1
|
Ibrahim Fouad G, Mabrouk M, El-Sayed SAM, Abdelhameed MF, Rizk MZ, Beherei HH. Berberine-loaded iron oxide nanoparticles alleviate cuprizone-induced astrocytic reactivity in a rat model of multiple sclerosis. Biometals 2025; 38:203-229. [PMID: 39543075 PMCID: PMC11754386 DOI: 10.1007/s10534-024-00648-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 10/20/2024] [Indexed: 11/17/2024]
Abstract
Berberine (BBN) is a naturally occurring alkaloid as a secondary metabolite in many plants and exhibits several benefits including neuroprotective activities. However, data on the neuromodulating potential of nanoformulated BBN are still lacking. In the present study, BBN loaded within iron oxide nanoparticles (BBN-IONP) were prepared and characterized by transmission electron microscopy FTIR, X-ray photoelectron spectroscopy particle-size distribution, zeta potential, and HPLC. The remyelinating neuroprotective potential of BBN-IONP relative to free BBN was evaluated against cuprizone (CPZ)-induced neurotoxicity (rats administered 0.2% CPZ powder (w/w) for five weeks). CPZ rats were treated with either free BBN or IONP-BBN (50 mg/kg/day, orally) for 14 days. Cognitive function was estimated using Y-maze. Biochemically, total antioxidant capacity lipid peroxides and reduced glutathione in the brain tissue, as well as, serum interferon-gamma levels were estimated. Moreover, the genetic expression contents of myelin basic protein Matrix metallopeptidase-9 Tumor necrosis factor-α (TNF-α), and S100β were measured. The histopathological patterns and immunohistochemical assessment of Glial Fibrillary Acidic Protein in both cerebral cortex and hippocampus CA1 regions were investigated. CPZ-rats treated with either free BBN or IONP-BBN demonstrated memory restoring, anti-oxidative, anti-inflammatory, anti-astrocytic, and remyelinating activities. Comparing free BBN with IONP-BBN revealed that the latter altered the neuromodulating activities of BBN, showing superior neuroprotective activities of IONP-BBN relative to BBN. In conclusion, both forms of BBN possess neuroprotective potential. However, the use of IONPs for brain delivery and the safety of these nano-based forms need further investigation.
Collapse
Affiliation(s)
- Ghadha Ibrahim Fouad
- Department of Therapeutic Chemistry, Pharmaceutical and Drug Industries Research Institute, National Research Centre, 33 El-Bohouth St., Dokki, Cairo, 12622, Egypt.
| | - Mostafa Mabrouk
- Refractories, Ceramics and Building Materials Department, Advanced Materials, Technology and Mineral Resources Research Institute, National Research Centre, 33 El Bohouth St., Dokki, PO Box 12622, Cairo, Egypt
| | - Sara A M El-Sayed
- Refractories, Ceramics and Building Materials Department, Advanced Materials, Technology and Mineral Resources Research Institute, National Research Centre, 33 El Bohouth St., Dokki, PO Box 12622, Cairo, Egypt
| | - Mohamed F Abdelhameed
- Pharmacology Department, Medical Research and Clinical Studies Institute, National Research Centre, 33 El-Bohouth St., Dokki, Cairo, 12622, Egypt
| | - Maha Z Rizk
- Department of Therapeutic Chemistry, Pharmaceutical and Drug Industries Research Institute, National Research Centre, 33 El-Bohouth St., Dokki, Cairo, 12622, Egypt
| | - Hanan H Beherei
- Refractories, Ceramics and Building Materials Department, Advanced Materials, Technology and Mineral Resources Research Institute, National Research Centre, 33 El Bohouth St., Dokki, PO Box 12622, Cairo, Egypt
| |
Collapse
|
2
|
He Y, Xu Z, He Y, Liu J, Li J, Wang S, Xiao L. Preventing production of new oligodendrocytes impairs remyelination and sustains behavioural deficits after demyelination. Biochem Biophys Res Commun 2024; 733:150592. [PMID: 39213705 DOI: 10.1016/j.bbrc.2024.150592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
Damage to oligodendrocytes (OLs) and myelin sheaths (demyelination) has been shown to be associated with numerous neurological and psychiatric disorders. Remyelination is a rare and reliable regenerative response that occurs in the central nervous system (CNS). It is generally believed that OL progenitor cells (OPCs) are the cell source to generate new OLs to remyelinate the demyelinated axons. However, several recent studies have argued that pre-existing mature OLs that survive within the demyelinated area are responsible for remyelination. Here, by conditional knock-out (KO) of a transcription factor gene that is essential for OPC differentiation, namely myelin regulatory factor (Myrf), to block the production of adult new OLs and examined its effect on remyelination after cuprizone (CPZ)-induced demyelination. We found that OPCs specific Myrf cKO mice show dramatic impairment in remyelination after 4 weeks of recovery from 5 weeks of CPZ diet and they leave over significant behavioral deficits such as anxiety-like behavior, decreased motor skills, and impaired memory compared to control mice that have recovered for the same time. Our data support the idea that OPCs are the major cell sources for myelin regeneration, suggesting that targeting the activation of OPCs and promoting their differentiation to boost new OLs production is critical for therapeutic intervention for demyelinating diseases such as multiple sclerosis (MS).
Collapse
Affiliation(s)
- Yuehua He
- Key Laboratory of Brain, Cognition and Education Sciences of Ministry of Education, Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, and Center for Studies of Psychological Application, South China Normal University, Guangzhou, 510631, China
| | - Zhengtao Xu
- Key Laboratory of Brain, Cognition and Education Sciences of Ministry of Education, Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, and Center for Studies of Psychological Application, South China Normal University, Guangzhou, 510631, China
| | - Yongxiang He
- Key Laboratory of Brain, Cognition and Education Sciences of Ministry of Education, Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, and Center for Studies of Psychological Application, South China Normal University, Guangzhou, 510631, China
| | - Junhong Liu
- Key Laboratory of Brain, Cognition and Education Sciences of Ministry of Education, Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, and Center for Studies of Psychological Application, South China Normal University, Guangzhou, 510631, China
| | - Jiong Li
- Key Laboratory of Brain, Cognition and Education Sciences of Ministry of Education, Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, and Center for Studies of Psychological Application, South China Normal University, Guangzhou, 510631, China
| | - Shuming Wang
- Key Laboratory of Brain, Cognition and Education Sciences of Ministry of Education, Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, and Center for Studies of Psychological Application, South China Normal University, Guangzhou, 510631, China
| | - Lin Xiao
- Key Laboratory of Brain, Cognition and Education Sciences of Ministry of Education, Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, and Center for Studies of Psychological Application, South China Normal University, Guangzhou, 510631, China.
| |
Collapse
|
3
|
Chen S, Liu S, Huang Y, Huang S, Zhang W, Xie H, Lu L. 5Z-7-Oxozaenol attenuates cuprizone-induced demyelination in mice through microglia polarization regulation. Brain Behav 2024; 14:e3487. [PMID: 38648385 PMCID: PMC11034864 DOI: 10.1002/brb3.3487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 12/06/2023] [Accepted: 02/21/2024] [Indexed: 04/25/2024] Open
Abstract
INTRODUCTION Demyelination is a key factor in axonal degeneration and neural loss, leading to disability in multiple sclerosis (MS) patients. Transforming growth factor beta activated kinase 1 (TAK1) is a critical molecule involved in immune and inflammatory signaling pathways. Knockout of microglia TAK1 can inhibit autoimmune inflammation of the brain and spinal cord and improve the outcome of MS. However, it is unclear whether inhibiting TAK1 can alleviate demyelination. METHODS Eight-week-old male c57bl/6j mice were randomly divided into five groups: (a) the control group, (b) the group treated with cuprizone (CPZ) only, (c) the group treated with 5Z-7-Oxozaenol (OZ) only, and (d) the group treated with both cuprizone and 15 μg/30 μg OZ. Demyelination in the mice of this study was induced by administration of CPZ (ig) at a daily dose of 400 mg/kg for consecutive 5 weeks. OZ was intraperitoneally administered at mentioned doses twice a week, starting from week 3 after beginning cuprizone treatment. Histology, rotarod test, grasping test, pole test, Western blot, RT-PCR, and ELISA were used to evaluate corpus callosum demyelination, behavioral impairment, oligodendrocyte differentiation, TAK1 signaling pathway expression, microglia, and related cytokines. RESULTS Our results demonstrated that OZ protected against myelin loss and behavior impairment caused by CPZ. Additionally, OZ rescued the loss of oligodendrocytes in CPZ-induced mice. OZ inhibited the activation of JNK, p65, and p38 pathways, transformed M1 polarized microglia into M2 phenotype, and increased brain-derived neurotrophic factor (BDNF) expression to attenuate demyelination in CPZ-treated mice. Furthermore, OZ reduced the expression of proinflammatory cytokines and increases anti-inflammatory cytokines in CPZ-treated mice. CONCLUSION These findings suggest that inhibiting TAK1 may be an effective approach for treating demyelinating diseases.
Collapse
Affiliation(s)
- Shiyu Chen
- Department of NeurologyZhujiang Hospital, Southern Medical UniversityGuangzhouChina
- Department of General PracticeZhujiang Hospital, Southern Medical UniversityGuangzhouChina
| | - Siyao Liu
- Department of General PracticeZhujiang Hospital, Southern Medical UniversityGuangzhouChina
| | - Yalun Huang
- Department of NeurologyZhujiang Hospital, Southern Medical UniversityGuangzhouChina
| | - Shiwen Huang
- Department of NeurologyZhujiang Hospital, Southern Medical UniversityGuangzhouChina
| | - Wanzhou Zhang
- Department of NeurologyZhujiang Hospital, Southern Medical UniversityGuangzhouChina
| | - Huifang Xie
- Department of NeurologyZhujiang Hospital, Southern Medical UniversityGuangzhouChina
| | - Lingli Lu
- Department of General PracticeZhujiang Hospital, Southern Medical UniversityGuangzhouChina
| |
Collapse
|
4
|
Song W, Chen Z, Zhang M, Fu H, Wang X, Ma J, Zang X, Hu J, Ai F, Chen K. Bilobalide Prevents Apoptosis and Improves Cardiac Function in Myocardial Infarction. Mol Biotechnol 2024; 66:442-453. [PMID: 37199885 DOI: 10.1007/s12033-023-00753-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 04/11/2023] [Indexed: 05/19/2023]
Abstract
Myocardial infarction (MI) is an extremely severe cardiovascular disease, which ranks as the leading cause of sudden death worldwide. Studies have proved that cardiac injury following MI can cause cardiomyocyte apoptosis and myocardial fibrosis. Bilobalide (Bilo) from Ginkgo biloba leaves have been widely reported to possess excellent cardioprotective effects. However, concrete roles of Bilo in MI have not been investigated yet. We here designed both in vitro and in vivo experiments to explore the effects of Bilo on MI-induced cardiac injury and the underlying mechanisms of its action. We conducted in vitro experiments using oxygen-glucose deprivation (OGD)-treated H9c2 cells. Cell apoptosis in H9c2 cells was assessed by conducting flow cytometry assay and evaluating apoptosis-related proteins with western blotting. MI mouse model was established by performing left anterior descending artery (LAD) ligation. Cardiac function of MI mice was determined by assessing ejection fraction (EF), fractional shortening (FS), left ventricular end-systolic diameter (LVESD), and left ventricular end-diastolic diameter (LVEDD). Histological changes were analyzed, infarct size and myocardial fibrosis were measured by hematoxylin and eosin (H&E) and Masson staining in cardiac tissues from the mice. The apoptosis of cardiomyocytes in MI mice was assessed by TUNEL staining. Western blotting was applied to detect the effect of Bilo on c-Jun N-terminal kinase (JNK)/p38 mitogen-activated protein kinases (p38 MAPK) signaling both in vitro and in vivo. Bilo inhibited OGD-induced cell apoptosis and lactate dehydrogenase (LDH) release in H9c2 cells. The protein levels of p-JNK and p-p38 were significantly downregulated by Bilo treatment. SB20358 (inhibitor of p38) and SP600125 (inhibitor of JNK) suppressed OGD-induced cell apoptosis as Bilo did. In MI mouse model, Bilo improved the cardiac function and significantly reduced the infarct size and myocardial fibrosis. Bilo inhibited MI-induced cardiomyocytes apoptosis in mice. Bilo suppressed the protein levels of p-JNK and p-p38 in cardiac tissues from MI mice. Bilo alleviated OGD-induced cell apoptosis in H9c2 cells and suppressed MI-induced cardiomyocyte apoptosis and myocardial fibrosis in mice via the inactivation of JNK/p38 MAPK signaling pathways. Thus, Bilo may be an effective anti-MI agent.
Collapse
Affiliation(s)
- Weifeng Song
- Department of Cardiology, Heart Center of Henan Provincial People's Hospital, Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, No. 7 Weiwu Road, Jinshui District, Zhengzhou, 463599, China
| | - Zhen Chen
- Department of Emergency, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, No. 26 Shengli Street, Jiang 'an District, Wuhan, 430014, China
| | - Meng Zhang
- Department of Ophthalmology, Shenzhen Baoan Women's and Children's Hospital, Shenzhen, 518102, China
| | - Haixia Fu
- Department of Cardiology, Heart Center of Henan Provincial People's Hospital, Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, No. 7 Weiwu Road, Jinshui District, Zhengzhou, 463599, China
| | - Xianqing Wang
- Department of Cardiology, Heart Center of Henan Provincial People's Hospital, Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, No. 7 Weiwu Road, Jinshui District, Zhengzhou, 463599, China
| | - Jifang Ma
- Department of Cardiology, Heart Center of Henan Provincial People's Hospital, Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, No. 7 Weiwu Road, Jinshui District, Zhengzhou, 463599, China
| | - Xiaobiao Zang
- Department of Cardiology, Heart Center of Henan Provincial People's Hospital, Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, No. 7 Weiwu Road, Jinshui District, Zhengzhou, 463599, China
| | - Juan Hu
- Department of Cardiology, Heart Center of Henan Provincial People's Hospital, Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, No. 7 Weiwu Road, Jinshui District, Zhengzhou, 463599, China
| | - Fen Ai
- Department of Emergency, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, No. 26 Shengli Street, Jiang 'an District, Wuhan, 430014, China.
| | - Ke Chen
- Department of Cardiology, Heart Center of Henan Provincial People's Hospital, Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, No. 7 Weiwu Road, Jinshui District, Zhengzhou, 463599, China.
| |
Collapse
|
5
|
Yuan J, Tao Y, Wang M, Huang F, Wu X. Natural compounds as potential therapeutic candidates for multiple sclerosis: Emerging preclinical evidence. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 123:155248. [PMID: 38096716 DOI: 10.1016/j.phymed.2023.155248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/20/2023] [Accepted: 11/24/2023] [Indexed: 01/17/2024]
Abstract
BACKGROUND Multiple sclerosis is a chronic neurodegenerative disease, with main characteristics of pathological inflammation, neural damage and axonal demyelination. Current mainstream treatments demonstrate more or less side effects, which limit their extensive use. PURPOSE Increasing studies indicate that natural compounds benefit multiple sclerosis without remarkable side effects. Given the needs to explore the potential effects of natural compounds of plant origin on multiple sclerosis and their mechanisms, we review publications involving the role of natural compounds in animal models of multiple sclerosis, excluding controlled trials. STUDY DESIGN AND METHODS Articles were conducted on PubMed and Web of Science databases using the keywords ``multiple sclerosis'' and ``natural compounds'' published from January 1, 2008, to September 1, 2023. RESULTS This review summarized the effects of natural ingredients (flavonoids, terpenoids, polyphenols, alkaloids, glycosides, and others) from three aspects: immune regulation, oxidative stress suppression, and myelin protection and regeneration in multiple sclerosis. CONCLUSION Overall, we concluded 80 studies to show the preclinical evidence that natural compounds may attenuate multiple sclerosis progression via suppressing immune attacks and/or promoting myelin protection or endogenous repair processes. It would pave the roads for the future development of effective therapeutic regiments of multiple sclerosis.
Collapse
Affiliation(s)
- Jinfeng Yuan
- Shanghai Key Laboratory of Compound Chinese Medicines, the Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, the MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Institute of Cardiovascular Disease of Integrated Traditional Chinese and Western Medicine, Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yanlin Tao
- Shanghai Key Laboratory of Compound Chinese Medicines, the Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, the MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Mengxue Wang
- Shanghai Key Laboratory of Compound Chinese Medicines, the Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, the MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Fei Huang
- Shanghai Key Laboratory of Compound Chinese Medicines, the Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, the MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Xiaojun Wu
- Shanghai Key Laboratory of Compound Chinese Medicines, the Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, the MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
6
|
Mao S, Yao J, Zhang T, Zhang X, Tan W, Li C. Bilobalide attenuates lipopolysaccharide‑induced HepG2 cell injury by inhibiting TLR4‑NF‑κB signaling via the PI3K/Akt pathway. Exp Ther Med 2024; 27:24. [PMID: 38125341 PMCID: PMC10728898 DOI: 10.3892/etm.2023.12312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 09/23/2021] [Indexed: 12/23/2023] Open
Abstract
Inflammation is involved in the pathological process underlying a number of liver diseases. Bilobalide (BB) is a natural compound from Ginkgo biloba leaves that was recently demonstrated to exert hepatoprotective effects by inhibiting oxidative stress in the liver cancer cell line HepG2. The anti-inflammatory activity of BB has been reported in recent studies. The major objective of the present study was to investigate whether BB could attenuate inflammation-associated cell damage. HepG2 cells were cultured with lipopolysaccharide (LPS) and BB, and cell damage was evaluated by measuring cell viability using MTT assay. The activity of the NF-κB signaling pathway was assessed by measuring the levels of IκBα, NF-κB p65, phosphorylated (p)-IκBα, p-p65, p65 DNA-binding activity and inflammatory cytokines IL-1β, IL-6 and TNF-α. A toll-like receptor (TLR)4 inhibitor (CLI-095) was used to detect the involvement of TLR4 in cell injury caused by LPS. In addition, the PI3K/Akt inhibitor LY294002 was applied to explore the involvement of the PI3K/Akt axis in mediating the effects of BB. The results demonstrated that LPS induced HepG2 cell injury. LPS also elevated the levels of p-IκBα, p-p65, p65 DNA-binding activity and inflammatory cytokines. However, CLI-095 significantly attenuated the LPS-induced cell damage and inhibited the activation of NF-κB signaling. BB also dose-dependently attenuated the LPS-induced cell damage, activation of NF-κB signaling and TLR4 overexpression. Furthermore, it was observed that LY294002 diminished the cytoprotective effects of BB on cell injury, TLR4 expression and NF-κB activation. These findings indicated that BB could attenuate LPS-induced inflammatory injury to HepG2 cells by regulating TLR4-NF-κB signaling.
Collapse
Affiliation(s)
- Shumei Mao
- Department of Pharmacology, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Jinpeng Yao
- Department of Cardiology, Yantai Kaifaqu Hospital, Yantai, Shandong 264006, P.R. China
| | - Teng Zhang
- Department of Pharmacology, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Xiang Zhang
- Department of Pharmacology, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Wei Tan
- Department of Respiratory Medicine, Weifang People's Hospital, Weifang, Shandong 261041, P.R. China
| | - Chengde Li
- Department of Clinical Pharmacy, Key Laboratory of Applied Pharmacology in Universities of Shandong, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| |
Collapse
|
7
|
Mei R, Qiu W, Yang Y, Xu S, Rao Y, Li Q, Luo Y, Huang H, Yang A, Tao H, Qiu M, Zhao X. Evidence That DDR1 Promotes Oligodendrocyte Differentiation during Development and Myelin Repair after Injury. Int J Mol Sci 2023; 24:10318. [PMID: 37373466 DOI: 10.3390/ijms241210318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/16/2023] [Accepted: 06/17/2023] [Indexed: 06/29/2023] Open
Abstract
Oligodendrocytes generate myelin sheaths vital for the formation, health, and function of the central nervous system. Mounting evidence suggests that receptor tyrosine kinases (RTKs) are crucial for oligodendrocyte differentiation and myelination in the CNS. It was recently reported that discoidin domain receptor 1 (Ddr1), a collagen-activated RTK, is expressed in oligodendrocyte lineage. However, its specific expression stage and functional role in oligodendrocyte development in the CNS remain to be determined. In this study, we report that Ddr1 is selectively upregulated in newly differentiated oligodendrocytes in the early postnatal CNS and regulates oligodendrocyte differentiation and myelination. Ddr1 knock-out mice of both sexes displayed compromised axonal myelination and apparent motor dysfunction. Ddr1 deficiency alerted the ERK pathway, but not the AKT pathway in the CNS. In addition, Ddr1 function is important for myelin repair after lysolecithin-induced demyelination. Taken together, the current study described, for the first time, the role of Ddr1 in myelin development and repair in the CNS, providing a novel molecule target for the treatment of demyelinating diseases.
Collapse
Affiliation(s)
- Ruyi Mei
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Wanwan Qiu
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Yingying Yang
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Siyu Xu
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Yueyu Rao
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Qingxin Li
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Yuhao Luo
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Hao Huang
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Aifen Yang
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Huaping Tao
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Mengsheng Qiu
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Xiaofeng Zhao
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
8
|
Lorrey SJ, Waibl Polania J, Wachsmuth LP, Hoyt-Miggelbrink A, Tritz ZP, Edwards R, Wolf DM, Johnson AJ, Fecci PE, Ayasoufi K. Systemic immune derangements are shared across various CNS pathologies and reflect novel mechanisms of immune privilege. Neurooncol Adv 2023; 5:vdad035. [PMID: 37207119 PMCID: PMC10191195 DOI: 10.1093/noajnl/vdad035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2023] Open
Abstract
Background The nervous and immune systems interact in a reciprocal manner, both under physiologic and pathologic conditions. Literature spanning various CNS pathologies including brain tumors, stroke, traumatic brain injury and de-myelinating diseases describes a number of associated systemic immunologic changes, particularly in the T-cell compartment. These immunologic changes include severe T-cell lymphopenia, lymphoid organ contraction, and T-cell sequestration within the bone marrow. Methods We performed an in-depth systematic review of the literature and discussed pathologies that involve brain insults and systemic immune derangements. Conclusions In this review, we propose that the same immunologic changes hereafter termed 'systemic immune derangements', are present across CNS pathologies and may represent a novel, systemic mechanism of immune privilege for the CNS. We further demonstrate that systemic immune derangements are transient when associated with isolated insults such as stroke and TBI but persist in the setting of chronic CNS insults such as brain tumors. Systemic immune derangements have vast implications for informed treatment modalities and outcomes of various neurologic pathologies.
Collapse
Affiliation(s)
- Selena J Lorrey
- Department of Immunology, Duke University, Durham, NC, USA
- Brain Tumor Immunotherapy Program, Duke University, Durham, NC, USA
| | - Jessica Waibl Polania
- Brain Tumor Immunotherapy Program, Duke University, Durham, NC, USA
- Department of Pathology, Duke University, Durham, NC, USA
| | - Lucas P Wachsmuth
- Brain Tumor Immunotherapy Program, Duke University, Durham, NC, USA
- Department of Pathology, Duke University, Durham, NC, USA
- Medical Scientist Training Program, Duke University, Durham, NC, USA
| | - Alexandra Hoyt-Miggelbrink
- Brain Tumor Immunotherapy Program, Duke University, Durham, NC, USA
- Department of Pathology, Duke University, Durham, NC, USA
| | | | - Ryan Edwards
- Brain Tumor Immunotherapy Program, Duke University, Durham, NC, USA
| | - Delaney M Wolf
- Department of Immunology, Mayo Clinic, Rochester, MN, USA
| | | | - Peter E Fecci
- Department of Immunology, Duke University, Durham, NC, USA
- Brain Tumor Immunotherapy Program, Duke University, Durham, NC, USA
- Department of Pathology, Duke University, Durham, NC, USA
- Department of Neurosurgery, Duke University, Durham, NC, USA
| | | |
Collapse
|
9
|
Zhao Z, Liu Y, Lu Y, Hou M, Shen X, Yang H, Shi Q, Zhang Y, He F, Zhu X. Gingko biloba-inspired lactone prevents osteoarthritis by activating the AMPK-SIRT1 signaling pathway. Arthritis Res Ther 2022; 24:197. [PMID: 35982488 PMCID: PMC9387049 DOI: 10.1186/s13075-022-02890-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 08/05/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Uncoupled extracellular matrix (ECM) causes cartilage degeneration and osteoarthritis (OA) by suppressing the synthesis and activating the degradation of ECM components. Gingko biloba is a natural Chinese herb with a variety of biological functions; however, the extent to which it can protect against OA and the mechanisms involved are unknown. METHODS In our study, using bioinformatics tools, we were able to identify an important lactone, bilobalide (BB), from Gingko biloba. In vitro experiments were performed to evaluate the potential therapeutic effects of BB on ECM homeostasis. In vivo experiments were conducted to assess the protection of systemic administration of BB on cartilage degeneration. Molecular mechanisms underlying BB-regulated anti-arthritic role were further explored. RESULTS In interleukin-1β-incubated human chondrocytes, in vitro treatment with BB increased the expression of cartilage anabolic proteins, while inhibiting the activities of ECM degrading enzymes. In a mice model, systemic administration of BB, in vivo, prevented post-traumatic cartilage erosion and attenuated the formation of abnormal osteophytes in the subchondral bone. Mechanistically, the activation of the adenosine 5'-monophosphate-activated protein kinase (AMPK)-sirtuin 1 (SIRT1) signaling pathway was involved in the anti-arthritic effects of BB. In vitro, blocking BB's chondroprotection with the AMPK-specific inhibitor Compound C abrogated it. CONCLUSIONS These results demonstrated that BB extracted from Gingko biloba regulates ECM balance to prevent OA by activating the AMPK-SIRT1 signaling pathway. This study proposed the monomer BB, a traditional Chinese medicine, as a de novo therapeutic insight for OA. Schematic representation of the experimental design. Based on the bioinformatic analysis, bilobalide (BB), a natural herb Gingko biloba-derived ingredient, was identified as a candidate for treating osteoarthritis. In vitro, BB treatment not only facilitates cartilage extracellular matrix synthesis but also inhibits proteolytic enzyme activities. In vivo intraperitoneal injection of BB improves cartilage degeneration and subchondral bone sclerosis. BB, in particular, had anti-arthritic effects by activating the AMPK-SIRT1 signaling pathway.
Collapse
Affiliation(s)
- Zhijian Zhao
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China.,Orthopaedic Institute, Medical College, Soochow University, Suzhou, 215007, China
| | - Yang Liu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China.,Orthopaedic Institute, Medical College, Soochow University, Suzhou, 215007, China
| | - Yingjie Lu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China.,Orthopaedic Institute, Medical College, Soochow University, Suzhou, 215007, China
| | - Mingzhuang Hou
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China.,Orthopaedic Institute, Medical College, Soochow University, Suzhou, 215007, China
| | - Xu Shen
- Department of Orthopaedics, Suzhou Dushu Lake Hospital, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, China
| | - Huilin Yang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China.,Orthopaedic Institute, Medical College, Soochow University, Suzhou, 215007, China
| | - Qin Shi
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China.,Orthopaedic Institute, Medical College, Soochow University, Suzhou, 215007, China
| | - Yijian Zhang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China. .,Orthopaedic Institute, Medical College, Soochow University, Suzhou, 215007, China.
| | - Fan He
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China. .,Orthopaedic Institute, Medical College, Soochow University, Suzhou, 215007, China.
| | - Xuesong Zhu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China. .,Orthopaedic Institute, Medical College, Soochow University, Suzhou, 215007, China.
| |
Collapse
|
10
|
Development of a Chemical Cocktail That Rescues Mouse Brain Demyelination in a Cuprizone-Induced Model. Cells 2022; 11:cells11071091. [PMID: 35406658 PMCID: PMC8997971 DOI: 10.3390/cells11071091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/16/2022] [Accepted: 03/22/2022] [Indexed: 11/17/2022] Open
Abstract
Oligodendrocytes are glial cells located in the central nervous system (CNS) that play essential roles in the transmission of nerve signals and in the neuroprotection of myelinated neurons. The dysfunction or loss of oligodendrocytes leads to demyelinating diseases such as multiple sclerosis (MS). To treat demyelinating diseases, the development of a therapy that promotes remyelination is required. In the present study, we established an in vitro method to convert human fibroblasts into induced oligodendrocyte-like cells (iOLCs) in 3 days. The induced cells displayed morphologies and molecular signatures similar to oligodendrocytes after treatment with valproic acid and exposure to the small molecules Y27632, SU9516, and forskolin (FSK). To pursue the development of a cell-free remyelination therapy in vivo, we used a cuprizone-induced demyelinated mouse model. The small molecules (Y27632, SU9516, and FSK) were directly injected into the demyelinated corpus callosum of the mouse brain. This combination of small molecules rescued the demyelination phenotype within two weeks as observed by light and electron microscopy. These results provide a foundation for exploring the development of a treatment for demyelinating diseases via regenerative medicine.
Collapse
|
11
|
An J, He Y, Yin JJ, Ding ZB, Han QX, Chen YY, Wang Q, Chai Z, Yu JZ, Song LJ, Xiao BG, Ma CG. Temporal and spatial evolution of various functional neurons during demyelination induced by cuprizone. J Neurophysiol 2021; 126:1756-1771. [PMID: 34669500 DOI: 10.1152/jn.00224.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Multiple sclerosis (MS) is an inflammatory, demyelinating, and neurodegenerative disease of the central nervous system (CNS). Here we report the temporal and spatial evolution of various functional neurons during demyelination in a cuprizone (CPZ)-induced mouse model. CPZ did not significantly induce the damage of axons and neurons after 2 wk of feeding. However, after 4-6 wk of CPZ feeding, axons and neurons were markedly reduced in the cortex, posterior thalamic nuclear group, and hippocampus. Simultaneously, the expression of TPH+ tryptophan neurons and VGLUT1+ glutamate neurons was obviously decreased, and the expression of TH+ dopaminergic neurons was slightly decreased in the tail part of the substantia nigra striatum, whereas the number of ChAT+ cholinergic neurons was not significantly different in the brain. In the second week of feeding, CPZ caused a higher level of glutamate secretion and upregulated the expression of EAAT2 on astrocytes, which should contribute to rapid and sufficient glutamate uptake and removal. This finding reveals that astrocyte-driven glutamate reuptake protected the CNS from excitotoxicity by rapid reuptake of glutamate in 4-6 wk of CPZ feeding. At this stage, although NG2+ oligodendroglia progenitor cells (OPCs) were enhanced in the demyelination foci, the myelin sheath was still absent. In conclusion, we comprehensively observed the temporal and spatial evolution of various functional neurons. Our results will assist with understanding how demyelination affects neurons during CPZ-induced demyelination and provide novel information for neuroprotection in myelin regeneration and demyelinating diseases.NEW & NOTEWORTHY Our results further indicate temporal and spatial evolution of various functional neurons during the demyelination in a cuprizone (CPZ)-induced mouse model, which mainly occur 4-6 wk after CPZ feeding. At the same time, the axonal compartment is damaged and, consequently, neuronal death occurs, while glutamate neurons are lost obviously. The astrocyte-mediated glutamate reuptake could protect the neurons from the excitatory effects of glutamate.
Collapse
Affiliation(s)
- Jun An
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Research Center of Neurobiology, Shanxi University of Chinese Medicine, Taiyuan, China
| | - Yan He
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Research Center of Neurobiology, Shanxi University of Chinese Medicine, Taiyuan, China
| | - Jun-Jun Yin
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Research Center of Neurobiology, Shanxi University of Chinese Medicine, Taiyuan, China
| | - Zhi-Bin Ding
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Research Center of Neurobiology, Shanxi University of Chinese Medicine, Taiyuan, China.,Department of Physiology and Neurology, Affiliated Shanxi Bethune Hospital, Shanxi Medical University, Taiyuan, China
| | - Qing-Xian Han
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Research Center of Neurobiology, Shanxi University of Chinese Medicine, Taiyuan, China
| | - Yang-Yang Chen
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Research Center of Neurobiology, Shanxi University of Chinese Medicine, Taiyuan, China
| | - Qing Wang
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Research Center of Neurobiology, Shanxi University of Chinese Medicine, Taiyuan, China
| | - Zhi Chai
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Research Center of Neurobiology, Shanxi University of Chinese Medicine, Taiyuan, China
| | - Jie-Zhong Yu
- Institute of Brain Science, Shanxi Datong University, Datong, China
| | - Li-Juan Song
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Research Center of Neurobiology, Shanxi University of Chinese Medicine, Taiyuan, China.,Department of Physiology and Neurology, Affiliated Shanxi Bethune Hospital, Shanxi Medical University, Taiyuan, China
| | - Bao-Guo Xiao
- Institute of Neurology, Huashan Hospital, Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Cun-Gen Ma
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Research Center of Neurobiology, Shanxi University of Chinese Medicine, Taiyuan, China.,Institute of Brain Science, Shanxi Datong University, Datong, China
| |
Collapse
|
12
|
Khaledi E, Noori T, Mohammadi-Farani A, Sureda A, Dehpour AR, Yousefi-Manesh H, Sobarzo-Sanchez E, Shirooie S. Trifluoperazine reduces cuprizone-induced demyelination via targeting Nrf2 and IKB in mice. Eur J Pharmacol 2021; 909:174432. [PMID: 34416238 DOI: 10.1016/j.ejphar.2021.174432] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/19/2021] [Accepted: 08/16/2021] [Indexed: 12/21/2022]
Abstract
Multiple sclerosis (MS) is one of the most common neurodegenerative diseases. In this disease, the immune system attacks oligodendrocyte cells and the myelin sheath of myelinated neurons in the central nervous system, causing their destruction. These conditions lead to impaired conduction of nerve impulses and are manifested by symptoms such as weakness, fatigue, visual and motor disorders. This study aimed to evaluate the ability of trifluoperazine (TF) to improve cuprizone-induced behavioral and histopathological changes in the prefrontal cortex of C57BL/6 male mice. Demyelination was induced by adding 0.2% cuprizone (CPZ) to the standard animal diet for 6 weeks. Three doses of TF (0.5, 1 and 2 mg/kg/day; i.p.) were given once daily for the last 2 weeks of treatment. Treatment with CPZ induced a weight loss during 6 weeks of treatment compared to the control group, which was reversed by the administration of TF. Behavioral tests (pole test and rotarod performance test) showed a decrease in motor coordination and balance in the group treated with CPZ (P < 0.01). Treatment with TF during the last two weeks was able to improve these motor deficiencies. Histopathological examination also evidenced an increase in demyelination in the CPZ group, which was improved by TF administration. In addition, CPZ intake significantly decreased the cerebral cortex levels of p-Nrf2 (P < 0.001) and increased the levels of p-IKB (P < 0.001) and, these changes were normalized in the TF groups. TF administration also reversed the increased levels of nitrite and the reduced activity of the antioxidant enzyme superoxide dismutase associated with CPZ exposure. TF can to reduce the harmful effects of CPZ by reducing the demyelination and modulating the Nrf2 and NF-kB signaling pathways.
Collapse
Affiliation(s)
- Ehsan Khaledi
- Student Research Committee, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Tayebeh Noori
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ahmad Mohammadi-Farani
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Antoni Sureda
- Research Group on Community Nutrition and Oxidative Stress (NUCOX) and Health Research Institute of Balearic Islands (IdISBa), University of Balearic Islands-IUNICS, Palma de Mallorca E-07122, Balearic Islands, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain
| | - Ahmad Reza Dehpour
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Hasan Yousefi-Manesh
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Eduardo Sobarzo-Sanchez
- Instituto de Investigación y Postgrado, Facultad de Ciencias de la Salud, Universidad Central de Chile, Chile; Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, Spain
| | - Samira Shirooie
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
13
|
Lu J, Xie L, Liu K, Zhang X, Wang X, Dai X, Liang Y, Cao Y, Li X. Bilobalide: A review of its pharmacology, pharmacokinetics, toxicity, and safety. Phytother Res 2021; 35:6114-6130. [PMID: 34342079 DOI: 10.1002/ptr.7220] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/25/2021] [Accepted: 07/03/2021] [Indexed: 12/18/2022]
Abstract
Bilobalide is a natural sesquiterpene trilactone from Ginkgo biloba leaves. It has good water solubility and is widely used in food and pharmaceutical fields. In the last decade, a plethora of studies on the pharmacological activities of bilobalide has been conducted and demonstrated that bilobalide possessed an extensive range of pharmacological activities such as neuroprotective, antioxidative, antiinflammatory, anti-ischemic, and cardiovascular protective activities. Pharmacokinetic studies indicated that bilobalide may have the characteristics of rapid absorption, good bioavailability, wide distribution, and slow elimination. This review aims to summarize the advances in pharmacological, pharmacokinetics, toxicity, and safety studies of bilobalide in the last decade with an emphasis on its neuroprotective and antiinflammatory activities, to provide researchers with the latest information and point out the limitations of relevant research at the current stage and the aspects that should be strengthened in future research.
Collapse
Affiliation(s)
- Jing Lu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Long Xie
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Kai Liu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xuming Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xian Wang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaolin Dai
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Youdan Liang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yi Cao
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaofang Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
14
|
Liu J, Geng Z, Zhang Y, Alharbi SA, Shi Y. Sesquiterpenoid bilobalide inhibits gastric carcinoma cell growth and induces apoptosis both in vitro and in vivo models. J Biochem Mol Toxicol 2021; 35:e22723. [PMID: 33511709 DOI: 10.1002/jbt.22723] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/15/2020] [Accepted: 11/26/2020] [Indexed: 12/15/2022]
Abstract
Gastric carcinoma is one of the most aggressive types of cancer that ranks fifth among all cancer incidences and third in cancer mortality. As it exhibits a prolonged asymptomatic condition and high recurrence rate, it is a great challenge to treat gastric cancer. Traditional medicine that utilizes herbal phytochemicals to treat various diseases is a potent alternative for current allopathic treatment. Hence, we evaluated the potency of a phytochemical bilobalide for treating gastric cancer in in vitro and in vivo models. Bilobalide, a sesquiterpenoid, is present in the Ginkgo biloba plant that belongs to the family of Ginkgoaceae. The cytotoxicity effect of bilobalide was evaluated in both gastric cancer (AGS) cells and normal gastric epithelial cells. Apoptosis-inducing property of bilobalide against the AGS cell line was analyzed with different fluorescent staining techniques and terminal deoxynucleotidyl transferase dUTP nick-end labeling assay, and cell cycle analysis was carried out by flow cytometry. The in vivo studies were assessed with N-methyl-N-nitrosourea (MNU)-induced gastric cancer in rats. Serum-specific gastric markers were quantified and histopathological analysis of stomach tissue was performed. The expression of target-signaling molecules was analyzed by a reverse-transcription polymerase chain reaction. The in vitro results proved that bilobalide effectively suppressed the AGS cell growth and induced cell death by nuclear damage and apoptosis induction. The bilobalide treatment effectively arrested the cell cycle of AGS cells via inhibiting the PI3K-signaling pathway. Our in vivo results also confirmed that the bilobalide persuasively inhibited the MNU-induced gastric carcinoma via inhibiting the thioredoxin-fold family proteins and inflammatory markers' expression. Overall, our results authentically prove that bilobalide possesses therapeutic potency to cure gastric carcinoma.
Collapse
Affiliation(s)
- Jinglei Liu
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong Province, China
| | - Zhen Geng
- Department of Gastrointestinal Surgery, Binzhou People's Hospital, Binzhou, Shandong Province, China
| | - Yingying Zhang
- Department of Oncology, Binzhou People's Hospital, Binzhou, Shandong Province, China
| | - Sulaiman Ali Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Yulong Shi
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong Province, China
| |
Collapse
|
15
|
Thakur S, Das A, Das T. 1,3-Dipolar cycloaddition of nitrones: synthesis of multisubstituted, diverse range of heterocyclic compounds. NEW J CHEM 2021. [DOI: 10.1039/d1nj02023d] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The 1,3-dipolar cycloaddition reaction of nitrone is one of the most important methods for the synthesis of different sizes of heterocycles which have enormous applications in natural products, biologically active molecules and pharmaceuticals.
Collapse
Affiliation(s)
- Seema Thakur
- Department of Chemistry
- NIT Jamshedpur
- Jamshedpur 831014
- India
| | - Arunima Das
- Department of Chemistry
- NIT Jamshedpur
- Jamshedpur 831014
- India
| | - Tapas Das
- Department of Chemistry
- NIT Jamshedpur
- Jamshedpur 831014
- India
| |
Collapse
|
16
|
Sen MK, Almuslehi MSM, Shortland PJ, Coorssen JR, Mahns DA. Revisiting the Pathoetiology of Multiple Sclerosis: Has the Tail Been Wagging the Mouse? Front Immunol 2020; 11:572186. [PMID: 33117365 PMCID: PMC7553052 DOI: 10.3389/fimmu.2020.572186] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 08/27/2020] [Indexed: 12/18/2022] Open
Abstract
Multiple Sclerosis (MS) is traditionally considered an autoimmune-mediated demyelinating disease, the pathoetiology of which is unknown. However, the key question remains whether autoimmunity is the initiator of the disease (outside-in) or the consequence of a slow and as yet uncharacterized cytodegeneration (oligodendrocytosis), which leads to a subsequent immune response (inside-out). Experimental autoimmune encephalomyelitis has been used to model the later stages of MS during which the autoimmune involvement predominates. In contrast, the cuprizone (CPZ) model is used to model early stages of the disease during which oligodendrocytosis and demyelination predominate and are hypothesized to precede subsequent immune involvement in MS. Recent studies combining a boost, or protection, to the immune system with disruption of the blood brain barrier have shown CPZ-induced oligodendrocytosis with a subsequent immune response. In this Perspective, we review these recent advances and discuss the likelihood of an inside-out vs. an outside-in pathoetiology of MS.
Collapse
Affiliation(s)
- Monokesh K Sen
- School of Medicine, Western Sydney University, Penrith, NSW, Australia
| | - Mohammed S M Almuslehi
- School of Medicine, Western Sydney University, Penrith, NSW, Australia.,Department of Physiology, College of Veterinary Medicine, University of Diyala, Baqubah, Iraq
| | - Peter J Shortland
- School of Science, Western Sydney University, Penrith, NSW, Australia
| | - Jens R Coorssen
- Departments of Health Sciences and Biological Sciences, Faculties of Applied Health Sciences and Mathematics & Science, Brock University, St. Catharines, ON, Canada
| | - David A Mahns
- School of Medicine, Western Sydney University, Penrith, NSW, Australia
| |
Collapse
|
17
|
Abdel-Maged AES, Gad AM, Rashed LA, Azab SS, Mohamed EA, Awad AS. Repurposing of Secukinumab as Neuroprotective in Cuprizone-Induced Multiple Sclerosis Experimental Model via Inhibition of Oxidative, Inflammatory, and Neurodegenerative Signaling. Mol Neurobiol 2020; 57:3291-3306. [PMID: 32514862 DOI: 10.1007/s12035-020-01972-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 06/01/2020] [Indexed: 02/06/2023]
Abstract
Multiple sclerosis (MS) is a chronic, inflammatory, and neurodegenerative autoimmune disease. MS is a devastating disorder that is characterized by cognitive and motor deficits. Cuprizone-induced demyelination is the most widely experimental model used for MS. Cuprizone is a copper chelator that is well characterized by microgliosis and astrogliosis and is reproducible for demyelination and remyelination. Secukinumab (SEC) is a fully human monoclonal anti-human antibody of the IgG1/kappa isotype that selectively targets IL-17A. Expression of IL-17 is associated with MS. Also, IL-17 stimulates microglia and astrocytes resulting in progression of MS through chemokine production and neutrophil recruitment. This study aimed to investigate the neuroprotective effects of SEC on cuprizone-induced demyelination with examining the underlying mechanisms. Locomotor activity, short-term spatial memory function, staining by Luxol Fast Blue, myelin basic protein, gliasosis, inflammatory, and oxidative-stress markers were assessed to evaluate neuroprotective, anti-inflammatory and antioxidant effects. Moreover, the safety profile of SEC was evaluated. The present study concludes the efficacy of SEC in Cup-induced demyelination experimental model. Interestingly, SEC had neuroprotective and antioxidant effects besides its anti-inflammatory effect in the studied experimental model of MS. Graphical abstract.
Collapse
Affiliation(s)
| | - Amany M Gad
- Department of Pharmacology, National Organization for Drug Control and Research (NODCAR), Cairo, Egypt
| | - Laila Ahmed Rashed
- Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Samar S Azab
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| | - Eman A Mohamed
- Departmentof Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Azza S Awad
- Departmentof Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| |
Collapse
|
18
|
Li Y, Jiang J, Tong L, Gao T, Bai L, Xue Q, Xing J, Wang Q, Lyu H, Cai M, Sun Z. Bilobalide protects against ischemia/reperfusion-induced oxidative stress and inflammatory responses via the MAPK/NF-휅B pathways in rats. BMC Musculoskelet Disord 2020; 21:449. [PMID: 32646398 PMCID: PMC7350583 DOI: 10.1186/s12891-020-03479-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 07/06/2020] [Indexed: 11/17/2022] Open
Abstract
Background Clinically, skeletal muscle ischemia/reperfusion injury is a life-threatening syndrome that is often caused by skeletal muscle damage and is characterized by oxidative stress and inflammatory responses. Bilobalide has been found to have antioxidative and anti-inflammatory effects. However, it is unclear whether bilobalide can protect skeletal muscle from ischemia/reperfusion injury. Methods The effects of bilobalide on ischemia/reperfusion-injured skeletal muscle were investigated by performing hematoxylin and eosin staining and assessing the wet weight/dry weight ratio of muscle tissue. Then, we measured lipid peroxidation, antioxidant activity and inflammatory cytokine levels. Moreover, Western blotting was conducted to examine the protein levels of MAPK/NF-휅B pathway members. Results Bilobalide treatment could protected hind limb skeletal muscle from ischemia/reperfusion injury by alleviating oxidative stress and inflammatory responses via the MAPK/NF-휅B pathways. Conclusions Bilobalide may be a promising drug for I/R-injured muscle tissue. However, the specific mechanisms for the protective effects still need further study.
Collapse
Affiliation(s)
- Ying Li
- Department of Orthopedics, Air Force Hospital of Eastern Theater, Anhui Medical University, Nanjing, China
| | - Jiliang Jiang
- Department of Orthopedics, Air Force Hospital of Eastern Theater, Anhui Medical University, Nanjing, China
| | - Liangcheng Tong
- Department of Orthopedics, Air Force Hospital of Eastern Theater, Anhui Medical University, Nanjing, China
| | - Tingting Gao
- Department of Orthopedics, Air Force Hospital of Eastern Theater, Anhui Medical University, Nanjing, China
| | - Lei Bai
- Department of Neurosurgery, Yulin First Hospital, the Second Affiliated Hospital of Yan'an University, Yulin, China
| | - Qing Xue
- Department of Orthopedics, Air Force Hospital of Eastern Theater, Anhui Medical University, Nanjing, China
| | - Jianxin Xing
- Department of Orthopedics, Yuhuatai Hospital, Nanjing, China
| | - Qin Wang
- Department of Orthopedics, Zhangwenxin Hospital, Nanjing, China
| | - Haoran Lyu
- Department of Orthopedics, Air Force Hospital of Eastern Theater, Anhui Medical University, Nanjing, China
| | - Min Cai
- Department of Orthopedics, Air Force Hospital of Eastern Theater, Anhui Medical University, Nanjing, China
| | - Zhongyang Sun
- Department of Orthopedics, Air Force Hospital of Eastern Theater, Anhui Medical University, Nanjing, China.
| |
Collapse
|
19
|
Miao Q, Zhang XX, Han QX, Ren SS, Sui RX, Yu JW, Wang J, Wang Q, Yu JZ, Cao L, Xiao W, Xiao BG, Ma CG. The therapeutic potential of bilobalide on experimental autoimmune encephalomyelitis (EAE) mice. Metab Brain Dis 2020; 35:793-807. [PMID: 32215835 DOI: 10.1007/s11011-020-00555-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 02/24/2020] [Indexed: 12/15/2022]
Abstract
Inflammatory demyelination in the central nervous system (CNS) is a hallmark of multiple sclerosis (MS) and its animal model, experimental autoimmune encephalomyelitis (EAE). Besides MS disease-modifying therapy, targeting myelin sheath protection/regeneration is currently a hot spot in the treatment of MS. Here, we attempt to explore the therapeutic potential of Bilobalide (BB) for the myelin protection/regeneration in EAE model. The results showed that BB treatment effectively prevented worsening and demyelination of EAE, accompanied by the inhibition of neuroinflammation that should be closely related to T cell tolerance and M2 macrophages/microglia polarization. BB treatment substantially inhibited the infiltration of T cells and macrophages, thereby alleviating the enlargement of neuroinflammation and the apoptosis of oligodendrocytes in CNS. The accurate mechanism of BB action and the feasibility of clinical application in the prevention and treatment of demyelination remain to be further explored.
Collapse
Affiliation(s)
- Qiang Miao
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Shanxi University of Chinese Medicine, Taiyuan, 030024, China
| | - Xiao-Xue Zhang
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Shanxi University of Chinese Medicine, Taiyuan, 030024, China
| | - Qing-Xian Han
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Shanxi University of Chinese Medicine, Taiyuan, 030024, China
| | - Si-Si Ren
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Shanxi University of Chinese Medicine, Taiyuan, 030024, China
| | - Ruo-Xuan Sui
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Shanxi University of Chinese Medicine, Taiyuan, 030024, China
| | - Jing-Wen Yu
- Institute of Brain Science, Shanxi Key Laboratory of Inflammatory Neurodegenerative Disease, Shanxi Datong University, Datong, 037009, China
| | - Jing Wang
- The First Clinical College, Shanxi Medical University, Taiyuan, 030001, China
| | - Qing Wang
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Shanxi University of Chinese Medicine, Taiyuan, 030024, China
| | - Jie-Zhong Yu
- Institute of Brain Science, Shanxi Key Laboratory of Inflammatory Neurodegenerative Disease, Shanxi Datong University, Datong, 037009, China
| | - Liang Cao
- Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Lianyungang, 222002, China
| | - Wei Xiao
- Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Lianyungang, 222002, China
| | - Bao-Guo Xiao
- Institute of Neurology, Huashan Hospital, Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200025, China.
| | - Cun-Gen Ma
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Shanxi University of Chinese Medicine, Taiyuan, 030024, China.
- Institute of Brain Science, Shanxi Key Laboratory of Inflammatory Neurodegenerative Disease, Shanxi Datong University, Datong, 037009, China.
- The First Clinical College, Shanxi Medical University, Taiyuan, 030001, China.
| |
Collapse
|
20
|
Zhang Y, Zhai H. Bilobalide assuages morphine-induced addiction in hippocampal neuron cells through upregulation of microRNA-101. J Biochem Mol Toxicol 2020; 34:e22493. [PMID: 32319158 DOI: 10.1002/jbt.22493] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 12/24/2019] [Accepted: 03/03/2020] [Indexed: 11/09/2022]
Abstract
Bilobalide exhibits many biological activities, but its effects on morphine stimulation have not been elucidated. The research aims to explore the function and underlying mechanisms of bilobalide in morphine-led hippocampal neuron cells. Cells were treated with or without morphine or oxaliplatin (OXA), bilobalide, or SCH772984 dilutions. miR-101 inhibitor and negative control were transfected into cells. Western blot and quantitative reverse transcription-polymerase chain reaction were, respectively, conducted to measure the relative expression of proteins or RNAs. Morphine improved the expression levels of orexin1 receptor (OX1R) and c-FOS, the p/t-ERK/PKC as well. The c-FOS protein level and p/t-ERK/PKC were significantly elevated by morphine + OXA. Bilobalide had no effect on OX1R and p/t-PKC but evidently decreased the c-FOS and p/t-ERK. The p-ERK and the c-FOS accumulation levels were remarkably reduced by SCH772984. The production of miR-101 was promoted by bilobalide but inhibited by the miR-101 inhibitor. miR-101 inhibitor abolished bilobalide's inhibitory effects on p/t-ERK. Bilobalide exhibited morphine-induced effects on hippocampal neuron cells by upregulating miR-101.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Pathology, Huaihe Hospital, Henan University, Kaifeng, China
| | - Hongyin Zhai
- Department of Children Rehabilitation Medicine, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
21
|
Almuslehi MSM, Sen MK, Shortland PJ, Mahns DA, Coorssen JR. CD8 T-cell Recruitment Into the Central Nervous System of Cuprizone-Fed Mice: Relevance to Modeling the Etiology of Multiple Sclerosis. Front Cell Neurosci 2020; 14:43. [PMID: 32210765 PMCID: PMC7076139 DOI: 10.3389/fncel.2020.00043] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 02/14/2020] [Indexed: 11/24/2022] Open
Abstract
Cuprizone (CPZ)-feeding in mice induces atrophy of peripheral immune organs (thymus and spleen) and suppresses T-cell levels, thereby limiting its use as a model for studying the effects of the immune system in demyelinating diseases such as Multiple Sclerosis (MS). To investigate whether castration (Cx) can protect the peripheral immune organs from CPZ-induced atrophy and enable T-cell recruitment into the central nervous system (CNS) following a breach of the blood-brain barrier (BBB), three related studies were carried out. In Study 1, Cx prevented the dose-dependent reductions (0.1% < 0.2% CPZ) in thymic and splenic weight, size of the thymic medulla and splenic white pulp, and CD4 and CD8 (CD4/8) levels remained comparable to gonadally intact (Gi) control males. Importantly, 0.1% and 0.2% CPZ were equipotent at inducing central demyelination and glial activation. In Study 2, combining Cx with 0.1% CPZ-feeding and BBB disruption with pertussis toxin (PT) enhanced CD8+ T-cell recruitment into the CNS. The increased CD8+ T-cell level observed in the parenchyma of the cerebrum, cerebellum, brainstem and spinal cord were confirmed by flow cytometry and western blot analyses of CNS tissue. In Study 3, PT+0.1% CPZ-feeding to Gi female mice resulted in similar effects on the peripheral immune organs, CNS demyelination, and gliosis comparable to Gi males, indicating that testosterone levels alone were not responsible for the immune response seen in Study 2. The combination of Cx+0.1% CPZ-feeding+PT indicates that CPZ-induced demyelination can trigger an “inside-out” immune response when the peripheral immune system is spared and may provide a better model to study the initiating events in demyelinating conditions such as MS.
Collapse
Affiliation(s)
- Mohammed S M Almuslehi
- School of Medicine, Western Sydney University, Penrith, NSW, Australia.,Department of Physiology, College of Veterinary Medicine, Diyala University, Diyala, Iraq
| | - Monokesh K Sen
- School of Medicine, Western Sydney University, Penrith, NSW, Australia
| | - Peter J Shortland
- School of Science, Western Sydney University, Penrith, NSW, Australia
| | - David A Mahns
- School of Medicine, Western Sydney University, Penrith, NSW, Australia
| | - Jens R Coorssen
- Department of Health Sciences, Faculty of Applied Health Sciences, St. Catharines, ON, Canada.,Department of Biological Sciences, Faculty of Mathematics and Science, Brock University, St. Catharines, ON, Canada
| |
Collapse
|
22
|
Stepanova EE, Dmitriev MV, Maslivets AN. Facile approach to alkaloid-like 6/6/5/5-tetracyclic spiroheterocycles via 1,3-dipolar cycloaddition reaction of fused 1H-pyrrole-2,3-diones with nitrones. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.151595] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
23
|
Martinez B, Peplow PV. Protective effects of pharmacological therapies in animal models of multiple sclerosis: a review of studies 2014-2019. Neural Regen Res 2020; 15:1220-1234. [PMID: 31960801 PMCID: PMC7047782 DOI: 10.4103/1673-5374.272572] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system. The disability caused by inflammatory demyelination clinically dominates the early stages of relapsing-remitting MS and is reversible. Once there is considerable loss of axons, MS patients enter a secondary progressive stage. Disease-modifying drugs currently in use for MS suppress the immune system and reduce relapse rates but are not effective in the progressive stage. Various animal models of MS (mostly mouse and rat) have been established and proved useful in studying the disease process and response to therapy. The experimental autoimmune encephalomyelitis animal studies reviewed here showed that a chronic progressive disease can be induced by immunization with appropriate amounts of myelin oligodendrocyte glycoprotein together with mycobacterium tuberculosis and pertussis toxin in Freund's adjuvant. The clinical manifestations of autoimmune encephalomyelitis disease were prevented or reduced by treatment with certain pharmacological agents given prior to, at, or after peak disease, and the agents had protective effects as shown by inhibiting demyelination and damage to neurons, axons and oligodendrocytes. In the cuprizone-induced toxicity animal studies, the pharmacological agents tested were able to promote remyelination and increase the number of oligodendrocytes when administered therapeutically or prophylactically. A monoclonal IgM antibody protected axons in the spinal cord and preserved motor function in animals inoculated with Theiler's murine encephalomyelitis virus. In all these studies the pharmacological agents were administered singly. A combination therapy may be more effective, especially using agents that target neuroinflammation and neurodegeneration, as they may exert synergistic actions.
Collapse
Affiliation(s)
- Bridget Martinez
- Physical Chemistry and Applied Spectroscopy, Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM, USA; Department of Medicine, St. Georges University School of Medicine, True Blue, Grenada
| | - Philip V Peplow
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| |
Collapse
|
24
|
An J, Yin JJ, He Y, Sui RX, Miao Q, Wang Q, Yu JZ, Yu JW, Shi FD, Ma CG, Xiao BG. Temporal and Spatial Dynamics of Astroglial Reaction and Immune Response in Cuprizone-Induced Demyelination. Neurotox Res 2019; 37:587-601. [DOI: 10.1007/s12640-019-00129-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 10/03/2019] [Accepted: 10/25/2019] [Indexed: 12/14/2022]
|
25
|
Mao D, Li H, Zhang L, Xu J, Yu C, Zhang Q. Bilobalide alleviates IL-17-induced inflammatory injury in ATDC5 cells by downregulation of microRNA-125a. J Biochem Mol Toxicol 2019; 33:e22405. [PMID: 31593333 DOI: 10.1002/jbt.22405] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 08/01/2019] [Accepted: 09/18/2019] [Indexed: 01/03/2023]
Abstract
Ankylosing spondylitis (AS) is a high disability and greatly destructive disease. In this study, we preliminarily studied the function and mechanism of bilobalide (BIL) on interleukin (IL)-17-induced inflammatory injury in ATDC5 cells. CCK-8 and migration assays were used to detect the functions of IL-7, BIL, and microRNA (miR)-125a on cell viability and migration. The miR-125a level was changed by transfection, and tested by real-time quantitative polymerase chain reaction. Additionally, Western blot tested the levels of inflammatory factors (IL-6 and tumor necrosis factor-α), matrix metalloproteinases (MMPs), and pathway-related proteins. Moreover, the enzyme-linked immunosorbent assay also was used to detect inflammatory factor levels. IL-7 was used to construct an inflammatory injury model in ATDC5 cells. Based on this, BIL inhibited IL-17-induced cell viability, migration, and expressions of inflammatory factors and MMPs. Furthermore, we found BIL negatively regulated miR-125a, and the miR-125a mimic could partly reverse the effects of BIL on IL-17-injury. Finally, we showed that BIL inhibited the c-Jun N-terminal kinase (JNK) and nuclear factor kappa B (NF-κB) pathways, and the miR-125a mimic had the opposite effect. BIL inhibited IL-17-induced inflammatory injury in ATDC5 cells by downregulation of miR-125a via JNK and NF-κB signaling pathways.
Collapse
Affiliation(s)
- Dongmei Mao
- Department of Cardiology, Shengli Oilfield Central Hospital, Dongying, Shandong, China
| | - Hong Li
- Department of Critical Care Medicine, Shengli Oilfield Central Hospital, Dongying, Shandong, China
| | - Lei Zhang
- Department of Rheumatology and Immunology, Shengli Oilfield Central Hospital, Dongying, Shandong, China
| | - Jian Xu
- Department of Rheumatology and Immunology, Shengli Oilfield Central Hospital, Dongying, Shandong, China
| | - Chunyan Yu
- Department of Rheumatology and Immunology, Shengli Oilfield Central Hospital, Dongying, Shandong, China
| | - Qi Zhang
- Department of Rheumatology and Immunology, Shengli Oilfield Central Hospital, Dongying, Shandong, China
| |
Collapse
|
26
|
Immunoregulatory natural compounds in stress-induced depression: An alternative or an adjunct to conventional antidepressant therapy? Food Chem Toxicol 2019; 127:81-88. [PMID: 30858105 DOI: 10.1016/j.fct.2019.03.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 03/01/2019] [Accepted: 03/05/2019] [Indexed: 12/22/2022]
Abstract
The interplay of chronic stress, neuroinflammation and altered immune reactivity has been shown to be important for the pathophysiology of brain disorders such as schizophrenia, depressive disorders and post-traumatic stress disorder. This immuno-inflammatory theory has been extensively studied in the past three decades leading to the formation of the integrative discipline of psychoneuroimmunology. Targeting of the central nervous system by conventional pharmacotherapeutic methods is mainly through modulation of neuroendocrine systems such as the dopaminergic, GABA-ergic, adrenergic and serotoninergic systems. In recent years an increasing number of both experimental and clinical studies have shown that antidepressants can affect the immune system by reducing the production of pro-inflammatory cytokines such as IL-1β, IL-6 and TNF-α. However, due to the serious adverse effects accompanying the chronic administration of psychoactive drugs there is a continuous need to produce novel therapeutics that are both potent and safe. The present review aims to summarize the current knowledge in the field of psychoneuroimmunology and to delineate the main interactions between stress, inflammation, immunity and the brain. Additionally, this paper explores the use of plant-derived molecules that display a strong anti-stress effect and simultaneously modulate the immune response as an alternative or adjuvant to classical antidepressant drugs.
Collapse
|