1
|
Wang HD, Lv CL, Feng L, Guo JX, Zhao SY, Jiang P. The role of autophagy in brain health and disease: Insights into exosome and autophagy interactions. Heliyon 2024; 10:e38959. [PMID: 39524893 PMCID: PMC11546156 DOI: 10.1016/j.heliyon.2024.e38959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 09/27/2024] [Accepted: 10/03/2024] [Indexed: 11/16/2024] Open
Abstract
Effective management of cellular components is essential for maintaining brain health, and studies have identified several crucial biological processes in the brain. Among these, autophagy and the role of exosomes in cellular communication are critical for brain health and disease. The interaction between autophagy and exosomes in the nervous system, as well as their contributions to brain damage, have garnered significant attention. This review summarizes that exosomes and their cargoes have been implicated in the autophagy process in the pathophysiology of nervous system diseases. Furthermore, the onset and progression of neurological disorders may be affected by autophagy regulation of the secretion and release of exosomes. These findings may provide new insights into the potential mechanism by which autophagy mediates different exosome secretion and release, as well as the valuable biomedical applications of exosomes in the prevention and treatment of various brain diseases by targeting autophagy.
Collapse
Affiliation(s)
- Hai-Dong Wang
- Department of Pharmacy, The Affiliated Lianyungang Hospital of Xuzhou Medical University/Nanjing Medical University Kangda College First Affiliated Hospital/The First People's Hospital of Lianyungang, Lianyungang, 222000, China
| | - Chao-Liang Lv
- Department of Spine Surgery, Jining First People's Hospital, Shandong First Medical University, Jining, 272000, China
| | - Lei Feng
- Department of Neurosurgery, Jining First People's Hospital, Shandong First Medical University, Jining, 272000, China
| | - Jin-Xiu Guo
- Translational Pharmaceutical Laboratory, Jining First People's Hospital, Shandong First Medical University, Jining, 272000, China
- Institute of Translational Pharmacy, Jining Medical Research Academy, Jining, 272000, China
| | - Shi-Yuan Zhao
- Translational Pharmaceutical Laboratory, Jining First People's Hospital, Shandong First Medical University, Jining, 272000, China
- Institute of Translational Pharmacy, Jining Medical Research Academy, Jining, 272000, China
| | - Pei Jiang
- Translational Pharmaceutical Laboratory, Jining First People's Hospital, Shandong First Medical University, Jining, 272000, China
- Institute of Translational Pharmacy, Jining Medical Research Academy, Jining, 272000, China
| |
Collapse
|
2
|
Jha D, Bakker ENTP, Kumar R. Mechanistic and therapeutic role of NLRP3 inflammasome in the pathogenesis of Alzheimer's disease. J Neurochem 2024; 168:3574-3598. [PMID: 36802053 DOI: 10.1111/jnc.15788] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/03/2023] [Accepted: 02/13/2023] [Indexed: 02/20/2023]
Abstract
Alzheimer's disease (AD), a progressive neurodegenerative disorder, has emerged as the most common form of dementia in the elderly. Several pathological hallmarks have been identified, including neuroinflammation. A comprehensive insight into the underlying mechanisms that can fuel the development of novel therapeutic approaches is necessary because of the alarmingly rapid increase in the frequency of incidence. Recently, NLRP3 inflammasome was identified as a critical mediator of neuroinflammation. Activation of nucleotide-binding domain (NOD)-like receptor protein 3 (NLRP3) inflammasome by amyloid, neurofibrillary tangles, impaired autophagy and endoplasmic reticulum stress, triggers the release of pro-inflammatory cytokines such as IL-1β and IL-18. Subsequently, these cytokines can promote neurodegeneration and cognitive impairment. It is well established that genetic or pharmacological ablation of NLRP3 alleviates AD-related pathological features in in vitro and in vivo models. Therefore, several synthetic and natural compounds have been identified that exhibit the potential to inhibit NLRP3 inflammasome and alleviate AD-associated pathology. The current review article will highlight the various mechanisms by which activation of NLRP3 inflammation occurs during Alzheimer's disease, and how it influences neuroinflammation, neurodegeneration and cognitive impairment. Moreover, we will summarise the different small molecules that possess the potential to inhibit NLRP3 and can pave the path for developing novel therapeutic interventions for AD.
Collapse
Affiliation(s)
- Dhanshree Jha
- Department of Biotechnology, GITAM School of Sciences, GITAM (Deemed to be) University, Vishakhapatnam, India
| | - Erik N T P Bakker
- Department of Biomedical Engineering and Physics, Amsterdam University Medical Centre, Location University of Amsterdam, and Amsterdam Neuroscience Research Institute, Amsterdam, the Netherlands
| | - Rahul Kumar
- Department of Biotechnology, GITAM School of Sciences, GITAM (Deemed to be) University, Vishakhapatnam, India
- Department of Biomedical Engineering and Physics, Amsterdam University Medical Centre, Location University of Amsterdam, and Amsterdam Neuroscience Research Institute, Amsterdam, the Netherlands
| |
Collapse
|
3
|
Zhou X, Wang J, Yu L, Qiao G, Qin D, Yuen-Kwan Law B, Ren F, Wu J, Wu A. Mitophagy and cGAS-STING crosstalk in neuroinflammation. Acta Pharm Sin B 2024; 14:3327-3361. [PMID: 39220869 PMCID: PMC11365416 DOI: 10.1016/j.apsb.2024.05.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/10/2024] [Accepted: 04/12/2024] [Indexed: 09/04/2024] Open
Abstract
Mitophagy, essential for mitochondrial health, selectively degrades damaged mitochondria. It is intricately linked to the cGAS-STING pathway, which is crucial for innate immunity. This pathway responds to mitochondrial DNA and is associated with cellular stress response. Our review explores the molecular details and regulatory mechanisms of mitophagy and the cGAS-STING pathway. We critically evaluate the literature demonstrating how dysfunctional mitophagy leads to neuroinflammatory conditions, primarily through the accumulation of damaged mitochondria, which activates the cGAS-STING pathway. This activation prompts the production of pro-inflammatory cytokines, exacerbating neuroinflammation. This review emphasizes the interaction between mitophagy and the cGAS-STING pathways. Effective mitophagy may suppress the cGAS-STING pathway, offering protection against neuroinflammation. Conversely, impaired mitophagy may activate the cGAS-STING pathway, leading to chronic neuroinflammation. Additionally, we explored how this interaction influences neurodegenerative disorders, suggesting a common mechanism underlying these diseases. In conclusion, there is a need for additional targeted research to unravel the complexities of mitophagy-cGAS-STING interactions and their role in neurodegeneration. This review highlights potential therapies targeting these pathways, potentially leading to new treatments for neuroinflammatory and neurodegenerative conditions. This synthesis enhances our understanding of the cellular and molecular foundations of neuroinflammation and opens new therapeutic avenues for neurodegenerative disease research.
Collapse
Affiliation(s)
- Xiaogang Zhou
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Jing Wang
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Lu Yu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Gan Qiao
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Dalian Qin
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Betty Yuen-Kwan Law
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau SAR 999078, China
| | - Fang Ren
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, Chongqing Traditional Chinese Medicine Hospital, Chongqing 400021, China
| | - Jianming Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Anguo Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
4
|
Kaffe D, Kaplanis SI, Karagogeos D. The Roles of Caloric Restriction Mimetics in Central Nervous System Demyelination and Remyelination. Curr Issues Mol Biol 2023; 45:9526-9548. [PMID: 38132442 PMCID: PMC10742427 DOI: 10.3390/cimb45120596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/16/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023] Open
Abstract
The dysfunction of myelinating glial cells, the oligodendrocytes, within the central nervous system (CNS) can result in the disruption of myelin, the lipid-rich multi-layered membrane structure that surrounds most vertebrate axons. This leads to axonal degeneration and motor/cognitive impairments. In response to demyelination in the CNS, the formation of new myelin sheaths occurs through the homeostatic process of remyelination, facilitated by the differentiation of newly formed oligodendrocytes. Apart from oligodendrocytes, the two other main glial cell types of the CNS, microglia and astrocytes, play a pivotal role in remyelination. Following a demyelination insult, microglia can phagocytose myelin debris, thus permitting remyelination, while the developing neuroinflammation in the demyelinated region triggers the activation of astrocytes. Modulating the profile of glial cells can enhance the likelihood of successful remyelination. In this context, recent studies have implicated autophagy as a pivotal pathway in glial cells, playing a significant role in both their maturation and the maintenance of myelin. In this Review, we examine the role of substances capable of modulating the autophagic machinery within the myelinating glial cells of the CNS. Such substances, called caloric restriction mimetics, have been shown to decelerate the aging process by mitigating age-related ailments, with their mechanisms of action intricately linked to the induction of autophagic processes.
Collapse
Affiliation(s)
- Despoina Kaffe
- Department of Biology, University of Crete, Vassilika Vouton, 70013 Heraklion, Greece;
| | - Stefanos Ioannis Kaplanis
- Department of Basic Science, School of Medicine, University of Crete, Vassilika Vouton, 70013 Heraklion, Greece;
- Institute of Molecular Biology & Biotechnology (IMBB), Foundation for Research and Technology-Hellas (FORTH), Vassilika Vouton, 70013 Heraklion, Greece
| | - Domna Karagogeos
- Department of Basic Science, School of Medicine, University of Crete, Vassilika Vouton, 70013 Heraklion, Greece;
- Institute of Molecular Biology & Biotechnology (IMBB), Foundation for Research and Technology-Hellas (FORTH), Vassilika Vouton, 70013 Heraklion, Greece
| |
Collapse
|
5
|
Al‐Kuraishy HM, Al‐Maiahy TJ, Al‐Gareeb AI, Alexiou A, Papadakis M, Elhussieny O, Saad HM, Batiha GE. New insights on the potential effect of progesterone in Covid-19: Anti-inflammatory and immunosuppressive effects. Immun Inflamm Dis 2023; 11:e1100. [PMID: 38018575 PMCID: PMC10683562 DOI: 10.1002/iid3.1100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 11/08/2023] [Accepted: 11/12/2023] [Indexed: 11/30/2023] Open
Abstract
BACKGROUND Coronavirus disease 2019 (COVID-19) is a pandemic disease caused by severe acute respiratory syndrome CoV type 2 (SARS-CoV-2). COVID-19 is higher in men than women and sex hormones have immune-modulator effects during different viral infections, including SARS-CoV-2 infection. One of the essential sex hormones is progesterone (P4). AIMS This review aimed to reveal the association between P4 and Covid-19. RESULTS AND DISCUSSION The possible role of P4 in COVID-19 could be beneficial through the modulation of inflammatory signaling pathways, induction of the release of anti-inflammatory cytokines, and inhibition release of pro-inflammatory cytokines. P4 stimulates skew of naïve T cells from inflammatory Th1 toward anti-inflammatory Th2 with activation release of anti-inflammatory cytokines, and activation of regulatory T cells (Treg) with decreased interferon-gamma production that increased during SARS-CoV-2 infection. In addition, P4 is regarded as a potent antagonist of mineralocorticoid receptor (MR), it could reduce MRs that were activated by stimulated aldosterone from high AngII during SARS-CoV-2. P4 active metabolite allopregnanolone is regarded as a neurosteroid that acts as a positive modulator of γ-aminobutyric acid (GABAA ) so it may reduce neuropsychiatric manifestations and dysautonomia in COVID-19 patients. CONCLUSION Taken together, the anti-inflammatory and immunomodulatory properties of P4 may improve central and peripheral complications in COVID-19.
Collapse
Affiliation(s)
- Hayder M. Al‐Kuraishy
- Department of Clinical Pharmacology and Therapeutic Medicine, College of MedicineMustansiriyah UniversityBaghdadIraq
| | - Thabat J. Al‐Maiahy
- Department of Gynecology and Obstetrics, College of MedicineAl‐Mustansiriyah UniversityBaghdadIraq
| | - Ali I. Al‐Gareeb
- Department of Clinical Pharmacology and Therapeutic Medicine, College of MedicineMustansiriyah UniversityBaghdadIraq
| | - Athanasios Alexiou
- University Centre for Research & DevelopmentChandigarh UniversityMohaliPunjabIndia
- Department of Science and EngineeringNovel Global Community Educational FoundationHebershamNew South WalesAustralia
- Department of Research & DevelopmentAFNP MedWienAustria
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten‐Herdecke, Heusnerstrasse 40University of Witten‐HerdeckeWuppertalGermany
| | - Omnya Elhussieny
- Department of Histology and Cytology, Faculty of Veterinary MedicineMatrouh UniversityMarsa MatruhEgypt
| | - Hebatallah M. Saad
- Department of Pathology, Faculty of Veterinary MedicineMatrouh UniversityMarsa MatruhEgypt
| | - Gaber El‐Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary MedicineDamanhour University, DamanhourAlBeheiraEgypt
| |
Collapse
|
6
|
Komijani E, Parhizkar F, Abdolmohammadi-Vahid S, Ahmadi H, Nouri N, Yousefi M, Aghebati-Maleki L. Autophagy-mediated immune system regulation in reproductive system and pregnancy-associated complications. J Reprod Immunol 2023; 158:103973. [PMID: 37295066 DOI: 10.1016/j.jri.2023.103973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 04/29/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023]
Abstract
Autophagy lysosomal degradation is the main cell mechanism in cellular, tissue and organismal homeostasis and is controlled by autophagy-related genes (ATG). Autophagy has important effects in cellular physiology, including adaptation to metabolic stress, removal of dangerous cargo (such as protein aggregates, damaged organelles, and intracellular pathogens), regeneration during differentiation and development, and prevention of genomic damage in general. Also, it has been found that autophagy is essential for pre-implantation, development, and maintaining embryo survival in mammals. Under certain conditions, autophagy may be detrimental through pro-survival effects such as cancer progression or through possible cell death-promoting effects. Hormonal changes and environmental stress can initiate autophagy in reproductive physiology. The activity of autophagy can be upregulated under conditions like a lack of nutrients, inflammation, hypoxia, and infections. In this regard the dysregulation of autophagy involved in some pregnancy complications such as preeclampsia (PE) and pregnancy loss, and has a major impact on reproductive outcomes. Therefore, we aimed to discuss the relationship between autophagy and the female reproductive system, with a special focus on the immune system, and its role in fetal and maternal health.
Collapse
Affiliation(s)
- Erfan Komijani
- Department of Veterinary Medicine, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Forough Parhizkar
- Student's Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Hamid Ahmadi
- Department of Medical Biology and Central Electron Microscope Laboratory, Medical School, Pécs University, Pécs, Hungary
| | - Narjes Nouri
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Yousefi
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
7
|
Tamburello M, Abate A, Rossini E, Basnet RM, Zizioli D, Cosentini D, Hantel C, Laganà M, Tiberio GAM, Grisanti S, Memo M, Berruti A, Sigala S. Preclinical Evidence of Progesterone as a New Pharmacological Strategy in Human Adrenocortical Carcinoma Cell Lines. Int J Mol Sci 2023; 24:ijms24076829. [PMID: 37047801 PMCID: PMC10095539 DOI: 10.3390/ijms24076829] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/30/2023] [Accepted: 04/03/2023] [Indexed: 04/08/2023] Open
Abstract
Background: Adrenocortical cancer (ACC) is a rare malignancy with a dismal prognosis. The treatment includes mitotane and EDP chemotherapy (etoposide, doxorubicin, and cisplatin). However, new therapeutic approaches for advanced ACC are needed, particularly targeting the metastatic process. Here, we deepen the role of progesterone as a new potential drug for ACC, in line with its antitumoral effect in other cancers. Methods: NCI-H295R, MUC-1, and TVBF-7 cell lines were used and xenografted in zebrafish embryos. Migration and invasion were studied using transwell assays, and MMP2 activity was studied using zymography. Apoptosis and cell cycle were analyzed by flow cytometry. Results: Progesterone significantly reduced xenograft tumor area and metastasis formation in embryos injected with metastatic lines, MUC-1 and TVBF-7. These results were confirmed in vitro, where the reduction of invasion was mediated, at least in part, by the decrease in MMP2 levels. Progesterone exerted a long-lasting effect in metastaticcells. Progesterone caused apoptosis in NCI-H295R and MUC-1, inducing changes in the cell-cycle distribution, while autophagy was predominantly activated in TVBF-7 cells. Conclusion: Our results give support to the role of progesterone in ACC. The involvement of its analog (megestrol acetate) in reducing ACC progression in ACC patients undergoing EDP-M therapy is now under investigation in the PESETA phase II clinical study.
Collapse
Affiliation(s)
- Mariangela Tamburello
- Section of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Andrea Abate
- Section of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Elisa Rossini
- Section of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Ram Manohar Basnet
- Section of Biotechnology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Daniela Zizioli
- Section of Biotechnology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Deborah Cosentini
- Oncology Unit, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia and ASST Spedali Civili di Brescia, 25123 Brescia, Italy
| | - Constanze Hantel
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ) and University of Zurich (UZH), 8091 Zürich, Switzerland
- Medizinische Klinik und Poliklinik III, University Hospital Carl Gustav Carus Dresden, 01307 Dresden, Germany
| | - Marta Laganà
- Oncology Unit, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia and ASST Spedali Civili di Brescia, 25123 Brescia, Italy
| | - Guido Alberto Massimo Tiberio
- Surgical Clinic, Department of Clinical and Experimental Sciences, University of Brescia at ASST Spedali Civili di Brescia, 25123 Brescia, Italy
| | - Salvatore Grisanti
- Oncology Unit, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia and ASST Spedali Civili di Brescia, 25123 Brescia, Italy
| | - Maurizio Memo
- Section of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Alfredo Berruti
- Oncology Unit, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia and ASST Spedali Civili di Brescia, 25123 Brescia, Italy
| | - Sandra Sigala
- Section of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| |
Collapse
|
8
|
Mishra P, Davies DA, Albensi BC. The Interaction Between NF-κB and Estrogen in Alzheimer's Disease. Mol Neurobiol 2023; 60:1515-1526. [PMID: 36512265 DOI: 10.1007/s12035-022-03152-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 11/30/2022] [Indexed: 12/15/2022]
Abstract
Post-menopausal women are at a higher risk of developing Alzheimer's disease (AD) than males. The higher rates of AD in women are associated with the sharp decline in the estrogen levels after menopause. Estrogen has been shown to downregulate inflammatory cytokines in the central nervous system (CNS), which has a neuroprotective role against neurodegenerative diseases including AD. Sustained neuroinflammation is associated with neurodegeneration and contributes to AD. Nuclear factor kappa-B (NF-κB) is a transcription factor involved with the modulation of inflammation and interacts with estrogen to influence the progression of AD. Application of 17β-estradiol (E2) has been shown to inhibit NF-κB, thereby reducing transcription of NF-κB target genes. Despite accumulating evidence showing that estrogens have beneficial effects in pre-clinical AD studies, there are mixed results with hormone replacement therapy in clinical trials. Furthering our understanding of how NF-κB interacts with estrogen and alters the progression of neurodegenerative disorders including AD, should be beneficial and result in the development of novel therapeutics.
Collapse
Affiliation(s)
- Pranav Mishra
- Division of Neurodegenerative Disorders, St. Boniface Hospital Research, Winnipeg, MB, Canada.,Department of Pharmacology & Therapeutics, College of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Don A Davies
- Department of Biology, York University, Toronto, ON, Canada
| | - Benedict C Albensi
- Division of Neurodegenerative Disorders, St. Boniface Hospital Research, Winnipeg, MB, Canada. .,Department of Pharmacology & Therapeutics, College of Medicine, University of Manitoba, Winnipeg, MB, Canada. .,Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, USA.
| |
Collapse
|
9
|
Deng Y, Wang SY, Wang QG, Xu ZH, Peng Q, Chen SY, Zhu L, Zhang YD, Duan R. AVE 0991 Suppresses Astrocyte-Mediated Neuroinflammation of Alzheimer's Disease by Enhancing Autophagy. J Inflamm Res 2023; 16:391-406. [PMID: 36755969 PMCID: PMC9900155 DOI: 10.2147/jir.s392599] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 01/24/2023] [Indexed: 02/04/2023] Open
Abstract
Purpose Our previous study has shown that AVE 0991, a nonpeptide analogue of Ang-(1-7), ameliorates cognitive decline and inhibits NLRP3 inflammasome of astrocytes in Alzheimer's disease model mice. Additionally, several studies have suggested that activation of autophagy appears to effectively inhibit the progression of neuroinflammation. However, it is unclear whether AVE 0991 can modulate astrocyte autophagy to suppress neuroinflammation in Alzheimer's disease. Materials and Methods APP/PS1 mice and Aβ-treated primary astrocytes were used as the research objects in vivo and in vitro, respectively. Water maze test was used to evaluate cognitive function of mice, Nissl staining and immunofluorescence staining was used to assess neuronal damage. ELISA kits were used to detect the levels of Ang-(1-7) and Aβ in the cortex, and qRT-PCR was used to detect the expression of cortical inflammation-related mediators. The expression of autophagy-related proteins in cortex were detected by Western blot. The upstream molecular responses involved in inflammation inhibition by AVE 0991 were validated by means of using the Mas1 antagonist and autophagy inhibitor. Results We found that 30 days of intraperitoneal administration of AVE 0991 improved. Aβ deposition, neuronal death, and cognitive deficits in APP/PS1 Alzheimer's disease model mice. Moreover, AVE 0991 treatment greatly suppressed astrocyte-mediated inflammation and up-regulated the expression of autophagy. Furthermore, the inhibitory effect of AVE 0991 on the expression of inflammatory factors was reversed by 3-MA, an autophagy inhibitor. Conclusion These findings suggest that regulation of autophagy is critical for inhibiting astrocyte neuroinflammatory responses and demonstrate a potential neuroprotective mechanism by which AVE 0991 could suppress neuroinflammatory responses by enhancing autophagy.
Collapse
Affiliation(s)
- Yang Deng
- Department of Neurology, Nanjing First Hospital, China Pharmaceutical University, Nanjing, People’s Republic of China
| | - Si-Yu Wang
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, People’s Republic of China
| | - Qing-Guang Wang
- Department of Neurology, Jiangyin Hospital Affiliated to Nantong University, Jiangyin, People’s Republic of China
| | - Zhao-Han Xu
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, People’s Republic of China
| | - Qiang Peng
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, People’s Republic of China
| | - Shuai-Yu Chen
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, People’s Republic of China
| | - Lin Zhu
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, People’s Republic of China
| | - Ying-Dong Zhang
- Department of Neurology, Nanjing First Hospital, China Pharmaceutical University, Nanjing, People’s Republic of China,Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, People’s Republic of China,Correspondence: Ying-Dong Zhang; Rui Duan, Department of Neurology, Nanjing First Hospital, China Pharmaceutical University, No.68, Changle Road, Nanjing, Jiangsu, People’s Republic of China, Email ;
| | - Rui Duan
- Department of Neurology, Nanjing First Hospital, China Pharmaceutical University, Nanjing, People’s Republic of China,Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, People’s Republic of China
| |
Collapse
|
10
|
Lampinen R, Belaya I, Saveleva L, Liddell JR, Rait D, Huuskonen MT, Giniatullina R, Sorvari A, Soppela L, Mikhailov N, Boccuni I, Giniatullin R, Cruz-Haces M, Konovalova J, Koskuvi M, Domanskyi A, Hämäläinen RH, Goldsteins G, Koistinaho J, Malm T, Chew S, Rilla K, White AR, Marsh-Armstrong N, Kanninen KM. Neuron-astrocyte transmitophagy is altered in Alzheimer's disease. Neurobiol Dis 2022; 170:105753. [DOI: 10.1016/j.nbd.2022.105753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 04/11/2022] [Accepted: 05/09/2022] [Indexed: 10/18/2022] Open
|
11
|
Harrington YA, Parisi JM, Duan D, Rojo-Wissar DM, Holingue C, Spira AP. Sex Hormones, Sleep, and Memory: Interrelationships Across the Adult Female Lifespan. Front Aging Neurosci 2022; 14:800278. [PMID: 35912083 PMCID: PMC9331168 DOI: 10.3389/fnagi.2022.800278] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 06/09/2022] [Indexed: 01/26/2023] Open
Abstract
As the population of older adults grows, so will the prevalence of aging-related conditions, including memory impairments and sleep disturbances, both of which are more common among women. Compared to older men, older women are up to twice as likely to experience sleep disturbances and are at a higher risk of cognitive decline and Alzheimer's disease and related dementias (ADRD). These sex differences may be attributed in part to fluctuations in levels of female sex hormones (i.e., estrogen and progesterone) that occur across the adult female lifespan. Though women tend to experience the most significant sleep and memory problems during the peri-menopausal period, changes in memory and sleep have also been observed across the menstrual cycle and during pregnancy. Here, we review current knowledge on the interrelationships among female sex hormones, sleep, and memory across the female lifespan, propose possible mediating and moderating mechanisms linking these variables and describe implications for ADRD risk in later life.
Collapse
Affiliation(s)
- Yasmin A. Harrington
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Jeanine M. Parisi
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Daisy Duan
- Division of Endocrinology, Diabetes and Metabolism, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Darlynn M. Rojo-Wissar
- The Initiative on Stress, Trauma, and Resilience (STAR), Department of Psychiatry and Human Behavior, Center for Behavioral and Preventive Medicine, The Miriam Hospital, Warren Alpert Medical School of Brown University, Providence, RI, United States
| | - Calliope Holingue
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
- Center for Autism and Related Disorders, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Adam P. Spira
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, United States
- Johns Hopkins Center on Aging and Health, Baltimore, MD, United States
| |
Collapse
|
12
|
MCC950 ameliorates the dementia symptom at the early age of line M83 mouse and reduces hippocampal α-synuclein accumulation. Biochem Biophys Res Commun 2022; 611:23-30. [DOI: 10.1016/j.bbrc.2022.04.076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 04/17/2022] [Indexed: 11/19/2022]
|
13
|
Ma Z, Liu CF, Zhang L, Xiang N, Zhang Y, Chu L. The Construction and Analysis of Immune Infiltration and Competing Endogenous RNA Network in Acute Ischemic Stroke. Front Aging Neurosci 2022; 14:806200. [PMID: 35656537 PMCID: PMC9152092 DOI: 10.3389/fnagi.2022.806200] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 02/28/2022] [Indexed: 11/13/2022] Open
Abstract
Acute ischemic stroke (AIS) is a common neurological disease that seriously endangers both the physical and mental health of human. After AIS, activated immune cells are recruited to the stroke site, where inflammatory mediators are released locally, and severe immune inflammatory reactions occur within a short time, which affects the progress and prognosis of IS. Circular RNA (circRNA) is a type of non-coding RNA (ncRNA) with a closed-loop structure and high stability. Studies have found that circRNA can affect the course of IS. However, there is no report on ceRNA’s pathogenesis in AIS that is mediated by circRNA. In this study, the CIBERSORT algorithm was used to analyze the distribution of immune cells in patients with AIS. mRNA dataset was downloaded from the GEO database, and the weighted gene co-expression network analysis (WGCNA) method was used to construct weighted gene co-expression to determine 668 target genes, using GO, KEGG enrichment analysis, construction of protein-protein interaction (PPI) network analysis, and molecular complex detection (MCODE) plug-in analysis. The results showed that the biological function of the target gene was in line with the activation and immune regulation of neutrophils; signal pathways were mostly enriched in immune inflammation-related pathways. A Venn diagram was used to obtain 52 intersection genes between target genes and disease genes. By analyzing the correlation between the intersection genes and immune cells, we found that the top 5 hub genes were TOM1, STAT3, RAB3D, MDM2, and FOS, which were all significantly positively correlated with neutrophils and significantly negatively correlated with eosinophils. A total of 52 intersection genes and the related circRNA and miRNA were used as input for Cytoscape software to construct a circRNA-mediated ceRNA competition endogenous network, where a total of 18 circRNAs were found. Further analysis of the correlation between circRNA and immune cells found that 4 circRNAs are positively correlated with neutrophils. Therefore, we speculate that there may be a regulatory relationship between circRNA-mediated ceRNA and the immune mechanism in AIS. This study has important guiding significance for the progress, outcome of AIS, and the development of new medicine.
Collapse
Affiliation(s)
- ZhaoLei Ma
- Department of Neurology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- Department of Neurology, Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Neuroscience, Soochow University, Suzhou, China
- Department of Geriatrics, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Chun-Feng Liu
- Department of Neurology, Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Neuroscience, Soochow University, Suzhou, China
| | - Li Zhang
- Department of Geriatrics, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Ning Xiang
- Department of Geriatrics, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Yifan Zhang
- Department of Neurology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Lan Chu
- Department of Neurology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- Department of Neurology, Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Neuroscience, Soochow University, Suzhou, China
- *Correspondence: Lan Chu,
| |
Collapse
|
14
|
Arbo BD, Schimith LE, Goulart dos Santos M, Hort MA. Repositioning and development of new treatments for neurodegenerative diseases: Focus on neuroinflammation. Eur J Pharmacol 2022; 919:174800. [DOI: 10.1016/j.ejphar.2022.174800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 01/18/2022] [Accepted: 02/02/2022] [Indexed: 11/03/2022]
|
15
|
Hornung RS, Raut NGR, Cantu DJ, Lockhart LM, Averitt DL. Sigma-1 receptors and progesterone metabolizing enzymes in nociceptive sensory neurons of the female rat trigeminal ganglia: A neural substrate for the antinociceptive actions of progesterone. Mol Pain 2022; 18:17448069211069255. [PMID: 35040378 PMCID: PMC8777333 DOI: 10.1177/17448069211069255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Orofacial pain disorders are predominately experienced by women. Progesterone, a major ovarian hormone, is neuroprotective and antinociceptive. We recently reported that progesterone attenuates estrogen-exacerbated orofacial pain behaviors, yet it remains unclear what anatomical substrate underlies progesterone's activity in the trigeminal system. Progesterone has been reported to exert protective effects through actions at intracellular progesterone receptors (iPR), membrane-progesterone receptors (mPR), or sigma 1 receptors (Sig-1R). Of these, the iPR and Sig-1R have been reported to have a role in pain. Progesterone can also have antinociceptive effects through its metabolite, allopregnanolone. Two enzymes, 5α-reductase and 3α-hydroxysteroid dehydrogenase (3α-HSD), are required for the metabolism of progesterone to allopregnanolone. Both progesterone and allopregnanolone rapidly attenuate pain sensitivity, implicating action of either progesterone at Sig-1R and/or conversion to allopregnanolone which targets GABAA receptors. In the present study, we investigated whether Sig-1 Rs are expressed in nociceptors within the trigeminal ganglia of cycling female rats and whether the two enzymes required for progesterone metabolism to allopregnanolone, 5α-reductase and 3α-hydroxysteroid dehydrogenase, are also present. Adult female rats from each stage of the estrous cycle were rapidly decapitated and the trigeminal ganglia collected. Trigeminal ganglia were processed by either fluorescent immunochemistry or western blotting to for visualization and quantification of Sig-1R, 5α-reductase, and 3α-hydroxysteroid dehydrogenase. Here we report that Sig-1Rs and both enzymes involved in progesterone metabolism are highly expressed in a variety of nociceptive sensory neuron populations in the female rat trigeminal ganglia at similar levels across the four stages of the estrous cycle. These data indicate that trigeminal sensory neurons are an anatomical substrate for the reported antinociceptive activity of progesterone via Sig-1R and/or conversion to allopregnanolone.
Collapse
Affiliation(s)
| | | | - Daisy J Cantu
- Division of Biology, School of the Sciences, Texas Woman’s
University, Denton, TX, USA
| | - Lauren M Lockhart
- Division of Biology, School of the Sciences, Texas Woman’s
University, Denton, TX, USA
| | - Dayna L Averitt
- Division of Biology, School of the Sciences, Texas Woman’s
University, Denton, TX, USA
| |
Collapse
|
16
|
Deng Z, Dong Y, Zhou X, Lu JH, Yue Z. Pharmacological modulation of autophagy for Alzheimer’s disease therapy: Opportunities and obstacles. Acta Pharm Sin B 2021; 12:1688-1706. [PMID: 35847516 PMCID: PMC9279633 DOI: 10.1016/j.apsb.2021.12.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 11/04/2021] [Accepted: 11/10/2021] [Indexed: 02/06/2023] Open
Abstract
Alzheimer's disease (AD) is a prevalent and deleterious neurodegenerative disorder characterized by an irreversible and progressive impairment of cognitive abilities as well as the formation of amyloid β (Aβ) plaques and neurofibrillary tangles (NFTs) in the brain. By far, the precise mechanisms of AD are not fully understood and no interventions are available to effectively slow down progression of the disease. Autophagy is a conserved degradation pathway that is crucial to maintain cellular homeostasis by targeting damaged organelles, pathogens, and disease-prone protein aggregates to lysosome for degradation. Emerging evidence suggests dysfunctional autophagy clearance pathway as a potential cellular mechanism underlying the pathogenesis of AD in affected neurons. Here we summarize the current evidence for autophagy dysfunction in the pathophysiology of AD and discuss the role of autophagy in the regulation of AD-related protein degradation and neuroinflammation in neurons and glial cells. Finally, we review the autophagy modulators reported in the treatment of AD models and discuss the obstacles and opportunities for potential clinical application of the novel autophagy activators for AD therapy.
Collapse
Affiliation(s)
- Zhiqiang Deng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR 999078, China
| | - Yu Dong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR 999078, China
| | - Xiaoting Zhou
- Department of Neurology, the Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Jia-Hong Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR 999078, China
- Corresponding authors.
| | - Zhenyu Yue
- Department of Neurology, the Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Corresponding authors.
| |
Collapse
|
17
|
De Nicola AF, Meyer M, Garay L, Kruse MS, Schumacher M, Guennoun R, Gonzalez Deniselle MC. Progesterone and Allopregnanolone Neuroprotective Effects in the Wobbler Mouse Model of Amyotrophic Lateral Sclerosis. Cell Mol Neurobiol 2021; 42:23-40. [PMID: 34138412 DOI: 10.1007/s10571-021-01118-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 06/09/2021] [Indexed: 02/07/2023]
Abstract
Progesterone regulates a number of processes in neurons and glial cells not directly involved in reproduction or sex behavior. Several neuroprotective effects are better observed under pathological conditions, as shown in the Wobbler mouse model of amyotrophic laterals sclerosis (ALS). Wobbler mice are characterized by forelimb atrophy due to motoneuron degeneration in the spinal cord, and include microgliosis and astrogliosis. Here we summarized current evidence on progesterone reversal of Wobbler neuropathology. We demonstrated that progesterone decreased motoneuron vacuolization with preservation of mitochondrial respiratory complex I activity, decreased mitochondrial expression and activity of nitric oxide synthase, increased Mn-dependent superoxide dismutase, stimulated brain-derived neurotrophic factor, increased the cholinergic phenotype of motoneurons, and enhanced survival with a concomitant decrease of death-related pathways. Progesterone also showed differential effects on glial cells, including increased oligodendrocyte density and downregulation of astrogliosis and microgliosis. These changes associate with reduced anti-inflammatory markers. The enhanced neurochemical parameters were accompanied by longer survival and increased muscle strength in tests of motor behavior. Because progesterone is locally metabolized to allopregnanolone (ALLO) in nervous tissues, we also studied neuroprotection by this derivative. Treatment of Wobbler mice with ALLO decreased oxidative stress and glial pathology, increased motoneuron viability and clinical outcome in a progesterone-like manner, suggesting that ALLO could mediate some progesterone effects in the spinal cord. In conclusion, the beneficial effects observed in different parameters support the versatile properties of progesterone and ALLO in a mouse model of motoneuron degeneration. The studies foresee future therapeutic opportunities with neuroactive steroids for deadly diseases like ALS.
Collapse
Affiliation(s)
- Alejandro F De Nicola
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biología y Medicina Experimental-CONICET, Vuelta de Obligado 2490, 1428, Buenos Aires, Argentina. .,Department of Human Biochemistry, Faculty of Medicine, University of Buenos Aires, Paraguay 2155, 1425, Buenos Aires, Argentina.
| | - María Meyer
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biología y Medicina Experimental-CONICET, Vuelta de Obligado 2490, 1428, Buenos Aires, Argentina
| | - Laura Garay
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biología y Medicina Experimental-CONICET, Vuelta de Obligado 2490, 1428, Buenos Aires, Argentina.,Department of Human Biochemistry, Faculty of Medicine, University of Buenos Aires, Paraguay 2155, 1425, Buenos Aires, Argentina
| | - Maria Sol Kruse
- Laboratory of Neurobiology, Instituto de Biología y Medicina Experimental-CONICET, Vuelta de Obligado 2490, 1428, Buenos Aires, Argentina
| | - Michael Schumacher
- U1195 INSERM and University Paris Sud "Neuroprotective, Neuroregenerative and Remyelinating Small Molecules, 94276, Kremlin-Bicetre, France
| | - Rachida Guennoun
- U1195 INSERM and University Paris Sud "Neuroprotective, Neuroregenerative and Remyelinating Small Molecules, 94276, Kremlin-Bicetre, France
| | - Maria Claudia Gonzalez Deniselle
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biología y Medicina Experimental-CONICET, Vuelta de Obligado 2490, 1428, Buenos Aires, Argentina.,Department of Physiological Sciences, Faculty of Medicine, University of Buenos Aires, Paraguay 2155, 1425, Buenos Aires, Argentina
| |
Collapse
|
18
|
Shi W, Wu H, Liu S, Wu Z, Wu H, Liu J, Hou Y. Progesterone Suppresses Cholesterol Esterification in APP/PS1 mice and a cell model of Alzheimer's Disease. Brain Res Bull 2021; 173:162-173. [PMID: 34044033 DOI: 10.1016/j.brainresbull.2021.05.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 04/27/2021] [Accepted: 05/21/2021] [Indexed: 01/01/2023]
Abstract
AIMS Cholesteryl ester(CE), generated from the mitochondria associated membrane (MAM), is involved in the pathogenesis of Alzheimer's Disease (AD). In theory, the different neuroprotective effects of progesterone in AD are all linked to MAM, yet the effect on cholesterol esterification has not been reported. Therefore, this study was aimed to investigate the regulation of progesterone on intracerebral CE in AD models and the underlying mechanism. METHODS APP/PS1 mice and AD cell model induced by Aβ 25-35 were selected as the research objects. APP/PS1 mice were daily administrated intragastrically with progesterone and The Morris Water Maze test was performed to detect the learning and memory abilities. Intracellular cholesterol was measured by Cholesterol/Cholesteryl Ester Quantitation Assay. The structure of MAMs were observed with transmission electron microscopy. The expression of acyl-CoA: cholesterol acyltransferase 1 (ACAT1), ERK1/2 and p-ERK1/2 were detected with western blotting, immunohistochemistry or immunofluorescence. RESULTS Progesterone suppressed the accumulation of intracellular CE, shortened the length of abnormally prolonged MAM in cortex of APP/PS1 mice. Progesterone decreased the expression of ACAT1, which could be blocked by progesterone receptor membrane component 1 (PGRMC1) inhibitor AG205. The ERK1/2 pathway maybe involved in the progesterone mediated regulation of ACAT1 in AD models, rather than the PI3K/Akt and the P38 MEPK pathways. SIGNIFICANCE The results supported a line of evidence that progesterone regulates CE level and the structure of MAM in neurons of AD models, providing a promising treatment against AD on the dysfunction of cholesterol metabolism.
Collapse
Affiliation(s)
- Wenjing Shi
- Department of Pharmacology, Hebei Medical University, Shijiazhuang 050017, Hebei Province, China; Department of Pharmacy, Hebei General Hospital, Shijiazhuang 050051, Hebei Province, China.
| | - Hang Wu
- Department of Pharmacy, Heze University, Heze 274000, Shandong Province, China.
| | - Sha Liu
- Department of Pharmacy, the Third Hospital of Shijiazhuang, Shijiazhuang 050000, Hebei Province, China.
| | - Zhigang Wu
- Department of Pharmacy, Hebei North University, Hebei Key Laboratory of Neuropharmacology, Zhangjiakou 075000, China.
| | - Honghai Wu
- Department of Pharmacy, Bethune International Peace Hospital, Shijiazhuang 050082, Hebei Province, China.
| | - Jianfang Liu
- Department of Pharmacy, Bethune International Peace Hospital, Shijiazhuang 050082, Hebei Province, China.
| | - Yanning Hou
- Department of Pharmacology, Hebei Medical University, Shijiazhuang 050017, Hebei Province, China; Department of Pharmacy, Bethune International Peace Hospital, Shijiazhuang 050082, Hebei Province, China.
| |
Collapse
|
19
|
Zhao S, Li X, Wang J, Wang H. The Role of the Effects of Autophagy on NLRP3 Inflammasome in Inflammatory Nervous System Diseases. Front Cell Dev Biol 2021; 9:657478. [PMID: 34079796 PMCID: PMC8166298 DOI: 10.3389/fcell.2021.657478] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/08/2021] [Indexed: 12/21/2022] Open
Abstract
Autophagy is a stable self-sustaining process in eukaryotic cells. In this process, pathogens, abnormal proteins, and organelles are encapsulated by a bilayer membrane to form autophagosomes, which are then transferred to lysosomes for degradation. Autophagy is involved in many physiological and pathological processes. Nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) inflammasome, containing NLRP3, apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) and pro-caspase-1, can activate caspase-1 to induce pyroptosis and lead to the maturation and secretion of interleukin-1 β (IL-1 β) and IL-18. NLRP3 inflammasome is related to many diseases. In recent years, autophagy has been reported to play a vital role by regulating the NLRP3 inflammasome in inflammatory nervous system diseases. However, the related mechanisms are not completely clarified. In this review, we sum up recent research about the role of the effects of autophagy on NLRP3 inflammasome in Alzheimer’s disease, chronic cerebral hypoperfusion, Parkinson’s disease, depression, cerebral ischemia/reperfusion injury, early brain injury after subarachnoid hemorrhage, and experimental autoimmune encephalomyelitis and analyzed the related mechanism to provide theoretical reference for the future research of inflammatory neurological diseases.
Collapse
Affiliation(s)
- Shizhen Zhao
- Henan International Joint Laboratory of Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Xiaotian Li
- Henan International Joint Laboratory of Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Jie Wang
- Henan International Joint Laboratory of Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Honggang Wang
- Henan International Joint Laboratory of Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China
| |
Collapse
|
20
|
Clemastine attenuates AD-like pathology in an AD model mouse via enhancing mTOR-mediated autophagy. Exp Neurol 2021; 342:113742. [PMID: 33965410 DOI: 10.1016/j.expneurol.2021.113742] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 04/07/2021] [Accepted: 05/04/2021] [Indexed: 12/15/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder with limited available drugs for treatment. Enhancing autophagy attenuates AD pathology in various AD model mice. Thus, development of potential drugs which enhance autophagy may bring beneficial effects in AD therapy. In the present study, we show clemastine, a first-generation histamine H1R antagonist and being originally marketed for the treatment of allergic rhinitis, ameliorates AD pathogenesis in APP/PS1 transgenic mice. Chronic treatment with clemastine orally reduced amyloid-β (Aβ) load, neuroinflammation and cognitive deficits of APP/PS1 transgenic mice. Clemastine decreases Aβ generation via reducing the levels of BACE1, CTFs of APP. Mechanistically, clemastine enhances autophagy concomitant with a suppression of mTOR signaling. Therefore, we propose that clemastine attenuates AD pathology via enhancing mTOR-mediated autophagy.
Collapse
|
21
|
Lysosomal Functions in Glia Associated with Neurodegeneration. Biomolecules 2021; 11:biom11030400. [PMID: 33803137 PMCID: PMC7999372 DOI: 10.3390/biom11030400] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/03/2021] [Accepted: 03/08/2021] [Indexed: 12/12/2022] Open
Abstract
Lysosomes are cellular organelles that contain various acidic digestive enzymes. Despite their small size, they have multiple functions. Lysosomes remove or recycle unnecessary cell parts. They repair damaged cellular membranes by exocytosis. Lysosomes also sense cellular energy status and transmit signals to the nucleus. Glial cells are non-neuronal cells in the nervous system and have an active role in homeostatic support for neurons. In response to dynamic cues, glia use lysosomal pathways for the secretion and uptake of regulatory molecules, which affect the physiology of neighboring neurons. Therefore, functional aberration of glial lysosomes can trigger neuronal degeneration. Here, we review lysosomal functions in oligodendrocytes, astrocytes, and microglia, with emphasis on neurodegeneration.
Collapse
|
22
|
Shen HH, Zhang T, Yang HL, Lai ZZ, Zhou WJ, Mei J, Shi JW, Zhu R, Xu FY, Li DJ, Ye JF, Li MQ. Ovarian hormones-autophagy-immunity axis in menstruation and endometriosis. Am J Cancer Res 2021; 11:3512-3526. [PMID: 33537101 PMCID: PMC7847674 DOI: 10.7150/thno.55241] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/02/2021] [Indexed: 12/11/2022] Open
Abstract
Menstruation occurs in few species and involves a cyclic process of proliferation, breakdown and regeneration under the control of ovarian hormones. Knowledge of normal endometrial physiology, as it pertains to the regulation of menstruation, is essential to understand disorders of menstruation. Accumulating evidence indicates that autophagy in the endometrium, under the regulation of ovarian hormones, can result in the infiltration of immune cells, which plays an indispensable role in the endometrium shedding, tissue repair and prevention of infections during menstruation. In addition, abnormal autophagy levels, together with resulting dysregulated immune system function, are associated with the pathogenesis and progression of endometriosis. Considering its potential value of autophagy as a target for the treatment of menstrual-related and endometrium-related disorders, we review the activity and function of autophagy during menstrual cycles. The role of the estrogen/progesterone-autophagy-immunity axis in endometriosis are also discussed.
Collapse
|
23
|
Matrisciano F, Pinna G. PPAR and functional foods: Rationale for natural neurosteroid-based interventions for postpartum depression. Neurobiol Stress 2020; 12:100222. [PMID: 32426424 PMCID: PMC7226878 DOI: 10.1016/j.ynstr.2020.100222] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 03/23/2020] [Accepted: 04/08/2020] [Indexed: 02/07/2023] Open
Abstract
Allopregnanolone, a GABAergic neurosteroid and progesterone derivative, was recently approved by the Food and Drug Administration for the treatment of postpartum depression (PPD). Several mechanisms appear to be involved in the pathogenesis of PPD, including neuroendocrine dysfunction, neuroinflammation, neurotransmitter alterations, genetic and epigenetic modifications. Recent evidence highlights the higher risk for incidence of PPD in mothers exposed to unhealthy diets that negatively impact the microbiome composition and increase inflammation, all effects that are strongly correlated with mood disorders. Conversely, healthy diets have consistently been reported to decrease the risk of peripartum depression and to protect the body and brain against low-grade systemic chronic inflammation. Several bioactive micronutrients found in the so-called functional foods have been shown to play a relevant role in preventing neuroinflammation and depression, such as vitamins, minerals, omega-3 fatty acids and flavonoids. An intriguing molecular substrate linking functional foods with improvement of mood disorders may be represented by the peroxisome-proliferator activated receptor (PPAR) pathway, which can regulate allopregnanolone biosynthesis and brain-derived neurotropic factor (BDNF) and thereby may reduce inflammation and elevate mood. Herein, we discuss the potential connection between functional foods and PPAR and their role in preventing neuroinflammation and symptoms of PPD through neurosteroid regulation. We suggest that healthy diets by targeting the PPAR-neurosteroid axis and thereby decreasing inflammation may offer a suitable functional strategy to prevent and safely alleviate mood symptoms during the perinatal period.
Collapse
Affiliation(s)
- Francesco Matrisciano
- The Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois Chicago (UIC), Chicago, IL, USA
| | - Graziano Pinna
- The Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois Chicago (UIC), Chicago, IL, USA
| |
Collapse
|
24
|
Cho KS, Lee JH, Cho J, Cha GH, Song GJ. Autophagy Modulators and Neuroinflammation. Curr Med Chem 2020; 27:955-982. [PMID: 30381067 DOI: 10.2174/0929867325666181031144605] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 08/20/2018] [Accepted: 10/21/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND Neuroinflammation plays a critical role in the development and progression of various neurological disorders. Therefore, various studies have focused on the development of neuroinflammation inhibitors as potential therapeutic tools. Recently, the involvement of autophagy in the regulation of neuroinflammation has drawn substantial scientific interest, and a growing number of studies support the role of impaired autophagy in the pathogenesis of common neurodegenerative disorders. OBJECTIVE The purpose of this article is to review recent research on the role of autophagy in controlling neuroinflammation. We focus on studies employing both mammalian cells and animal models to evaluate the ability of different autophagic modulators to regulate neuroinflammation. METHODS We have mostly reviewed recent studies reporting anti-neuroinflammatory properties of autophagy. We also briefly discussed a few studies showing that autophagy modulators activate neuroinflammation in certain conditions. RESULTS Recent studies report neuroprotective as well as anti-neuroinflammatory effects of autophagic modulators. We discuss the possible underlying mechanisms of action of these drugs and their potential limitations as therapeutic agents against neurological disorders. CONCLUSION Autophagy activators are promising compounds for the treatment of neurological disorders involving neuroinflammation.
Collapse
Affiliation(s)
- Kyoung Sang Cho
- Department of Biological Sciences, Konkuk University, Seoul, Korea
| | - Jang Ho Lee
- Translational Brain Research Center, International St. Mary's Hospital, Catholic Kwandong University, Incheon, Korea
| | - Jeiwon Cho
- Translational Brain Research Center, International St. Mary's Hospital, Catholic Kwandong University, Incheon, Korea.,Department of Medical Science, College of Medicine, Catholic Kwandong University, Gangneung, Gangwon-do, Korea
| | - Guang-Ho Cha
- Department of Medical Science, College of Medicine, Chungnam National University, 35015 Daejeon, Korea
| | - Gyun Jee Song
- Translational Brain Research Center, International St. Mary's Hospital, Catholic Kwandong University, Incheon, Korea.,Department of Medical Science, College of Medicine, Catholic Kwandong University, Gangneung, Gangwon-do, Korea
| |
Collapse
|
25
|
Ortiz-Rodriguez A, Arevalo MA. The Contribution of Astrocyte Autophagy to Systemic Metabolism. Int J Mol Sci 2020; 21:E2479. [PMID: 32260050 PMCID: PMC7177973 DOI: 10.3390/ijms21072479] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/20/2020] [Accepted: 04/02/2020] [Indexed: 12/15/2022] Open
Abstract
Autophagy is an essential mechanism to maintain cellular homeostasis. Besides its role in controlling the quality of cytoplasmic components, it participates in nutrient obtaining and lipid mobilization under stressful conditions. Furthermore, autophagy is involved in the regulation of systemic metabolism as its blockade in hypothalamic neurons can affect the central regulation of metabolism and impact body energy balance. Moreover, hypothalamic autophagy can be altered during obesity, one of the main alterations of metabolism nowadays. In this review, we focus on the role of astrocytes, essential cells for brain homeostasis, which represent key metabolic regulators. Astrocytes can sense metabolic signals in the hypothalamus and modulate systemic functions as glucose homeostasis and feeding response. Moreover, the response of astrocytes to obesity has been widely studied. Astrocytes are important mediators of brain inflammation and can be affected by increased levels of saturated fatty acids associated with obesity. Although autophagy plays important roles for astrocyte homeostasis and functioning, the contribution of astrocyte autophagy to systemic metabolism has not been analyzed yet. Furthermore, how obesity can impact astrocyte autophagy is poorly understood. More studies are needed in order to understand the contribution of astrocyte autophagy to metabolism.
Collapse
Affiliation(s)
- Ana Ortiz-Rodriguez
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), 28002 Madrid, Spain;
| | - Maria-Angeles Arevalo
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), 28002 Madrid, Spain;
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
26
|
McKee CA, Lananna BV, Musiek ES. Circadian regulation of astrocyte function: implications for Alzheimer's disease. Cell Mol Life Sci 2020; 77:1049-1058. [PMID: 31578625 PMCID: PMC7098845 DOI: 10.1007/s00018-019-03314-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 08/26/2019] [Accepted: 09/19/2019] [Indexed: 12/13/2022]
Abstract
The circadian clock regulates rhythms in gene transcription that have a profound impact on cellular function, behavior, and disease. Circadian dysfunction is a symptom of aging and neurodegenerative diseases, and recent studies suggest a bidirectional relationship between impaired clock function and neurodegeneration. Glial cells possess functional circadian clocks which may serve to control glial responses to daily oscillations in brain activity, cellular stress, and metabolism. Astrocytes directly support brain function through synaptic interactions, neuronal metabolic support, neuroinflammatory regulation, and control of neurovascular coupling at blood and CSF barriers. Emerging evidence suggests that the astrocyte circadian clock may be involved in many of these processes, and that clock disruption could influence neurodegeneration by disrupting several aspects of astrocyte function. Here we review the literature surrounding circadian control of astrocyte function in health and disease, and discuss the potential implications of astrocyte clocks for neurodegeneration.
Collapse
Affiliation(s)
- Celia A McKee
- Department of Neurology, Washington University School of Medicine, Box 8111, 425 S. Euclid Ave, St. Louis, MO, 63105, USA
| | - Brian V Lananna
- Department of Neurology, Washington University School of Medicine, Box 8111, 425 S. Euclid Ave, St. Louis, MO, 63105, USA
| | - Erik S Musiek
- Department of Neurology, Washington University School of Medicine, Box 8111, 425 S. Euclid Ave, St. Louis, MO, 63105, USA.
| |
Collapse
|
27
|
Kuang H, Tan C, Tian H, Liu L, Yang M, Hong F, Yang S. Exploring the bi-directional relationship between autophagy and Alzheimer's disease. CNS Neurosci Ther 2020; 26:155-166. [PMID: 31503421 PMCID: PMC6978262 DOI: 10.1111/cns.13216] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/11/2019] [Accepted: 08/15/2019] [Indexed: 02/06/2023] Open
Abstract
Alzheimer's disease (AD) is characterized by β-amyloid (Aβ) deposition and Tau phosphorylation, in which its pathogenesis has not been cleared so far. The metabolism of Aβ and Tau is critically affected by the autophagy. Abnormal autophagy is thought to be involved in the pathogenesis of AD, regulating autophagy may become a new strategy for AD treatment. In the early stage of AD, the presence of Aβ and Tau can induce autophagy to promote their clearance by means of mTOR-dependent and independent manners. As AD progress, the autophagy goes aberrant. As a result, Aβ and Tau generate continually, which aggravates both autophagy dysfunction and AD. Besides, several related genes and proteins of AD can also adapt autophagy to make an effect on the AD development. There seems to be a bi-directional relationship between AD pathology and autophagy. At present, this article reviews this relationship from these aspects: (a) the signaling pathways of regulating autophagy; (b) the relationships between the autophagy and the processing of Aβ; (c) Aβ and Tau cause autophagy dysfunction; (d) normal autophagy promotes the clearance of Aβ and Tau; (e) the relationships between the autophagy and both genes and proteins related to AD: TFEB, miRNAs, Beclin-1, Presenilin, and Nrf2; and (f) the small molecules regulating autophagy on AD therapy. All of the above may help to further elucidate the pathogenesis of AD and provide a theoretical basis for clinical treatment of AD.
Collapse
Affiliation(s)
- Huang Kuang
- Department of Physiology, College of MedicineNanchang UniversityNanchangChina
| | - Cheng‐Yong Tan
- Department of Physiology, College of MedicineNanchang UniversityNanchangChina
| | - Hui‐Zhen Tian
- Department of Physiology, College of MedicineNanchang UniversityNanchangChina
| | - Li‐Hua Liu
- Department of Physiology, College of MedicineNanchang UniversityNanchangChina
| | - Mei‐Wen Yang
- Department of NurseNanchang University HospitalNanchangChina
| | - Fen‐Fang Hong
- Department of Experimental Teaching CenterNanchang UniversityNanchangChina
| | - Shu‐Long Yang
- Department of Physiology, College of MedicineNanchang UniversityNanchangChina
| |
Collapse
|
28
|
Abstract
Appropriate autophagy has protective effects on ischemic nerve tissue, while excessive autophagy may cause cell death. The inflammatory response plays an important role in the survival of nerve cells and the recovery of neural tissue after ischemia. Many studies have found an interaction between autophagy and inflammation in the pathogenesis of ischemic stroke. This study outlines recent advances regarding the role of autophagy in the post-stroke inflammatory response as follows. (1) Autophagy inhibits inflammatory responses caused by ischemic stimulation through mTOR, the AMPK pathway, and inhibition of inflammasome activation. (2) Activation of inflammation triggers the formation of autophagosomes, and the upregulation of autophagy levels is marked by a significant increase in the autophagy-forming markers LC3-II and Beclin-1. Lipopolysaccharide stimulates microglia and inhibits ULK1 activity by direct phosphorylation of p38 MAPK, reducing the flux and autophagy level, thereby inducing inflammatory activity. (3) By blocking the activation of autophagy, the activation of inflammasomes can alleviate cerebral ischemic injury. Autophagy can also regulate the phenotypic alternation of microglia through the nuclear factor-κB pathway, which is beneficial to the recovery of neural tissue after ischemia. Studies have shown that some drugs such as resveratrol can exert neuroprotective effects by regulating the autophagy-inflammatory pathway. These studies suggest that the autophagy-inflammatory pathway may provide a new direction for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Yun Mo
- Department of Neurology, Guizhou Medical University, Guiyang, Guizhou Province, China
| | - Yin-Yi Sun
- Department of Neurology, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kang-Yong Liu
- Department of Neurology, Shanghai university of medicine & health Sciences Affiliated Zhoupu hospital, Shanghai, China
| |
Collapse
|
29
|
Wang XS, Yue J, Hu LN, Tian Z, Zhang K, Yang L, Zhang HN, Guo YY, Feng B, Liu HY, Wu YM, Zhao MG, Liu SB. Activation of G protein-coupled receptor 30 protects neurons by regulating autophagy in astrocytes. Glia 2020; 68:27-43. [PMID: 31429156 DOI: 10.1002/glia.23697] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 07/23/2019] [Accepted: 07/24/2019] [Indexed: 12/24/2022]
Abstract
Ischemic stroke leads to neuronal damage induced by excitotoxicity, inflammation, and oxidative stress. Astrocytes play diverse roles in stroke and ischemia-induced inflammation, and autophagy is critical for maintaining astrocytic functions. Our previous studies showed that the activation of G protein-coupled receptor 30 (GPR30), an estrogen membrane receptor, protected neurons from excitotoxicity. However, the role of astrocytic GPR30 in maintaining autophagy and neuroprotection remained unclear. In this study, we found that the neuroprotection induced by G1 (GPR30 agonist) in wild-type mice after a middle cerebral artery occlusion was completely blocked in GPR30 conventional knockout (KO) mice but partially attenuated in astrocytic or neuronal GPR30 KO mice. In cultured primary astrocytes, glutamate exposure induced astrocyte proliferation and decreased astrocyte autophagy by activating mammalian target of rapamycin (mTOR) and c-Jun N-terminal kinase (JNK) and inhibiting p38 mitogen-activated protein kinase (MAPK) pathway. G1 treatment restored autophagy to its basal level by regulating the p38 pathway but not the mTOR and JNK signaling pathways. Our findings revealed a key role of GPR30 in neuroprotection via the regulation of astrocyte autophagy and support astrocytic GPR30 as a potential drug target against ischemic brain damage.
Collapse
Affiliation(s)
- Xin-Shang Wang
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, China.,Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Jiao Yue
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, China.,Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Li-Ning Hu
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, China.,Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Zhen Tian
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, China.,Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi'an, China.,Department of Pharmacy, The 154th Central Hospital of PLA, Xinyang, China
| | - Kun Zhang
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, China.,Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Le Yang
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, China.,Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Hui-Nan Zhang
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, China.,Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Yan-Yan Guo
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, China.,Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Bin Feng
- State Key Laboratory of Military Stomatology, Department of pharmacy, School of Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Fourth Military Medical University, Xi'an, China
| | - Hai-Yan Liu
- State Key Laboratory of Military Stomatology, Department of pharmacy, School of Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Fourth Military Medical University, Xi'an, China
| | - Yu-Mei Wu
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, China.,Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Ming-Gao Zhao
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, China.,Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Shui-Bing Liu
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, China.,Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
30
|
Wang JL, Xu CJ. Astrocytes autophagy in aging and neurodegenerative disorders. Biomed Pharmacother 2019; 122:109691. [PMID: 31786465 DOI: 10.1016/j.biopha.2019.109691] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 11/11/2019] [Accepted: 11/20/2019] [Indexed: 12/13/2022] Open
Abstract
Astrocytes can serve multiple functions in maintaining cellular homeostasis of the central nervous system (CNS), and normal functions for autophagy in astrocytes is considered to have very vital roles in the pathogenesis of aging and neurodegenerative diseases. Autophagy is a major intracellular lysosomal (or its yeast analog, vacuolar) clearance pathways involved in the degradation and recycling of long-lived proteins, oxidatively damaged proteins and dysfunctional organelles by lysosomes. Current evidence has shown that autophagy might influence inflammation, oxidative stress, aging and function of astrocytes. Although the interrelation between autophagy and inflammation, oxidative stress, aging or neurological disorders have been addressed in detail, the influence of astrocytes mediated-autophagy in aging and neurodegenerative disorders has yet to be fully reviewed. In this review, we will summarize the most up-to-date findings and highlight the role of autophagy in astrocytes and link autophagy of astrocytes to aging and neurodegenerative diseases. Due to the prominent roles of astrocytic autophagy in age-related neurodegenerative diseases, we believe that we can provide new suggestions for the treatment of these disorders.
Collapse
Affiliation(s)
- Jun-Ling Wang
- Center for Reproductive Medicine, Affiliated Hospital 1 of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, PR China.
| | - Chao-Jin Xu
- Department of Histology & Embryology, School of Basic Medical Science, Wenzhou Medical University, Cha Shan University Town, No.1 Central North Road, Wenzhou, Zhejiang, 325035, PR China.
| |
Collapse
|
31
|
Icariin Ameliorates Amyloid Pathologies by Maintaining Homeostasis of Autophagic Systems in Aβ1–42-Injected Rats. Neurochem Res 2019; 44:2708-2722. [DOI: 10.1007/s11064-019-02889-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 09/26/2019] [Accepted: 10/03/2019] [Indexed: 12/22/2022]
|
32
|
Yilmaz C, Karali K, Fodelianaki G, Gravanis A, Chavakis T, Charalampopoulos I, Alexaki VI. Neurosteroids as regulators of neuroinflammation. Front Neuroendocrinol 2019; 55:100788. [PMID: 31513776 DOI: 10.1016/j.yfrne.2019.100788] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 08/12/2019] [Accepted: 09/07/2019] [Indexed: 02/07/2023]
Abstract
Neuroinflammation is a physiological protective response in the context of infection and injury. However, neuroinflammation, especially if chronic, may also drive neurodegeneration. Neurodegenerative diseases, such as multiple sclerosis (MS), Alzheimer's disease (AD), Parkinson's disease (PD) and traumatic brain injury (TBI), display inflammatory activation of microglia and astrocytes. Intriguingly, the central nervous system (CNS) is a highly steroidogenic environment synthesizing steroids de novo, as well as metabolizing steroids deriving from the circulation. Neurosteroid synthesis can be substantially affected by neuroinflammation, while, in turn, several steroids, such as 17β-estradiol, dehydroepiandrosterone (DHEA) and allopregnanolone, can regulate neuroinflammatory responses. Here, we review the role of neurosteroids in neuroinflammation in the context of MS, AD, PD and TBI and describe underlying molecular mechanisms. Moreover, we introduce the concept that synthetic neurosteroid analogues could be potentially utilized for the treatment of neurodegenerative diseases in the future.
Collapse
Affiliation(s)
- Canelif Yilmaz
- Institute of Clinical Chemistry and Laboratory Medicine, University Clinic Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany
| | - Kanelina Karali
- Department of Pharmacology, Medical School, University of Crete, Heraklion, Greece; Institute of Molecular Biology & Biotechnology, Foundation of Research & Technology-Hellas, Heraklion, Greece
| | - Georgia Fodelianaki
- Institute of Clinical Chemistry and Laboratory Medicine, University Clinic Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany
| | - Achille Gravanis
- Department of Pharmacology, Medical School, University of Crete, Heraklion, Greece; Institute of Molecular Biology & Biotechnology, Foundation of Research & Technology-Hellas, Heraklion, Greece
| | - Triantafyllos Chavakis
- Institute of Clinical Chemistry and Laboratory Medicine, University Clinic Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany; Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Ioannis Charalampopoulos
- Department of Pharmacology, Medical School, University of Crete, Heraklion, Greece; Institute of Molecular Biology & Biotechnology, Foundation of Research & Technology-Hellas, Heraklion, Greece
| | - Vasileia Ismini Alexaki
- Institute of Clinical Chemistry and Laboratory Medicine, University Clinic Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany.
| |
Collapse
|
33
|
Hong Y, Liu Y, Yu D, Wang M, Hou Y. The neuroprotection of progesterone against Aβ-induced NLRP3-Caspase-1 inflammasome activation via enhancing autophagy in astrocytes. Int Immunopharmacol 2019; 74:105669. [PMID: 31176046 DOI: 10.1016/j.intimp.2019.05.054] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 05/17/2019] [Accepted: 05/27/2019] [Indexed: 12/21/2022]
Abstract
Neuroinflammation and autophagy dysfunction are known to be involved in the pathological procession of Alzheimer's disease (AD). Progesterone (PG), neuroactive steroids, exerts a characteristic neuroprotective function in improving AD syndrome. The NOD-like receptor pyrin 3 (NLRP3)-Caspase-1 inflammasome has specific relevance to AD pathological procession. However, the exact role of PG in regulating NLRP3-Caspase-1 inflammasome remains to be elucidated. We demonstrated Aβ up-regulated IL-1β expression in astrocytes by activating NLRP3-Caspase-1 inflammasome. However, pharmacological activation of autophagy by Rapamycin (RAPA) efficiently suppressed Aβ-, lipopolysaccharides (LPS)-induced IL-1β expression via regulating NLRP3-Caspase-1 inflammasome in astrocytes. Remarkably, PG significantly inhibited Aβ-induced NLRP3-Caspase-1 inflammasome activation. Autophagy inhibitor 3-MA blocked the protective effects of PG in mediating NLRP3 inflammasome and IL-1β processing. Taken together, our observations suggest that autophagy-lysosome pathway is one specific molecular mechanism in regulating Aβ-induced NLRP3-Caspase-1 inflammasome activation in astrocytes, particularly uncover the potential neuroprotection of PG in regulating upstream signaling leading to the sequence events of neuroinflammation. That neuroprotective mechanism of PG in regulating NLRP3-Caspase-1 inflammasome can be a potential therapeutic target for ameliorating the pathological procession of AD.
Collapse
Affiliation(s)
- Yang Hong
- Department of Clinical Pharmacology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Yunjiang Liu
- Breast Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China.
| | - Dongzhen Yu
- Physical Education Department, Quanzhou Normal University, Quanzhou, Fujian Province, China
| | - Mingxia Wang
- Department of Clinical Pharmacology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Yanning Hou
- Department of Pharmacy, Bethune International Peace Hospital, Shijiazhuang, Hebei Province, China
| |
Collapse
|
34
|
Tan S, Bajalovic N, Wong ESP, Lin VCL. Ligand-activated progesterone receptor B activates transcription factor EB to promote autophagy in human breast cancer cells. Exp Cell Res 2019; 382:111433. [PMID: 31100306 DOI: 10.1016/j.yexcr.2019.05.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 04/30/2019] [Accepted: 05/10/2019] [Indexed: 02/08/2023]
Abstract
Autophagy is an evolutionary conserved, self-eating process that targets cellular constituents for lysosomal degradation. Transcription factor EB (TFEB) is a master regulator of autophagy by inducing the expression of genes involved in autophagic and lysosomal degradation. In breast cancer, ligand-activated progesterone receptor has been reported to influence cancer development by manipulating the autophagy pathway. However, understanding of the mechanism that underlies this autophagic response remains limited. Herein, we report that prolonged treatment with progestin R5020 upregulates autophagy in MCF-7 human breast cancer cells via a novel interplay between progesterone receptor B (PRB) and TFEB. R5020 upregulates TFEB gene expression and protein levels in a PRB-dependent manner. Additionally, R5020 enhances the co-recruitment of PRB and TFEB to each other to facilitate TFEB nuclear localization. Once in the nucleus, TFEB induces the expression of autophagy and lysosomal genes to potentiate autophagy. Together, our findings highlight a novel functional connection between ligand-activated PRB and TFEB to modulate autophagy in MCF-7 breast cancer cells. As breast cancer development is controlled by autophagy, the progestin-PRB-TFEB transduction pathway warrants future attention as a potential therapeutic target in cancer therapy.
Collapse
Affiliation(s)
- Sijie Tan
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Natasa Bajalovic
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Esther S P Wong
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore; Centre for Healthy Ageing, National University Health System, Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117593, Singapore
| | - Valerie C L Lin
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore.
| |
Collapse
|