1
|
Li C, Yuan M, Du J, Chen Z, Chen S, Ji X, Tang N, Chen D, Li Z, Zhang X. New insights on the protection of endangered aquatic species: Embryotoxicity effects of 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) via integrin-mediated oxidative stress and inflammatory pathways in Siberian sturgeon, Acipenser baerii. FISH & SHELLFISH IMMUNOLOGY 2025; 161:110307. [PMID: 40185295 DOI: 10.1016/j.fsi.2025.110307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 03/07/2025] [Accepted: 04/02/2025] [Indexed: 04/07/2025]
Abstract
Polybrominated diphenyl ethers (PBDEs), are emerging pollutants ubiquitous in the environment, posing a threat to aquatic ecosystems. This study investigates the toxicological effects of PBDEs on sturgeon embryos, focusing on BDE-47, a representative PBDEs homologues. Siberian sturgeon embryos were exposed to BDE-47, revealing significant reductions in hatching and survival rates and the occurrence of developmental abnormalities. Oxidative stress induction by BDE-47 was evidenced by increased antioxidant enzyme activities and the presence of oxidative damage biomarker MDA. Besides, transcriptome analysis unveiled the activation of integrin signaling pathways, with molecular docking indicating strong binding to integrin receptors (specifically ITG-α5, ITG-α8, and ITG-α11). Moreover, qPCR and correlation analysis showed that BDE-47 significantly upregulated inflammatory cytokines and keap1/nrf2 signaling through ITGs. Furthermore, cultivation of head kidney macrophages showed that ITGs antagonist Cilengitide significantly reversed the upregulation of the above factors induced by BDE-47, including nf-κb, il-6, tnf-α, gpx, and nrf2. These findings indicate that BDE-47 induced embryotoxicity in Siberian sturgeon, which was potentially via ITGs-mediated oxidative stress and inflammatory pathways. This study providing novel insights into the protein binding of BDE-47 in animals, contributes to understanding emerging pollutant toxicity in fish embryos and offering a new perspective for the improvement of hatchability and survival rate of cultured sturgeon embryos to guarantee the sustainable development of the sturgeon aquaculture industry, as well as providing evidence for wild sturgeon populations conservation and habitat restoration.
Collapse
Affiliation(s)
- Changyuan Li
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211(#) Huimin Road, Chengdu, Sichuan, China
| | - Mengbin Yuan
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211(#) Huimin Road, Chengdu, Sichuan, China
| | - Jiayi Du
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211(#) Huimin Road, Chengdu, Sichuan, China
| | - Ziqing Chen
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211(#) Huimin Road, Chengdu, Sichuan, China
| | - Shuhuang Chen
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211(#) Huimin Road, Chengdu, Sichuan, China
| | - Xiaokun Ji
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211(#) Huimin Road, Chengdu, Sichuan, China
| | - Ni Tang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211(#) Huimin Road, Chengdu, Sichuan, China
| | - Defang Chen
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211(#) Huimin Road, Chengdu, Sichuan, China
| | - Zhiqiong Li
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211(#) Huimin Road, Chengdu, Sichuan, China
| | - Xin Zhang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211(#) Huimin Road, Chengdu, Sichuan, China.
| |
Collapse
|
2
|
Gertel S, Polachek A, Eviatar T, Elkayam O, Furer V. A novel inhibitory pathway of synovial inflammation exerted by glucocorticoids and tumour necrosis factor inhibitors via lymphocyte activation gene-3 up-regulation: an ex vivo study. Rheumatology (Oxford) 2025; 64:1689-1697. [PMID: 39052869 DOI: 10.1093/rheumatology/keae389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/26/2024] [Accepted: 06/20/2024] [Indexed: 07/27/2024] Open
Abstract
OBJECTIVE To investigate the impact of glucocorticoids (GCs) and anti-rheumatic drugs on lymphocyte activation gene-3 (LAG-3) and on programmed cell death-1 (PD-1) expression by synovial and peripheral cells ex vivo. METHODS Synovial fluid mononuclear cells (SFMCs) from psoriatic arthritis (PsA, n = 26) and rheumatoid arthritis (RA, n = 13) patients, synovial fluid cells (SFCs) from osteoarthritis (OA, n = 5) patients and peripheral blood mononuclear cells (PBMCs) of healthy donors (n = 14) were co-cultured with GCs, glucocorticoid receptor antagonist RU486, methotrexate (MTX) and biologics. LAG-3 and PD-1 expression on immune subsets were analysed by flow cytometry. RESULTS GCs in PsA inhibited SFMC growth vs medium [2.3 (0.4) × 105vs 5.3 (0.7) × 105, respectively, P < 0.01] and markedly up-regulated CD14+LAG-3+ cells [11.7 (2.4)% vs 0.8 (0.3)%, P < 0.0001, respectively], but not CD3+LAG-3+ and CD14+PD-1+ cells. MTX had no effect on CD14+LAG-3+ cells [0.7 (0.3)%]. The TNF inhibitors infliximab (IFX) and etanercept, but not IL-12/23 inhibitor, up-regulated CD14+LAG-3+ cells vs medium [2.0 (0.6)% and 1.6 (0.4)% vs 0.5 (0.1)%, P < 0.03, respectively]. SFMC growth inhibition by GC in both PsA and RA correlated with CD14+LAG-3+ cell up-regulation (r = 0.53, P = 0.03). RU486 inhibited GC-induced CD14+LAG-3+ cells up-regulation in a dose-dependent manner compared with GC alone [5 µM 5.3 (1.2)% and 50 µM 1.3 (0.5)% vs 7.0 (1.4)%, P < 0.003], but had no significant effect on CD14+LAG-3+ cells co-cultured with IFX. GCs in healthy donors' PBMCs up-regulated the immune subsets CD3+LAG-3+, CD14+LAG-3+ and CD14+PD-1+ cells. CONCLUSION This study proposes a novel regulatory mechanism of GCs and of TNF inhibitors mediated by LAG-3 up-regulation in synovial cells and PBMCs. LAG-3 modulation may be a promising target for development of novel therapies for inflammatory arthritis.
Collapse
MESH Headings
- Humans
- Up-Regulation/drug effects
- Glucocorticoids/pharmacology
- Lymphocyte Activation Gene 3 Protein
- Arthritis, Rheumatoid/drug therapy
- Arthritis, Rheumatoid/metabolism
- Male
- Middle Aged
- Female
- Antigens, CD/metabolism
- Antigens, CD/drug effects
- Antirheumatic Agents/pharmacology
- Synovial Fluid/cytology
- Synovial Fluid/metabolism
- Programmed Cell Death 1 Receptor/metabolism
- Leukocytes, Mononuclear/drug effects
- Leukocytes, Mononuclear/metabolism
- Arthritis, Psoriatic/drug therapy
- Arthritis, Psoriatic/metabolism
- Arthritis, Psoriatic/immunology
- Tumor Necrosis Factor Inhibitors/pharmacology
- Methotrexate/pharmacology
- Aged
- Cells, Cultured
- Adult
- Osteoarthritis/metabolism
- Osteoarthritis/drug therapy
- Synovitis/metabolism
- Synovitis/drug therapy
- Synovial Membrane/drug effects
Collapse
Affiliation(s)
- Smadar Gertel
- Department of Rheumatology, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
- Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Ari Polachek
- Department of Rheumatology, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
- Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Tali Eviatar
- Department of Rheumatology, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
- Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Ori Elkayam
- Department of Rheumatology, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
- Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Victoria Furer
- Department of Rheumatology, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
- Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
3
|
Heo B, Linh VTN, Yang JY, Park R, Park SG, Nam MK, Yoo SA, Kim WU, Lee MY, Jung HS. AI-Assisted Plasmonic Diagnostics Platform for Osteoarthritis and Rheumatoid Arthritis With Biomarker Quantification Using Mathematical Models. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2500264. [PMID: 40159800 DOI: 10.1002/smll.202500264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/13/2025] [Indexed: 04/02/2025]
Abstract
Osteoarthritis (OA) and rheumatoid arthritis (RA) are major causes of functional impairment, disability, and chronic pain, leading to a substantial rise in healthcare costs. Despite differences in pathophysiology, these diseases share overlapping features that complicate diagnosis, necessitating early, more accurate, and cost-effective diagnostic tools. This study introduces an innovative plasmonic diagnostics platform for rapid and accurate label-free diagnosis of OA and RA. The sensing platform utilizes a highly dense urchin-like gold nanoarchitecture (UGN), which enhances the surface plasmonic area to significantly amplify the Raman signal. The feasibility of the developed platform for arthritis diagnosis is demonstrated by analyzing the synovial fluid (SVF) of patients. Assisted by a machine learning model, Raman signals of OA and RA groups are successfully classified with high clinical sensitivity and specificity. Metabolic biomarkers are further investigated using mathematical models of combined Pearson correlation coefficient (PCC) and non-negative matrix factorization (NMF), suggesting valuable insights for arthritis biomarker quantification. In addition, RA severity is studied using the sensing platform by classifying results from the hematology test, achieving successful stage discrimination. This platform offers a versatile, affordable, and scalable in-clinic arthritis diagnostic solution with potential applications in diagnosing and monitoring other diseases through biofluid analysis.
Collapse
Affiliation(s)
- Boyou Heo
- Advanced Bio and Healthcare Materials Research Division, Korea Institute of Materials Science (KIMS), Changwon, 51508, Republic of Korea
| | - Vo Thi Nhat Linh
- Advanced Bio and Healthcare Materials Research Division, Korea Institute of Materials Science (KIMS), Changwon, 51508, Republic of Korea
| | - Jun-Yeong Yang
- Advanced Bio and Healthcare Materials Research Division, Korea Institute of Materials Science (KIMS), Changwon, 51508, Republic of Korea
| | - Rowoon Park
- Advanced Bio and Healthcare Materials Research Division, Korea Institute of Materials Science (KIMS), Changwon, 51508, Republic of Korea
| | - Sung-Gyu Park
- Advanced Bio and Healthcare Materials Research Division, Korea Institute of Materials Science (KIMS), Changwon, 51508, Republic of Korea
| | - Min-Kyung Nam
- Department of Biomedicine & Health Sciences, Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Seung-Ah Yoo
- Department of Biomedicine & Health Sciences, Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
- Center for Integrative Rheumatoid Transcriptomics and Dynamics, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Wan-Uk Kim
- Center for Integrative Rheumatoid Transcriptomics and Dynamics, The Catholic University of Korea, Seoul, 06591, Republic of Korea
- Department of Internal Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Min-Young Lee
- Advanced Bio and Healthcare Materials Research Division, Korea Institute of Materials Science (KIMS), Changwon, 51508, Republic of Korea
| | - Ho Sang Jung
- Advanced Bio and Healthcare Materials Research Division, Korea Institute of Materials Science (KIMS), Changwon, 51508, Republic of Korea
- Advanced Materials Engineering Division, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
- School of Convergence Science and Technology, Medical Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| |
Collapse
|
4
|
Wang Y, Wang Q, Ji Q, An P, Wang X, Ju Y, Li R, Ruan Y, Zhao J, Cao M, Chen X. Supplementation with N-Acetyl-L-cysteine during in vitro maturation improves goat oocyte developmental competence by regulating oxidative stress. Theriogenology 2025; 235:221-230. [PMID: 39855039 DOI: 10.1016/j.theriogenology.2025.01.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/16/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025]
Abstract
Oocyte quality can affect mammal fertilization rate, early embryonic development, pregnancy maintenance, and fetal development. Oxidative stress induced by reactive oxygen species (ROS) is one of the most important causes of poor oocyte maturation in vitro. To reduce the degree of cellular damage caused by ROS, supplementation with the antioxidant N-Acetyl-L-cysteine (NAC) serves as an effective pathway to alleviate glutathione (GSH) depletion during oxidative stress. This study investigated the effects of NAC supplementation during in vitro maturation of goat oocytes and explored the molecular mechanisms of maturation by transcriptome sequencing of MⅡ oocytes. The results showed that 1.5 mM NAC significantly increased the rates of oocyte maturation and cumulus cell expansion and improved the subsequent development of embryos. During the subsequent culture of parthenogenetically activated embryos, 1.5 mM NAC significantly increased the division rate of oocytes and blastocyst rate. It also reduced the accumulation of ROS, increased the level of GSH, alleviated oxidative stress, and enhanced the antioxidant capacity and cell metabolic activity. Transcriptome sequencing results revealed that NAC treatment significantly increased the expression of SIRT1, GGCT, and MITF genes related to the cellular antioxidant system, as well as the IDH3G gene related to energy metabolism, and decreased the expression of CASP8, FOS, and MMP1 genes related to apoptosis and cell invasion, as well as the CCL2. and CXCL8 genes related to the inflammatory response. In conclusion, the findings suggest that NAC supplementation significantly reduces oxidative stress, improves antioxidant capacity and metabolic activity, promotes oocyte maturation, and improves oocyte quality.
Collapse
Affiliation(s)
- Yanfei Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, 550025, China; Key Laboratory of Animal Genetics, Breeding and Reproduction of Guizhou Province, Guiyang, 550025, China; College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Qingwei Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, 550025, China; Key Laboratory of Animal Genetics, Breeding and Reproduction of Guizhou Province, Guiyang, 550025, China; College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Quan Ji
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, 550025, China; Key Laboratory of Animal Genetics, Breeding and Reproduction of Guizhou Province, Guiyang, 550025, China; College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Pengcheng An
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, 550025, China; Key Laboratory of Animal Genetics, Breeding and Reproduction of Guizhou Province, Guiyang, 550025, China; College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Xiaodong Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, 550025, China; Key Laboratory of Animal Genetics, Breeding and Reproduction of Guizhou Province, Guiyang, 550025, China; College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Yonghong Ju
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, 550025, China; Key Laboratory of Animal Genetics, Breeding and Reproduction of Guizhou Province, Guiyang, 550025, China; College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Ruiyang Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, 550025, China; Key Laboratory of Animal Genetics, Breeding and Reproduction of Guizhou Province, Guiyang, 550025, China; College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Yong Ruan
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, 550025, China; Key Laboratory of Animal Genetics, Breeding and Reproduction of Guizhou Province, Guiyang, 550025, China; College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Jiafu Zhao
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, 550025, China; Key Laboratory of Animal Genetics, Breeding and Reproduction of Guizhou Province, Guiyang, 550025, China; College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Maosheng Cao
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, 550025, China; Key Laboratory of Animal Genetics, Breeding and Reproduction of Guizhou Province, Guiyang, 550025, China; College of Animal Science, Guizhou University, Guiyang, 550025, China.
| | - Xiang Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, 550025, China; Key Laboratory of Animal Genetics, Breeding and Reproduction of Guizhou Province, Guiyang, 550025, China; College of Animal Science, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
5
|
Mokhtar ER, Abd El-Fattah DA, Hussein NR, Elhakeem H, Gad LA, Mohamed EF, Mohammed RAE, Kasim SA, Elhadad SM, Ali Abd El Rahim MMM, Mohamed MS, Rezk MSM, Fathy D, Hamdy NM, El Magdoub HM. FCGR1A(CD64) expression on monocyte subsets and FIL1Z(IL-37) serum level as biomarkers of rheumatoid arthritis activity: A case controlled study and in silico analysis. Pathol Res Pract 2025; 269:155910. [PMID: 40088754 DOI: 10.1016/j.prp.2025.155910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 02/13/2025] [Accepted: 03/08/2025] [Indexed: 03/17/2025]
Abstract
Rheumatoid arthritis (RA) is one of the most common chronic autoimmune diseases. Chronic joint inflammation and bone destruction were shown to be caused by expanded monocytes in RA affected individuals. Interleukin-37 which known as FIL1Z(IL-37) is a well-known anti-inflammatory cytokine that plays a negative regulatory role of inflammation in RA. A total of 48 RA patients were divided equally into active RA group and stable RA group using the Disease Activity score (DAS)-28 score. Twenty-four age-and sex-matched healthy subjects were enrolled as controls. The expression level of Fc gamma receptor IA (FCGR1A(CD64)) on monocytes and their subsets in peripheral blood were assessed by flow cytometry (FC) and serum levels of FIL1Z(IL-37) were measured by ELISA. The mean fluorescence intensity (MFI) of FCGR1A(CD64) expressing classical and intermediate monocyte subsets and serum levels of FIL1Z(IL-37) were significantly elevated in RA patients compared to the control and positively correlated with erythrocyte sedimentation rate (ESR), C-reactive protein (CRP), rheumatoid factor (RF), anti-cyclic citrullinated peptide (anti-CCP) and DAS-28 scores. The MFI of FCGR1A(CD64) expressing classical monocyte and serum levels of FIL1Z(IL-37) were significantly elevated in the active RA group compared to the stable RA group. The serum concentration of FIL1Z(IL-37) revealed very high specificity but limited sensitivity in discriminating between active and stable RA patients. Our results demonstrate a strong correlation between serum levels of FIL1Z(IL-37) and FCGR1A(CD64) expression on activated monocytes and their subsets in peripheral blood of RA patients. The results also depict that activated monocytes and their subsets may contribute to the elevated levels of FIL1Z(IL-37) during an active disease status to counter-act the inflammatory process.
Collapse
Affiliation(s)
- Entsar R Mokhtar
- Clinical Pathology Department, Faculty of Medicine (for Girls), Al-Azhar University, Cairo 11884, Egypt
| | - Doaa Aly Abd El-Fattah
- Clinical Pathology Department, Faculty of Medicine (for Girls), Al-Azhar University, Cairo 11884, Egypt
| | - Neama R Hussein
- Clinical Pathology Department, Faculty of Medicine (for Girls), Al-Azhar University, Cairo 11884, Egypt
| | - Heba Elhakeem
- Clinical Pathology Department, Faculty of Medicine (for Girls), Al-Azhar University, Cairo 11884, Egypt
| | - Lamia A Gad
- Clinical Pathology Department, Faculty of Medicine (for Girls), Al-Azhar University, Cairo 11884, Egypt
| | - Eman Fekry Mohamed
- Internal Medicine Department, Faculty of Medicine (for Girls), Al-Azhar University, Nasr City, Cairo 11884, Egypt
| | | | - Sammar Ahmed Kasim
- Internal Medicine Department, Faculty of Medicine (for Girls), Al-Azhar University, Nasr City, Cairo 11884, Egypt
| | - Sara M Elhadad
- Internal Medicine Department, Faculty of Medicine (for Girls), Al-Azhar University, Nasr City, Cairo 11884, Egypt
| | | | - Maha S Mohamed
- Rheumatology and Rehabilitation Department, Faculty of Medicine (for Girls), Al-Azhar University, Nasr City, Cairo 11884, Egypt
| | - Mohamed Sobhy Mahmoud Rezk
- Rheumatology and Rehabilitation Department, Faculty of Medicine (for Boys), Al-Azhar University, Nasr City, Cairo 11884, Egypt
| | - Doaa Fathy
- Biochemistry Department, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Nadia M Hamdy
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Abassia, Cairo 11566, Egypt.
| | - Hekmat M El Magdoub
- Biochemistry Department, Faculty of Pharmacy, Misr International University (MIU), Cairo, Egypt
| |
Collapse
|
6
|
Ahmadi P, Mahmoudi M, Rafatpanah H, Rezaieyazdi Z, Ahmadi‐Khorram M, Javanmardi Z, Tabasi NS, Esmaeili S. The Impacts of Lactobacillus delbrueckii and Lactobacillus rhamnosus to Promote In Vitro Anti-Inflammatory Profile of RA-Macrophages. Food Sci Nutr 2025; 13:e70068. [PMID: 40099178 PMCID: PMC11911130 DOI: 10.1002/fsn3.70068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 01/17/2025] [Accepted: 02/12/2025] [Indexed: 03/19/2025] Open
Abstract
Rheumatoid arthritis (RA) is a prevalent and debilitating autoimmune disease. Numerous studies have demonstrated promising results regarding the use of probiotics as a therapeutic approach to alleviate RA symptoms. This study isolated monocytes from the PBMCs of RA patients and healthy donors. These monocytes were then differentiated into macrophages and divided into five groups: untreated, LPS-treated, L. delbrueckii (Del)-treated, L. rhamnosus (Ram)-treated, and a mixed treatment group. Three macrophage subpopulations-M0, M1, and M2-were identified in all treatment groups, with variations observed in the population percentages of each subpopulation and the expression levels of CD14, CD80, and HLA-DR. Flow cytometry results indicated that, compared to the untreated and LPS-treated groups, treatment with probiotic bacteria (Del, Ram, and Mix) stimulated the polarization of macrophages toward the M2 phenotype while suppressing the percentage of the M1 population. Additionally, the expression of CD14, a Pathogen-Associated Molecular Pattern (PAMP) and phagocytosis-inducing receptor, was significantly reduced in the probiotic-treated groups. Probiotic treatment also profoundly influenced antigen presentation by suppressing CD80, a ligand for the CD28 co-stimulatory marker on T cells, and HLA-DR, which presents antigens to the T cell receptors of Th4 cells. Interestingly, quantitative real-time PCR results indicated that probiotic treatment of macrophages significantly increased the expression of IL-10 and TGF-β, both anti-inflammatory cytokines, while significantly decreasing the expression of inflammatory cytokines, including IL-12, IL-1β, and TNF-α, in both healthy controls and RA patients. It seems that these probiotics may have a regulatory effect on macrophages, affecting their polarization, antigen presentation patterns, phagocytosis, and cytokine secretion profiles. This suggests that these probiotics may have therapeutic and prophylactic effects on RA.
Collapse
Affiliation(s)
- Parisa Ahmadi
- Immunology Research CenterMashhad University of Medical SciencesMashhadIran
- Immunology Department, Faculty of MedicineMashhad University of Medical SciencesMashhadIran
- Student Research CommitteeMashhad University of Medical SciencesMashhadIran
| | - Mahmoud Mahmoudi
- Immunology Research CenterMashhad University of Medical SciencesMashhadIran
- Immunology Department, Faculty of MedicineMashhad University of Medical SciencesMashhadIran
| | - Houshang Rafatpanah
- Division of Inflammation and Inflammatory Diseases, Immunology Research CentreMashhad University of Medical SciencesMashhadIran
| | - Zahra Rezaieyazdi
- Rheumatic Diseases Research CenterMashhad University of Medical SciencesMashhadIran
| | - Maryam Ahmadi‐Khorram
- Department of Nutrition, Faculty of MedicineMashhad University of Medical SciencesMashhadIran
| | - Zahra Javanmardi
- Immunology Research CenterMashhad University of Medical SciencesMashhadIran
- Immunology Department, Faculty of MedicineMashhad University of Medical SciencesMashhadIran
- Student Research CommitteeMashhad University of Medical SciencesMashhadIran
| | | | - Seyed‐Alireza Esmaeili
- Immunology Research CenterMashhad University of Medical SciencesMashhadIran
- Immunology Department, Faculty of MedicineMashhad University of Medical SciencesMashhadIran
| |
Collapse
|
7
|
Wang C, Zhang H, Wang X, Ma X, Zhang J, Zhang Y. Targeting BRD4 to attenuate RANKL-induced osteoclast activation and bone erosion in rheumatoid arthritis. Mol Cell Biochem 2025; 480:1669-1684. [PMID: 39110281 DOI: 10.1007/s11010-024-05073-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 07/12/2024] [Indexed: 02/21/2025]
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease that can cause destruction of cartilage and bone's extracellular matrix. Bromodomain 4 (BRD4), as a transcriptional and epigenetic regulator, plays a key role in cancer and inflammatory diseases. While, the role of BRD4 in bone destruction in RA has not been extensively reported. Our study aimed to investigate the effect of BRD4 on the bone destruction in RA and, further, its mechanism in the pathogenesis of the disease. In this study, receiving approval from the Ethical Committee of the Affiliated Hospital of Qingdao University, we evaluated synovial tissues from patients with RA and OA for BRD4 expression through advanced techniques such as immunohistochemistry, quantitative real-time PCR (qRT-PCR), and Western blotting. We employed a collagen-induced arthritis (CIA) mouse model to assess the therapeutic efficacy of the BRD4 inhibitor JQ1 on disease progression and bone destruction, supported by detailed clinical scoring and histological examinations. Further, in vitro osteoclastogenesis assays using RAW264.7 macrophages, facilitated by TRAP staining and resorption pit assays, provided insights into the mechanistic effects of JQ1 on osteoclast function. Statistical analysis was rigorously conducted using SPSS, applying Kruskal-Wallis, one-way ANOVA, and Student's t-tests to validate the data. In our study, we found that BRD4 expression significantly increased in the synovial tissues of RA patients and the ankle joints of CIA mice, with JQ1, a BRD4 inhibitor, effectively reducing inflammation, arthritis severity (p < 0.05), and bone erosion. Treatment with JQ1 not only improved bone mass and structural integrity in CIA mice but also downregulated osteoclast-related gene expression and the RANKL/RANK signaling pathway, indicating a suppression of osteolysis. Furthermore, in vitro assays demonstrated that JQ1 markedly inhibited osteoclast differentiation and function, underscoring the pivotal role of BRD4 in osteoclastogenesis and its potential as a target for therapeutic intervention in RA-induced bone destruction. Our study concludes that targeting BRD4 with the inhibitor JQ1 significantly mitigates inflammation and bone destruction in rheumatoid arthritis, suggesting that inhibition of BRD4 may be a potential therapeutic strategy for the treatment of bone destruction in RA.
Collapse
Affiliation(s)
- Changyao Wang
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Han Zhang
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Xiangyu Wang
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Xiao Ma
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Jian Zhang
- Department of Traumatology, Fushan People's Hospital, Yantai, 265500, China.
| | - Yongtao Zhang
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China.
| |
Collapse
|
8
|
Ezdoglian A, Tsang-A-Sjoe M, Khodadust F, Burchell G, Jansen G, de Gruijl T, Labots M, van der Laken CJ. Monocyte-related markers as predictors of immune checkpoint inhibitor efficacy and immune-related adverse events: a systematic review and meta-analysis. Cancer Metastasis Rev 2025; 44:35. [PMID: 39982537 PMCID: PMC11845441 DOI: 10.1007/s10555-025-10246-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 01/22/2025] [Indexed: 02/22/2025]
Abstract
The efficacy and off-target effects of immune checkpoint inhibitors (ICI) in cancer treatment vary among patients. Monocytes likely contribute to this heterogeneous response due to their crucial role in immune homeostasis. We conducted a systematic review and meta-analysis to evaluate the impact of monocytes on ICI efficacy and immune-related adverse events (irAEs) in patients with cancer. We systematically searched PubMed, Web of Science, and Embase for clinical studies from January 2000 to December 2023. Articles were included if they mentioned cancer, ICI, monocytes, or any monocyte-related terminology. Animal studies and studies where ICIs were combined with other biologics were excluded, except for studies where two ICIs were used. This systematic review was registered with PROSPERO (CRD42023396297) prior to data extraction and analysis. Monocyte-related markers, such as absolute monocyte count (AMC), monocyte/lymphocyte ratio (MLR), specific monocyte subpopulations, and m-MDSCs were assessed in relation to ICI efficacy and safety. Bayesian meta-analysis was conducted for AMC and MLR. The risk of bias assessment was done using the Cochrane-ROBINS-I tool. Out of 5787 studies identified in our search, 155 eligible studies report peripheral blood monocyte-related markers as predictors of response to ICI, and 32 of these studies describe irAEs. Overall, based on 63 studies, a high MLR was a prognostic biomarker for short progression-free survival (PFS) and overall survival (OS) hazard ratio (HR): 1.5 (95% CI: 1.21-1.88) and 1.52 (95% CI:1.13-2.08), respectively. The increased percentage of classical monocytes was an unfavorable predictor of survival, while low baseline rates of monocytic myeloid-derived suppressor cells (m-MDSCs) were favorable. Elevated intermediate monocyte frequencies were associated but not significantly correlated with the development of irAEs. Baseline monocyte phenotyping may serve as a composite biomarker of response to ICI; however, more data is needed regarding irAEs. Monocyte-related variables may aid in risk assessment and treatment decision strategies for patients receiving ICI in terms of both efficacy and safety.
Collapse
Affiliation(s)
- Aiarpi Ezdoglian
- Department of Rheumatology and Clinical Immunology, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Michel Tsang-A-Sjoe
- Department of Rheumatology and Clinical Immunology, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Fatemeh Khodadust
- Department of Rheumatology and Clinical Immunology, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - George Burchell
- Amsterdam University Medical Library, Amsterdam, The Netherlands
| | - Gerrit Jansen
- Department of Rheumatology and Clinical Immunology, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Tanja de Gruijl
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam University Medical Center, Location Vrije Universiteit, Amsterdam, The Netherlands
| | - Mariette Labots
- Department of Medical Oncology, Amsterdam University Medical Center, Location Vrije Universiteit, Amsterdam, The Netherlands
| | - Conny J van der Laken
- Department of Rheumatology and Clinical Immunology, Amsterdam University Medical Center, Amsterdam, The Netherlands.
| |
Collapse
|
9
|
Tian X, Chen J, Hong Y, Cao Y, Xiao J, Zhu Y. Exploring the Role of Macrophages and Their Associated Structures in Rheumatoid Arthritis. J Innate Immun 2025; 17:95-111. [PMID: 39938504 PMCID: PMC11820663 DOI: 10.1159/000543444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Accepted: 01/02/2025] [Indexed: 02/14/2025] Open
Abstract
BACKGROUND Rheumatoid arthritis (RA) is a chronic, invasive autoimmune disease characterized by symmetrical polyarthritis involving synovial inflammation. Epidemiological studies indicate that the incidence of RA continues to rise, yet the pathogenesis of this disease remains not fully understood. A significant infiltration of macrophages is observed in the synovium of RA patients. It can be inferred that macrophages likely play a crucial role in the onset and progression of RA. SUMMARY This review aims to summarize the research progress on the mechanisms by which macrophages and their associated structures contribute to RA, as well as potential therapeutic approaches, aiming to provide new insights into the study of RA pathogenesis and its clinical treatment. KEY MESSAGES During the course of RA, besides the inherent roles of macrophages, these cells respond to microenvironmental changes such as pathogen invasion or tissue damage by undergoing polarization, pyroptosis, or forming macrophage extracellular traps (METs), all of which influence inflammatory responses and immune homeostasis, thereby mediating the occurrence and development of RA. Additionally, macrophages secrete exosomes, which participate in intercellular communication and signal transduction processes, thus contributing to the progression of RA. Therefore, it is critical to elucidate how macrophages and their related structures function in RA. BACKGROUND Rheumatoid arthritis (RA) is a chronic, invasive autoimmune disease characterized by symmetrical polyarthritis involving synovial inflammation. Epidemiological studies indicate that the incidence of RA continues to rise, yet the pathogenesis of this disease remains not fully understood. A significant infiltration of macrophages is observed in the synovium of RA patients. It can be inferred that macrophages likely play a crucial role in the onset and progression of RA. SUMMARY This review aims to summarize the research progress on the mechanisms by which macrophages and their associated structures contribute to RA, as well as potential therapeutic approaches, aiming to provide new insights into the study of RA pathogenesis and its clinical treatment. KEY MESSAGES During the course of RA, besides the inherent roles of macrophages, these cells respond to microenvironmental changes such as pathogen invasion or tissue damage by undergoing polarization, pyroptosis, or forming macrophage extracellular traps (METs), all of which influence inflammatory responses and immune homeostasis, thereby mediating the occurrence and development of RA. Additionally, macrophages secrete exosomes, which participate in intercellular communication and signal transduction processes, thus contributing to the progression of RA. Therefore, it is critical to elucidate how macrophages and their related structures function in RA.
Collapse
Affiliation(s)
- Xin Tian
- The Geriatrics, Graduate School of Anhui University of Chinese Medicine, Hefei, China
| | - Jingjing Chen
- The Geriatrics, Graduate School of Anhui University of Chinese Medicine, Hefei, China
| | - Yujie Hong
- The Geriatrics, Graduate School of Anhui University of Chinese Medicine, Hefei, China
| | - Yang Cao
- The Geriatrics, Graduate School of Anhui University of Chinese Medicine, Hefei, China
| | - Jing Xiao
- The Geriatrics, Graduate School of Anhui University of Chinese Medicine, Hefei, China
| | - Yan Zhu
- The Geriatrics, Graduate School of Anhui University of Chinese Medicine, Hefei, China
- The Geriatrics, The Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| |
Collapse
|
10
|
Huang L, Shi J, Li H, Lin Q. Bidirectional Mendelian randomization reveals causal immune cell phenotypes in rheumatoid arthritis. Medicine (Baltimore) 2025; 104:e41512. [PMID: 39928790 PMCID: PMC11813058 DOI: 10.1097/md.0000000000041512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/23/2025] [Accepted: 01/24/2025] [Indexed: 02/12/2025] Open
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by persistent inflammation in synovial joints and influenced by genetic and environmental factors. The immune system, comprising various cells that either exacerbate or reduce inflammation, plays a central role in RA pathogenesis. Despite extensive research, the causal relationships between immune cell phenotypes and RA remain unclear. We employed a two-sample Mendelian randomization (MR) approach to investigate the causal associations between 731 immune cell phenotypes and RA. Genetic variants, carefully selected based on rigorous criteria, served as instrumental variables to ensure analytical validity. Data on RA were derived from the FinnGen database, whereas immune cell phenotype data were obtained from the genome-wide association studies catalog. We employed 5 MR methods, including inverse variance weighted and MR Egger, to ensure robust causal inference. We assessed for pleiotropy and heterogeneity and adjusted findings using the False Discovery Rate. After False Discovery Rate adjustment (threshold < 0.05), inverse variance weighted analysis revealed potential causal relationships between 4 immune cell types and RA: CD62L- dendritic cells %dendritic cells (P = 3.88E-05; 95% confidence interval [CI] = 1.056), CD19 on IgD+ CD38- naive cells (P = 1.75E-04; 95% CI = 0.969), CD45RA on TD CD8br (P = 5.59E-04; 95% CI = 0.919), and HLA DR on CD33- HLA DR+ (P = 8.13E-05; 95% CI = 1.422). In reverse Mendelian studies, specific immune cell phenotypes were found to be associated with RA risk and progression: the percentage of memory B cells among lymphocytes (P = 2.74E-04; 95% CI = 0.861), IgD+ CD24+ cells among lymphocytes (P = 6.93E-04; 95% CI = 0.867), CD4+ CD8dim cells among lymphocytes (P = 2.92E-04; 95% CI = 0.802), CD4+ CD8dim cells among leukocytes (P = 4.37E-04; 95% CI = 0.814), and CD24 expression on IgD+CD24+ cells (P = 1.05E-04; 95% CI = 0.857). These results identify immune cell phenotypes closely linked to RA susceptibility and progression. The findings suggest that specific immune cell phenotypes are not only influenced by RA but may also contribute to its development and progression. These results offer new insights into the immunological underpinnings of RA and highlight potential targets for therapeutic intervention. Future research should focus on validating these causal relationships in diverse populations and exploring the molecular mechanisms involved.
Collapse
Affiliation(s)
- Luofei Huang
- Liuzhou Municipal Liutie Central Hospital, Liuzhou, Guangxi, China
| | - Jian Shi
- Department of Internal Medicine, The People’s Hospital of Laibin, Laibin, Guangxi, China
| | - Han Li
- Department of Internal Medicine, Liuzhou People’s Hospital, Liuzhou, Guangxi, China
| | - Quanzhi Lin
- Department of Internal Medicine, The First Affiliated Hospital of Guangxi University of Science and Technology, Liuzhou, Guangxi, China
| |
Collapse
|
11
|
Yamamura R, Kinoshita M, Yasumizu Y, Yata T, Kihara K, Motooka D, Shiraishi N, Sugiyama Y, Beppu S, Murata H, Koizumi N, Sano I, Koda T, Okuno T, Mochizuki H. Transcriptome signature in the blood of neuromyelitis optica spectrum disorder under steroid tapering. Front Immunol 2025; 16:1508977. [PMID: 39963140 PMCID: PMC11830620 DOI: 10.3389/fimmu.2025.1508977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 01/16/2025] [Indexed: 02/20/2025] Open
Abstract
Background The advent of biologics has significantly transformed treatment strategies for neuromyelitis optica spectrum disorder (NMOSD). However, there are no biomarkers that predict relapses associated with steroid tapering; therefore, it is critical to identify potential indicators of disease activity. In this study, we collected peripheral blood mononuclear cells (PBMCs) from NMOSD patients during steroid tapering and performed bulk RNA sequencing to analyze changes in immune dynamics caused by steroid reduction. Methods PBMCs were collected at 3-5 timepoints from 10 NMOSD patients at our hospital (including one relapse case), and bulk RNA sequencing was performed. All patients were positive for anti-AQP4 antibodies and had no history of biologic use. Results In one relapsed patient, gene groups with decreased expression at relapse were observed predominantly in monocytes, with upregulation in anti-inflammatory pathways such as IL-10, while the upregulated genes were related to interferon signaling. Moreover, after steroid tapering, in non-relapsed patients, genes with increased expression were enriched in inflammatory pathways, represented by interferon signaling, while genes with decreased expression were enriched in pathways related to IL-10 and glucocorticoid receptors. Weighted gene co-expression network analysis identified modules that correlated with steroid dosage, and the modules inversely correlated with steroid dosage were enriched in monocytes, with marked immune signature of interferon pathway. Conclusion This study identified peripheral blood transcriptome signatures that could lead to the identification of clinically relevant NMOSD disease activity biomarkers, and further highlights the pivotal role of interferon and IL-10 signaling in NMOSD.
Collapse
Affiliation(s)
- Ryohei Yamamura
- Department of Neurology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Makoto Kinoshita
- Department of Neurology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Yoshiaki Yasumizu
- Department of Neurology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- Department of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Osaka, Japan
| | - Tomohiro Yata
- Department of Neurology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Keigo Kihara
- Department of Neurology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Daisuke Motooka
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Osaka, Japan
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Naoyuki Shiraishi
- Department of Neurology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Yasuko Sugiyama
- Department of Neurology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Shohei Beppu
- Department of Neurology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Hisashi Murata
- Department of Neurology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Naoshi Koizumi
- Department of Neurology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Itsuki Sano
- Department of Neurology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Toru Koda
- Department of Neurology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Tatsusada Okuno
- Department of Neurology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Hideki Mochizuki
- Department of Neurology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
12
|
Wysocki T, Wajda A, Kmiołek T, Wroński J, Roszkowska M, Olesińska M, Paradowska-Gorycka A. NADPH oxidase expression profile and PBMC immunophenotypic changes in anti-TNF-treated rheumatoid arthritis patients. Clin Immunol 2025; 271:110414. [PMID: 39643026 DOI: 10.1016/j.clim.2024.110414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/27/2024] [Accepted: 11/29/2024] [Indexed: 12/09/2024]
Abstract
The aim of this research was to prospectively evaluate the impact of NOX2 gene expression profile (including NCF1, NCF2 and NCF4 genes) in peripheral blood mononuclear cells (PBMCs) on immune signatures, clinical characteristics and responsiveness to anti-TNF treatment in RA patients. Blood specimens were collected from 31 rheumatoid arthritis (RA) patients and 25 healthy controls, and 16 RA patients were followed at two timepoints during anti-TNF treatment. mRNA expression levels of selected genes and immunoregulatory cytokines concentrations were determined. We observed the significant upregulation of NCF4 and CD14 expression in RA group. The mRNA levels of NCF1 and CD14 positively correlated both in groups of RA patients and healthy controls. NOX2 gene expression profile was not associated with anti-TNF responsiveness, nor with RA clinical features. TNFα inhibition has not influenced NOX2 expression either. Notably, this study indicate the novel links between expression levels of NCF1 and monocyte differentiation antigen CD14.
Collapse
Affiliation(s)
- Tomasz Wysocki
- National Institute of Geriatrics, Rheumatology and Rehabilitation, Warsaw, Poland.
| | - Anna Wajda
- National Institute of Geriatrics, Rheumatology and Rehabilitation, Warsaw, Poland
| | - Tomasz Kmiołek
- National Institute of Geriatrics, Rheumatology and Rehabilitation, Warsaw, Poland
| | - Jakub Wroński
- National Institute of Geriatrics, Rheumatology and Rehabilitation, Warsaw, Poland
| | - Magdalena Roszkowska
- National Institute of Geriatrics, Rheumatology and Rehabilitation, Warsaw, Poland
| | - Marzena Olesińska
- National Institute of Geriatrics, Rheumatology and Rehabilitation, Warsaw, Poland
| | | |
Collapse
|
13
|
Yang J, He B, Dang L, Liu J, Liu G, Zhao Y, Yu P, Wang Q, Wang L, Xin W. Celastrol Regulates the Hsp90-NLRP3 Interaction to Alleviate Rheumatoid Arthritis. Inflammation 2025; 48:346-360. [PMID: 38874810 DOI: 10.1007/s10753-024-02060-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/08/2024] [Accepted: 05/21/2024] [Indexed: 06/15/2024]
Abstract
Previous studies have verified that celastrol (Cel) protects against rheumatoid arthritis (RA) by inhibiting the NLRP3 inflammasome signaling pathway, but the molecular mechanism by which Cel regulates NLRP3 has not been clarified. This study explored the specific mechanisms of Cel in vitro and in vivo. A type II collagen-induced arthritis (CIA) mouse model was used to study the antiarthritic activity of Cel; analysis of paw swelling, determination of the arthritis score, and pathological examinations were performed. The antiproliferative and antimigratory effects of Cel on TNF-α induced fibroblast-like synoviocytes (FLSs) were tested. Proinflammatory factors were evaluated using enzyme-linked immunosorbent assay (ELISA). The expression of NF-κB/NLRP3 pathway components was determined by western blotting and immunofluorescence staining in vitro and in vivo. The putative binding sites between Cel and Hsp90 were predicted through molecular docking, and the binding interactions were determined using the Octet RED96 system and coimmunoprecipitation. Cel decreased arthritis severity and reduced TNF-α-induced FLSs migration and proliferation. Additionally, Cel inhibited NF-κB/NLRP3 signaling pathway activation, reactive oxygen species (ROS) production, and proinflammatory cytokine secretion. Furthermore, Cel interacted directly with Hsp90 and blocked the interaction between Hsp90 and NLRP3 in FLSs. Our findings revealed that Cel regulates NLRP3 inflammasome signaling pathways both in vivo and in vitro. These effects are induced through FLSs inhibition of the proliferation and migration by blocking the interaction between Hsp90 and NLRP3.
Collapse
Affiliation(s)
- Junjie Yang
- Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, School of Pharmacy, Binzhou Medical University, Yantai, 264003, China
| | - Biyao He
- Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, School of Pharmacy, Binzhou Medical University, Yantai, 264003, China
| | - Longjiao Dang
- Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, School of Pharmacy, Binzhou Medical University, Yantai, 264003, China
| | - Jiayu Liu
- Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, School of Pharmacy, Binzhou Medical University, Yantai, 264003, China
| | - Guohao Liu
- Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, School of Pharmacy, Binzhou Medical University, Yantai, 264003, China
| | - Yuwei Zhao
- Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, School of Pharmacy, Binzhou Medical University, Yantai, 264003, China
| | - Pengfei Yu
- Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, School of Pharmacy, Binzhou Medical University, Yantai, 264003, China
| | - Qiaoyun Wang
- Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, School of Pharmacy, Binzhou Medical University, Yantai, 264003, China
| | - Lei Wang
- Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, School of Pharmacy, Binzhou Medical University, Yantai, 264003, China.
| | - Wenyu Xin
- Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, School of Pharmacy, Binzhou Medical University, Yantai, 264003, China.
| |
Collapse
|
14
|
Sriram A, Ithape H, Singh PK. Deep-insights: Nanoengineered gel-based localized drug delivery for arthritis management. Asian J Pharm Sci 2025; 20:101012. [PMID: 39995751 PMCID: PMC11848107 DOI: 10.1016/j.ajps.2024.101012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 05/15/2024] [Accepted: 07/03/2024] [Indexed: 02/26/2025] Open
Abstract
Arthritis is an inflammatory joint disorder that progressively impairs function and diminishes quality of life. Conventional therapies often prove ineffective, as oral administration lacks specificity, resulting in off-target side effects like hepatotoxicity and GIT-related issues. Intravenous administration causes systemic side effects. The characteristic joint-localized symptoms such as pain, stiffness, and inflammation make the localized drug delivery suitable for managing arthritis. Topical/transdermal/intra-articular routes have become viable options for drug delivery in treating arthritis. However, challenges with those localized drug delivery routes include skin barrier and cartilage impermeability. Additionally, conventional intra-articular drug delivery also leads to rapid clearance of drugs from the synovial joint tissue. To circumvent these limitations, researchers have developed nanocarriers that enhance drug permeability through skin and cartilage, influencing localized action. Gel-based nanoengineered therapy employs a gel matrix to incorporate the drug-encapsulated nanocarriers. This approach combines the benefits of gels and nanocarriers to enhance therapeutic effects and improve patient compliance. This review emphasizes deep insights into drug delivery using diverse gel-based novel nanocarriers, exploring their various applications embedded in hyaluronic acid (biopolymer)-based gels, carbopol-based gels, and others. Furthermore, this review discusses the influence of nanocarrier pharmacokinetics on the localization and therapeutic manipulation of macrophages mediated by nanocarriers. The ELVIS (extravasation through leaky vasculature and inflammatory cell-mediated sequestration) effect associated with arthritis is advantageous in drug delivery. Simply put, the ELVIS effect refers to the extravasation of nanocarriers through leaky vasculatures, which finally results in the accumulation of nanocarriers in the joint cavity.
Collapse
Affiliation(s)
| | | | - Pankaj Kumar Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Telangana 500037, India
| |
Collapse
|
15
|
Liu H, Li Q, Chen Y, Dong M, Liu H, Zhang J, Yang L, Yin G, Xie Q. Suberosin attenuates rheumatoid arthritis by repolarizing macrophages and inhibiting synovitis via the JAK/STAT signaling pathway. Arthritis Res Ther 2025; 27:12. [PMID: 39838477 PMCID: PMC11748358 DOI: 10.1186/s13075-025-03481-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 01/12/2025] [Indexed: 01/23/2025] Open
Abstract
BACKGROUND Rheumatoid arthritis (RA) is a systemic disease that primarily manifests as chronic synovitis of the symmetric small joints. Despite the availability of various targeted drugs for RA, these treatments are limited by adverse reactions, warranting new treatment approaches. Suberosin (SBR), isolated from Plumbago zeylanica-a medicinal plant traditionally used to treat RA in Asia-possesses notable biological activities. This study aimed to investigate the effects and potential underlying pathways of SBR on RA. METHODS Tumor necrosis factor-alpha (TNF-α) induced inflammation in RA-derived fibroblast-like synoviocytes (RA-FLS), and the expression of proinflammatory mediators was assessed using q-RT PCR and ELISA after treatment with various SBR concentrations. Bone marrow-derived macrophages (BMDMs) were induced to differentiate into M1 and M2 macrophages, followed by treatment with various SBR concentrations and macrophage polarization assessment. Low-dose (0.5 mg/kg/d) and high-dose (2 mg/kg/d) SBR regimens were administered to a collagen-induced arthritis (CIA) mouse model for 21 days, and the anti-arthritic effects of SBR were evaluated. Network pharmacology and molecular docking analyses were used to predict the anti-arthritic targets of SBR. The effect of SBR on the Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway was evaluated. RESULTS SBR suppressed macrophage polarization toward the M1 phenotype while enhancing their polarization toward the M2 phenotype. SBR reduced the levels of proinflammatory mediators in TNF-α-induced RA-FLS. Mechanistically, SBR inhibited the phosphorylation of the JAK1/STAT3 signaling pathway in RA-FLS and M1 macrophages and promoted the phosphorylation of the JAK1/STAT6 pathway in M2 macrophages, enhancing M2 polarization. In vivo, prophylactic treatment of low-dose SBR reduced M1 macrophage infiltration into synovial tissue, increased the proportion of M2 macrophages, and decreased the expression of inflammatory mediators in the serum and synovial tissue, alleviating synovial inflammation. SBR significantly alleviated arthritis in CIA mice through macrophage repolarization and inhibition of inflammation. CONCLUSION SBR significantly reduced clinical symptoms, joint pathological damage, and expression inflammatory cytokine expression in CIA mice. SBR exhibited anti-arthritic effects via the JAK1/STAT3 and JAK1/STAT6 signaling pathways, inhibiting synovial tissue inflammation and M1 macrophage polarization while promoting M2 macrophage polarization. Therefore, SBR may be an effective candidate for RA treatment.
Collapse
Affiliation(s)
- Huan Liu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qianwei Li
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yuehong Chen
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Min Dong
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hongjiang Liu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jiaqian Zhang
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Leiyi Yang
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Geng Yin
- Department of General Practice, West China Hospital, General Practice Medical Center, Sichuan University, Chengdu, 610041, China.
| | - Qibing Xie
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
16
|
Liu J, Guo Q, Liu G, Wang W, Jin X, Hao B, Lei B. Immune pathogenic response landscape of acute posterior multifocal placoid pigment epitheliopathy revealed by scRNA sequencing. Genes Immun 2025:10.1038/s41435-024-00316-0. [PMID: 39774261 DOI: 10.1038/s41435-024-00316-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 12/10/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025]
Abstract
Acute posterior multifocal placoid pigment epitheliopathy (APMPPE) is an exceptionally rare inflammatory disorder affecting choroid and retinal pigment epithelial (RPE) cells. Although recent studies suggest an immune-driven nature, the underlying etiology of APMPPE remains elusive. In this study, we conducted a comprehensive investigation on the peripheral blood mononuclear cells (PBMCs) profile of an APMPPE patient using single-cell RNA sequencing. Our analysis revealed striking transcriptional alterations in monocytes within the PBMCs, identifying five distinct subpopulations: S100A12, CD16, pro-inflammatory, megakaryocyte-like, and NK-like monocyte subsets. Employing pseudotime inference, we observed a shift in APMPPE monocytes towards differentiation into inflammation-associated pro-inflammatory monocytes and a CD16 monocyte trajectory. Furthermore, we identified IFITM3 as a key player in the immune response driving the pathogenesis of APMPPE. Notably, two disease-relevant subgroups of monocytes, pro-inflammatory and CD16 monocytes, were implicated in APMPPE. CD16 monocytes, in particular, were involved in melanogenesis, suggesting that the abnormal expression of melanin in monocytes might result from autoimmune responses against pigment-enriched RPE cells. This study provided a comprehensive view of immune landscape in APMPPE, shedding light on the previously unrecognized contributions of pro-inflammatory and CD16 monocytes to this autoimmune condition.
Collapse
Affiliation(s)
- Jingyang Liu
- Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan, China
- Eye Institute, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan, China
| | - Qingge Guo
- Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan, China
- Eye Institute, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan, China
| | - Guangming Liu
- Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan, China
- Eye Institute, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan, China
| | - Weiping Wang
- Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan, China
- Eye Institute, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan, China
| | - Xiuxiu Jin
- Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan, China.
- Eye Institute, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan, China.
| | - Bingtao Hao
- Eye Institute, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan, China.
- Department of Immunology, School of Basic Medical, Zhengzhou University, Zhengzhou, Henan, China.
| | - Bo Lei
- Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan, China.
- Eye Institute, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan, China.
| |
Collapse
|
17
|
Scheffler JM, Drevinge C, Lindholm C, Gjertsson I, Lend K, Lund Hetland M, Østergaard M, Uhlig T, Schrumpf Heiberg M, Haavardsholm EA, Nurmohamed MT, Lampa J, Sokka‐Isler T, Nordström D, Hørslev‐Petersen K, Gudbjornsson B, Gröndal G, van Vollenhoven R, Carlsten H, Lorentzon M, Hultgård Ekwall A, Rudin A, Islander U. Circulating Baseline CXCR3 +Th2 and Th17 Cell Proportions Correlate With Trabecular Bone Loss After 48 Weeks of Biological Treatment in Early Rheumatoid Arthritis. ACR Open Rheumatol 2025; 7:e11742. [PMID: 39411912 PMCID: PMC11667770 DOI: 10.1002/acr2.11742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 08/14/2024] [Accepted: 08/19/2024] [Indexed: 12/25/2024] Open
Abstract
OBJECTIVE The high prevalence of osteoporosis in rheumatoid arthritis (RA) is due to inflammation that stimulates differentiation of osteoclasts, a process involving circulating monocytes and T cell-derived factors. The aim of this study was to evaluate relations between circulating monocytes, T cell subsets, and changes in bone characteristics before and after treatment with biological disease-modifying antirheumatic drugs (bDMARDs) in RA. METHODS Thirty patients with untreated early RA who met the American College of Rheumatology/EULAR 2010 criteria were included. Data were collected before and 48 weeks after treatment with methotrexate (MTX) together with one of three bDMARDs (abatacept, tocilizumab, or certolizumab pegol). Disease activity was measured using the Clinical Disease Activity Index, swollen or tender joint counts, C-reactive protein levels, and erythrocyte sedimentation rates. Proportions of monocyte and CD4+ T cell subsets in blood samples were analyzed by flow cytometry. Bone densitometry was performed using high-resolution peripheral quantitative computed tomography (HR-pQCT). RESULTS HR-pQCT revealed an overall decrease in cortical (P = 0.009) and trabecular (P = 0.034) bone mineral density, although a subset of patients showed no bone loss after 48 weeks of treatment. The overall bone loss was not associated with age, body mass index, sex, intraarticular glucocorticoid injections, or baseline disease activity. Loss of trabecular bone volume fraction correlated with high proportions of circulating CXCR3+Th2 cells (r = -0.38, P = 0.04) and CXCR3+Th17 cells (r = -0.36, P = 0.05) at baseline. Similarly, no loss of trabecular bone volume fraction correlated with high proportions of regulatory T cells (r = 0.4, P = 0.03) at baseline. However, the associations were not significant when corrected for confounders and multiple testing. CONCLUSION MTX together with bDMARDs efficiently reduce disease activity but only prevent bone loss in a subset of patients with RA after 48 weeks of treatment. The correlations of circulating baseline T helper cell and regulatory T cell populations with trabecular bone changes suggest a potential novel role for these cells in systemic bone homeostasis during early RA.
Collapse
Affiliation(s)
| | | | - Catharina Lindholm
- University of Gothenburg and Sahlgrenska University HospitalGothenburgSweden
| | - Inger Gjertsson
- University of Gothenburg and Sahlgrenska University HospitalGothenburgSweden
| | - Kristina Lend
- Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden, and Amsterdam University Medical CenterAmsterdamthe Netherlands
| | - Merete Lund Hetland
- Rigshospitalet, Glostrup, Denmark, and University of CopenhagenCopenhagenDenmark
| | - Mikkel Østergaard
- Rigshospitalet, Glostrup, Denmark, and University of CopenhagenCopenhagenDenmark
| | | | | | | | - Michael T. Nurmohamed
- Amsterdam Rheumatology and Immunology Center, Reade, the Netherlands, and Amsterdam University Medical CenterAmsterdamthe Netherlands
| | - Jon Lampa
- Karolinska Institute, Karolinska University HospitalStockholmSweden
| | | | - Dan Nordström
- Helsinki University and University HospitalHelsinkiFinland
| | - Kim Hørslev‐Petersen
- Danish Hospital for Rheumatic Diseases, University Hospital of Southern Denmark, Sønderborg, Denmark, and University of Southern DenmarkOdenseDenmark
| | - Bjorn Gudbjornsson
- Landspitali National University Hospital of Iceland and University of IcelandReykjavikIceland
| | - Gerdur Gröndal
- Landspitali National University Hospital of Iceland and University of IcelandReykjavikIceland
| | - Ronald van Vollenhoven
- Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden, and Amsterdam University Medical CenterAmsterdamthe Netherlands
| | - Hans Carlsten
- University of Gothenburg and Sahlgrenska University HospitalGothenburgSweden
| | - Mattias Lorentzon
- University of Gothenburg, Gothenburg, Sweden and Australian Catholic UniversityMelbourneAustralia
| | | | - Anna Rudin
- University of Gothenburg and Sahlgrenska University HospitalGothenburgSweden
| | | |
Collapse
|
18
|
Leng D, Chimedtseren C, Wang T, Su R, Bao S, Mo X, Ge X, Cha S, Xi R, Wu S, Sa R, Zhao J, Na R, Molor-Erdene P. Proteomics analysis of body fluid exosomes of rheumatoid arthritis patients underwent oxhorn cupping therapy. PLoS One 2024; 19:e0311526. [PMID: 39666600 PMCID: PMC11637270 DOI: 10.1371/journal.pone.0311526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 09/10/2024] [Indexed: 12/14/2024] Open
Abstract
OBJECTIVE The present study was undertaken to understand the multitarget mechanisms of oxhorn cupping therapy (OHCT) in treating rheumatoid arthritis by proteomic analysis. METHODS Thirty rheumatoid arthritis patients underwent OHCT and liquid (body fluid) accumulated in the cupping vessels was collected. Exosomes from the body fluid were isolated and characterized by transmission electron microscope (TEM). Particle size analysis, fluorescent labeling, and flow cytometry detection were also performed. Label-free quantitative proteomics analysis was used to detect differentially expressed proteins (DEPs). The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment, gene ontology (GO) enrichment, clusters of orthologous groups (COG), and protein-protein interaction (PPI) network were used to perform bioinformatics analysis of DEPs. Enzyme-linked immunosorbent assay (ELISA) was used to detect the key targets regulated by OHCT. RESULTS According to TEM images, the average size of exosomes in body fluid of RA patients underwent OHCT was 76.13 nm (5.27E+10 /mL). The positive rates of CD9, CD63, and CD8 were detected on the surface of body fluid exosomes. A total of 300 DEPs (58 up-regulated and 242 down-regulated) were identified between the pre-treatment and post-treatment stages. DEPs were related mostly to protein binding, focal adhesion, extracellular region, post-translational modification and signal transduction. KEGG pathway analysis showed a significant enrichment of DEPs in PI3K-Akt pathway and focal adhesion. Ten DEGs (ITGA5, ITGA4, ENG, MMP14, SERPINH1, THY1, TAGLN, ITGA1, IGF1, and ITGB5) were considered target genes according to PPI network analysis. ELISA showed a slight decrease in the serum levels of CDK1, ITGA5, ITGB5, and CD44 during and after treatment. CONCLUSIONS Body fluid samples from RA patients treated with oxhorn cupping contain exosomes. OHCT might exert therapeutic effects in RA through multiple signaling pathways and multiple protein targets.
Collapse
Affiliation(s)
- Du Leng
- Xilinguole Meng Mongolian General Hospital, Xilinhaote, China
- Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
| | | | - Tegexibaiyin Wang
- Affiliated Hospital of Inner Mongolia Minzu University, Tongliao, China
| | - Ruga Su
- Xilinguole Meng Mongolian General Hospital, Xilinhaote, China
| | - Saren Bao
- Xilinguole Meng Mongolian General Hospital, Xilinhaote, China
| | - Xiele Mo
- Xilinguole Meng Mongolian General Hospital, Xilinhaote, China
| | - Xigesaiyin Ge
- Xilinguole Meng Mongolian General Hospital, Xilinhaote, China
| | - Suna Cha
- Xilinguole Meng Mongolian General Hospital, Xilinhaote, China
| | - Runtulaguer Xi
- Xilinguole Meng Mongolian General Hospital, Xilinhaote, China
| | - Saqila Wu
- Xilinguole Meng Mongolian General Hospital, Xilinhaote, China
| | - RenGaoWa Sa
- Xilinguole Meng Mongolian General Hospital, Xilinhaote, China
| | - Jiaqi Zhao
- Inner Mongolia Minzu University, Tongliao, China
| | - Ren Na
- Xilinguole Meng Mongolian General Hospital, Xilinhaote, China
| | | |
Collapse
|
19
|
Seta N. Role of Circulating Monocytes and Periodontopathic Bacteria in Pathophysiology of Rheumatoid Arthritis. THE BULLETIN OF TOKYO DENTAL COLLEGE 2024; 65:55-64. [PMID: 39551516 DOI: 10.2209/tdcpublication.2024-0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Rheumatoid arthritis (RA) is characterized by chronic inflammation in the synovial membrane, leading to matrix destruction of cartilage and bone. While various types of immune cell are found in inflamed synovium in RA, macrophages and osteoclasts also play important roles in joint destruction. Peripheral blood monocytes migrate to synovial tissue and differentiate into macrophages and osteoclasts in RA. Synovial macrophages are classified into two subsets: M1 (proinflammatory macrophages) or M2 (anti-proinflammatory macrophages). Human circulating monocytes have also been divided into three subsets according expression level of CD14 and CD16: CD14+CD16- (classical); CD14brightCD16+ (intermediate); or CD14dimCD16+ (non-classical). Many recent studies have investigated the involvement of each subset of synovial macrophages and circulating monocytes in the pathophysiology of RA. On the other hand, several distinct human cell populations originating in circulating monocytes have the capacity to differentiate into non-phagocytic cells, including endothelial cells and adipocytes. This review summarizes the role of circulating monocytes in the pathophysiology of RA as precursor cells of not only phagocytes, such as macrophages and osteoclasts, but also non-phagocytes, such as endothelial cells and adipocytes. Furthermore, there is a growing body of evidence showing a significantly positive association between periodontopathic bacterial infection and the pathophysiology of RA. Therefore, the role of periodontopathic bacteria in the development of RA is also discussed.
Collapse
Affiliation(s)
- Noriyuki Seta
- Department of Internal Medicine, Tokyo Dental College, Ichikawa General Hospital
| |
Collapse
|
20
|
Fatima M, Huang F, Fu X. Emerging influence of RNA post-transcriptional modifications in the synovial homeostasis of rheumatoid arthritis. Front Immunol 2024; 15:1494873. [PMID: 39717780 PMCID: PMC11663879 DOI: 10.3389/fimmu.2024.1494873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 11/19/2024] [Indexed: 12/25/2024] Open
Abstract
Rheumatoid arthritis (RA) is an important autoimmune disease that affects synovial tissues, accompanied by redness, pain, and swelling as main symptoms, which will limit the quality of daily life and even cause disability. Multiple coupling effects among the various cells in the synovial micro-environment modulate the poor progression and development of diseases. Respectively, synovium is the primary target tissue of inflammatory articular pathologies; synovial hyperplasia, and excessive accumulation of immune cells lead to joint remodelling and destroyed function. In general, epigenetic modification is an effective strategy to regulate dynamic balance of synovial homeostasis. Several typical post-transcriptional changes in cellular RNA can control the post-transcriptional modification of RNA structure. It can inhibit important processes, including degradation of RNA and nuclear translocation. Recent studies have found that RNA modification regulates the homeostasis of the synovial micro-environment and forms an intricate network in the "bone-cartilage-synovium" feedback loop. Aberrant regulation of RNA methylation triggers the pathological development of RA. Collectively, this review summarises recent advanced research about RNA modification in modulating synovial homeostasis by making close interaction among resident synovial macrophages, fibroblasts, T cells, and B cells, which could display the dramatic role of RNA modifications in RA pathophysiological process and perform the promising therapeutic target for treating RA.
Collapse
Affiliation(s)
- Madiha Fatima
- Department of Neurology, The Affiliated Yong-chuan Hospital of Chongqing Medical University, Chongqing, China
- State Key Laboratory of Neurobiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Fengmei Huang
- Medical Examination Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaohong Fu
- Central Laboratory of Yong-chuan Hospital, Chongqing Medical University, Chongqing, China
| |
Collapse
|
21
|
Chang JW, Tang CH. The role of macrophage polarization in rheumatoid arthritis and osteoarthritis: Pathogenesis and therapeutic strategies. Int Immunopharmacol 2024; 142:113056. [PMID: 39217882 DOI: 10.1016/j.intimp.2024.113056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/17/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024]
Abstract
Rheumatoid arthritis (RA) and osteoarthritis (OA) are common and debilitating joint disorders affecting millions of individuals worldwide. Despite their distinct pathological features, both conditions share a crucial role of macrophages in disease progression. Macrophages exhibit remarkable plasticity, polarizing into pro-inflammatory M1 or anti-inflammatory M2 phenotypes in response to environmental cues. An imbalance in macrophage polarization, particularly a shift towards the M1 phenotype, contributes to chronic inflammation and joint damage in RA and OA. This review explores the complex interplay between macrophages and various cell types, including T cells, B cells, synovial fibroblasts, osteoclasts, chondrocytes, and adipocytes, in the pathogenesis of these diseases. We discuss the current understanding of macrophage polarization in RA and OA, highlighting the molecular mechanisms involved. Furthermore, we provide an overview of potential therapeutic strategies targeting macrophage polarization, such as disease-modifying anti-rheumatic drugs, traditional Chinese medicine, nanomedicines, proteins, chemical compounds, and physical therapies. By elucidating the precise mechanisms governing macrophage polarization and its interactions with other cells in the joint microenvironment, researchers can identify novel therapeutic targets and develop targeted interventions to alleviate disease progression and improve patient outcomes in RA and OA.
Collapse
Affiliation(s)
- Jun-Way Chang
- The Ph.D. Program of Biotechnology and Biomedical Industry, China Medical University, Taichung, Taiwan
| | - Chih-Hsin Tang
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan; Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan; Chinese Medicine Research Center, China Medical University, Taichung, Taiwan; Department of Medical Laboratory Science and Biotechnology, College of Medical and Health Science, Asia University, Taichung, Taiwan; Department of Medical Research, China Medical University Hsinchu Hospital, Hsinchu, Taiwan.
| |
Collapse
|
22
|
Hernández-Cedeño M, Rodríguez-Ulloa A, Ramos Y, González LJ, Serrano-Díaz A, Zettl K, Wiśniewski JR, Martinez-Donato G, Guillen-Nieto G, Besada V, Domínguez-Horta MDC. Proteomic Profile Regulated by the Immunomodulatory Jusvinza Drug in Neutrophils Isolated from Rheumatoid Arthritis Patients. Biomedicines 2024; 12:2740. [PMID: 39767648 PMCID: PMC11727316 DOI: 10.3390/biomedicines12122740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/29/2024] [Accepted: 07/03/2024] [Indexed: 01/16/2025] Open
Abstract
Jusvinza is an immunomodulatory drug composed of an altered peptide ligand (APL) designed from a novel CD4+ T cell epitope of human heat shock protein 60 (HSP60), an autoantigen involved in the pathogenesis of rheumatoid arthritis (RA). The peptide induces regulatory T cells and decreases levels of TNF-α and IL-17; pre-clinical and phase I clinical studies support its use for the treatment of RA. This peptide was repositioned for the treatment of COVID-19 patients with signs of hyperinflammation. Neutrophils play a pathogenic role in both RA and severe forms of COVID-19. To add novel evidence about the mechanism of action of Jusvinza, the proteomic profile regulated by this peptide of neutrophils isolated from four RA patients was investigated using LC-MS/MS and bioinformatics analysis. A total of 149 proteins were found to be differentially modulated in neutrophils treated with Jusvinza. The proteomic profile regulated by Jusvinza is characterized by the presence of proteins related to RNA splicing, phagocytosis, endocytosis, and immune functions. In response to Jusvinza treatment, several proteins that regulate the NF-κB signaling pathway were differentially modulated, supporting the peptide's anti-inflammatory effect. Proteins related to metabolic pathways that supply ATP for cellular functions or lipid metabolites with immunoregulatory properties were also identified. Additionally, several structural components of neutrophil extracellular traps (NETs) were decreased in Jusvinza-treated cells, supporting its impairment of this biological process. Of note, these findings were validated by in vitro experiments which confirmed that Jusvinza decreased NET formation. Such results provide evidence of the molecular mechanism of action and support the therapeutic potentialities of Jusvinza to treat other diseases characterized by hyperinflammation besides RA and COVID-19.
Collapse
Affiliation(s)
- Mabel Hernández-Cedeño
- Autoimmunity Project, Department of Pharmaceuticals, Biomedical Research Division, Center for Genetic Engineering & Biotechnology (CIGB), Havana 10600, Cuba; (M.H.-C.); (A.S.-D.)
| | - Arielis Rodríguez-Ulloa
- Mass Spectrometry Laboratory, Proteomics Group, Department of System Biology, Biomedical Research Division, Center for Genetic Engineering & Biotechnology (CIGB), Havana 10600, Cuba; (Y.R.); (L.J.G.); (V.B.)
| | - Yassel Ramos
- Mass Spectrometry Laboratory, Proteomics Group, Department of System Biology, Biomedical Research Division, Center for Genetic Engineering & Biotechnology (CIGB), Havana 10600, Cuba; (Y.R.); (L.J.G.); (V.B.)
| | - Luis J. González
- Mass Spectrometry Laboratory, Proteomics Group, Department of System Biology, Biomedical Research Division, Center for Genetic Engineering & Biotechnology (CIGB), Havana 10600, Cuba; (Y.R.); (L.J.G.); (V.B.)
| | - Anabel Serrano-Díaz
- Autoimmunity Project, Department of Pharmaceuticals, Biomedical Research Division, Center for Genetic Engineering & Biotechnology (CIGB), Havana 10600, Cuba; (M.H.-C.); (A.S.-D.)
| | - Katharina Zettl
- Biochemical Proteomics Group, Department of Proteomics and Signal Transduction, Max-Planck Institute of Biochemistry, 82152 Munich, Germany; (K.Z.); (J.R.W.)
| | - Jacek R. Wiśniewski
- Biochemical Proteomics Group, Department of Proteomics and Signal Transduction, Max-Planck Institute of Biochemistry, 82152 Munich, Germany; (K.Z.); (J.R.W.)
| | - Gillian Martinez-Donato
- Biomedical Research Division, Center for Genetic Engineering & Biotechnology (CIGB), Havana 10600, Cuba; (G.M.-D.); (G.G.-N.)
| | - Gerardo Guillen-Nieto
- Biomedical Research Division, Center for Genetic Engineering & Biotechnology (CIGB), Havana 10600, Cuba; (G.M.-D.); (G.G.-N.)
| | - Vladimir Besada
- Mass Spectrometry Laboratory, Proteomics Group, Department of System Biology, Biomedical Research Division, Center for Genetic Engineering & Biotechnology (CIGB), Havana 10600, Cuba; (Y.R.); (L.J.G.); (V.B.)
| | - María del Carmen Domínguez-Horta
- Autoimmunity Project, Department of Pharmaceuticals, Biomedical Research Division, Center for Genetic Engineering & Biotechnology (CIGB), Havana 10600, Cuba; (M.H.-C.); (A.S.-D.)
- Latin American School of Medicine, Havana 19108, Cuba
| |
Collapse
|
23
|
Zhang S, Hou B, Xu A, Wen Y, Zhu X, Cai W, Han Z, Chen J, Nhamdriel T, Mi M, Qiu L, Sun H. Ganlu formula ethyl acetate extract (GLEE) blocked the development of experimental arthritis by inhibiting NLRP3 activation and reducing M1 type macrophage polarization. JOURNAL OF ETHNOPHARMACOLOGY 2024; 332:118377. [PMID: 38782307 DOI: 10.1016/j.jep.2024.118377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/10/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The Tibetan medicine Ganlu Formula, as a classic prescription, is widely used across the Qinghai-Tibet Plateau area of China, which has a significant effect on relieving the course of rheumatoid arthritis (RA). However, the active compounds and underlying mechanisms of Ganlu Formula in RA treatment remain largely unexplored. AIM OF THE STUDY This study aimed to elucidate the active substances and potential mechanisms of the ethyl acetate extract of Ganlu Formula ethyl acetate extract (GLEE) in the treatment of RA. MATERIALS AND METHODS Ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS) was utilized to analyze and identify the chemical constituents within GLEE. Discovery Studio molecular virtual docking technology was utilized to dock the interaction of GLEE with inflammation-related pathway proteins. The GLEE gene library was obtained by transcriptome sequencing. Collagen-induced arthritic(CIA) rats were utilized to assess the antiarthritic efficacy of GLEE. Micro-CT imaging was employed to visualize the rat paw, and ultrasound imaging revealed knee joint effusion. Evaluation of synovial tissue pathological changes was conducted through hematoxylin-eosin staining and saffranine solid green staining, while immunohistochemical staining was employed to assess NLRP3 expression along with inflammatory markers. Immunofluorescence staining was utilized to identify M1 macrophages. RESULTS Metabolomic analysis via UPLC-Q-TOF-MS identified 28 potentially bioactive compounds in GLEE, which interacted with the active sites of key proteins such as NLRP3, NF-κB, and STAT3 through hydrogen bonds, C-H bonds, and electrostatic attractions. In vitro analyses demonstrated that GLEE significantly attenuated NLRP3 inflammasome activation and inhibited the polarization of bone marrow-derived macrophages (BMDMs) towards the M1 phenotype. In vivo, GLEE not only prevented bone mineral density (BMD) loss but also reduced ankle swelling in CIA rats. Furthermore, it decreased the expression of the NLRP3 inflammasome and curtailed the release of inflammatory mediators within the knee joint. CONCLUSION GLEE effectively mitigated inflammatory responses in both blood and knee synovial membranes of CIA rats, potentially through the down-regulation of the NLRP3/Caspase-1/IL-1β signaling pathway and reduction in M1 macrophage polarization.
Collapse
Affiliation(s)
- Shijie Zhang
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China
| | - Bao Hou
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China
| | - Anjing Xu
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China
| | - Yuanyuan Wen
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China
| | - Xuexue Zhu
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China
| | - Weiwei Cai
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China
| | - Zhijun Han
- Department of Clinical Research Center, Jiangnan University Medical Center, Wuxi, 214001, Jiangsu Province, China
| | - Jing Chen
- Department of Basic Medicine, Tibet University of Medicine, 850000, Lhasa, China
| | - Tsedien Nhamdriel
- Department of Basic Medicine, Tibet University of Medicine, 850000, Lhasa, China
| | - Ma Mi
- Department of Basic Medicine, Tibet University of Medicine, 850000, Lhasa, China.
| | - Liying Qiu
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China.
| | - Haijian Sun
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing, 210009, China.
| |
Collapse
|
24
|
Cai B, Huang Y, Liu D, You Y, Chen N, Jie L, Du H. Identification of the ferroptosis-related gene signature and the associated regulation axis in lung cancer and rheumatoid arthritis. Genes Immun 2024; 25:367-380. [PMID: 39080453 DOI: 10.1038/s41435-024-00287-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/14/2024] [Accepted: 07/18/2024] [Indexed: 10/17/2024]
Abstract
Patients with Rheumatoid arthritis (RA) have an elevated risk of lung cancer compared to the healthy population. However, there are few studies on the relationship between RA and lung adenocarcinoma (LUAD), especially the mechanisms at the genetic level. In this study, we investigated the link between RA and LUAD regarding Ferroptosis-Related Genes. The RNA-seq data of RA (GSE77298 and GSE 82107) and LUAD(GSE75037) in the Gene Expression Omnibus (GEO) database were obtained. 259 ferroptosis-related genes were obtained from the website ( http://www.zhounan.org/ferrdb/ ).The differential genes obtained from the RA and LUAD datasets were intersected with ferroptosis-related genes to obtain the ferroptosis-related differentially expressed genes (FRDEGs). Next, the mRNA-miRNA network was constructed, then Gene Set Enrichment Analysis (GSEA) for target genes were performed. The CIBERSORT algorithm was used to analyze the immune infiltration. Finally, the results were validated using external datasets (GSE89408 and GSE48780) and The Cancer Genome Atlas (TCGA) dataset. We obtained FRDEGs common to LUAD and RA: FANCD2, HELLS, RRM2, G6PD, VLDLR. These five genes play important roles in the progression of RA and LUAD. They also hold great diagnostic value for both diseases. Also, we found that LUAD and RA share common signaling pathways and similar immune mechanisms.
Collapse
Affiliation(s)
- Bo Cai
- Department of Rheumatology and Clinical Immunology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong province, China
| | - Yibin Huang
- First College of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong province, China
| | - Dandan Liu
- Department of Rheumatology and Clinical Immunology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong province, China
| | - Yizheng You
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong province, China
- Guangdong Province Key Laboratory of Immune Regulation and Immunotherapy, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong province, China
| | - Nuoshi Chen
- Department of Rheumatology and Clinical Immunology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong province, China
| | - Ligang Jie
- Department of Rheumatology and Clinical Immunology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong province, China.
| | - Hongyan Du
- Department of Rheumatology and Clinical Immunology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong province, China.
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong province, China.
- Guangdong Province Key Laboratory of Immune Regulation and Immunotherapy, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong province, China.
| |
Collapse
|
25
|
Laevski AM, Doucet MR, Doucet MS, LeBlanc AA, Pineau PE, Hébert MPA, Doiron JA, Roy P, Mbarik M, Matthew AJ, Allain EP, Surette ME, Boudreau LH. Dietary omega-3 fatty acids modulate the production of platelet-derived microvesicles in an in vivo inflammatory arthritis model. Eur J Nutr 2024; 63:2221-2234. [PMID: 38750160 DOI: 10.1007/s00394-024-03397-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 04/16/2024] [Indexed: 09/06/2024]
Abstract
PURPOSE The aim of this study was to investigate the effects of different ω-3 polyunsaturated fatty acid (PUFA) enriched diets, including a novel renewable plant source of ω-3 fatty acids (Buglossoides arvensis), on the development and progression of rheumatoid arthritis (RA). METHODS RA was induced in mice consuming experimental diets using the K/BxN model. The experimental diets consisted of either a western control diet (control), diets containing B. arvensis oil or fish oil. The effects of the diets on platelets, platelet microvesicles (PMVs), and inflammatory markers such as clinical index, ankle thickness and cytokine/chemokine release were measured. RESULTS While ω-3 PUFA-enriched diets did not prevent the development of arthritis in the K/BxN model, a significant decrease in ankle swelling was observed compared to the control group. Platelets isolated from mice consuming either low content of B. arvensis oil or fish oil diets exhibited significantly decreased PMVs production compared to mice consuming the control diet. CONCLUSION Our study provides insight into the contribution of ω-3 PUFA supplementation in modulating the pro-inflammatory phenotype of platelets in RA pathology. Furthermore, our study suggests that low concentrations of dietary B. arvensis oil may have similar anti-inflammatory potential seen with dietary fish oil supplementation.
Collapse
Affiliation(s)
- Angela M Laevski
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, E1A 3E9, Canada
- New Brunswick Center for Precision Medicine, Moncton, Canada
| | - Mélina R Doucet
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, E1A 3E9, Canada
- New Brunswick Center for Precision Medicine, Moncton, Canada
| | - Marco S Doucet
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, E1A 3E9, Canada
- New Brunswick Center for Precision Medicine, Moncton, Canada
| | - Audrée A LeBlanc
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, E1A 3E9, Canada
- New Brunswick Center for Precision Medicine, Moncton, Canada
| | - Paskale E Pineau
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, E1A 3E9, Canada
- New Brunswick Center for Precision Medicine, Moncton, Canada
| | - Mathieu P A Hébert
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, E1A 3E9, Canada
- New Brunswick Center for Precision Medicine, Moncton, Canada
| | - Jérémie A Doiron
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, E1A 3E9, Canada
- New Brunswick Center for Precision Medicine, Moncton, Canada
| | - Patrick Roy
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, E1A 3E9, Canada
- New Brunswick Center for Precision Medicine, Moncton, Canada
| | - Maroua Mbarik
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, E1A 3E9, Canada
- New Brunswick Center for Precision Medicine, Moncton, Canada
| | - Alexis J Matthew
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, E1A 3E9, Canada
- New Brunswick Center for Precision Medicine, Moncton, Canada
| | - Eric P Allain
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, E1A 3E9, Canada
- Department of Molecular Genetics, Vitalité Health Network, Dr. Georges-L.-Dumont University Hospital Centre, 330 Université Ave, Moncton, NB, E1C 2Z3, Canada
- Atlantic Cancer Research Institute, Moncton, Canada
| | - Marc E Surette
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, E1A 3E9, Canada.
- New Brunswick Center for Precision Medicine, Moncton, Canada.
| | - Luc H Boudreau
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, E1A 3E9, Canada.
- New Brunswick Center for Precision Medicine, Moncton, Canada.
| |
Collapse
|
26
|
Li G, Yang H, Zhang D, Zhang Y, Liu B, Wang Y, Zhou H, Xu ZX, Wang Y. The role of macrophages in fibrosis of chronic kidney disease. Biomed Pharmacother 2024; 177:117079. [PMID: 38968801 DOI: 10.1016/j.biopha.2024.117079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/23/2024] [Accepted: 06/29/2024] [Indexed: 07/07/2024] Open
Abstract
Macrophages are widely distributed throughout various tissues of the body, and mounting evidence suggests their involvement in regulating the tissue microenvironment, thereby influencing disease onset and progression through direct or indirect actions. In chronic kidney disease (CKD), disturbances in renal functional homeostasis lead to inflammatory cell infiltration, tubular expansion, glomerular atrophy, and subsequent renal fibrosis. Macrophages play a pivotal role in this pathological process. Therefore, understanding their role is imperative for investigating CKD progression, mitigating its advancement, and offering novel research perspectives for fibrosis treatment from an immunological standpoint. This review primarily delves into the intrinsic characteristics of macrophages, their origins, diverse subtypes, and their associations with renal fibrosis. Particular emphasis is placed on the transition between M1 and M2 phenotypes. In late-stage CKD, there is a shift from the M1 to the M2 phenotype, accompanied by an increased prevalence of M2 macrophages. This transition is governed by the activation of the TGF-β1/SMAD3 and JAK/STAT pathways, which facilitate macrophage-to-myofibroblast transition (MMT). The tyrosine kinase Src is involved in both signaling cascades. By thoroughly elucidating macrophage functions and comprehending the modes and molecular mechanisms of macrophage-fibroblast interaction in the kidney, novel, tailored therapeutic strategies for preventing or attenuating the progression of CKD can be developed.
Collapse
Affiliation(s)
- Guangtao Li
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China
| | - Hongxia Yang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China
| | - Dan Zhang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China
| | - Yanghe Zhang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China
| | - Bin Liu
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Yuxiong Wang
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Honglan Zhou
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China.
| | - Zhi-Xiang Xu
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China.
| | - Yishu Wang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China.
| |
Collapse
|
27
|
Liu FQ, Qu QY, Lei Y, Chen Q, Chen YX, Li ML, Sun XY, Wu YJ, Huang QS, Fu HX, Kong Y, Li YY, Wang QF, Huang XJ, Zhang XH. High dimensional proteomic mapping of bone marrow immune characteristics in immune thrombocytopenia. SCIENCE CHINA. LIFE SCIENCES 2024; 67:1635-1647. [PMID: 38644444 DOI: 10.1007/s11427-023-2520-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/09/2024] [Indexed: 04/23/2024]
Abstract
To investigate the role of co-stimulatory and co-inhibitory molecules on immune tolerance in immune thrombocytopenia (ITP), this study mapped the immune cell heterogeneity in the bone marrow of ITP at the single-cell level using Cytometry by Time of Flight (CyTOF). Thirty-six patients with ITP and nine healthy volunteers were enrolled in the study. As soluble immunomodulatory molecules, more sCD25 and sGalectin-9 were detected in ITP patients. On the cell surface, co-stimulatory molecules like ICOS and HVEM were observed to be upregulated in mainly central memory and effector T cells. In contrast, co-inhibitory molecules such as CTLA-4 were significantly reduced in Th1 and Th17 cell subsets. Taking a platelet count of 30×109 L-1 as the cutoff value, ITP patients with high and low platelet counts showed different T cell immune profiles. Antigen-presenting cells such as monocytes and B cells may regulate the activation of T cells through CTLA-4/CD86 and HVEM/BTLA interactions, respectively, and participate in the pathogenesis of ITP. In conclusion, the proteomic and soluble molecular profiles brought insight into the interaction and modulation of immune cells in the bone marrow of ITP. They may offer novel targets to develop personalized immunotherapies.
Collapse
Affiliation(s)
- Feng-Qi Liu
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, 100044, China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, 100044, China
- National Clinical Research Center for Hematologic Disease, Beijing, 100044, China
- Collaborative Innovation Centre of Hematology, Peking University, Beijing, 100044, China
| | - Qing-Yuan Qu
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, 100044, China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, 100044, China
- National Clinical Research Center for Hematologic Disease, Beijing, 100044, China
- Collaborative Innovation Centre of Hematology, Peking University, Beijing, 100044, China
| | - Ying Lei
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qi Chen
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, 100044, China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, 100044, China
- National Clinical Research Center for Hematologic Disease, Beijing, 100044, China
- Collaborative Innovation Centre of Hematology, Peking University, Beijing, 100044, China
| | - Yu-Xiu Chen
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, 100044, China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, 100044, China
- National Clinical Research Center for Hematologic Disease, Beijing, 100044, China
- Collaborative Innovation Centre of Hematology, Peking University, Beijing, 100044, China
| | - Meng-Lin Li
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, 100044, China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, 100044, China
- National Clinical Research Center for Hematologic Disease, Beijing, 100044, China
- Collaborative Innovation Centre of Hematology, Peking University, Beijing, 100044, China
| | - Xue-Yan Sun
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, 100044, China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, 100044, China
- National Clinical Research Center for Hematologic Disease, Beijing, 100044, China
- Collaborative Innovation Centre of Hematology, Peking University, Beijing, 100044, China
| | - Ye-Jun Wu
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, 100044, China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, 100044, China
- National Clinical Research Center for Hematologic Disease, Beijing, 100044, China
- Collaborative Innovation Centre of Hematology, Peking University, Beijing, 100044, China
| | - Qiu-Sha Huang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, 100044, China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, 100044, China
- National Clinical Research Center for Hematologic Disease, Beijing, 100044, China
- Collaborative Innovation Centre of Hematology, Peking University, Beijing, 100044, China
| | - Hai-Xia Fu
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, 100044, China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, 100044, China
- National Clinical Research Center for Hematologic Disease, Beijing, 100044, China
- Collaborative Innovation Centre of Hematology, Peking University, Beijing, 100044, China
| | - Yuan Kong
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, 100044, China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, 100044, China
- National Clinical Research Center for Hematologic Disease, Beijing, 100044, China
- Collaborative Innovation Centre of Hematology, Peking University, Beijing, 100044, China
| | - Yue-Ying Li
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qian-Fei Wang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiao-Jun Huang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, 100044, China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, 100044, China
- National Clinical Research Center for Hematologic Disease, Beijing, 100044, China
- Collaborative Innovation Centre of Hematology, Peking University, Beijing, 100044, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100074, China
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, China
| | - Xiao-Hui Zhang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, 100044, China.
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, 100044, China.
- National Clinical Research Center for Hematologic Disease, Beijing, 100044, China.
- Collaborative Innovation Centre of Hematology, Peking University, Beijing, 100044, China.
| |
Collapse
|
28
|
Shrivastava S, Bahuguna T, Mondal S, Kumar S, Mathew B, Jeengar MK, Naidu VGM. Attenuation of adjuvant-induced arthritis with carnosic acid by inhibiting mPGES-1, COX-2, and bone loss in male SD rats. Immunopharmacol Immunotoxicol 2024:1-12. [PMID: 39013842 DOI: 10.1080/08923973.2024.2377984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 07/04/2024] [Indexed: 07/18/2024]
Abstract
OBJECTIVE Rheumatoid arthritis (RA), a chronic inflammatory disease, is characterized by joint swelling, cartilage erosion, and bone destruction. This study investigated the therapeutic efficacy of Carnosic acid (CA), a natural compound with anti-inflammatory and antioxidant properties, in an adjuvant-induced arthritis model. METHODS Paw swelling and arthritis index were measured. Oxidative stress markers, including lipid peroxidation and antioxidant enzyme levels, were assessed. Synovial tissue was analyzed for pro-inflammatory markers using real-time Q-PCR and Western blotting. The expression of mPGES-1 was determined by Western blotting. Peripheral neuropathic pain was assessed using cold and mechanical allodynia tests. Bone loss was quantitatively assessed through microcomputed tomography (μCT) scanning of femurs and X-ray radiography. Indomethacin-induced gastric ulcers were evaluated. Molecular docking studies were conducted to analyze the binding affinity of CA to mPGES-1. RESULTS The CA treatment not only demonstrated a significant reduction in joint inflammation and paw swelling but also mitigated oxidative stress and improved the antioxidant defence system. CA inhibited microsomal prostaglandin E synthase-1 (mPGES-1) expression and the expression of pro-inflammatory molecules such as inducible nitric oxide synthase (iNOS) and cyclooxygenases-2 (COX-2), thus attenuating the arthritis symptoms without severe gastrointestinal side effects. Additionally, it inhibited the expression of pro-inflammatory molecules such as iNOS and COX-2, contributing to the reduction of arthritis symptoms. Notably, CA treatment prevented the common side effects of traditional RA treatments like corticosteroids and non-steroidal anti-inflammatory drugs (NSAIDs), including weight loss, bone degradation, and gastric ulcers. CONCLUSIONS These findings suggest that CA, through specific enzyme inhibition, offers a compelling alternative therapeutic approach for RA. Further research is warranted to explore the potential of CA in other arthritis models and its suitability for human RA treatment.
Collapse
Affiliation(s)
- Shweta Shrivastava
- School of Pharmacy, School of Health and Allied Sciences, ARKA JAIN University, Gamharia, Seraikela Kharsawan, Jharkhand, India
| | - Tribhuwan Bahuguna
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education & Research Institute (NIPER), Balanagar, Hyderabad, India
| | - Sudipto Mondal
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education & Research Institute (NIPER), Balanagar, Hyderabad, India
| | - Sunil Kumar
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, Kerala, India
| | - Bijo Mathew
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, Kerala, India
| | - Manish Kumar Jeengar
- Department of Pharmacology, Amrita School of Pharmacy, AIMS Health Sciences Campus, Kochi, Kerala, India
| | - V G M Naidu
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education & Research Institute (NIPER), Assam, India
| |
Collapse
|
29
|
Kurose R, Satoh T, Kurose A, Ishibashi Y, Uzuki M, Wakai Y, Sasaki T, Ishida K, Ogasawara K, Sawai T. CD14+ Dendritic-Shaped Cells Functioning as Dendritic Cells in Rheumatoid Arthritis Synovial Tissues. ACR Open Rheumatol 2024; 6:412-420. [PMID: 38638058 PMCID: PMC11246827 DOI: 10.1002/acr2.11670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 03/11/2024] [Indexed: 04/20/2024] Open
Abstract
OBJECTIVE We previously reported that CD14+ dendritic-shaped cells exhibit a dendritic morphology, engage in pseudo-emperipolesis with lymphocytes, and express CD90 in the perivascular areas of rheumatoid arthritis (RA) synovial tissues. However, it remains unclear whether these CD14highCD90intermediate(int) cells function as dendritic cells. In this study, we investigated the dendritic cell-differentiation potential of CD14highCD90int cells. METHODS The localization and number of CD14highCD90int cells in RA synovial tissues and peripheral blood were examined. The dendritic cell-differentiation potential of CD14highCD90int cells was examined by measuring interleukin-6 and tumor necrosis factor-α levels in the supernatant and CD83 and human leukocyte antigen (HLA)-DR expression in the cells after induction of dendritic cell differentiation. Synovial cells were co-cultured with lymphocytes, and the activation of these cells was examined. RESULTS CD14highCD90int cells were abundant in RA synovial tissues, including the sublining layer and the pannus areas. Patients with untreated and active RA had significantly higher percentages of CD14highCD90int cells in the peripheral blood and synovial tissues. In RA synovial cells, inflammatory cytokine levels increased with dendritic cell-differentiation culture, but CD83 and HLA-DR expression were significantly increased in the CD14highCD90int cell group. When co-cultured with lymphocytes, cell numbers and inflammatory cytokine levels significantly increased in both groups of synovial cells after dendritic cell induction. CONCLUSION CD14+ cells migrate and spread from the circulating blood to RA synovial tissues while expressing CD90, and CD14highCD90int cells in contact with lymphocytes differentiate into HLA-DR+ dendritic cells, which contribute to chronic inflammation in RA.
Collapse
Affiliation(s)
- Rie Kurose
- Hirosaki University Graduate School of MedicineHirosakiJapan
| | | | - Akira Kurose
- Hirosaki University Graduate School of MedicineHirosakiJapan
| | | | - Miwa Uzuki
- Fukushima Medical UniversityFukushimaJapan
| | | | | | | | | | | |
Collapse
|
30
|
Zhao L, Liu M, Zheng K, Xiao Q, Yuan L, Wu C, Bao J. Fufang Duzheng tablet attenuates adjuvant rheumatoid arthritis by inhibiting arthritis inflammation and gut microbiota disturbance in rats. Heliyon 2024; 10:e32705. [PMID: 39183834 PMCID: PMC11341321 DOI: 10.1016/j.heliyon.2024.e32705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/05/2024] [Accepted: 06/07/2024] [Indexed: 08/27/2024] Open
Abstract
Objective To explore the treatment effect and potential mechanism on gut microbiota, nutrition, and metabolism of Fufang Duzheng Tablet (DZGP) on rheumatoid arthritis (RA). Methods Collagen-induced arthritis rats' models were established and divided into three groups: model control group (FK), DZGP group (FZ, 0.45 g/kg/d), and methotrexate group (FM, 1.35 mg/kg), which were treated by gavage for 28 days. The physiopathologic changes of joints and body weight in each group were recorded; the morphology of synovial and ankle tissues was observed by hematoxylin-eosin staining, and the level of serum TNF-α and IL-1β was tested by ELISA. UPLC/MS-MS and network pharmacological analysis were used to identify the serum components, and 16S rDNA sequencing analysis was applied to the intestinal contents of rats. Results DZGP treatment significantly alleviated arthritis symptoms, pathological manifestations, toe thickness, and TNF-α and IL-1β levels in RA rats. We identified 105 metabolites and 18 components in the serum of DZGP-group rats. The main therapeutic targets of DZGP for anti-RA were TP53, epidermal growth factor receptor, and AKT1. Molecular docking showed that there was good binding efficiency between core components and main targets. 16S rDNA sequencing showed that DZGP treatment regulated the structure of the gut microbiota. Conclusion DZGP showed a good anti-inflammatory effect on RA and played an important role in improving the structure of the gut microbiota in RA rats.
Collapse
Affiliation(s)
- Liming Zhao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
- Hubei Key Laboratory of Biological Resources Protection and Utilization, Hubei Minzu University, 445000, Enshi, China
| | - Meilin Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Kai Zheng
- Forest Seedlings and Wildlife Protection Management Station of Enshi Tujia and Miao Autonomous Prefecture, 445000, Enshi, China
| | - Qiang Xiao
- Hubei Key Laboratory of Biological Resources Protection and Utilization, Hubei Minzu University, 445000, Enshi, China
| | - Lin Yuan
- Hubei Provincial Key Laboratory of Occurrence and Intervention of Rheumatic Diseases, Hubei Minzu University, 445000, Enshi, China
| | - Chuanfang Wu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Jinku Bao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| |
Collapse
|
31
|
Zhou E, Wu J, Zhou X, Yin Y. Systemic inflammatory biomarkers are novel predictors of all-cause and cardiovascular mortality in individuals with osteoarthritis: a prospective cohort study using data from the NHANES. BMC Public Health 2024; 24:1586. [PMID: 38872115 PMCID: PMC11170786 DOI: 10.1186/s12889-024-19105-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 06/11/2024] [Indexed: 06/15/2024] Open
Abstract
BACKGROUND Chronic inflammation may contribute to increased mortality risk in individuals with osteoarthritis (OA), but research on the prognostic value of inflammatory biomarkers is limited. We aimed to evaluate the associations of the systemic immune-inflammation index (SII) and systemic inflammation response index (SIRI) with all-cause and cardiovascular mortality among US adults with OA. METHODS This cohort study included 3545 adults with OA aged ≥ 20 years from the National Health and Nutrition Examination Survey 1999-2020. The SII and SIRI were calculated using complete blood cell count data. Participants were categorized as having a higher or lower SII and SIRI using cutoff points derived by the maximally selected rank statistics method. Cox proportional hazards models, Fine-Gray competing risk regression models and time-dependent receiver operating characteristic (ROC) analysis were used to evaluate the associations between the SII/SIRI and mortality in OA patients. RESULTS Over a median follow-up of 5.08 (3.42-9.92) years, 636 (17.94%) deaths occurred, including 149 (4.20%) cardiovascular deaths. According to multivariable-adjusted models involving demographic, socioeconomic, and health factors, OA patients with a higher SII had a twofold greater risk of all-cause mortality than patients with a lower SII (HR 2.01; 95% CI: 1.50-2.68). Similarly, a higher SIRI was associated with an 86% increased risk of all-cause mortality relative to a lower SIRI (HR 1.86; 95% CI: 1.46-2.38). Similar to the trend found with all-cause mortality, patients with an elevated SII and SIRI had a 88% and 67% increased risk of cardiovascular mortality, respectively, compared to patients with a lower SII (HR 1.88; 95% CI: 1.16-3.03) and SIRI (HR 1.67; 95% CI: 1.14-2.44). Time-dependent ROC curves showed that both the SII and SIRI have moderate and valid performance in predicting short- and long-term mortality in patients with OA. CONCLUSIONS Higher SII and SIRI values were associated with greater all-cause and cardiovascular mortality among US adults with OA.
Collapse
Affiliation(s)
- Erye Zhou
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Soochow University, No.188 Shizi St, Suzhou , Jiangsu, 215006, China
| | - Jian Wu
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Soochow University, No.188 Shizi St, Suzhou , Jiangsu, 215006, China
| | - Xin Zhou
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Soochow University, No.188 Shizi St, Suzhou , Jiangsu, 215006, China
| | - Yufeng Yin
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Soochow University, No.188 Shizi St, Suzhou , Jiangsu, 215006, China.
| |
Collapse
|
32
|
Ali M, Benfante V, Di Raimondo D, Laudicella R, Tuttolomondo A, Comelli A. A Review of Advances in Molecular Imaging of Rheumatoid Arthritis: From In Vitro to Clinic Applications Using Radiolabeled Targeting Vectors with Technetium-99m. Life (Basel) 2024; 14:751. [PMID: 38929734 PMCID: PMC11204982 DOI: 10.3390/life14060751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/24/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Rheumatoid arthritis (RA) is a systemic autoimmune disorder caused by inflammation of cartilaginous diarthrodial joints that destroys joints and cartilage, resulting in synovitis and pannus formation. Timely detection and effective management of RA are pivotal for mitigating inflammatory arthritis consequences, potentially influencing disease progression. Nuclear medicine using radiolabeled targeted vectors presents a promising avenue for RA diagnosis and response to treatment assessment. Radiopharmaceutical such as technetium-99m (99mTc), combined with single photon emission computed tomography (SPECT) combined with CT (SPECT/CT), introduces a more refined diagnostic approach, enhancing accuracy through precise anatomical localization, representing a notable advancement in hybrid molecular imaging for RA evaluation. This comprehensive review discusses existing research, encompassing in vitro, in vivo, and clinical studies to explore the application of 99mTc radiolabeled targeting vectors with SPECT imaging for RA diagnosis. The purpose of this review is to highlight the potential of this strategy to enhance patient outcomes by improving the early detection and management of RA.
Collapse
Affiliation(s)
- Muhammad Ali
- Ri.MED Foundation, Via Bandiera 11, 90133 Palermo, Italy; (M.A.); (A.C.)
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Molecular and Clinical Medicine, University of Palermo, 90127 Palermo, Italy; (D.D.R.); (A.T.)
| | - Viviana Benfante
- Ri.MED Foundation, Via Bandiera 11, 90133 Palermo, Italy; (M.A.); (A.C.)
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Molecular and Clinical Medicine, University of Palermo, 90127 Palermo, Italy; (D.D.R.); (A.T.)
| | - Domenico Di Raimondo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Molecular and Clinical Medicine, University of Palermo, 90127 Palermo, Italy; (D.D.R.); (A.T.)
| | - Riccardo Laudicella
- Nuclear Medicine Unit, Department of Biomedical and Dental Sciences and Morpho-Functional Imaging, Messina University, 98124 Messina, Italy;
| | - Antonino Tuttolomondo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Molecular and Clinical Medicine, University of Palermo, 90127 Palermo, Italy; (D.D.R.); (A.T.)
| | - Albert Comelli
- Ri.MED Foundation, Via Bandiera 11, 90133 Palermo, Italy; (M.A.); (A.C.)
- NBFC—National Biodiversity Future Center, 90133 Palermo, Italy
| |
Collapse
|
33
|
Ferreté-Bonastre AG, Martínez-Gallo M, Morante-Palacios O, Calvillo CL, Calafell-Segura J, Rodríguez-Ubreva J, Esteller M, Cortés-Hernández J, Ballestar E. Disease activity drives divergent epigenetic and transcriptomic reprogramming of monocyte subpopulations in systemic lupus erythematosus. Ann Rheum Dis 2024; 83:865-878. [PMID: 38413168 DOI: 10.1136/ard-2023-225433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 02/15/2024] [Indexed: 02/29/2024]
Abstract
OBJECTIVES Systemic lupus erythematosus (SLE) is characterised by systemic inflammation involving various immune cell types. Monocytes, pivotal in promoting and regulating inflammation in SLE, differentiate from classic monocytes into intermediate and non-classic monocytes, assuming diverse roles and changing their proportions in inflammation. In this study, we investigated the epigenetic and transcriptomic profiles of these and novel monocyte subsets in SLE in relation to activity and progression. METHODS We obtained the DNA methylomes and transcriptomes of classic, intermediate, non-classic monocytes in patients with SLE (at first and follow-up visits) and healthy donors. We integrated these data with single-cell transcriptomics of SLE and healthy donors and interrogated their relationships with activity and progression. RESULTS In addition to shared DNA methylation and transcriptomic alterations associated with a strong interferon signature, we identified monocyte subset-specific alterations, especially in DNA methylation, which reflect an impact of SLE on monocyte differentiation. SLE classic monocytes exhibited a proinflammatory profile and were primed for macrophage differentiation. SLE non-classic monocytes displayed a T cell differentiation-related phenotype, with Th17-regulating features. Changes in monocyte proportions, DNA methylation and expression occurred in relation to disease activity and involved the STAT pathway. Integration of bulk with single-cell RNA sequencing datasets revealed disease activity-dependent expansion of SLE-specific monocyte subsets, further supported the interferon signature for classic monocytes, and associated intermediate and non-classic populations with exacerbated complement activation. CONCLUSIONS Disease activity in SLE drives a subversion of the epigenome and transcriptome programme in monocyte differentiation, impacting the function of different subsets and allowing to generate predictive methods for activity and progression.
Collapse
Affiliation(s)
| | - Mónica Martínez-Gallo
- Immunology Division, Vall d'Hebron University Hospital and Diagnostic Immunology Research Group, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
| | | | - Celia Lourdes Calvillo
- Epigenetics and Immune Disease Group, Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Spain
| | - Josep Calafell-Segura
- Epigenetics and Immune Disease Group, Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Spain
| | - Javier Rodríguez-Ubreva
- Epigenetics and Immune Disease Group, Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Spain
| | - Manel Esteller
- Cancer Epigenetics Group, Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Spain
- Centro de Investigación Biomédica en Red Cancer (CIBERONC), Madrid, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona (UB), Barcelona, Spain
| | - Josefina Cortés-Hernández
- Rheumatology Department, Hospital Vall d'Hebron and Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
| | - Esteban Ballestar
- Epigenetics and Immune Disease Group, Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Spain
- Epigenetics in Inflammatory and Metabolic Diseases Laboratory, Health Science Center (HSC), East China Normal University (ECNU), Shanghai, China
| |
Collapse
|
34
|
Zuo Q, Lyu J, Shen X, Wang F, Xing L, Zhou M, Zhou Z, Li L, Huang Y. A Less-is-More Strategy for Mitochondria-Targeted Photodynamic Therapy of Rheumatoid Arthritis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307261. [PMID: 38225702 DOI: 10.1002/smll.202307261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 12/25/2023] [Indexed: 01/17/2024]
Abstract
Conventional photodynamic therapy (PDT) of rheumatoid arthritis (RA) faces a dilemma: low-power is insufficient to kill pro-inflammatory cells while high-power exacerbates inflammation. Herein, mitochondrial targeting is introduced in PDT of RA to implement a "less-is-more" strategy, where higher apoptosis in pro-inflammatory cells are achieved with lower laser power. In arthritic rats, chlorine 6-loaded and mitochondria-targeting liposomes (Ce6@M-Lip) passively accumulated in inflamed joints, entered pro-inflammatory macrophages, and actively localized to mitochondria, leading to enhanced mitochondrial dysfunction under laser irradiation. By effectively disrupting mitochondria, pro-inflammatory macrophages are more susceptible to PDT, resulting in increased apoptosis initiation. Additionally, it identifies that high-power irradiation caused cell rupture and release of endogenous danger signals that recruited and activated additional macrophages. In contrast, under low-power irradiation, mitochondria-targeting Ce6@M-Lip not only prevented inflammation but also reduced pro-inflammatory macrophage infiltration and pro-inflammatory cytokine secretion. Overall, targeting mitochondria reconciled therapeutic efficacy and inflammation, thus enabling efficacious yet inflammation-sparing PDT for RA. This highlights the promise of mitochondrial targeting to resolve the dilemma between anti-inflammatory efficacy and inflammatory exacerbation in PDT by implementing a "less-is-more" strategy.
Collapse
Affiliation(s)
- Qingting Zuo
- Key laboratory of Drug Targeting and Drug Delivery System (Ministry of Education), West China School of Pharmacy, Sichuan University, No. 17, Block 3, South Renmin Road, Chengdu, 610041, P.R. China
| | - Jiayan Lyu
- Key laboratory of Drug Targeting and Drug Delivery System (Ministry of Education), West China School of Pharmacy, Sichuan University, No. 17, Block 3, South Renmin Road, Chengdu, 610041, P.R. China
| | - Xinran Shen
- Key laboratory of Drug Targeting and Drug Delivery System (Ministry of Education), West China School of Pharmacy, Sichuan University, No. 17, Block 3, South Renmin Road, Chengdu, 610041, P.R. China
| | - Fengju Wang
- Key laboratory of Drug Targeting and Drug Delivery System (Ministry of Education), West China School of Pharmacy, Sichuan University, No. 17, Block 3, South Renmin Road, Chengdu, 610041, P.R. China
| | - Liyun Xing
- Key laboratory of Drug Targeting and Drug Delivery System (Ministry of Education), West China School of Pharmacy, Sichuan University, No. 17, Block 3, South Renmin Road, Chengdu, 610041, P.R. China
| | - Minglu Zhou
- Key laboratory of Drug Targeting and Drug Delivery System (Ministry of Education), West China School of Pharmacy, Sichuan University, No. 17, Block 3, South Renmin Road, Chengdu, 610041, P.R. China
| | - Zhou Zhou
- Key laboratory of Drug Targeting and Drug Delivery System (Ministry of Education), West China School of Pharmacy, Sichuan University, No. 17, Block 3, South Renmin Road, Chengdu, 610041, P.R. China
| | - Lian Li
- Key laboratory of Drug Targeting and Drug Delivery System (Ministry of Education), West China School of Pharmacy, Sichuan University, No. 17, Block 3, South Renmin Road, Chengdu, 610041, P.R. China
| | - Yuan Huang
- Key laboratory of Drug Targeting and Drug Delivery System (Ministry of Education), West China School of Pharmacy, Sichuan University, No. 17, Block 3, South Renmin Road, Chengdu, 610041, P.R. China
| |
Collapse
|
35
|
Jiang S, Li S, Pang S, Liu M, Sun H, Zhang N, Liu J. A systematic review: Sinomenine. Heliyon 2024; 10:e29976. [PMID: 38765107 PMCID: PMC11098800 DOI: 10.1016/j.heliyon.2024.e29976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 05/21/2024] Open
Abstract
Sinomenine (SIN), an alkaloid derived from the traditional Chinese medicine, Caulis Sinomenii, has been used as an anti-inflammatory drug in China for over 30 years. With the continuous increase in research on the pharmacological mechanism of SIN, it has been found that, in addition to the typical rheumatoid arthritis (RA) treatment, SIN can be used as a potentially effective therapeutic drug for anti-tumour, anti-renal, and anti-nervous system diseases. By reviewing a large amount of literature and conducting a summary analysis of the literature pertaining to the pharmacological mechanism of SIN, we completed a review that focused on SIN, found that the current research is insufficient, and offered an outlook for future SIN development. We hope that this review will increase the public understanding of the pharmacological mechanisms of SIN, discover SIN research trial shortcomings, and promote the effective treatment of immune diseases, inflammation, and other related diseases.
Collapse
Affiliation(s)
- Shan Jiang
- School of Pharmacy, Heilongjiang University of Traditional Chinese Medicine, Harbin City, Heilongjiang Province, 150040, PR China
- Sino-Pakistan Center on Traditional Chinese Medicine, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua City, Hunan Province, 418000, PR China
| | - Shuang Li
- Sino-Pakistan Center on Traditional Chinese Medicine, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua City, Hunan Province, 418000, PR China
- College Pharmacy, Jiamusi University, Jiamusi City, Heilongjiang Province, 154000, PR China
| | - Siyuan Pang
- Hunan Zhengqing Pharmaceutical Company Group Ltd, Huaihua City, Hunan Province, 418000, PR China
| | - Mei Liu
- School of Pharmaceutical Sciences, University of South China, Hengyang City, Hunan Province, 421001, PR China
| | - Huifeng Sun
- School of Pharmacy, Heilongjiang University of Traditional Chinese Medicine, Harbin City, Heilongjiang Province, 150040, PR China
| | - Ning Zhang
- School of Pharmacy, Heilongjiang University of Traditional Chinese Medicine, Harbin City, Heilongjiang Province, 150040, PR China
| | - Jianxin Liu
- Sino-Pakistan Center on Traditional Chinese Medicine, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua City, Hunan Province, 418000, PR China
- School of Pharmaceutical Sciences, University of South China, Hengyang City, Hunan Province, 421001, PR China
- Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha City, Hunan Province, 410208, PR China
| |
Collapse
|
36
|
Gan PR, Wu H, Zhu YL, Shu Y, Wei Y. Glycolysis, a driving force of rheumatoid arthritis. Int Immunopharmacol 2024; 132:111913. [PMID: 38603855 DOI: 10.1016/j.intimp.2024.111913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/12/2024] [Accepted: 03/20/2024] [Indexed: 04/13/2024]
Abstract
Resident synoviocytes and synovial microvasculature, together with immune cells from circulation, contribute to pannus formation, the main pathological feature of rheumatoid arthritis (RA), leading to destruction of adjacent cartilage and bone. Seeds, fibroblast-like synoviocytes (FLSs), macrophages, dendritic cells (DCs), B cells, T cells and endothelial cells (ECs) seeds with high metabolic demands undergo metabolic reprogramming from oxidative phosphorylation to glycolysis in response to poor soil of RA synovium with hypoxia, nutrient deficiency and inflammatory stimuli. Glycolysis provides rapid energy supply and biosynthetic precursors to support pathogenic growth of these seeds. The metabolite lactate accumulated during this process in turn condition the soil microenvironment and affect seeds growth by modulating signalling pathways and directing lactylation modifications. This review explores in depth the survival mechanism of seeds with high metabolic demands in the poor soil of RA synovium, providing useful support for elucidating the etiology of RA. In addition, we discuss the role and major post-translational modifications of proteins and enzymes linked to glycolysis to inspire the discovery of novel anti-rheumatic targets.
Collapse
Affiliation(s)
- Pei-Rong Gan
- College of Pharmacy, Anhui University of Chinese Medicine, Qian Jiang Road 1, Hefei 230012, China; Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei 230012, China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, 230012, China
| | - Hong Wu
- College of Pharmacy, Anhui University of Chinese Medicine, Qian Jiang Road 1, Hefei 230012, China; Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei 230012, China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, 230012, China.
| | - Yu-Long Zhu
- College of Pharmacy, Anhui University of Chinese Medicine, Qian Jiang Road 1, Hefei 230012, China; Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei 230012, China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, 230012, China
| | - Yin Shu
- College of Pharmacy, Anhui University of Chinese Medicine, Qian Jiang Road 1, Hefei 230012, China; Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei 230012, China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, 230012, China
| | - Yi Wei
- College of Pharmacy, Anhui University of Chinese Medicine, Qian Jiang Road 1, Hefei 230012, China; Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei 230012, China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, 230012, China
| |
Collapse
|
37
|
Gertel S, Rokach M, Polachek A, Litinsky I, Anouk M, Elkayam O, Furer V. Anti-inflammatory effects of infliximab and methotrexate on peripheral blood and synovial fluid mononuclear cells: ex vivo study. Scand J Rheumatol 2024; 53:188-198. [PMID: 38275170 DOI: 10.1080/03009742.2023.2300887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 12/28/2023] [Indexed: 01/27/2024]
Abstract
OBJECTIVE To investigate the effects of methotrexate (MTX) and the tumour necrosis factor inhibitor infliximab (IFX) on immune cells derived from peripheral blood mononuclear cells (PBMCs) and synovial fluid mononuclear cells (SFMCs) of inflammatory arthritis patients. METHOD Phytohaemagglutinin (PHA)-induced proliferation of healthy donors' PBMCs and synovial intermediate monocytes (CD14+CD16+ cells) in SFMCs derived from psoriatic arthritis (PsA) and rheumatoid arthritis (RA) patients was determined by flow cytometry following co-culture with IFX and MTX. PHA-induced interferon-γ (IFN-γ) production in PBMCs was measured by enzyme-linked immunosorbent assay. The drugs' effect on mRNA expression in SFMCs was determined by quantitative polymerase chain reaction. RESULTS The combination of IFX 10 μg/mL + MTX 0.1 μg/mL had the strongest inhibitory effect on PBMC proliferation (91%), followed by MTX 0.1 μg/mL (86%) and IFX 10 μg/mL (49%). In PHA-stimulated PBMCs, IFN-γ production was reduced by IFX 10 μg/mL, MTX 0.1 μg/mL, and IFX 10 μg/mL + MTX 0.1 μg/mL by 68%, 90%, and 85%, respectively. In SFMCs, IFX 10 µg/mL significantly reduced CD14+CD16+ cells compared to medium (PsA 54%, p < 0.01; RA 46%, p < 0.05), while MTX had no effect on this population. IFX + MTX led to a similar suppression of CD14+CD16+ cells as achieved by IFX alone. The drugs had different impacts on SFMC gene expression. CONCLUSION Both IFX and MTX effectively inhibited PBMC proliferation and IFN-γ production, but only IFX reduced synovial monocytes and pro-inflammatory gene expression in SFMCs, suggesting a differential impact of IFX and MTX on critical inflammatory cell populations ex vivo.
Collapse
Affiliation(s)
- S Gertel
- Department of Rheumatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - M Rokach
- Department of Rheumatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - A Polachek
- Department of Rheumatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - I Litinsky
- Department of Rheumatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - M Anouk
- Department of Rheumatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - O Elkayam
- Department of Rheumatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - V Furer
- Department of Rheumatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
38
|
Damani JJ, Oh ES, De Souza MJ, Strock NC, Williams NI, Nakatsu CH, Lee H, Weaver C, Rogers CJ. Prune Consumption Attenuates Proinflammatory Cytokine Secretion and Alters Monocyte Activation in Postmenopausal Women: Secondary Outcome Analysis of a 12-Mo Randomized Controlled Trial: The Prune Study. J Nutr 2024; 154:1699-1710. [PMID: 37984741 PMCID: PMC11347809 DOI: 10.1016/j.tjnut.2023.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 11/03/2023] [Accepted: 11/17/2023] [Indexed: 11/22/2023] Open
Abstract
BACKGROUND Proinflammatory cytokines are implicated in the pathophysiology of postmenopausal bone loss. Clinical studies demonstrate that prunes prevent bone mineral density loss; however, the mechanism underlying this effect is unknown. OBJECTIVE We investigated the effect of prune supplementation on immune, inflammatory, and oxidative stress markers. METHODS A secondary analysis was conducted in the Prune Study, a single-center, parallel-arm, 12-mo randomized controlled trial of postmenopausal women (55-75 y old; n = 235 recruited; n = 183 completed) who were assigned to 1 of 3 groups: "no-prune" control, 50 g prune/d and 100 g prune/d groups. At baseline and after 12 mo of intervention, blood samples were collected to measure serum high-sensitivity C-reactive protein (hs-CRP), serum total antioxidant capacity (TAC), plasma 8-isoprostane, proinflammatory cytokines [interleukin (IL)-1β, IL-6, IL-8, monocyte chemoattractant protein-1, and tumor necrosis factor (TNF)-α] concentrations in plasma and lipopolysaccharide (LPS)-stimulated peripheral blood mononuclear cells (PBMCs) culture supernatants, and the percentage and activation of circulating monocytes, as secondary outcomes. RESULTS Prune supplementation did not alter hs-CRP, TAC, 8-isoprostane, and plasma cytokine concentrations. However, percent change from baseline in circulating activated monocytes was lower in the 100 g prune/d group compared with the control group (mean ± SD, -1.8% ± 4.0% in 100 g prune/d compared with 0.1% ± 2.9% in control; P < 0.01). Furthermore, in LPS-stimulated PBMC supernatants, the percent change from baseline in TNF-α secretion was lower in the 50 g prune/d group compared with the control group (-4.4% ± 43.0% in 50 g prune/d compared with 24.3% ± 70.7% in control; P < 0.01), and the percent change from baseline in IL-1β, IL-6, and IL-8 secretion was lower in the 100 g prune/d group compared with the control group (-8.9% ± 61.6%, -4.3% ± 75.3%, -14.3% ± 60.8% in 100 g prune/d compared with 46.9% ± 107.4%, 16.9% ± 70.6%, 39.8% ± 90.8% in control for IL-1β, IL-6, and IL-8, respectively; all P < 0.05). CONCLUSIONS Dietary supplementation with 50-100 g prunes for 12 mo reduced proinflammatory cytokine secretion from PBMCs and suppressed the circulating levels of activated monocytes in postmenopausal women. This trial was registered at clinicaltrials.gov as NCT02822378.
Collapse
Affiliation(s)
- Janhavi J Damani
- The Intercollege Graduate Degree Program in Integrative and Biomedical Physiology, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, United States
| | - Ester S Oh
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, United States; Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Mary Jane De Souza
- Department of Kinesiology, The Pennsylvania State University, University Park, PA, United States
| | - Nicole Ca Strock
- Department of Kinesiology, The Pennsylvania State University, University Park, PA, United States
| | - Nancy I Williams
- Department of Kinesiology, The Pennsylvania State University, University Park, PA, United States
| | - Cindy H Nakatsu
- Department of Agronomy, Purdue University, West Lafayette, IN, United States
| | - Hang Lee
- Biostatistics Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Connie Weaver
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego, CA, United States
| | - Connie J Rogers
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, United States; Center for Molecular Immunology and Infectious Disease, The Pennsylvania State University, University Park, PA, United States; Department of Nutritional Sciences, University of Georgia, Athens, GA, United States.
| |
Collapse
|
39
|
Thomas MA, Naik P, Wang H, Giles JT, Girgis AA, Kim SY, Johnson TP, Curran AM, Crawford JD, Jahanbani S, Bingham CO, Robinson WH, Na CH, Darrah E. The monocyte cell surface is a unique site of autoantigen generation in rheumatoid arthritis. Proc Natl Acad Sci U S A 2024; 121:e2304199121. [PMID: 38630712 PMCID: PMC11047081 DOI: 10.1073/pnas.2304199121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 03/22/2024] [Indexed: 04/19/2024] Open
Abstract
Although anti-citrullinated protein autoantibodies (ACPAs) are a hallmark serological feature of rheumatoid arthritis (RA), the mechanisms and cellular sources behind the generation of the RA citrullinome remain incompletely defined. Peptidylarginine deiminase IV (PAD4), one of the key enzymatic drivers of citrullination in the RA joint, is expressed by granulocytes and monocytes; however, the subcellular localization and contribution of monocyte-derived PAD4 to the generation of citrullinated autoantigens remain underexplored. In this study, we demonstrate that PAD4 displays a widespread cellular distribution in monocytes, including expression on the cell surface. Surface PAD4 was enzymatically active and capable of citrullinating extracellular fibrinogen and endogenous surface proteins in a calcium dose-dependent manner. Fibrinogen citrullinated by monocyte-surface PAD4 could be specifically recognized over native fibrinogen by a panel of eight human monoclonal ACPAs. Several unique PAD4 substrates were identified on the monocyte surface via mass spectrometry, with citrullination of the CD11b and CD18 components of the Mac-1 integrin complex being the most abundant. Citrullinated Mac-1 was found to be a target of ACPAs in 25% of RA patients, and Mac-1 ACPAs were significantly associated with HLA-DRB1 shared epitope alleles, higher C-reactive protein and IL-6 levels, and more erosive joint damage. Our findings implicate the monocyte cell surface as a unique and consequential site of extracellular and cell surface autoantigen generation in RA.
Collapse
Affiliation(s)
- Mekha A. Thomas
- Division of Rheumatology, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD21224
| | - Pooja Naik
- Division of Rheumatology, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD21224
| | - Hong Wang
- Division of Rheumatology, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD21224
| | - Jon T. Giles
- Division of Rheumatology, Columbia University, College of Physicians and Surgeons, New York, NY10032
| | - Alexander A. Girgis
- Division of Rheumatology, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD21224
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD21224
| | - Seok-Young Kim
- Department of Neurology, Institute for Cell Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD21205
| | - Tory P. Johnson
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD20892
| | - Ashley M. Curran
- Division of Rheumatology, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD21224
| | - Jonathan D. Crawford
- Division of Rheumatology, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD21224
| | - Shaghayegh Jahanbani
- Division of Immunology and Rheumatology, Stanford University, Stanford, CA94304
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA94550
| | - Clifton O. Bingham
- Division of Rheumatology, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD21224
| | - William H. Robinson
- Division of Immunology and Rheumatology, Stanford University, Stanford, CA94304
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA94550
| | - Chan Hyun Na
- Department of Neurology, Institute for Cell Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD21205
| | - Erika Darrah
- Division of Rheumatology, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD21224
| |
Collapse
|
40
|
Nasra S, Shukla H, Patel M, Kumar A. Bortezomib-loaded immunoliposomes against CD44 expressing macrophages: an interplay for inflammation resolution. NANOSCALE 2024; 16:5280-5293. [PMID: 38369899 DOI: 10.1039/d4nr00137k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Macrophage-driven inflammation is the central player in a range of pathological conditions, comprising autoimmune disorders, various cancers, as well as chronic inflammatory states like rheumatoid arthritis. Therapeutic strategies tailored to specifically target macrophage behavior have acquired substantial interest for their potential to alleviate chronic inflammation effectively. In this study, we introduce a pioneering therapeutic approach utilizing specialized CD44-targeted immunoliposomes carrying bortezomib to address inflammation at the cellular level and the significance of this strategy lies in its precision nature. Bortezomib's inhibition of the proteasome interferes with the finely-tuned mechanism that controls NFκB activation, ultimately leading to a downregulation of the inflammatory response. After performing computational docking demonstrating its strong binding affinity to the proteasome molecule, the resulting nano-construct displayed a hydrodynamic size of 144.26 ± 74.4 nm and a quasi-spherical morphology. Moreover, the nano-construct ensured a minimum shelf-life of 30 days, aiming for targeted delivery with practical longevity. Upon internalization of immunoliposomes, the interaction with CD44 receptors exhibited downstream signaling events. This included the activation of Jun amino-terminal kinases 1/2 (JNK1/2) and the extracellular-signal-regulated kinases (ERK) pathway. JNK1/2 activation may lead to the release of mitochondrial pro-apoptotic factors, triggering the intrinsic apoptotic pathway and activation of caspases, which was confirmed from the level of apoptotic gene and protein expression. The precise targeting and anti-inflammatory action of this therapy against macrophages hold promise for therapeutic interventions in a wide range of inflammatory conditions, offering a novel avenue for precision medicine in the battle against excessive inflammation.
Collapse
Affiliation(s)
- Simran Nasra
- Biological and Life Sciences, School of Arts & Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad 380009, Gujarat, India.
| | - Haly Shukla
- Biological and Life Sciences, School of Arts & Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad 380009, Gujarat, India.
| | - Milonee Patel
- Biological and Life Sciences, School of Arts & Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad 380009, Gujarat, India.
| | - Ashutosh Kumar
- Biological and Life Sciences, School of Arts & Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad 380009, Gujarat, India.
| |
Collapse
|
41
|
Liu Z, Luo X, Xu R. Interaction between immuno-stem dual lineages in jaw bone formation and injury repair. Front Cell Dev Biol 2024; 12:1359295. [PMID: 38510177 PMCID: PMC10950953 DOI: 10.3389/fcell.2024.1359295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/26/2024] [Indexed: 03/22/2024] Open
Abstract
The jawbone, a unique structure in the human body, undergoes faster remodeling than other bones due to the presence of stem cells and its distinct immune microenvironment. Long-term exposure of jawbones to an oral environment rich in microbes results in a complex immune balance, as shown by the higher proportion of activated macrophage in the jaw. Stem cells derived from the jawbone have a higher propensity to differentiate into osteoblasts than those derived from other bones. The unique immune microenvironment of the jaw also promotes osteogenic differentiation of jaw stem cells. Here, we summarize the various types of stem cells and immune cells involved in jawbone reconstruction. We describe the mechanism relationship between immune cells and stem cells, including through the production of inflammatory bodies, secretion of cytokines, activation of signaling pathways, etc. In addition, we also comb out cellular interaction of immune cells and stem cells within the jaw under jaw development, homeostasis maintenance and pathological conditions. This review aims to eclucidate the uniqueness of jawbone in the context of stem cell within immune microenvironment, hopefully advancing clinical regeneration of the jawbone.
Collapse
Affiliation(s)
| | | | - Ruoshi Xu
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases and Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
42
|
Huang X, Zhang W. Macrophage membrane-camouflaged biomimetic nanovesicles for targeted treatment of arthritis. Ageing Res Rev 2024; 95:102241. [PMID: 38387516 DOI: 10.1016/j.arr.2024.102241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/03/2024] [Accepted: 02/19/2024] [Indexed: 02/24/2024]
Abstract
Arthritis has become the most common joint disease globally. Current attention has shifted towards preventing the disease and exploring pharmaceutical and surgical treatments for early-stage arthritis. M2 macrophages are known for their anti-inflammatory properties and their ability to support cartilage repair, offering relief from arthritis. Whereas, it remains a great challenge to promote the beneficial secretion of M2 macrophages to prevent the progression of arthritis. Therefore, it is warranted to investigate new strategies that could use the functions of M2 macrophages and enhance its therapeutic effects. This review aims to explore the macrophage cell membrane-coated biomimetic nanovesicles for targeted treatment of arthritis such as osteoarthritis (OA), rheumatoid arthritis (RA), and gouty arthritis (GA). Cell membrane-camouflaged biomimetic nanovesicle has attracted increasing attention, which successfully combine the advantages and properties of both cell membrane and delivered drug. We discuss the roles of macrophages in the pathophysiology and therapeutic targets of arthritis. Then, the common preparation strategies of macrophage membrane-coated nanovesicles are concluded. Moreover, we investigate the applications of macrophage cell membrane-camouflaged nanovesicles for arthritis, such as OA, RA, and GA. Taken together, macrophage cell membrane-camouflaged nanovesicles hold the tremendous prospect for biomedical applications in the targeted treatment of arthritis.
Collapse
Affiliation(s)
- Xin Huang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Weiyue Zhang
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
43
|
Yang M, Zhu L. Osteoimmunology: The Crosstalk between T Cells, B Cells, and Osteoclasts in Rheumatoid Arthritis. Int J Mol Sci 2024; 25:2688. [PMID: 38473934 DOI: 10.3390/ijms25052688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 02/22/2024] [Accepted: 02/24/2024] [Indexed: 03/14/2024] Open
Abstract
Rheumatoid arthritis (RA) is an ongoing inflammatory condition that affects the joints and can lead to severe damage to cartilage and bones, resulting in significant disability. This condition occurs when the immune system becomes overactive, causing osteoclasts, cells responsible for breaking down bone, to become more active than necessary, leading to bone breakdown. RA disrupts the equilibrium between osteoclasts and osteoblasts, resulting in serious complications such as localized bone erosion, weakened bones surrounding the joints, and even widespread osteoporosis. Antibodies against the receptor activator of nuclear factor-κB ligand (RANKL), a crucial stimulator of osteoclast differentiation, have shown great effectiveness both in laboratory settings and actual patient cases. Researchers are increasingly focusing on osteoclasts as significant contributors to bone erosion in RA. Given that RA involves an overactive immune system, T cells and B cells play a pivotal role by intensifying the immune response. The imbalance between Th17 cells and Treg cells, premature aging of T cells, and excessive production of antibodies by B cells not only exacerbate inflammation but also accelerate bone destruction. Understanding the connection between the immune system and osteoclasts is crucial for comprehending the impact of RA on bone health. By delving into the immune mechanisms that lead to joint damage, exploring the interactions between the immune system and osteoclasts, and investigating new biomarkers for RA, we can significantly improve early diagnosis, treatment, and prognosis of this condition.
Collapse
Affiliation(s)
- Mei Yang
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
- Medical Epigenetics Research Center, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Lei Zhu
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
- Medical Epigenetics Research Center, Chinese Academy of Medical Sciences, Beijing 100005, China
| |
Collapse
|
44
|
Alarcón‐Sánchez MA, Becerra‐Ruiz JS, Guerrero‐Velázquez C, Mosaddad SA, Heboyan A. The role of the CX3CL1/CX3CR1 axis as potential inflammatory biomarkers in subjects with periodontitis and rheumatoid arthritis: A systematic review. Immun Inflamm Dis 2024; 12:e1181. [PMID: 38415821 PMCID: PMC10845211 DOI: 10.1002/iid3.1181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/11/2024] [Accepted: 01/23/2024] [Indexed: 02/29/2024] Open
Abstract
OBJECTIVE This systematic review aimed to investigate the role of the C-X3-C motif ligand 1/chemokine receptor 1 C-X3-C motif (CX3CL1/CX3CR1) axis in the pathogenesis of periodontitis. Furthermore, as a secondary objective, we determine whether the CX3CL1/CX3CR1 axis could be considered complementary to clinical parameters to distinguish between periodontitis and rheumatoid arthritis (RA) and/or systemically healthy subjects. METHODS The protocol used for this review was registered in OSF (10.17605/OSF.IO/KU8FJ). This study was designed following Preferred Reporting Items for Systematic Review and Meta-Analysis guidelines. Records were identified using different search engines (PubMed/MEDLINE, Scopus, Science Direct, and Web of Science) from August 10, 2006, to September 15, 2023. The observational studies on human subjects diagnosed with periodontitis and RA and/or systemically healthy were selected to analyze CX3CL1 and CX3CR1 biomarkers. The methodological validity of the selected articles was assessed using NIH. RESULTS Six articles were included. Biological samples (gingival crevicular fluid [GCF], saliva, gingival tissue biopsies, serum) from 379 subjects (n = 275 exposure group and n = 104 control group) were analyzed. Higher CX3CL1 and CX3CR1 chemokine levels were found in subjects with periodontitis and RA compared with periodontal and systemically healthy subjects. CONCLUSION Very few studies highlight the role of the CX3CL1/CX3CR1 axis in the pathogenesis of periodontitis; however, increased levels of these chemokines are observed in different biological samples (GCF, gingival tissue, saliva, and serum) from subjects with periodontitis and RA compared with their healthy controls. Future studies should focus on long-term follow-up of subjects and monitoring changes in cytokine levels before and after periodontal therapy to deduce an appropriate interval in health and disease conditions.
Collapse
Affiliation(s)
- Mario A. Alarcón‐Sánchez
- Biomedical Science, Faculty of Chemical‐Biological SciencesAutonomous University of GuerreroGuerreroMexico
| | - Julieta S. Becerra‐Ruiz
- Institute of Research of Bioscience, University Center of Los AltosUniversity of GuadalajaraGuadalajaraMexico
| | - Celia Guerrero‐Velázquez
- Research Center in Molecular Biology of Chronic Diseases, Southern University CenterUniversity of GuadalajaraGuadalajaraMexico
| | - Seyed A. Mosaddad
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical SciencesSaveetha UniversityChennaiIndia
- Student Research Committee, School of DentistryShiraz University of Medical SciencesShirazIran
| | - Artak Heboyan
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical SciencesSaveetha UniversityChennaiIndia
- Department of Prosthodontics, Faculty of StomatologyYerevan State Medical University after Mkhitar HeratsiYerevanArmenia
- Department of ProsthodonticsTehran University of Medical SciencesTehranIran
| |
Collapse
|
45
|
Guillem-Llobat P, Marín M, Rouleau M, Silvestre A, Blin-Wakkach C, Ferrándiz ML, Guillén MI, Ibáñez L. New Insights into the Pro-Inflammatory and Osteoclastogenic Profile of Circulating Monocytes in Osteoarthritis Patients. Int J Mol Sci 2024; 25:1710. [PMID: 38338988 PMCID: PMC10855447 DOI: 10.3390/ijms25031710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
Osteoarthritis (OA) is a degenerative condition of the articular cartilage with chronic low-grade inflammation. Monocytes have a fundamental role in the progression of OA, given their implication in inflammatory responses and their capacity to differentiate into bone-resorbing osteoclasts (OCLs). This observational-experimental study attempted to better understand the molecular pathogenesis of OA through the examination of osteoclast progenitor (OCP) cells from both OA patients and healthy individuals (25 OA patients and healthy samples). The expression of osteoclastogenic and inflammatory genes was analyzed using RT-PCR. The OA monocytes expressed significantly higher levels of CD16, CD115, TLR2, Mincle, Dentin-1, and CCR2 mRNAs. Moreover, a flow cytometry analysis showed a significantly higher surface expression of the CD16 and CD115 receptors in OA vs. healthy monocytes, as well as a difference in the distribution of monocyte subsets. Additionally, the OA monocytes showed a greater osteoclast differentiation capacity and an enhanced response to an inflammatory stimulus. The results of this study demonstrate the existence of significant differences between the OCPs of OA patients and those of healthy subjects. These differences could contribute to a greater understanding of the molecular pathogenesis of OA and to the identification of new biomarkers and potential drug targets for OA.
Collapse
Affiliation(s)
- Paloma Guillem-Llobat
- Department of Biomedical Science, Cardenal Herrera-CEU University, 46115 Valencia, Spain;
| | - Marta Marín
- Department of Pharmacy, Cardenal Herrera-CEU University, 46115 Valencia, Spain;
| | - Matthieu Rouleau
- Laboratory of Molecular PhysioMedicine, UMR 7370, National Centre for Scientific Research, Côte d’Azur University, 06107 Nice, France; (M.R.); (C.B.-W.)
| | - Antonio Silvestre
- Service of Orthopedic Surgery and Traumatology, University Clinical Hospital, 46010 Valencia, Spain;
| | - Claudine Blin-Wakkach
- Laboratory of Molecular PhysioMedicine, UMR 7370, National Centre for Scientific Research, Côte d’Azur University, 06107 Nice, France; (M.R.); (C.B.-W.)
| | - María Luisa Ferrándiz
- Interuniversity Research Institute for Molecular Recognition and Technological Development (IDM), Polytechnic University of Valencia and University of Valencia, 46022 Valencia, Spain;
| | - María Isabel Guillén
- Department of Pharmacy, Cardenal Herrera-CEU University, 46115 Valencia, Spain;
- Interuniversity Research Institute for Molecular Recognition and Technological Development (IDM), Polytechnic University of Valencia and University of Valencia, 46022 Valencia, Spain;
| | - Lidia Ibáñez
- Department of Pharmacy, Cardenal Herrera-CEU University, 46115 Valencia, Spain;
| |
Collapse
|
46
|
Wang X, Sun B, Wang Y, Gao P, Song J, Chang W, Xiao Z, Xi Y, Li Z, An F, Yan C. Research progress of targeted therapy regulating Th17/Treg balance in bone immune diseases. Front Immunol 2024; 15:1333993. [PMID: 38352872 PMCID: PMC10861655 DOI: 10.3389/fimmu.2024.1333993] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/16/2024] [Indexed: 02/16/2024] Open
Abstract
Rheumatoid arthritis (RA) and postmenopausal osteoporosis (PMOP) are common bone-immune diseases. The imbalance between helper (Th17) and regulatory T cells (Tregs) produced during differentiation of CD4+ T cells plays a key regulatory role in bone remodelling disorders in RA and PMOP. However, the specific regulatory mechanism of this imbalance in bone remodelling in RA and PMOP has not been clarified. Identifying the regulatory mechanism underlying the Th17/Treg imbalance in RA and PMOP during bone remodelling represents a key factor in the research and development of new drugs for bone immune diseases. In this review, the potential roles of Th17, Treg, and Th17/Treg imbalance in regulating bone remodelling in RA and PMOP have been summarised, and the potential mechanisms by which probiotics, traditional Chinese medicine compounds, and monomers maintain bone remodelling by regulating the Th17/Treg balance are expounded. The maintenance of Th17/Treg balance could be considered as an therapeutic alternative for the treatment of RA and PMOP. This study also summarizes the advantages and disadvantages of conventional treatments and the quality of life and rehabilitation of patients with RA and PMOP. The findings presented her will provide a better understanding of the close relationship between bone immunity and bone remodelling in chronic bone diseases and new ideas for future research, prevention, and treatment of bone immune diseases.
Collapse
Affiliation(s)
- Xiaxia Wang
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Bai Sun
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Yujie Wang
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Peng Gao
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Jiayi Song
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Weirong Chang
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Zhipan Xiao
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Yongbin Xi
- Orthopaedics Department, The No.2 People's Hospital of Lanzhou, Lanzhou, Gansu, China
| | - Zhonghong Li
- Pathological Research Centre, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Fangyu An
- Teaching Experiment Training Centre, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Chunlu Yan
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| |
Collapse
|
47
|
Kim S, Chun SH, Cheon YH, Kim M, Kim HO, Lee H, Hong ST, Park SJ, Park MS, Suh YS, Lee SI. Peptoniphilus gorbachii alleviates collagen-induced arthritis in mice by improving intestinal homeostasis and immune regulation. Front Immunol 2024; 14:1286387. [PMID: 38239365 PMCID: PMC10794505 DOI: 10.3389/fimmu.2023.1286387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 12/12/2023] [Indexed: 01/22/2024] Open
Abstract
Introduction The intricate connection between gut microbiota and rheumatoid arthritis (RA) pathogenesis has gained prominence, although the specific microbial species contributing to RA development remain largely unknown. Recent studies have sought to comprehensively explore alterations in the human microbiome, focusing on identifying disease-related microbial species through blood analysis. Consequently, this study aimed to identify RA-associated microbial species using a serum microbial array system and to investigate the efficacy and underlying mechanisms of potential microbial species for RA treatment. Methods Serum immunoglobulin M levels against 384 intestinal microbial species were assessed using a microbial microarray in patients with RA and healthy individuals. We investigated the therapeutic potential of the identified microbial candidate regarding arthritis development, immune responses, gut barrier function, and gut microbiome using a collagen-induced arthritis (CIA) mouse model. Results Our findings revealed significant alterations in antibody levels against 36 microbial species in patients with RA compared to healthy individuals. Notably, the antibody levels against Peptoniphilus gorbachii (PG) were decreased in patients with RA and exhibited an inverse correlation with RA disease activity. In vitro experiments demonstrated that PG produced acetate and butyrate, while exhibiting anti-inflammatory properties. In CIA mice, PG administration suppressed arthritis symptoms, reduced the accumulation of inflammatory monocytes in the mesenteric lymph nodes, and downregulated gene expression of pro-inflammatory cytokines in the ileum. Additionally, PG supplementation restored intestinal barrier integrity and partially resolved gut microbial dysbiosis in CIA mice. The fecal microbiota in PG-treated mice corresponded to improved intestinal barrier integrity and reduced inflammatory responses. Conclusion This study highlights the potential of serum-based detection of anti-microbial antibodies to identify microbial targets at the species level for RA treatment. Moreover, our findings suggest that PG, identified through the microbial microarray analysis, holds therapeutic potential for RA by restoring intestinal barrier integrity and suppressing the immunologic response associated with RA.
Collapse
Affiliation(s)
- Suhee Kim
- Department of Internal Medicine and Institute of Health Science, Gyeongsang National University School of Medicine and Hospital, Jinju, Republic of Korea
| | - Sung Hak Chun
- Department of Internal Medicine and Institute of Health Science, Gyeongsang National University School of Medicine and Hospital, Jinju, Republic of Korea
| | - Yun-Hong Cheon
- Department of Internal Medicine and Institute of Health Science, Gyeongsang National University School of Medicine and Hospital, Jinju, Republic of Korea
| | - Mingyo Kim
- Department of Internal Medicine and Institute of Health Science, Gyeongsang National University School of Medicine and Hospital, Jinju, Republic of Korea
| | - Hyun-Ok Kim
- Department of Internal Medicine and Institute of Health Science, Gyeongsang National University School of Medicine and Hospital, Jinju, Republic of Korea
- Department of Internal Medicine, Gyeongsang National University Changwon Hospital, Changwon, Republic of Korea
| | - Hanna Lee
- Department of Internal Medicine and Institute of Health Science, Gyeongsang National University School of Medicine and Hospital, Jinju, Republic of Korea
- Department of Internal Medicine, Gyeongsang National University Changwon Hospital, Changwon, Republic of Korea
| | - Seong-Tshool Hong
- Department of Biomedical Sciences and Institute for Medical Science, Chonbuk National University Medical School, Jeonju, Republic of Korea
| | - Sang-Jun Park
- Research Center, BIFIDO Co, Ltd, Hongcheon, Kangwon, Republic of Korea
| | - Myeong Soo Park
- Research Center, BIFIDO Co, Ltd, Hongcheon, Kangwon, Republic of Korea
| | - Young Sun Suh
- Department of Internal Medicine and Institute of Health Science, Gyeongsang National University School of Medicine and Hospital, Jinju, Republic of Korea
- Department of Internal Medicine, Gyeongsang National University Changwon Hospital, Changwon, Republic of Korea
| | - Sang-Il Lee
- Department of Internal Medicine and Institute of Health Science, Gyeongsang National University School of Medicine and Hospital, Jinju, Republic of Korea
| |
Collapse
|
48
|
Paoletti A, Ly B, Cailleau C, Gao F, de Ponfilly-Sotier MP, Pascaud J, Rivière E, Yang L, Nwosu L, Elmesmari A, Reynaud F, Hita M, Paterson D, Reboud J, Fay F, Nocturne G, Tsapis N, McInnes IB, Kurowska-Stolarska M, Fattal E, Mariette X. Liposomal AntagomiR-155-5p Restores Anti-Inflammatory Macrophages and Improves Arthritis in Preclinical Models of Rheumatoid Arthritis. Arthritis Rheumatol 2024; 76:18-31. [PMID: 37527031 DOI: 10.1002/art.42665] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 05/16/2023] [Accepted: 07/11/2023] [Indexed: 08/03/2023]
Abstract
OBJECTIVE We previously reported an increased expression of microRNA-155 (miR-155) in the blood monocytes of patients with rheumatoid arthritis (RA) that could be responsible for impaired monocyte polarization to anti-inflammatory M2-like macrophages. In this study, we employed two preclinical models of RA, collagen-induced arthritis and K/BxN serum transfer arthritis, to examine the therapeutic potential of antagomiR-155-5p entrapped within PEGylated (polyethylene glycol [PEG]) liposomes in resolution of arthritis and repolarization of monocytes towards the anti-inflammatory M2 phenotype. METHODS AntagomiR-155-5p or antagomiR-control were encapsulated in PEG liposomes of 100 nm in size and -10 mV in zeta potential with high antagomiR loading efficiency (above 80%). Mice were injected intravenously with 1.5 nmol/100 μL PEG liposomes containing antagomiR-155-5p or control after the induction of arthritis. RESULTS We demonstrated the biodistribution of fluorescently tagged PEG liposomes to inflamed joints one hour after the injection of fluorescently tagged PEG liposomes, as well as the liver's subsequent accumulation after 48 hours, indicative of hepatic clearance, in mice with arthritis. The injection of PEG liposomes containing antagomiR-155-5p decreased arthritis score and paw swelling compared with PEG liposomes containing antagomiR-control or the systemic delivery of free antagomiR-155-5p. Moreover, treatment with PEG liposomes containing antagomiR-155-5p led to the restoration of bone marrow monocyte defects in anti-inflammatory macrophage differentiation without any significant functional change in other immune cells, including splenic B and T cells. CONCLUSION The injection of antagomiR-155-5p encapsulated in PEG liposomes allows the delivery of small RNA to monocytes and macrophages and reduces joint inflammation in murine models of RA, providing a promising strategy in human disease.
Collapse
Affiliation(s)
- Audrey Paoletti
- Paris-Saclay University, INSERM UMR1184, Center for Immunology of Viral Infections and Autoimmune Diseases, Le Kremlin Bicêtre, France
| | - Bineta Ly
- Paris-Saclay University, INSERM UMR1184, Center for Immunology of Viral Infections and Autoimmune Diseases, Le Kremlin Bicêtre, France
| | - Catherine Cailleau
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, Orsay, France
| | - Fan Gao
- Division of Biomedical Engineering, James Watt School of Engineering, University of Glasgow, Glasgow, United Kingdom
| | - Marie Péan de Ponfilly-Sotier
- Paris-Saclay University, INSERM UMR1184, Center for Immunology of Viral Infections and Autoimmune Diseases, Le Kremlin Bicêtre, France
| | - Juliette Pascaud
- Paris-Saclay University, INSERM UMR1184, Center for Immunology of Viral Infections and Autoimmune Diseases, Le Kremlin Bicêtre, France
| | - Elodie Rivière
- Paris-Saclay University, INSERM UMR1184, Center for Immunology of Viral Infections and Autoimmune Diseases, Le Kremlin Bicêtre, France
| | - Luxin Yang
- School of Infection and Immunity, University of Glasgow, Glasgow, United Kingdom
| | - Lilian Nwosu
- School of Infection and Immunity, University of Glasgow, Glasgow, United Kingdom
| | - Aziza Elmesmari
- School of Infection and Immunity, University of Glasgow, Glasgow, United Kingdom
| | - Franceline Reynaud
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, Orsay, France
| | - Magali Hita
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, Orsay, France
| | - David Paterson
- Division of Biomedical Engineering, James Watt School of Engineering, University of Glasgow, Glasgow, United Kingdom
| | - Julien Reboud
- Division of Biomedical Engineering, James Watt School of Engineering, University of Glasgow, Glasgow, United Kingdom
| | - Francois Fay
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, Orsay, France
| | - Gaetane Nocturne
- Paris-Saclay University, INSERM UMR1184, Center for Immunology of Viral Infections and Autoimmune Diseases, Le Kremlin Bicêtre, France
- Rheumatology Department, Hôpital Bicêtre, Assistance Publique - Hôpitaux de Paris, Le Kremlin Bicêtre, France
| | - Nicolas Tsapis
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, Orsay, France
| | - Iain B McInnes
- School of Infection and Immunity, University of Glasgow, Glasgow, United Kingdom
| | | | - Elias Fattal
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, Orsay, France
| | - Xavier Mariette
- Paris-Saclay University, INSERM UMR1184, Center for Immunology of Viral Infections and Autoimmune Diseases, Le Kremlin Bicêtre, France
- Rheumatology Department, Hôpital Bicêtre, Assistance Publique - Hôpitaux de Paris, Le Kremlin Bicêtre, France
| |
Collapse
|
49
|
Bai M, Sun R, Cao B, Feng J, Wang J. Monocyte-related cytokines/chemokines in cerebral ischemic stroke. CNS Neurosci Ther 2023; 29:3693-3712. [PMID: 37452512 PMCID: PMC10651979 DOI: 10.1111/cns.14368] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/01/2023] [Accepted: 07/04/2023] [Indexed: 07/18/2023] Open
Abstract
AIMS Ischemic stroke is one of the leading causes of death worldwide and the most common cause of disability in Western countries. Multiple mechanisms contribute to the development and progression of ischemic stroke, and inflammation is one of the most important mechanisms. DISCUSSION Ischemia induces the release of adenosine triphosphate/reactive oxygen species, which activates immune cells to produce many proinflammatory cytokines that activate downstream inflammatory cascades to induce fatal immune responses. Research has confirmed that peripheral blood immune cells play a vital role in the immunological cascade after ischemic stroke. The role of monocytes has received much attention among numerous peripheral blood immune cells. Monocytes induce their effects by secreting cytokines or chemokines, including CCL2/CCR2, CCR4, CCR5, CD36, CX3CL1/CX3CR1, CXCL12(SDF-1), LFA-1/ICAM-1, Ly6C, MMP-2/9, NR4A1, P2X4R, P-selectin, CD40L, TLR2/4, and VCAM-1/VLA-4. Those factors play important roles in the process of monocyte recruitment, migration, and differentiation. CONCLUSION This review focuses on the function and mechanism of the cytokines secreted by monocytes in the process of ischemic stroke and provides novel targets for treating cerebral ischemic stroke.
Collapse
Affiliation(s)
- Meiling Bai
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ruize Sun
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Bin Cao
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Juan Feng
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jue Wang
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
50
|
Pu Y, Cheng R, Zhang Q, Huang T, Lu C, Tang Z, Zhong Y, Wu L, Hammock BD, Hashimoto K, Luo Y, Liu Y. Role of soluble epoxide hydrolase in the abnormal activation of fibroblast-like synoviocytes from patients with rheumatoid arthritis. Clin Immunol 2023; 257:109850. [PMID: 38013165 PMCID: PMC10872286 DOI: 10.1016/j.clim.2023.109850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 11/09/2023] [Accepted: 11/14/2023] [Indexed: 11/29/2023]
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease characterized by enigmatic pathogenesis. Polyunsaturated fatty acids (PUFAs) are implicated in RA's development and progression, yet their exact mechanisms of influence are not fully understood. Soluble epoxide hydrolase (sEH) is an enzyme that metabolizes anti-inflammatory epoxy fatty acids (EpFAs), derivatives of PUFAs. In this study, we report elevated sEH expression in the joints of CIA (collagen-induced arthritis) rats, concomitant with diminished levels of two significant EpFAs. Additionally, increased sEH expression was detected in both the synovium of CIA rats and in the synovium and fibroblast-like synoviocytes (FLS) of RA patients. The sEH inhibitor TPPU attenuated the migration and invasion capabilities of FLS derived from RA patients and to reduce the secretion of inflammatory factors by these cells. Our findings indicate a pivotal role for sEH in RA pathogenesis and suggest that sEH inhibitors offer a promising new therapeutic strategy for managing RA.
Collapse
Affiliation(s)
- Yaoyu Pu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Ruijuan Cheng
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Qiuping Zhang
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Tianwen Huang
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Chenyang Lu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Zhigang Tang
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yutong Zhong
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Liang Wu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Bruce D Hammock
- Department of Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California, Davis, CA 95616, United States of America.
| | - Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan.
| | - Yubin Luo
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Yi Liu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|