breast cancer and inflammatory cytokines (P > 0.05). CONCLUSION Our findings demonstrate that IL-5, IL-7, and IL-16 are risk factors for HER2-positive breast cancer, with varying degrees of increased probability of HER2-positive breast cancer associated with elevated levels of these inflammatory cytokines. Conversely, IL-10 is a risk factor for HER2-negative breast cancer. Reverse studies have confirmed that breast cancer is not a risk factor for elevated levels of inflammatory cytokines. This series of results clarifies the causal relationship between different types of inflammatory cytokines and different subtypes of breast cancer. Based on this research, potential directions for the mechanism research of different inflammatory cytokines and different subtypes of breast cancer have been provided, and potential genetic basis for identifying and treating different subtypes of breast cancer have been suggested.
Collapse
Affiliation(s)
- Heran Zhou
- Department of Oncology, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, 310007, Zhejiang, China
| | - Zelin Cai
- Hangzhou TCM Hospital of Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou, 310007, Zhejiang, China
| | - Qujia Yang
- Hangzhou TCM Hospital of Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou, 310007, Zhejiang, China
| | - Xuefei Yang
- Department of Oncology, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, 310007, Zhejiang, China
| | - Jihao Chen
- Hangzhou TCM Hospital of Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou, 310007, Zhejiang, China
| | - Ting Huang
- Hangzhou TCM Hospital of Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou, 310007, Zhejiang, China
| |
Collapse
|
10
|
Hesari M, Attar Z, Soltani-Shirazi S, Keshavarzian O, Taheri R, Tabrizi R, Fouladseresht H. The Therapeutic Values of IL-7/IL-7R and the Recombinant Derivatives in Glioma: A Narrative Review. J Interferon Cytokine Res 2023; 43:319-334. [PMID: 37566474 DOI: 10.1089/jir.2023.0050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2023] Open
Abstract
Interleukin-7 (IL-7) is essential for maintaining the immune system's defense functions by regulating the development and homeostasis of lymphocytes. Findings have shown the high efficacy of IL-7/IL-7 receptor (IL-7R)-based immunotherapy on various malignancies, with confirmation in both animal models and humans. In recent years, the progression-free survival and overall survival of patients suffering from gliomas significantly increased by introducing C7R-expressing chimeric antigen receptor (CAR)-T cells and long-acting IL-7 agonists such as NT-I7 (rhIL-7-hyFc, Efineptakin alfa). However, the effect of IL-7-based immunotherapies on the resistance of tumor cells to chemotherapy (when used simultaneously with chemotherapy agents) is still ambiguous and requires further studies. This article first reviews the pathophysiological roles of IL-7/IL-7R in tumors, focusing on gliomas. Subsequently, it discusses the therapeutic values of IL-7/IL-7R and the recombinant derivatives in gliomas.
Collapse
Affiliation(s)
| | - Zeinab Attar
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
- Department of Pharmacology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shakiba Soltani-Shirazi
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Reza Taheri
- Department of Neurosurgery, Fasa University of Medical Sciences, Fasa, Iran
| | - Reza Tabrizi
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Hamed Fouladseresht
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
11
|
Al-Rashidi RR, Noraldeen SAM, Kareem AK, Mahmoud AK, Kadhum WR, Ramírez-Coronel AA, Iswanto AH, Obaid RF, Jalil AT, Mustafa YF, Nabavi N, Wang Y, Wang L. Malignant function of nuclear factor-kappaB axis in prostate cancer: Molecular interactions and regulation by non-coding RNAs. Pharmacol Res 2023; 194:106775. [PMID: 37075872 DOI: 10.1016/j.phrs.2023.106775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/09/2023] [Accepted: 04/16/2023] [Indexed: 04/21/2023]
Abstract
Prostate carcinoma is a malignant situation that arises from genomic alterations in the prostate, leading to changes in tumorigenesis. The NF-κB pathway modulates various biological mechanisms, including inflammation and immune responses. Dysregulation of NF-κB promotes carcinogenesis, including increased proliferation, invasion, and therapy resistance. As an incurable disease globally, prostate cancer is a significant health concern, and research into genetic mutations and NF-κB function has the efficacy to facilitate the introduction of novel therapies. NF-κB upregulation is observed during prostate cancer progression, resulting in increased cell cycle progression and proliferation rates. Additionally, NF-κB endorses resistance to cell death and enhances the capacity for metastasis, particularly bone metastasis. Overexpression of NF-κB triggers chemoresistance and radio-resistance, and inhibition of NF-κB by anti-tumor compounds can reduce cancer progression. Interestingly, non-coding RNA transcripts can regulate NF-κB level and its nuclear transfer, offering a potential avenue for modulating prostate cancer progression.
Collapse
Affiliation(s)
| | | | - Ali Kamil Kareem
- Biomedical Engineering Department, Al-Mustaqbal University College, 51001, Hillah, Iraq
| | | | - Wesam R Kadhum
- Department of Pharmacy, Kut University College, Kut 52001, Wasit, Iraq
| | - Andrés Alexis Ramírez-Coronel
- Azogues Campus Nursing Career, Health and Behavior Research Group (HBR), Psychometry and Ethology Laboratory, Catholic University of Cuenca, Ecuador; University of Palermo, Buenos Aires, Argentina; Epidemiology and Biostatistics Research Group, CES University, Colombia
| | - Acim Heri Iswanto
- Department of Public Health, Faculty of Health Science, University of Pembangunan Nasional Veteran Jakarta, Jakarta, Indonesia
| | - Rasha Fadhel Obaid
- Department of Biomedical Engineering, Al-Mustaqbal University College, Babylon, Iraq
| | - Abduladheem Turki Jalil
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul 41001, Iraq
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6 Vancouver, BC, Canada.
| | - Yuzhuo Wang
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6 Vancouver, BC, Canada; Department of Experimental Therapeutics, BC Cancer Research Institute, V5Z1L3 Vancouver, BC, Canada.
| | - Lin Wang
- Department of Geriatrics, Xijing Hospital, The Air Force Military Medical University, Xi'an 710032, China.
| |
Collapse
|
12
|
Kitamura Y, Koma YI, Tanigawa K, Tsukamoto S, Azumi Y, Miyako S, Urakami S, Kodama T, Nishio M, Shigeoka M, Kakeji Y, Yokozaki H. Roles of IL-7R Induced by Interactions between Cancer Cells and Macrophages in the Progression of Esophageal Squamous Cell Carcinoma. Cancers (Basel) 2023; 15:394. [PMID: 36672342 PMCID: PMC9856499 DOI: 10.3390/cancers15020394] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 12/30/2022] [Accepted: 01/03/2023] [Indexed: 01/11/2023] Open
Abstract
High infiltration of tumor-associated macrophages (TAMs), which contribute to the progression of several cancer types, is correlated with poor prognosis of esophageal squamous cell carcinoma (ESCC). In addition to the previously reported increase in migration and invasion, ESCC cells co-cultured directly with macrophages exhibited enhanced survival and growth. Furthermore, interleukin-related molecules are associated with ESCC; however, the precise mechanism underlying this association is unclear. Therefore, we explored the role of interleukin-related molecules in ESCC progression. A cDNA microarray analysis of monocultured and co-cultured ESCC cells revealed that the interleukin 7 receptor (IL-7R) was upregulated in ESCC cells co-cultured with macrophages. Overexpression of IL-7R promoted the survival and growth of ESCC cells by activating the Akt and Erk1/2 signaling pathways. The IL-7/IL-7R axis also contributed to the promotion of ESCC cell migration via the Akt and Erk1/2 signaling pathways. Furthermore, immunohistochemistry showed that ESCC patients with high IL-7R expression in cancer nests exhibited a trend toward poor prognosis in terms of disease-free survival, and showed significant correlation with increased numbers of infiltrating macrophages and cancer-associated fibroblasts. Therefore, IL-7R, which is upregulated when directly co-cultured with macrophages, may contribute to ESCC progression by promoting the development of various malignant phenotypes in cancer cells.
Collapse
Affiliation(s)
- Yu Kitamura
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
- Division of Gastro-Intestinal Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Yu-ichiro Koma
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Kohei Tanigawa
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
- Division of Gastro-Intestinal Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Shuichi Tsukamoto
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Yuki Azumi
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
- Division of Gastro-Intestinal Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Shoji Miyako
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
- Division of Gastro-Intestinal Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Satoshi Urakami
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Takayuki Kodama
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Mari Nishio
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Manabu Shigeoka
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Yoshihiro Kakeji
- Division of Gastro-Intestinal Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Hiroshi Yokozaki
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| |
Collapse
|
13
|
Wang C, Kong L, Kim S, Lee S, Oh S, Jo S, Jang I, Kim TD. The Role of IL-7 and IL-7R in Cancer Pathophysiology and Immunotherapy. Int J Mol Sci 2022; 23:ijms231810412. [PMID: 36142322 PMCID: PMC9499417 DOI: 10.3390/ijms231810412] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/06/2022] [Accepted: 09/06/2022] [Indexed: 12/03/2022] Open
Abstract
Interleukin-7 (IL-7) is a multipotent cytokine that maintains the homeostasis of the immune system. IL-7 plays a vital role in T-cell development, proliferation, and differentiation, as well as in B cell maturation through the activation of the IL-7 receptor (IL-7R). IL-7 is closely associated with tumor development and has been used in cancer clinical research and therapy. In this review, we first summarize the roles of IL-7 and IL-7Rα and their downstream signaling pathways in immunity and cancer. Furthermore, we summarize and discuss the recent advances in the use of IL-7 and IL-7Rα as cancer immunotherapy tools and highlight their potential for therapeutic applications. This review will help in the development of cancer immunotherapy regimens based on IL-7 and IL-7Rα, and will also advance their exploitation as more effective and safe immunotherapy tools.
Collapse
Affiliation(s)
- Chunli Wang
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
| | - Lingzu Kong
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon 34134, Korea
| | - Seokmin Kim
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon 34113, Korea
| | - Sunyoung Lee
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
- Department of Life Sciences, Korea University, Seoul 02841, Korea
| | - Sechan Oh
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon 34113, Korea
| | - Seona Jo
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon 34113, Korea
| | - Inhwan Jang
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon 34113, Korea
| | - Tae-Don Kim
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon 34113, Korea
- Correspondence:
| |
Collapse
|
14
|
Huang J, Long Z, Jia R, Wang M, Zhu D, Liu M, Chen S, Zhao X, Yang Q, Wu Y, Zhang S, Tian B, Mao S, Ou X, Sun D, Gao Q, Cheng A. The Broad Immunomodulatory Effects of IL-7 and Its Application In Vaccines. Front Immunol 2021; 12:680442. [PMID: 34956167 PMCID: PMC8702497 DOI: 10.3389/fimmu.2021.680442] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 11/24/2021] [Indexed: 12/30/2022] Open
Abstract
Interleukin-7 (IL-7) is produced by stromal cells, keratinocytes, and epithelial cells in host tissues or tumors and exerts a wide range of immune effects mediated by the IL-7 receptor (IL-7R). IL-7 is primarily involved in regulating the development of B cells, T cells, natural killer cells, and dendritic cells via the JAK-STAT, PI3K-Akt, and MAPK pathways. This cytokine participates in the early generation of lymphocyte subsets and maintain the survival of all lymphocyte subsets; in particular, IL-7 is essential for orchestrating the rearrangement of immunoglobulin genes and T-cell receptor genes in precursor B and T cells, respectively. In addition, IL-7 can aid the activation of immune cells in anti-virus and anti-tumor immunity and plays important roles in the restoration of immune function. These biological functions of IL-7 make it an important molecular adjuvant to improve vaccine efficacy as it can promote and extend systemic immune responses against pathogens by prolonging lymphocyte survival, enhancing effector cell activity, and increasing antigen-specific memory cell production. This review focuses on the biological function and mechanism of IL-7 and summarizes its contribution towards improved vaccine efficacy. We hope to provide a thorough overview of this cytokine and provide strategies for the development of the future vaccines.
Collapse
Affiliation(s)
- Juan Huang
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Zhiyao Long
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Renyong Jia
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Mingshu Wang
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Dekang Zhu
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Mafeng Liu
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Shun Chen
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Xinxin Zhao
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Qiao Yang
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Ying Wu
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Shaqiu Zhang
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Bin Tian
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Sai Mao
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Xumin Ou
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Di Sun
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Qun Gao
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Anchun Cheng
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
15
|
Bednarz-Misa I, Bromke MA, Krzystek-Korpacka M. Interleukin (IL)-7 Signaling in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1290:9-49. [PMID: 33559853 DOI: 10.1007/978-3-030-55617-4_2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Interleukin (IL)-7 plays an important immunoregulatory role in different types of cells. Therefore, it attracts researcher's attention, but despite the fact, many aspects of its modulatory action, as well as other functionalities, are still poorly understood. The review summarizes current knowledge on the interleukin-7 and its signaling cascade in context of cancer development. Moreover, it provides a cancer-type focused description of the involvement of IL-7 in solid tumors, as well as hematological malignancies.The interleukin has been discovered as a growth factor crucial for the early lymphocyte development and supporting the growth of malignant cells in certain leukemias and lymphomas. Therefore, its targeting has been explored as a treatment modality in hematological malignancies, while the unique ability to expand lymphocyte populations selectively and without hyperinflammation has been used in experimental immunotherapies in patients with lymphopenia. Ever since the early research demonstrated a reduced growth of solid tumors in the presence of IL-7, the interleukin application in boosting up the anticancer immunity has been investigated. However, a growing body of evidence indicative of IL-7 upregulation in carcinomas, facilitating tumor growth and metastasis and aiding drug-resistance, is accumulating. It therefore becomes increasingly apparent that the response to the IL-7 stimulus strongly depends on cell type, their developmental stage, and microenvironmental context. The interleukin exerts its regulatory action mainly through phosphorylation events in JAK/STAT and PI3K/Akt pathways, while the significance of MAPK pathway seems to be limited to solid tumors. Given the unwavering interest in IL-7 application in immunotherapy, a better understanding of interleukin role, source in tumor microenvironment, and signaling pathways, as well as the identification of cells that are likely to respond should be a research priority.
Collapse
Affiliation(s)
- Iwona Bednarz-Misa
- Department of Medical Biochemistry, Wroclaw Medical University, Wroclaw, Poland
| | - Mariusz A Bromke
- Department of Medical Biochemistry, Wroclaw Medical University, Wroclaw, Poland
| | | |
Collapse
|
16
|
Alshyarba M, Otifi H, Al Fayi M, A Dera A, Rajagopalan P. Thymoquinone inhibits IL-7-induced tumor progression and metastatic invasion in prostate cancer cells by attenuating matrix metalloproteinase activity and Akt/NF-κB signaling. Biotechnol Appl Biochem 2020; 68:1403-1411. [PMID: 33128273 DOI: 10.1002/bab.2062] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 10/24/2020] [Indexed: 01/05/2023]
Abstract
Interleukin (IL)-7 acts via the IL-7 receptor in metastatic tumor progression in prostate cancer (PC). The current study aimed to evaluate thymoquinone (Tq), an active constituent from Nigella sativa against IL-7-driven tumor progression and metastatic invasion in PC cells. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was used to assess the proliferation of PC cells. Enzyme-linked immunosorbent assay was used to detect the expression of IL-7 and matrix metalloproteinases (MMPs). Tumor-cell transendothelial, scratch wound and cell scatter assays were performed to mimic metastasis. Western immunoblotting was used to measure the level of proteins. Tq effectively controlled the proliferation of DU-145, PC-3, and LNCaP cells with GI50 of 10.18, 12.40, and 16.78 µM, respectively. IL-7 and IL-7R were natively expressed in all PC types, while maximal expression was detected in DU-145. IL-7 promoted metastatic events, such as transendothelial migration, cell scatter, and cell invasion of DU-145 cells in a dose-dependent manner that was inhibited by Tq. Furthermore, Tq also downregulated p-Akt and NF-κB in DU-145 cells induced by IL-7 antibody and reduced the levels of MMP-3 and MMP-7 in these cells in a dose-dependent manner. Collectively, Tq has excellent efficacy in controlling tumor progression, migration, and invasion of DU-145 cells that were driven by the activation of MMPs through IL-7/Akt/NF-κB signaling.
Collapse
Affiliation(s)
- Mishari Alshyarba
- Department of Surgery, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Hassan Otifi
- Department of Pathology, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Majed Al Fayi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia.,Central Research laboratory, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Ayed A Dera
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia.,Central Research laboratory, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Prasanna Rajagopalan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia.,Central Research laboratory, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
17
|
Chen X, Kong J, Diao X, Cai J, Zheng J, Xie W, Qin H, Huang J, Lin T. Depression and prostate cancer risk: A Mendelian randomization study. Cancer Med 2020; 9:9160-9167. [PMID: 33027558 PMCID: PMC7724297 DOI: 10.1002/cam4.3493] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 09/14/2020] [Indexed: 01/22/2023] Open
Abstract
Background The association between depression and prostate carcinogenesis has been reported in observational studies but the causality from depression on prostate cancer (PCa) remained unknown. We aimed to assess the causal effect of depression on PCa using the two‐sample Mendelian randomization (MR) method. Methods Two sets of genetics instruments were used for analysis, derived from publicly available genetic summary data. One was 44 single‐nucleotide polymorphisms (SNPs) robustly associated with major depressive disorder (MDD) and the other was two SNPs related with depressive status as ever depressed for a whole week. Inverse‐variance weighted method, weighted median method, MR‐Egger regression, MR Pleiotropy RESidual Sum, and Outlier test were used for MR analyses. Results No evidence for an effect of MDD on PCa risk was found in inverse‐variance weighted (OR: 1.12, 95% CI: 0.97‐1.30, p = 0.135), MR‐Egger (OR 0.89, 95% CI: 0.29‐2.68, p = 0.833), and weighted median (OR: 1.08, 95% CI: 0.92‐1.27, p = 0.350). Also, no strong evidence for an effect of depressive status on PCa incidence was found using the inverse‐variance weighted method (OR 0.72, 95% CI: 0.35‐1.47, p = 0.364). Conclusions The large MR analysis indicated that depression may not be causally associated with a risk of PCa.
Collapse
Affiliation(s)
- Xiong Chen
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, P. R. China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, P. R. China
| | - Jianqiu Kong
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, P. R. China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, P. R. China
| | - Xiayao Diao
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, P. R. China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, P. R. China
| | - Jiahao Cai
- Department of Neurology, Sun Yat-sen Memorial Hospital, Guangzhou, P. R. China
| | - Junjiong Zheng
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, P. R. China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, P. R. China
| | - Weibin Xie
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, P. R. China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, P. R. China
| | - Haide Qin
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, P. R. China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, P. R. China
| | - Jian Huang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, P. R. China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, P. R. China
| | - Tianxin Lin
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, P. R. China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, P. R. China
| |
Collapse
|
18
|
Li M, Wei L, Zhou W, He Z, Ran S, Liang J. miR-200a contributes to the migration of BMSCs induced by the secretions of E. faecalis via FOXJ1/NFκB/MMPs axis. Stem Cell Res Ther 2020; 11:317. [PMID: 32711573 PMCID: PMC7382064 DOI: 10.1186/s13287-020-01833-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/29/2020] [Accepted: 07/14/2020] [Indexed: 01/11/2023] Open
Abstract
Background Upon migrating to the injured sites, bone marrow mesenchymal stem cells (BMSCs) play critical roles in the repair of bone lesion caused by chronic apical periodontitis. Emerging evidences have shown that Enterococcus faecalis is always associated with apical periodontitis, especially refractory apical periodontitis. But the mechanism underlying how Enterococcus faecalis affects the migration of BMSCs remains unclear. Methods The effects of Enterococcus faecalis supernatants on the migration of BMSCs were determined by transwell migration assays. miRNA sequencing was performed to detect the significantly differentially expressed miRNAs of BMSCs. Proteomics analysis was used to detect the protein expression alterations of BMSCs. Luciferase report assays were deployed to verify the targets of miRNA. Western blot analysis was performed to examine the expressions of matrix metalloproteinases-3, matrix metalloproteinases-9, Forkhead Box Protein J1 (FOXJ1), and nuclear factor kappa B (NFκB). The activations of NFκB were detected by luciferase assays with NFκBluc reporter. Results We found that Enterococcus faecalis supernatants could promote the migration of BMSCs. The upregulation of miR-200a-3p in this process contributed to BMSC migration through downregulating its target Forkhead Box Protein J1. Moreover, FOXJ1/ NFκB axis was found to regulate matrix metalloproteinases (MMPs) in this process. Conclusions These results above suggest that miR-200a contributes to the migration of BMSCs induced by the secretions of E. faecalis via FOXJ1/NFκB/MMPs axis.
Collapse
Affiliation(s)
- Mingwei Li
- Department of Endodontics and Operative Dentistry, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Oral Diseases, Shanghai, China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Lifan Wei
- Department of Endodontics and Operative Dentistry, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Oral Diseases, Shanghai, China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Wei Zhou
- National Clinical Research Center for Oral Diseases, Shanghai, China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Zhiyan He
- National Clinical Research Center for Oral Diseases, Shanghai, China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Shujun Ran
- Department of Endodontics and Operative Dentistry, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Oral Diseases, Shanghai, China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Jingping Liang
- Department of Endodontics and Operative Dentistry, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China. .,National Clinical Research Center for Oral Diseases, Shanghai, China. .,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China.
| |
Collapse
|
19
|
Parra-Medina R, López-Kleine L, Ramírez-Clavijo S, Payán-Gómez C. Identification of candidate miRNAs in early-onset and late-onset prostate cancer by network analysis. Sci Rep 2020; 10:12345. [PMID: 32704070 PMCID: PMC7378055 DOI: 10.1038/s41598-020-69290-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 07/09/2020] [Indexed: 12/17/2022] Open
Abstract
The incidence of patients under 55 years old diagnosed with Prostate Cancer (EO-PCa) has increased during recent years. The molecular biology of PCa cancer in this group of patients remains unclear. Here, we applied weighted gene coexpression network analysis of the expression of miRNAs from 24 EO-PCa patients (38–45 years) and 25 late-onset PCa patients (LO-PCa, 71–74 years) to identify key miRNAs in EO-PCa patients. In total, 69 differentially expressed miRNAs were identified. Specifically, 26 and 14 miRNAs were exclusively deregulated in young and elderly patients, respectively, and 29 miRNAs were shared. We identified 20 hub miRNAs for the network built for EO-PCa. Six of these hub miRNAs exhibited prognostic significance in relapse‐free or overall survival. Additionally, two of the hub miRNAs were coexpressed with mRNAs of genes previously identified as deregulated in EO-PCa and in the most aggressive forms of PCa in African-American patients compared with Caucasian patients. These genes are involved in activation of immune response pathways, increased rates of metastasis and poor prognosis in PCa patients. In conclusion, our analysis identified miRNAs that are potentially important in the molecular pathology of EO-PCa. These genes may serve as biomarkers in EO-PCa and as possible therapeutic targets.
Collapse
Affiliation(s)
- Rafael Parra-Medina
- Department of Biology, Faculty of Natural Sciences, Universidad del Rosario, Bogotá, Colombia.,Department of Pathology, Research Institute, Fundación Universitaria de Ciencias de la Salud, Bogotá, Colombia.,Pathology Deparment, Instituto Nacional de Cancerología, Bogotá, Colombia
| | - Liliana López-Kleine
- Department of Statistics, Faculty of Science, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Sandra Ramírez-Clavijo
- Department of Biology, Faculty of Natural Sciences, Universidad del Rosario, Bogotá, Colombia
| | - César Payán-Gómez
- Department of Biology, Faculty of Natural Sciences, Universidad del Rosario, Bogotá, Colombia.
| |
Collapse
|
20
|
Cytokines and Chemokines as Mediators of Prostate Cancer Metastasis. Int J Mol Sci 2020; 21:ijms21124449. [PMID: 32585812 PMCID: PMC7352203 DOI: 10.3390/ijms21124449] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 06/19/2020] [Accepted: 06/21/2020] [Indexed: 12/16/2022] Open
Abstract
The consequences of prostate cancer metastasis remain severe, with huge impact on the mortality and overall quality of life of affected patients. Despite the convoluted interplay and cross talk between various cell types and secreted factors in the metastatic process, cytokine and chemokines, along with their receptors and signaling axis, constitute important factors that help drive the sequence of events that lead to metastasis of prostate cancer. These proteins are involved in extracellular matrix remodeling, epithelial-mesenchymal-transition, angiogenesis, tumor invasion, premetastatic niche creation, extravasation, re-establishment of tumor cells in secondary organs as well as the remodeling of the metastatic tumor microenvironment. This review presents an overview of the main cytokines/chemokines, including IL-6, CXCL12, TGFβ, CXCL8, VEGF, RANKL, CCL2, CX3CL1, IL-1, IL-7, CXCL1, and CXCL16, that exert modulatory roles in prostate cancer metastasis. We also provide extensive description of their aberrant expression patterns in both advanced disease states and metastatic sites, as well as their functional involvement in the various stages of the prostate cancer metastatic process.
Collapse
|
21
|
Shore ND, Pieczonka CM, Henderson RJ, Bailen JL, Saltzstein DR, Concepcion RS, Beebe-Dimmer JL, Ruterbusch JJ, Levin RA, Wissmueller S, Le TH, Gillatt D, Chan DW, Campbell DH, Walsh BJ. Development and evaluation of the MiCheck test for aggressive prostate cancer. Urol Oncol 2020; 38:683.e11-683.e18. [PMID: 32305266 DOI: 10.1016/j.urolonc.2020.03.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 01/27/2020] [Accepted: 03/14/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND A clinical need exists for a biomarker test to accurately delineate aggressive prostate cancer (AgCaP), and thus better assist clinicians and patients decision-making on whether to proceed to prostate biopsy. OBJECTIVES To develop a blood test for AgCaP and compare to PSA, %free PSA, proPSA, and prostate health index (PHI) tests. DESIGN, SETTINGS AND PARTICIPANTS Patient samples from the MiCheck-01 trial were used for development of the MiCheck test. METHODS Serum analyte concentrations for cellular growth factors were determined using a custom-made Luminex-based R&D Systems multianalyte kit. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS Bayesian model averaging and random forest approaches were used to identify clinical factors and growth factors able to distinguish between men with AgCaP (Gleason Score [GS] ≥3+4) from those with non-AgCaP (GS 3+3). Logistic regression and Monte Carlo cross-validation identified variable combinations in order to able to maximize differentiation of AgCaP from non-AgCaP. RESULTS The MiCheck logistic regression model was developed and comprises the following variables: serum prostate-specific antigen (PSA), patient age, Digital Rectal Exam (DRE) status, Leptin, IL-7, vascular endothelial growth factor, and Glypican-1. The model differentiated AgCaP from non-AgCaP with an area under the curve of 0.83 and was superior to PSA, %free PSA and PHI in all patient groups, regardless of PSA range. Applying the MiCheck test to all evaluable biopsy patients from the MiCheck-01 study demonstrated that up to 30% of biopsies could be avoided while delaying diagnosis of only 6.8% of GS ≥3+4 cancers, 5% of GS ≥4+3 cancers and no cancers of GS 8 or higher. CONCLUSIONS The MiCheck test outperforms PSA, %free PSA and PHI tests in differentiating AgCaP vs. non-AgCaP patients. The MiCheck test could result in a significant number of biopsies being avoided with a low number of patients experiencing a delayed diagnosis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jennifer L Beebe-Dimmer
- Barbara Ann Karmanos Cancer Institute and Wayne State University School of Medicine, Department of Oncology, Detriot, MI
| | - Julie J Ruterbusch
- Barbara Ann Karmanos Cancer Institute and Wayne State University School of Medicine, Department of Oncology, Detriot, MI
| | | | | | - Thao Ho Le
- Minomic International Ltd, NSW, Sydney, Australia
| | - David Gillatt
- Faculty of Medical and Health Sciences, Macquarie University, Sydney, Australia
| | - Daniel W Chan
- Center for Biomarker Discovery and Translation, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD
| | | | | |
Collapse
|
22
|
Interleukin-7 Resensitizes Non-Small-Cell Lung Cancer to Cisplatin via Inhibition of ABCG2. Mediators Inflamm 2019; 2019:7241418. [PMID: 31915416 PMCID: PMC6931030 DOI: 10.1155/2019/7241418] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 08/09/2019] [Accepted: 10/16/2019] [Indexed: 12/14/2022] Open
Abstract
Treatment with cisplatin (DDP) is one of the standard therapies used to treat non-small-cell lung cancer (NSCLC) and fundamentally causes resistance in cancer cells, which eventually poses as an obstacle to the efficacy of chemotherapy in NSCLC. Efforts are on all over the world to explore a sensitizer of NSCLC to DDP. Here, we studied the effect of IL-7 on the resistance of NSCLC to chemotherapy. We observed that IL-7 treatment significantly enhanced DDP-induced effects in A549 and A549/DDP cells (DDP-resistant cells), including decreased cell viability and proliferation, as well as increased cell apoptosis and S arrest, indicating that IL-7 treatment resensitized DDP-resistant NSCLC cells to DDP. Subsequently, IL-7 enhanced the sensitivity of PI3K/AKT signaling and expressions of ABCG2 to DDP. By inhibiting IL-7 signaling via IL-7R knockdown or activating PI3K/AKT signaling via PI3K activation, the resensitization to DDP by IL-7 was abrogated, and the expression levels of ABCG2, p-PI3K, and p-AKT were found to be significantly higher. In vivo results also confirmed that IL-7 only in combination with DDP could remarkably induce tumor regression with reduced levels of ABCG2 in tumorous tissues. These findings indicate that IL-7, apart from its adjuvant effect, could overcome multidrug resistance of DDP to restore its chemotherapy sensitivity.
Collapse
|
23
|
Flip the coin: IL-7 and IL-7R in health and disease. Nat Immunol 2019; 20:1584-1593. [PMID: 31745336 DOI: 10.1038/s41590-019-0479-x] [Citation(s) in RCA: 223] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 07/26/2019] [Indexed: 12/14/2022]
Abstract
The cytokine IL-7 and its receptor, IL-7R, are critical for T cell and, in the mouse, B cell development, as well as differentiation and survival of naive T cells, and generation and maintenance of memory T cells. They are also required for innate lymphoid cell (ILC) development and maintenance, and consequently for generation of lymphoid structures and barrier defense. Here we discuss the central role of IL-7 and IL-7R in the lymphoid system and highlight the impact of their deregulation, placing a particular emphasis on their 'dark side' as promoters of cancer development. We also explore therapeutic implications and opportunities associated with either positive or negative modulation of the IL-7-IL-7R signaling axis.
Collapse
|
24
|
Shi L, Xu Z, Yang Q, Huang Y, Gong Y, Wang F, Ke B. IL-7-Mediated IL-7R-JAK3/STAT5 signalling pathway contributes to chemotherapeutic sensitivity in non-small-cell lung cancer. Cell Prolif 2019; 52:e12699. [PMID: 31599032 PMCID: PMC6869130 DOI: 10.1111/cpr.12699] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 06/26/2019] [Accepted: 09/06/2019] [Indexed: 12/26/2022] Open
Abstract
Objectives The chemotherapy drug resistance is a major challenge for non‐small‐cell lung cancer (NSCLC) treatment. Combination of immunotherapy and chemotherapy has shown promise for cancer. The goal of this study was to evaluate the anti‐tumour efficacy of interleukin‐7 (IL‐7) combining cisplatin against NSCLC. Materials and Methods Cell proliferation was analysed using CCK‐8 assay, EdU proliferation assay and colony‐forming assay. Cell apoptosis was evaluated using HOECHST 33342 assay and flow cytometry. The protein expression levels were analysed by Western blot. The blocking antibody against the IL‐7 receptor and the inhibitors of STAT5 and JAK3 were used to investigate the pathway involved. A xenograft model was established to assess the anti‐tumour efficacy of IL‐7 combining cisplatin in vivo. Results Here we found IL‐7R was increased in A549/DDP cells compared with A549 cells. The block of IL‐7R reversed the inhibitory effects of IL‐7 combined with cisplatin and decreased the numbers of apoptosis cells induced by treatment of IL‐7 combined with cisplatin. The JAK3 inhibitor and STAT5 inhibitor were used to identify the pathway involved. The results showed that JAK3/STAT5 pathway was involved in enhancing role of cisplatin sensitivity of NSCLC cells by IL‐7. In vivo, cisplatin significantly inhibited tumour growth and IL‐7 combined with cisplatin achieved the best therapeutic effect. Conclusion Together, IL‐7 promoted the sensitivity of NSCLC cells to cisplatin via IL‐7R‐JAK3/STAT5 signalling pathway.
Collapse
Affiliation(s)
- Lin Shi
- Department of Traditional Chinese Medicine, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Zhaozhong Xu
- Department of Emergency, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Qiong Yang
- Department of Oncology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yuanyuan Huang
- Department of VIP Ward, Affiliated Cancer Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Yuxin Gong
- Department of Respiratory Diseases, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Fang Wang
- Department of Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Bin Ke
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
25
|
Liu S, Wang L, Li Y, Cui Y, Wang Y, Liu C. Long non-coding RNA CHRF promotes proliferation and mesenchymal transition (EMT) in prostate cancer cell line PC3 requiring up-regulating microRNA-10b. Biol Chem 2019; 400:1035-1045. [PMID: 30844757 DOI: 10.1515/hsz-2018-0380] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 02/20/2019] [Indexed: 01/17/2023]
Abstract
Despite the advance of diagnosis and treatment for prostate cancer, the prognosis of metastatic prostate cancer is poor. We aimed to explore the functional role of long non-coding RNA cardiac hypertrophy-related factor (lncRNA CHRF) in prostate cancer cells (PC3) as well as the molecular mechanisms. LncRNA CHRF silence repressed cell number (%), down-regulated expression of cyclinD1, CDK4 and CDK6, and promoted apoptosis along with activation of the casapse-3 and caspase-9. LncRNA CHRF promoted mesenchymal transition (EMT), showing down-regulation of E-cadherin and up-regulation of N-cadherin, vimentin and ZEB1. Afterwards, we found miR-10b expression was positively correlated with lncRNA CHRF expression, and miR-10b inhibition could reverse the effects of lncRNA CHRF on PC3 and LNCaP cell proliferation and EMT. Finally, lncRNA CHRF was found to activate the GSK3β/AKT and NF-κB pathways via up-regulation of miR-10b. LncRNA CHRF silence repressed proliferation and EMT while promoted apoptosis in PC3 cells via positive regulation of miR-10b. The GSK3β/AKT and NF-κB pathways were activated by lncRNA CHRF, possibly through up-regulation of miR-10b.
Collapse
Affiliation(s)
- Shuang Liu
- School of Rehabilitation Medicine, Binzhou Medical University, No. 346 Guanhai Road, Yantai 264003, China.,Department of Urology, Yantai Yuhuangding Hospital, Yantai 264000, China
| | - Lin Wang
- Department of Urology, Yantai Yuhuangding Hospital, Yantai 264000, China
| | - Yongwei Li
- Department of Urology, Yantai Yuhuangding Hospital, Yantai 264000, China
| | - Yuanshan Cui
- Department of Urology, Yantai Yuhuangding Hospital, Yantai 264000, China
| | - Yongqiang Wang
- Department of Urology, Yantai Yuhuangding Hospital, Yantai 264000, China
| | - Chu Liu
- Department of Urology, Yantai Yuhuangding Hospital, No. 20 Yudong Road, Yantai 264000, China
| |
Collapse
|
26
|
Zhang C, Su P, Chen W, Li Q, Dai R, Cheng Y, Yang J. Genetic polymorphisms in IL-7 and IL-7R are correlated with lung cancer risk in the Chinese Han population. Cancer Manag Res 2019; 11:5393-5401. [PMID: 31354347 PMCID: PMC6572729 DOI: 10.2147/cmar.s202839] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 04/30/2019] [Indexed: 12/14/2022] Open
Abstract
Purpose IL-7/IL-7R axis participates in the initiation and progression of lung cancer (LC). This study aimed to explore the potential influence of IL-7/IL-7R polymorphisms on LC risk. Patients and methods In total, 1,010 participants (507 LC patients and 503 healthy controls) were enrolled. Five single-nucleotide polymorphisms (SNPs) in IL-7R and one SNP in IL-7 were genotyped in included samples with Agena MassARRAY system. OR and 95% CIs were computed by logistic regression analysis after adjusting for age and gender. Stratified analyses with demographic and clinical characteristics were also performed. Finally, linkage disequilibrium (LD) analysis was conducted with the PLINK version 1.07 software . Results IL-7R rs10053847 variant was related to a decreased LC risk under the allele gene (OR =0.78, P=0.043) and additive model (OR =0.77, P=0.042). The results of stratified analysis indicated that this SNP was associated with a lower LC risk among nonsmokers (AA/GG: OR =0.09, P=0.033; AA/AG+GG: OR =0.10 P=0.037) or nondrinkers (AA/GG: OR =0.07, P=0.047; AA/AG+GG: OR =0.18 P=0.049). Moreover, carriers of IL-7R rs10213865-C allele had an increased lung adenocarcinoma risk (CA/AA: OR =1.60, P=0.011; CC+CA/AA: OR =1.62, P=0.007; CA/CA/AA: OR =1.50, P=0.007). Additionally, AGAA haplotype (rs10213865, rs969129, rs118137916 and rs10053847) increased LC risk (OR =1.30, P=0.041). Conclusion IL-7R rs10053847 was correlated with a decreased LC risk, while IL-7R rs10213865 was correlated with an elevated lung adenocarcinoma risk, implying these two SNPs might play essential roles in LC risk evaluation.
Collapse
Affiliation(s)
- Chan Zhang
- Department of Blood Transfusion, The First People's Hospital of Yunnan Province, Kunming, Yunnan 650032, People's Republic of China
| | - Pincan Su
- Laboratory of Blood Transfusion, Yunnan Kunming Blood Center, Kunming, Yunnan 650106, People's Republic of China
| | - Wanlu Chen
- Department of Blood Transfusion, The First People's Hospital of Yunnan Province, Kunming, Yunnan 650032, People's Republic of China
| | - Qi Li
- Department of Blood Transfusion, The First People's Hospital of Yunnan Province, Kunming, Yunnan 650032, People's Republic of China
| | - Run Dai
- Department of Blood Transfusion, The First People's Hospital of Yunnan Province, Kunming, Yunnan 650032, People's Republic of China
| | - YuJing Cheng
- Department of Blood Transfusion, The First People's Hospital of Yunnan Province, Kunming, Yunnan 650032, People's Republic of China
| | - Jiangcun Yang
- Department of Transfusion Medicine, Shanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, People's Republic of China
| |
Collapse
|
27
|
Interleukin-7 Contributes to the Invasiveness of Prostate Cancer Cells by Promoting Epithelial-Mesenchymal Transition. Sci Rep 2019; 9:6917. [PMID: 31061414 PMCID: PMC6502845 DOI: 10.1038/s41598-019-43294-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 04/17/2019] [Indexed: 01/05/2023] Open
Abstract
Precise mechanisms underlying interleukin-7 (IL-7)-mediated tumor invasion remain unclear. Thus, we investigated the role of IL-7 in tumor invasiveness using metastatic prostate cancer PC-3 cell line derivatives, and assessed the potential of IL-7 as a clinical target using a Janus kinase (JAK) inhibitor and an IL-7-blocking antibody. We found that IL-7 stimulated wound-healing migration and invasion of PC-3 cells, increased phosphorylation of signal transducer and activator of transcription 5, Akt, and extracellular signal-regulated kinase. On the other hand, a JAK inhibitor and an IL-7-blocking antibody decreased the invasiveness of PC-3 cells. IL-7 increased tumor sphere formation and expression of epithelial–mesenchymal transition (EMT) markers. Importantly, lentiviral delivery of IL-7Rα to PC-3 cells significantly increased bone metastasis in an experimental murine metastasis model compared to controls. The gene expression profile of human prostate cancer cells from The Cancer Genome Atlas revealed that EMT pathways are strongly associated with prostate cancers that highly express both IL-7 and IL-7Rα. Collectively, these data suggest that IL-7 and/or IL-7Rα are promising targets of inhibiting tumor metastasis.
Collapse
|
28
|
Hernandez-Martinez JM, Vergara E, Montes-Servín E, Arrieta O. Interplay between immune cells in lung cancer: beyond T lymphocytes. Transl Lung Cancer Res 2019; 7:S336-S340. [PMID: 30705849 DOI: 10.21037/tlcr.2018.11.05] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Juan-Manuel Hernandez-Martinez
- Thoracic Oncology Unit and Experimental Oncology Laboratory, Instituto Nacional de Cancerología de México (INCan), Mexico City, Mexico.,CONACYT-Instituto Nacional de Cancerología, Mexico City, Mexico
| | - Edgar Vergara
- Thoracic Oncology Unit and Experimental Oncology Laboratory, Instituto Nacional de Cancerología de México (INCan), Mexico City, Mexico
| | - Edgar Montes-Servín
- Thoracic Oncology Unit and Experimental Oncology Laboratory, Instituto Nacional de Cancerología de México (INCan), Mexico City, Mexico
| | - Oscar Arrieta
- Thoracic Oncology Unit and Experimental Oncology Laboratory, Instituto Nacional de Cancerología de México (INCan), Mexico City, Mexico
| |
Collapse
|
29
|
Interleukin-7 promotes lung-resident CD14+ monocytes activity in patients with lung squamous carcinoma. Int Immunopharmacol 2019; 67:202-210. [DOI: 10.1016/j.intimp.2018.12.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 12/04/2018] [Accepted: 12/10/2018] [Indexed: 12/14/2022]
|
30
|
Gruenbacher G, Thurnher M. Mevalonate Metabolism in Cancer Stemness and Trained Immunity. Front Oncol 2018; 8:394. [PMID: 30298120 PMCID: PMC6160868 DOI: 10.3389/fonc.2018.00394] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 08/31/2018] [Indexed: 12/28/2022] Open
Abstract
Mevalonate metabolism provides cancer and immune cells with diverse products to ensure cell functionality. Similar metabolic reprogramming that raises mevalonate metabolism to higher levels appears to drive both, epithelial mesenchymal transition (EMT) of cancer cells, a reverse differentiation program that generates cancer cells with stem cell properties, and immune cell training for increased responsiveness to secondary stimulation. In this review, we address how mevalonate metabolism supports cancer development and stemness on the one hand, and on the other promotes immune responsiveness. In view of this dual nature of mevalonate metabolism, strategies to manipulate this metabolic pathway as part of anti-cancer therapies require careful analysis of risks versus benefits.
Collapse
Affiliation(s)
- Georg Gruenbacher
- Immunotherapy Research Unit, Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Martin Thurnher
- Immunotherapy Research Unit, Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
31
|
Interleukin 7 receptor alpha Thr244Ile genetic polymorphism is associated with susceptibility and prognostic markers in breast cancer subgroups. Cytokine 2017; 103:121-126. [PMID: 28964592 DOI: 10.1016/j.cyto.2017.09.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 09/13/2017] [Accepted: 09/19/2017] [Indexed: 01/03/2023]
Abstract
Interleukin-7 (IL-7) exerts crucial functions on lymphoid cells' development and maintenance. In breast cancer (BC), IL-7 promotes growth of tumor cells in culture through the activation of JAK1/3-STAT5 and PI3K/AKT pathways, and expression of IL-7 signaling components was associated with worst prognosis. AC>T polymorphism (rs6897932; Thr244Ile) at exon 6 of IL-7 receptor alpha (IL-7Rα) gene (IL7RA) shifts the balance between the membrane-bound and soluble IL-7Rα splicing variants and was previously associated with autoimmune diseases, but has not been studied in cancer, including BC, so far. Therefore, the present study aimed to investigate the possible association of this polymorphism with the susceptibility and clinicopathological parameters of BC subgroups. IL7RA Thr244Ile was genotyped through PCR-RFLP in 403 women without neoplasia, no personal history of malignancy or family history of BC and in 338 BC patients with clinicopathological data available. BC patients were stratified according to their positivity for estrogen (ER) and/or progesterone receptor (PR) and human epidermal growth factor receptor 2 (HER2). Age-adjusted logistic regression was performed for case-control analyses, and correlations with clinicopathological parameters were assessed through Kendall's Tau-b coefficient. All analyses were two-tailed and had 95% confidence interval. In ER-PR-HER2- BCs, TT genotype was associated with increased susceptibility both in genotypic (TT vs. CC: OR=3.07; CI=1.01-9.38; p=0.05) and recessive (TT vs. CC+CT: OR=3.59; CI=1.19-10.85; p=0.02) models and negatively correlated with disease stage (Tau-b=-0.27; p=0.05). Whereas T allele was positively correlated with histopathological grade (Tau-b=0.29; p=0.03) and lymph node metastasis (Tau-b=0.35; p=0.02) in ER/PR+HER2+BCs and with Ki67 (Tau-b=0.51; p=0.008) in ER-PR-HER2+ subgroup. These data indicate that IL-7Rα is involved in BC, and that IL7RA polymorphism may play distinct roles in breast carcinogenesis according to BC subtype, pointing this genetic variant as an interesting marker for breast carcinogenesis to be validated by further mechanistic and prospective studies with larger samples.
Collapse
|
32
|
Analysis of aqueous humor concentrations of cytokines in retinoblastoma. PLoS One 2017; 12:e0177337. [PMID: 28486560 PMCID: PMC5423669 DOI: 10.1371/journal.pone.0177337] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Accepted: 04/26/2017] [Indexed: 01/21/2023] Open
Abstract
To investigate the components of the aqueous humor (AH) in patients with retinoblastoma (RB). We collected 0.1 ml AH of 35 children with RB and 20 patients with congenital cataracts as controls. Multiplex enzyme-linked immunosorbent assays (ELISAs) and Luminex xMAP technology were used to assess 45 cytokines/chemokines, matrix metalloproteinases (MMPs), and acute-phase proteins in the identification cohort. The concentrations of IL-6, IL-7, IL-8, IFN-γ, PIGF-1, VEGF-A, β-NGF, HGF, EGF and FGF-2 were significantly higher in the AH of patients with RB than those in the control group (P<0.05). The study showed that the higher levels of IP-10, IL-6, IL-7, IL-8, IFN-γ, PIGF-1, VEGF-A, β-NGF, HGF, EGF and FGF-2 in AH may be associated with RB. Our findings may facilitate a better understanding of the molecular pathways of tumors and solid molecular targets for new strategies for therapy and the earlier diagnosis of RB.
Collapse
|
33
|
Moselhy J, Suman S, Alghamdi M, Chandarasekharan B, Das TP, Houda A, Ankem M, Damodaran C. Withaferin A Inhibits Prostate Carcinogenesis in a PTEN-deficient Mouse Model of Prostate Cancer. Neoplasia 2017; 19:451-459. [PMID: 28494348 PMCID: PMC5421823 DOI: 10.1016/j.neo.2017.04.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 04/13/2017] [Accepted: 04/17/2017] [Indexed: 11/27/2022] Open
Abstract
We recently demonstrated that AKT activation plays a role in prostate cancer progression and inhibits the pro-apoptotic function of FOXO3a and Par-4. AKT inhibition and Par-4 induction suppressed prostate cancer progression in preclinical models. Here, we investigate the chemopreventive effect of the phytonutrient Withaferin A (WA) on AKT-driven prostate tumorigenesis in a Pten conditional knockout (Pten-KO) mouse model of prostate cancer. Oral WA treatment was carried out at two different doses (3 and 5 mg/kg) and compared to vehicle over 45 weeks. Oral administration of WA for 45 weeks effectively inhibited primary tumor growth in comparison to vehicle controls. Pathological analysis showed the complete absence of metastatic lesions in organs from WA-treated mice, whereas discrete metastasis to the lungs was observed in control tumors. Immunohistochemical analysis revealed the down-regulation of pAKT expression and epithelial-to-mesenchymal transition markers, such as β-catenin and N-cadherin, in WA-treated tumors in comparison to controls. This result corroborates our previous findings from both cell culture and xenograft models of prostate cancer. Our findings demonstrate that the daily administration of a phytonutrient that targets AKT activation provides a safe and effective treatment for prostate cancer in a mouse model with strong potential for translation to human disease.
Collapse
Affiliation(s)
- Jim Moselhy
- Department of Urology, University of Louisville, KY, USA
| | - Suman Suman
- Department of Urology, University of Louisville, KY, USA
| | | | | | - Trinath P Das
- Department of Urology, University of Louisville, KY, USA
| | - Alatassi Houda
- Department of Pathology, University of Louisville, KY, USA
| | - Murali Ankem
- Department of Urology, University of Louisville, KY, USA
| | | |
Collapse
|