1
|
Yuan H, Tian Y, Jiang R, Wang Y, Nie M, Li X, He Y, Liu X, Zhao R, Zhang J. Susceptibility to Hepatotoxic Drug-Induced Liver Injury Increased After Traumatic Brain Injury in Mice. J Neurotrauma 2024; 41:1425-1437. [PMID: 37265124 DOI: 10.1089/neu.2022.0147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023] Open
Abstract
The early stages of brain injury can induce acute liver injury, which can be recovered in the short term. Continued medication treatment during hospitalization for brain injury alleviates the prognosis and contributes to a high incidence of drug-induced liver injury (DILI). We hypothesize that there is an interaction between changes in the hepatic environment after brain injury and liver injury produced by intensive drug administration, leading to an upregulation of the organism's sensitivity to DILI. In this study, mice models of TBI were established by controlled cortical impact (CCI) and models of DILI were constructed by acetaminophen (APAP). All mice were divided into four groups: Sham, TBI, APAP, and TBI+APAP, and related liver injury indicators in liver and serum were detected by Western blot, Quantitative real-time PCR (qRT-PCR), and immunohistochemical staining. The results suggested that liver injury induced in the early stages of brain injury recovered in 3 days, but this state could still significantly aggravate DILI, represented by higher liver enzymes (aspartate aminotransferase [AST] and alanine aminotransferase [ALT]), oxidative stress (increase in malondialdehyde [MDA] concentration and deregulation of glutathione [GSH] and superoxide dismutase [SOD] activities), inflammatory response (activation of the HMGB1/TLR4/NF-κB signaling pathway, and increased messenger RNA [mRNA] and protein levels of pro-inflammatory cytokines including tumor necrosis factor alpha [TNF-α], interleukin [IL]-6, and IL-1β), and apoptosis (TUNEL assay, upregulation of Bax protein and deregulation of Bcl-2 protein). In summary, our results suggested that TBI is a potential susceptibility factor for DILI and exacerbates DILI.
Collapse
Affiliation(s)
- Hengjie Yuan
- Department of Pharmacy, General Hospital of Tianjin Medical University, Tianjin, China
| | - Ye Tian
- Department of Neurosurgery, General Hospital of Tianjin Medical University, Tianjin, China
| | - Rongcai Jiang
- Department of Neurosurgery, General Hospital of Tianjin Medical University, Tianjin, China
| | - Yuanzhi Wang
- Department of Pharmacy, General Hospital of Tianjin Medical University, Tianjin, China
| | - Meng Nie
- Department of Neurosurgery, General Hospital of Tianjin Medical University, Tianjin, China
| | - Xiaochun Li
- Department of Pharmacy, General Hospital of Tianjin Medical University, Tianjin, China
| | - Yifan He
- Department of Pharmacy, General Hospital of Tianjin Medical University, Tianjin, China
| | - Xuanhui Liu
- Department of Neurosurgery, General Hospital of Tianjin Medical University, Tianjin, China
| | - Ruiting Zhao
- Department of Pharmacy, General Hospital of Tianjin Medical University, Tianjin, China
| | - Jingyue Zhang
- Department of Pharmacy, General Hospital of Tianjin Medical University, Tianjin, China
| |
Collapse
|
2
|
Zhao X, Li N, Yang N, Mi B, Dang W, Sun D, Ma S, Nian H, Wei R. Thymosin β4 Alleviates Autoimmune Dacryoadenitis via Suppressing Th17 Cell Response. Invest Ophthalmol Vis Sci 2023; 64:3. [PMID: 37531112 PMCID: PMC10405860 DOI: 10.1167/iovs.64.11.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 07/10/2023] [Indexed: 08/03/2023] Open
Abstract
Purpose We investigated the therapeutic effect of recombinant thymosin β4 (rTβ4) on rabbit autoimmune dacryoadenitis, an animal model of SS dry eye, and explore its mechanisms. Methods Rabbits were treated topically with rTβ4 or PBS solution after disease onset for 28 days, and clinical scores were determined by assessing tear secretion, break-up time, fluorescein, hematoxylin and eosin staining, and periodic acid-Schiff. The expression of inflammatory mediators in the lacrimal glands were measured by real-time PCR. The expression of T helper 17 (Th17) cell-related transcription factors and cytokines were detected by real-time PCR and Western blotting. The molecular mechanism underlying the effects of rTβ4 on Th17 cell responses was investigated by Western blotting. Results Topical administration of rTβ4 after disease onset efficiently ameliorated the ocular surface inflammation and relieved the clinical symptoms. Further analysis revealed that rTβ4 treatment significantly inhibited the expression of Th17-related genes (RORC, IL-17A, IL-17F, IL-1R1, IL-23R, and granulocyte-macrophage colony-stimulating factor) and IL-17 protein in lacrimal glands, and meanwhile decreased the inflammatory mediators expression. Mechanistically, we demonstrated that rTβ4 repressed the phosphorylation of signal transducer and activator of transcription 3 (STAT3) both in vivo and in vitro. Activation of the STAT3 signal pathway by Colivelin partly reversed the suppressive effects of rTβ4 on IL-17 expression in vitro. Conclusions rTβ4 could alleviate ongoing autoimmune dacryoadenitis in rabbits, probably by suppressing Th17 response via partly affecting the STAT3 pathway. These data may provide a new insight into the therapeutic effect and mechanism of rTβ4 in dry eye associated with Sjögren's syndrome.
Collapse
Affiliation(s)
- Xiaoyu Zhao
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Na Li
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Ning Yang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Baoyue Mi
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Weiyu Dang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Deming Sun
- Doheny Eye Institute and Department of Ophthalmology, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, California, United States
| | - Shanshan Ma
- Beijing Northland Biotech. Co., Ltd., Beijing, China
| | - Hong Nian
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Ruihua Wei
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| |
Collapse
|
3
|
Hussain S, Alshahrani S, Siddiqui R, Khan A, Elhassan Taha MM, Ahmed RA, Jali AM, Qadri M, Khairat KHM, Ashafaq M. Cinnamon Oil Alleviates Acetaminophen-Induced Uterine Toxicity in Rats by Abrogation of Oxidative Stress, Apoptosis, and Inflammation. PLANTS (BASEL, SWITZERLAND) 2023; 12:2290. [PMID: 37375915 DOI: 10.3390/plants12122290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/18/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023]
Abstract
Paracetamol, or acetaminophen (APAP), is one of the first-line medications that is used for fever and pain. However, APAP can induce uterine toxicity when overused. The mode of action of APAP toxicity is due to the production of free radicals. The main goal of our study is to determine uterine toxicity from APAP overdose and the antioxidative activity of cinnamon oil (CO) in female rats. The effect of different doses of CO (50-200 mg/kg b.w.) was assessed in the uterus toxicity induced by APAP. Additionally, the imbalance in oxidative parameters, interleukins, and caspases was evaluated for the protective effects of CO. A single dose of APAP (2 g/kg b.w.) resulted in uterus toxicity, indicated by a significant increase in the level of lipid peroxidation (LPO), inflammatory interleukins cytokines (IL-1 and 6), expression of caspases 3 and 9, and a marked change in uterus tissue architecture evaluated by histopathology. Co-treatment of CO resulted in a significant amelioration of all the parameters such as LPO, interleukins IL-1β, IL-6, caspases 3 and 9 expression, and distortion of tissue architecture in a dose-dependent manner. Therefore, we can conclude that APAP-induced uterine injury due to oxidative stress can be restored by co-treatment with cinnamon oil (CO).
Collapse
Affiliation(s)
- Sohail Hussain
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Saeed Alshahrani
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Rahimullah Siddiqui
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Andleeb Khan
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | | | - Rayan A Ahmed
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Abdulmajeed M Jali
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Marwa Qadri
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Khairat H M Khairat
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Mohammad Ashafaq
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| |
Collapse
|
4
|
Rodimova S, Elagin V, Karabut M, Koryakina I, Timin A, Zagainov V, Zyuzin M, Zagaynova E, Kuznetsova D. Toxicological Analysis of Hepatocytes Using FLIM Technique: In Vitro versus Ex Vivo Models. Cells 2021; 10:2894. [PMID: 34831114 PMCID: PMC8616382 DOI: 10.3390/cells10112894] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/19/2021] [Accepted: 10/23/2021] [Indexed: 12/03/2022] Open
Abstract
The search for new criteria indicating acute or chronic pathological processes resulting from exposure to toxic agents, testing of drugs for potential hepatotoxicity, and fundamental study of the mechanisms of hepatotoxicity at a molecular level still represents a challenging issue that requires the selection of adequate research models and tools. Microfluidic chips (MFCs) offer a promising in vitro model for express analysis and are easy to implement. However, to obtain comprehensive information, more complex models are needed. A fundamentally new label-free approach for studying liver pathology is fluorescence-lifetime imaging microscopy (FLIM). We obtained FLIM data on both the free and bound forms of NAD(P)H, which is associated with different metabolic pathways. In clinical cases, liver pathology resulting from overdoses is most often as a result of acetaminophen (APAP) or alcohol (ethanol). Therefore, we have studied and compared the metabolic state of hepatocytes in various experimental models of APAP and ethanol hepatotoxicity. We have determined the potential diagnostic criteria including the pathologically altered metabolism of the hepatocytes in the early stages of toxic damage, including pronounced changes in the contribution from the bound form of NAD(P)H. In contrast to the MFCs, the changes in the metabolic state of hepatocytes in the ex vivo models are, to a greater extent, associated with compensatory processes. Thus, MFCs in combination with FLIM can be applied as an effective tool set for the express modeling and diagnosis of hepatotoxicity in clinics.
Collapse
Affiliation(s)
- Svetlana Rodimova
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603000 Nizhny Novgorod, Russia; (V.E.); (M.K.); (V.Z.); (E.Z.); (D.K.)
- Department of Biophysics, N.I. Lobachevsky Nizhny Novgorod National Research State University, 23 Gagarina Ave., 603022 Nizhny Novgorod, Russia
| | - Vadim Elagin
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603000 Nizhny Novgorod, Russia; (V.E.); (M.K.); (V.Z.); (E.Z.); (D.K.)
| | - Maria Karabut
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603000 Nizhny Novgorod, Russia; (V.E.); (M.K.); (V.Z.); (E.Z.); (D.K.)
| | - Irina Koryakina
- School of Physics and Engineering, ITMO University, 9 Lomonosova St., 191002 St. Petersburg, Russia; (I.K.); (M.Z.)
| | - Alexander Timin
- Research School of Chemical and Biomedical Engineering, National Research Tomsk Polytechnic University, 30 Lenin Ave., 634034 Tomsk, Russia;
- Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, 29 Polytechnicheskaya St., 194064 St. Petersburg, Russia
| | - Vladimir Zagainov
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603000 Nizhny Novgorod, Russia; (V.E.); (M.K.); (V.Z.); (E.Z.); (D.K.)
- The Volga District Medical Centre of Federal Medical and Biological Agency, 14 Ilinskaya St., 603000 Nizhny Novgorod, Russia
| | - Mikhail Zyuzin
- School of Physics and Engineering, ITMO University, 9 Lomonosova St., 191002 St. Petersburg, Russia; (I.K.); (M.Z.)
| | - Elena Zagaynova
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603000 Nizhny Novgorod, Russia; (V.E.); (M.K.); (V.Z.); (E.Z.); (D.K.)
- Department of Biophysics, N.I. Lobachevsky Nizhny Novgorod National Research State University, 23 Gagarina Ave., 603022 Nizhny Novgorod, Russia
| | - Daria Kuznetsova
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603000 Nizhny Novgorod, Russia; (V.E.); (M.K.); (V.Z.); (E.Z.); (D.K.)
- Department of Biophysics, N.I. Lobachevsky Nizhny Novgorod National Research State University, 23 Gagarina Ave., 603022 Nizhny Novgorod, Russia
| |
Collapse
|
5
|
Frozandeh F, Shahrokhi N, Khaksari M, Amiresmaili S, AsadiKaram G, Shahrokhi N, Iranpour M. Evaluation of the protective effect of curcumin on encephalopathy caused by intrahepatic and extrahepatic damage in male rats. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2021; 24:760-766. [PMID: 34630953 PMCID: PMC8487601 DOI: 10.22038/ijbms.2021.53171.11976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 05/08/2021] [Indexed: 11/21/2022]
Abstract
Objective(s): Along with increased intracranial pressure (ICP) and brain damage, brain edema is the most common cause of death in patients with hepatic encephalopathy. Curcumin can pass the blood-brain barrier and possesses anti-inflammatory and anti-oxidant properties. This study focuses on the curcumin protective effect on intrahepatic and extrahepatic damage in the brain. Materials and Methods: One hundred and forty-four male Albino N-Mary rats were randomly divided into 2 main groups: intrahepatic injury group and extrahepatic cholestasis group. In intra-hepatic injury group intrahepatic damage was induced by intraperitoneal (IP) injection of acetaminophen (500 mg/kg) [19] and included four subgroups: 1. Sham, 2. Acetaminophen (APAP), 3. Normal saline (Veh) which was used as curcumin solvent, and 4. Curcumin (CMN). In extrahepatic cholestasis group intrahepatic damage was caused by common bile duct litigation (BDL) and included four subgroups: 1. Sham, 2. BDL, 3. Vehicle (Veh), and 4. Curcumin (CMN). In both groups, 72 hr after induction of cholestasis, brain water content, blood-brain barrier permeability, serum ammonia, and histopathological indicators were examined and ICP was measured every 24 hr for three days. Results: The results showed that curcumin reduced brain edema, ICP, serum ammonia, and blood-brain barrier permeability after extrahepatic and intrahepatic damage. The maximum effect of curcumin on ICP was observed 72 hr after the injection. Conclusion: According to our findings, it seems that curcumin is an effective therapeutic intervention for treating encephalopathy caused by extrahepatic and intrahepatic damage.
Collapse
Affiliation(s)
- Forouzan Frozandeh
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Nader Shahrokhi
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Khaksari
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Gholamreza AsadiKaram
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Nava Shahrokhi
- Medical School, Kerman University of Medical Sciences, Kerman, Iran
| | - Maryam Iranpour
- Pathology and Stem Cell Research Center, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
6
|
Hussain S, Ashafaq M, Alshahrani S, Siddiqui R, Ahmed RA, Khuwaja G, Islam F. Cinnamon oil against acetaminophen-induced acute liver toxicity by attenuating inflammation, oxidative stress and apoptosis. Toxicol Rep 2020; 7:1296-1304. [PMID: 33024703 PMCID: PMC7528057 DOI: 10.1016/j.toxrep.2020.09.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 08/10/2020] [Accepted: 09/03/2020] [Indexed: 01/08/2023] Open
Abstract
Acetaminophen (APAP) is used as a primary drug due to its antipyretic and analgesic activity. The mechanism of action of APAP toxicity in the liver is due to the depletion of glutathione which elicited free radicals generation. Therefore, the objective of our work is to investigate the APAP induced liver damage and its repair by free radical scavenging activity of cinnamon oil (CO) in male Wistar rats. To investigate the effects of CO at different doses (50, 100 and 200 mg/kg b.w.), animals were given a single oral dose of CO per day for 14 days between 12:00-1:00 PM. The biochemical changes, imbalance in oxidative markers, interleukins, caspases and histopathological studies were determined for quantifying the hepatoprotective effect of CO. One dose of APAP (2 g/kg b.w.) results in significant hepatotoxicity and marked increase the serum markers alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), bilirubin, albumin, total protein, content of lipid peroxidation (LPO), interleukins (IL-1β, IL-6), caspase-3, -9 expression, DNA fragmentation and histopathological changes were observed. Significant decrease in the levels of LPO, interleukins IL-1β, IL-6, caspase-3, -9 expressions, qualitative as well as quantitative determination of DNA fragments and histopathological changes were reversed by the administration of CO dose dependently. Furthermore, it also restores the depleted activity of antioxidative enzymes. Our study shows that an imbalance in the oxidative parameter in the liver by APAP is restored by treating the animals with CO.
Collapse
Key Words
- ALP, alkaline phosphatase
- ALT, alanine aminotransferase
- ANOVA, analysis of variance
- APAP, N-acetyl-p-aminophenol
- AST, aspartate aminotransferase
- Acetaminophen
- BHA, butylated hydroxyanisole
- CO, cinnamon oil
- Cinnamon oil
- DNA fragmentation
- GPx, glutathione peroxidase
- GR, glutathione reductase
- GSH, glutathione
- Hepatotoxicity
- LPO, lipid peroxidation
- MDA, malondialdehyde
- MEC, molar extinction coefficient
- NAPQI, N-acetyl parabenzoquinoneimine
- Oxidative stress
- PMS, post mitochondrial supernatants
- SOD, superoxide dismutase
Collapse
Affiliation(s)
- Sohail Hussain
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Saudi Arabia
| | - Mohammed Ashafaq
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Saudi Arabia
| | - Saeed Alshahrani
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Saudi Arabia
| | - Rahimullah Siddiqui
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Saudi Arabia
| | - Rayan A. Ahmed
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Saudi Arabia
| | - Gulrana Khuwaja
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Saudi Arabia
| | - Fakhrul Islam
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Saudi Arabia
| |
Collapse
|
7
|
Park DW, Jeon H, Kwon JE, Lee YG, So R, Choe TH, Jeong YJ, Kang SC. Hepatoprotective effect of Centella asiatica 50% ethanol extract against acetaminophen-induced acute liver injury in BALB/c mice. Toxicol Res 2020; 37:261-275. [PMID: 33868982 DOI: 10.1007/s43188-020-00063-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/12/2020] [Accepted: 08/21/2020] [Indexed: 02/05/2023] Open
Abstract
N-acetyl-p-aminophenol (acetaminophen, APAP) is a well-known component of analgesic and antipyretic monotherapy products. However, exceeding the recommended dose can lead to serious injury to the liver. We conducted this study to determine the potential of Centella asiatica as a natural substance to protect against APAP-induced liver injury. When acute hepatotoxicity was induced in mice by APAP overdose, their liver weight decreased significantly (p < 0.05). However, mice treated with C. asiatica 50% ethanol extract (CA-HE50, 200 mg/kg) for a week before induction of hepatotoxicity by APAP had similar liver weights to those of mice in which hepatotoxicity was not induced. In particular, levels of aspartate aminotransferase, alanine aminotransferase, and lactate dehydrogenase, which are biomarkers of liver injury, were significantly increased by APAP and dose-dependently decreased by CA-HE50 (p < 0.05). Glutathione and malondialdehyde, indicators of oxidative stress, were significantly changed by APAP and CA-HE50 (p < 0.05). In addition, hepatic necrosis and expression of genes encoding pro-inflammatory cytokines (tumor necrosis factor-α, interleukin (IL)-1β, and IL-4) induced by APAP were inhibited by CA-HE50, and these results were dose-dependent. Through our in vivo studies, we found that CA-HE50 can help prevent APAP-induced hepatic tissue injury in BALB/c mice. Furthermore, CA-HE50 was effective at protecting RAW 264.7 cells from lipopolysaccharide-induced cytotoxicity and inhibiting the release of nitric oxide from these cells; in particular, asiaticoside was found to be a key component of CA-HE50 responsible for these effects. Therefore, we suggest that CA-HE50 has potential applications in functional health foods and drugs.
Collapse
Affiliation(s)
- Dae Won Park
- Department of Oriental Medicine Biotechnology, College of Life Sciences, Kyung Hee University, 1732, Deogyeong-daero, Giheung-gu, Yongin, Gyeonggi-do 17104 Republic of Korea.,BioMedical Research Institute, Kyung Hee University, Yongin, Gyeonggi-do 17104 Republic of Korea
| | - Hyelin Jeon
- BioMedical Research Institute, Kyung Hee University, Yongin, Gyeonggi-do 17104 Republic of Korea.,Genencell Co. Ltd., Yongin, Gyeonggi-do 16950 Republic of Korea
| | - Jeong Eun Kwon
- Department of Oriental Medicine Biotechnology, College of Life Sciences, Kyung Hee University, 1732, Deogyeong-daero, Giheung-gu, Yongin, Gyeonggi-do 17104 Republic of Korea.,BioMedical Research Institute, Kyung Hee University, Yongin, Gyeonggi-do 17104 Republic of Korea
| | - Young Geun Lee
- Department of Oriental Medicine Biotechnology, College of Life Sciences, Kyung Hee University, 1732, Deogyeong-daero, Giheung-gu, Yongin, Gyeonggi-do 17104 Republic of Korea
| | - Rina So
- Department of Oriental Medicine Biotechnology, College of Life Sciences, Kyung Hee University, 1732, Deogyeong-daero, Giheung-gu, Yongin, Gyeonggi-do 17104 Republic of Korea.,BioMedical Research Institute, Kyung Hee University, Yongin, Gyeonggi-do 17104 Republic of Korea
| | - Tae Hwan Choe
- Department of Oriental Medicine Biotechnology, College of Life Sciences, Kyung Hee University, 1732, Deogyeong-daero, Giheung-gu, Yongin, Gyeonggi-do 17104 Republic of Korea.,BioMedical Research Institute, Kyung Hee University, Yongin, Gyeonggi-do 17104 Republic of Korea
| | - Yong Joon Jeong
- Genencell Co. Ltd., Yongin, Gyeonggi-do 16950 Republic of Korea
| | - Se Chan Kang
- Department of Oriental Medicine Biotechnology, College of Life Sciences, Kyung Hee University, 1732, Deogyeong-daero, Giheung-gu, Yongin, Gyeonggi-do 17104 Republic of Korea.,BioMedical Research Institute, Kyung Hee University, Yongin, Gyeonggi-do 17104 Republic of Korea
| |
Collapse
|
8
|
Yang R, Song C, Chen J, Zhou L, Jiang X, Cao X, Sun Y, Zhang Q. Limonin ameliorates acetaminophen-induced hepatotoxicity by activating Nrf2 antioxidative pathway and inhibiting NF-κB inflammatory response via upregulating Sirt1. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 69:153211. [PMID: 32259676 DOI: 10.1016/j.phymed.2020.153211] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 02/06/2020] [Accepted: 03/19/2020] [Indexed: 05/21/2023]
Abstract
BACKGROUND Limonin, a bioactive compound from citrus plants, exerts antioxidant activities, however its therapeutic potential in acetaminophen (APAP)-induced hepatotoxicity remains unclear. PURPOSE Our study aims to investigate the protective effect of limonin on APAP-induced hepatotoxicity and illuminate the underlying mechanisms. STUDY design In vitro, we chose L-02 cells to establish in vitro APAP-induced liver injury model. L-02 cells were treated with APAP (7.5 mM) for 24 h after pre-incubation with limonin (10, 25, 50 μM) or NAC (250 μM) for 2 h. In vivo, we used C57BL/6 mice as an in vivo APAP-induced liver injury model. C57BL/6 mice with pre-treatment of limonin (40, 80 mg/kg) or NAC (150 mg/kg) for 1 h, were given with a single dose of APAP (300 mg/kg). METHODS After pre-incubation with limonin (10, 25, 50 μM) for 2 h, L-02 cells were treated with APAP (7.5 mM) for 24 h.The experiments in vitro included MTT assay, Annexin V/PI staining, measurement of reactive oxygen species (ROS), quantitative real-time PCR analysis, Western blot analysis, immunofluorescence microscopy and analysis of LDH activity. Transfection of Nrf2 or Sirt1 siRNA was also conducted in vitro. In vivo, C57BL/6 mice with pre-treatment of limonin (40, 80 mg/kg) or NAC (150 mg/kg) for 1 h, were given with a single dose of APAP (300 mg/kg). Mice were sacrificed at 4, 12 h after APAP poisoning, and analysis of ALT and AST in serum, GSH level in liver tissues, liver histological observation and immunohistochemistry were performed. RESULTS Limonin increased the cell viability and alleviated APAP-induced apoptosis in hepatocytes. Limonin also inhibited APAP-induced mitochondrial-mediated apoptosis by decreasing the ratio of Bax/Bcl-2, recovery of mitochondrial membrane potential (MMP), inhibiting ROS production and cleavage of caspase-3 in L-02 cells. Moreover, limonin induced activation of Nrf2 and increased protein expression and mRNA levels of its downstream targets, including HO-1, NQO1 and GCLC/GCLM. The inhibition of limonin on apoptosis and promotion on Nrf2 antioxidative pathway were lessened after the application of Nrf2 siRNA. In addition, limonin inhibited NF-κB transcriptional activation, NF-κB-regulated genes and protein expression of inflammatory related proteins iNOS and COX2. Furthermore, limonin increased the protein expression of Sirt1. Sirt1 siRNA transfection confirmed that limonin activated Nrf2 antioxidative pathway and inhibited NF-κB inflammatory response by upregulating Sirt1. Finally, we established APAP-induced liver injury in vivo and demonstrated that limonin alleviated APAP-induced hepatotoxicity by activating Nrf2 antioxidative signals and inhibiting NF-κB inflammatory response via upregulating Sirt1. CONCLUSION In summary, this study documented that limonin mitigated APAP-induced hepatotoxicity by activating Nrf2 antioxidative pathway and inhibiting NF-κB inflammatory response via upregulating Sirt1, and demonstrated that limonin had therapeutic promise in APAP-induced liver injury.
Collapse
Affiliation(s)
- Runyu Yang
- School of Pharmaceutical Sciences, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Changqin Song
- School of Pharmaceutical Sciences, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Jiaxi Chen
- School of Pharmaceutical Sciences, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Lvqi Zhou
- School of Pharmaceutical Sciences, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Xiubo Jiang
- School of Pharmaceutical Sciences, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Xiaomei Cao
- Department of Pharmacology, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| | - Yang Sun
- School of Pharmaceutical Sciences, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China; Department of Pharmacology, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China.
| | - Qi Zhang
- School of Pharmaceutical Sciences, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China; Department of Pharmacology, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China.
| |
Collapse
|
9
|
Calf thymus polypeptide improved hematopoiesis via regulating colony-stimulating factors in BALB/c mice with hematopoietic dysfunction. Int J Biol Macromol 2020; 156:204-216. [PMID: 32156537 DOI: 10.1016/j.ijbiomac.2020.03.041] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/05/2020] [Accepted: 03/06/2020] [Indexed: 12/31/2022]
Abstract
Calf thymus polypeptide (CTP) is prepared from calf thymus. It has a molecular mass of <10 kilodalton (kDa) and contains 17 types of amino acids. This study investigated the hematopoietic function-improvement effect of CTP in CHRF, K562, and bone marrow mononuclear cells; mice with immunosuppression; and with hematopoietic dysfunction. In mice with immunosuppression, CTP enhanced the cytotoxic activity of natural killer cells and the proliferation of lymphocytes and regulated the levels of immunoglobulins. It also enhanced the proliferation and differentiation of CHRF and K562 cells by upregulating the expression of proliferation- and differentiation-related proteins. In mice with hematopoietic dysfunction, CTP restored white blood cell, neutrophil, and hemoglobin proportions in the peripheral blood and enhanced the levels of B lymphocytes and hematopoietic stem cells and progenitor cells in the bone marrow. CTP effectively regulated the levels of hematopoiesis-related cytokines, such as granulocyte colony-stimulating factor (G-CSF), macrophage colony-stimulating factor (M-CSF), interleukin 2, and interferons-γ, and enhanced the expression of hematopoiesis-related proteins in both primary bone marrow cells and mice with hematopoietic dysfunction. These results indicate that CTP has hematopoietic function-improvement effect and this effect may be related to the modulation of colony-stimulating factors (CSFs) and related signaling pathways.
Collapse
|
10
|
Neag MA, Catinean A, Muntean DM, Pop MR, Bocsan CI, Botan EC, Buzoianu AD. Probiotic Bacillus Spores Protect Against Acetaminophen Induced Acute Liver Injury in Rats. Nutrients 2020; 12:nu12030632. [PMID: 32120994 PMCID: PMC7146158 DOI: 10.3390/nu12030632] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 02/18/2020] [Accepted: 02/24/2020] [Indexed: 12/17/2022] Open
Abstract
Acetaminophen (APAP) is one of the most used analgesics and antipyretic agents in the world. Intoxication with APAP is the main cause of acute liver toxicity in both the US and Europe. Spore-forming probiotic bacteria have the ability to resist harsh gastric and intestinal conditions. The aim of this study was to investigate the possible protective effect of Bacillus (B) species (sp) spores (B. licheniformis, B. indicus, B. subtilis, B. clausii, B. coagulans) against hepatotoxicity induced by APAP in rats. A total of 35 rats were randomly divided into seven groups: group I served as control; group II received silymarin; group III received MegaSporeBioticTM (MSB); group IV received APAP and served as the model of hepatotoxicity; group V received APAP and silymarin; group VI received APAP and MSB; group VII received APAP, silymarin and MSB. The livers for histopathological examination and blood samples were collected on the last day of the experiment. We determined aspartate aminotransferase (AST), alanine aminotransferase (ALT) and total antioxidant capacity (TAC) levels and zonula occludens (ZO-1), tumor necrosis factor α (TNF-α) and interleukin 1β (IL-1β) expression. APAP overdose increased AST and ALT. It slowly decreased TAC compared to the control group, but pretreatment with silymarin and MSB increased TAC levels. Elevated plasma concentrations were identified for ZO-1 in groups treated with APAP overdose compared with those without APAP or receiving APAP in combination with silymarin, MSB or both. The changes were positively correlated with the levels of other proinflammatory cytokines (TNF-α, IL-1β). In addition, histopathological hepatic injury was improved by preadministration of MSB or silymarin versus the disease model group. Bacillus sp spores had a protective effect on acute hepatic injury induced by APAP. Pretreatment with MSB resulted in a significant reduction in serum AST, ALT, TNF-α, IL-1β, ZO-1, TAC and also hepatocyte necrosis, similar to the well-known hepatoprotective agent—silymarin.
Collapse
Affiliation(s)
- Maria Adriana Neag
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca 400337, Romania; (M.A.N.); (M.R.P.); (C.I.B.); (A.D.B.)
| | - Adrian Catinean
- Department of Internal Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca 400006, Romania
- Correspondence: ; Tel.: +40-752122466
| | - Dana Maria Muntean
- Department of Pharmaceutical Technology and Biopharmaceutics, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca 400010, Romania;
| | - Maria Raluca Pop
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca 400337, Romania; (M.A.N.); (M.R.P.); (C.I.B.); (A.D.B.)
| | - Corina Ioana Bocsan
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca 400337, Romania; (M.A.N.); (M.R.P.); (C.I.B.); (A.D.B.)
| | | | - Anca Dana Buzoianu
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca 400337, Romania; (M.A.N.); (M.R.P.); (C.I.B.); (A.D.B.)
| |
Collapse
|
11
|
Chowdhury A, Lu J, Zhang R, Nabila J, Gao H, Wan Z, Adelusi Temitope I, Yin X, Sun Y. Mangiferin ameliorates acetaminophen-induced hepatotoxicity through APAP-Cys and JNK modulation. Biomed Pharmacother 2019; 117:109097. [PMID: 31212128 DOI: 10.1016/j.biopha.2019.109097] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 06/04/2019] [Accepted: 06/04/2019] [Indexed: 02/07/2023] Open
Abstract
An overdose of the most popular analgesic, acetaminophen (APAP), is one of the leading causes of acute liver failure. It is well established that glutathione is exhausted by APAP-reactive intermediate N‑acetyl‑p‑benzoquinone-imine (NAPQI). This leads to elevated phosphorylated-c-Jun N-terminal kinase (p-JNK), which further activates reactive oxygen species (ROS), initiates an inflammatory response, and finally leads to severe hepatic injury. The present study was conducted to investigate the protective role of mangiferin (MAN), a naturally occurring xanthone and anti-oxidant, on APAP-induced hepatotoxicity. C57BL/6 mice were pretreated with or without MAN at 1 h prior to APAP challenge. MAN was administered at a dose of 12.5-50 mg/kg along with APAP at a dose of 400 mg/kg. According to the ALT/AST ratio, 25 mg/kg MAN was the most potent dose for further experiments. Serum ALT and AST depletion were observed in APAP + MAN (25 mg/kg)-treated mice at 6, 12, and 24 h. Early (1 h after APAP treatment) GSH depletion by APAP overdose was restored by MAN treatment, which reduced APAP-Cys adduct formation and promoted protection. p-JNK downregulation and AMPK activation were observed in MAN-treated mice, which could mechanistically reduce oxidative stress and inflammation. MAN up-regulated liver GSH and SOD and reduced lipid peroxidation. HO-1 protein and p47 phox mRNA expression indicated that MAN regulated oxidative stress along with JNK deactivation. The expression of inflammatory response genes TNF-α, IL-6, MCP-1, CXCL-1, and CXCL-2 reached the basal levels after MAN treatment. mRNA, protein, and serum levels of IL-1β were reduced, and NF-κB expression was similar to that of the MAN-treated APAP mice. MAN post-treatment (1 h after APAP treatment) also protected the mice from hepatotoxicity. In conclusion, MAN had a protective and therapeutic role in APAP-induced hepatotoxicity by improving the metabolism of acetaminophen and APAP-Cys adduct formation followed by JNK-mediated oxidative stress and inflammation.
Collapse
Affiliation(s)
- Apu Chowdhury
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jihong Lu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Rumeng Zhang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jahan Nabila
- School of Medicine, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Hang Gao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zhikang Wan
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Isaac Adelusi Temitope
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiaoxing Yin
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Ying Sun
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China.
| |
Collapse
|
12
|
Shi C, Xue W, Han B, Yang F, Yin Y, Hu C. Acetaminophen aggravates fat accumulation in NAFLD by inhibiting autophagy via the AMPK/mTOR pathway. Eur J Pharmacol 2019; 850:15-22. [PMID: 30753863 DOI: 10.1016/j.ejphar.2019.02.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 02/02/2019] [Accepted: 02/08/2019] [Indexed: 12/24/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease which affects millions of people worldwide. Acetaminophen (APAP) overdose is the leading cause of acute liver failure. In this study, APAP (50, 100, 200 mg/kg) were employed on mice fed with a high-fat diet, and APAP (2, 4, 8 mM) were cultured with L02 cells in the presence of alcohol and oleic acid. APAP treatment significantly aggravated hepatic lipid accumulation, increased the serum levels of triglyceride (TG), alanine aminotransferase (ALT) and aspartate aminotransferase (AST), and increased hepatic lipid accumulation in H&E and Oil red O staining results. Transmission electron microscopy (TEM) found fewer number of autophagosomes in APAP (100 mg/kg) treated group. Immunohistochemistry analysis showed the intensity of hepatic mTOR was increased and AMPK was decreased in 200 mg/kg APAP treated group. Western blot analysis showed APAP treatment decreased the levels of LC3-Ⅱ, Beclin1 and AMPK, while increased the levels of mTOR and SREBP-1c, respectively. In vitro study showed APAP treatment obviously increased TG activities in cell supernatant, and Oil red O staining had the same results. Western blot analysis demonstrated APAP treatment decreased the levels of LC3-Ⅱ, Beclin1 and AMPK, increased the levels of mTOR and SREBP-1c, but rapamycin treatment significantly reversed these effects of APAP. In conclusion, therapeutic dosages of APAP aggravates fat accumulation in NAFLD, the potential mechanism might be involved in inhibiting autophagy associated with the AMPK/mTOR pathway, and patients with NAFLD should use a lower dose of APAP.
Collapse
Affiliation(s)
- Congjian Shi
- Institute for Liver Diseases of Anhui Medical University, School of Pharmacy, Anhui Medical University, Hefei 230032, China; Key Laboratory of anti-inflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China
| | - Weiju Xue
- Institute for Liver Diseases of Anhui Medical University, School of Pharmacy, Anhui Medical University, Hefei 230032, China; Key Laboratory of anti-inflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China
| | - Bowen Han
- Institute for Liver Diseases of Anhui Medical University, School of Pharmacy, Anhui Medical University, Hefei 230032, China; Key Laboratory of anti-inflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China
| | - Fengli Yang
- Institute for Liver Diseases of Anhui Medical University, School of Pharmacy, Anhui Medical University, Hefei 230032, China; Key Laboratory of anti-inflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China
| | - Yaping Yin
- Institute for Liver Diseases of Anhui Medical University, School of Pharmacy, Anhui Medical University, Hefei 230032, China; Key Laboratory of anti-inflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China
| | - Chengmu Hu
- Institute for Liver Diseases of Anhui Medical University, School of Pharmacy, Anhui Medical University, Hefei 230032, China; Key Laboratory of anti-inflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China.
| |
Collapse
|
13
|
Triterpenoids from fruits of Sorbus pohuashanensis inhibit acetaminophen-induced acute liver injury in mice. Biomed Pharmacother 2019; 109:493-502. [DOI: 10.1016/j.biopha.2018.10.160] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 10/25/2018] [Accepted: 10/25/2018] [Indexed: 02/07/2023] Open
|
14
|
Hepatoprotective Effect of Baicalein Against Acetaminophen-Induced Acute Liver Injury in Mice. Molecules 2018; 24:molecules24010131. [PMID: 30602693 PMCID: PMC6337302 DOI: 10.3390/molecules24010131] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 12/21/2018] [Accepted: 12/26/2018] [Indexed: 12/25/2022] Open
Abstract
Baicalein (BAI), one of the main components of Scutellaria baicalensis Georgi, possesses numerous pharmacological properties, including anti-cancer, anti-oxidative, anti-virus and anti-bacterial activities. The purpose of this study was to evaluate the hepatoprotective effect of baicalein against acetaminophen (APAP)-exposed liver injury in mice, and elucidate the underlying hepatoprotective mechanism. Baicalein pretreatment significantly alleviated the elevation of IL-6, IL-1β and TNF-α in serum and hepatic in a dose-dependent manner. It also dose-dependently reduced the hepatic malondialdehyde (MDA) concentration, as well as the depletion of hepatic superoxide dismutase (SOD), hepatic glutathione (GSH) and hepatic catalase (CAT). Moreover, pretreatment with baicalein significantly ameliorated APAP-exposed liver damage and histological hepatocyte changes. Baicalein also relieved APAP-induced autophagy by regulating AKT/mTOR pathway, LC3B and P62 expression. Furthermore, the hepatoprotective effect of baicalein to APAP-induced liver injury involved in Jak2/Stat3 and MAPK signaling pathway. Taken together, our findings suggested that baicalein exhibits the ability to prevent liver from APAP-induced liver injury and provided an underlying molecular basis for potential applications of baicalein to cure liver injuries.
Collapse
|