1
|
Zhang J, Shao Y, Wu J, Zhang J, Xiong X, Mao J, Wei Y, Miao C, Zhang H. Dysregulation of neutrophil in sepsis: recent insights and advances. Cell Commun Signal 2025; 23:87. [PMID: 39953528 PMCID: PMC11827254 DOI: 10.1186/s12964-025-02098-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 02/09/2025] [Indexed: 02/17/2025] Open
Abstract
Sepsis remains the leading cause of death in intensive care units. Despite newer antimicrobial and supportive therapies, specific treatments are still lacking. Neutrophils are pivotal components of the effector phase of the host immune defense against pathogens and play a crucial role in the control of infections under normal circumstances. In addition to its anti-infective effects, the dysregulation and overactivation of neutrophils may lead to severe inflammation or tissue damage and are potential mechanisms for poor prognosis in sepsis. This review focuses on recent advancements in the understanding of the functional status of neutrophils across various pathological stages of sepsis to explore the mechanisms by which neutrophils participate in sepsis progression and provide insights for the treatment of sepsis by targeting neutrophils.
Collapse
Affiliation(s)
- Ji Zhang
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key laboratory of Perioperative Stress and Protection, Shanghai, China
- Department of Anesthesiology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yuwen Shao
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key laboratory of Perioperative Stress and Protection, Shanghai, China
- Department of Anesthesiology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jingyi Wu
- Department of Anesthesiology, Zhongshan Hospital(Xiamen), Fudan University, Xiamen, China
| | - Jing Zhang
- Department of Anesthesiology, Hebei General Hospital, Shijiazhuang, China
| | - Xiangsheng Xiong
- Department of Anesthesiology, Huai'an hospital affiliated to Yangzhou University (The fifth People's Hospital of Huai'an), Huai'an, Jiangsu, China
| | - Jingjing Mao
- Department of Anesthesiology, Huai'an hospital affiliated to Yangzhou University (The fifth People's Hospital of Huai'an), Huai'an, Jiangsu, China
| | - Yunwei Wei
- Department of Anesthesiology, Women's Health Center of Shanxi, Children's Hospital of Shanxi, Taiyuan, Shanxi, China
| | - Changhong Miao
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China.
- Shanghai Key laboratory of Perioperative Stress and Protection, Shanghai, China.
- Department of Anesthesiology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Hao Zhang
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China.
- Shanghai Key laboratory of Perioperative Stress and Protection, Shanghai, China.
- Department of Anesthesiology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
2
|
Gani Z, Kumar A, Raje M, Raje CI. Antimicrobial peptides: An alternative strategy to combat antimicrobial resistance. Drug Discov Today 2025; 30:104305. [PMID: 39900281 DOI: 10.1016/j.drudis.2025.104305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/20/2025] [Accepted: 01/28/2025] [Indexed: 02/05/2025]
Abstract
Antimicrobial peptides (AMPs) are a diverse group of naturally occurring molecules produced by eukaryotes and prokaryotes. They have an important role in innate immunity via their direct microbicidal properties or immunomodulatory activities against pathogens. With the widespread occurrence of antimicrobial resistance (AMR), AMPs are considered as viable alternatives for the treatment of multidrug-resistant microbes, inflammation, and, wound healing. The broad-spectrum antibacterial activity of AMPs is predominantly attributed to membrane disruption, leading to the formation of transmembrane pores and, eventually, cell lysis. However, mechanisms related to inhibition of cell wall synthesis, nucleic acid synthesis, protein synthesis, or enzymatic activity are also associated with these peptides. In this review, we discuss our current understanding, therapeutic uses and challenges associated with the clinical applications of AMPs.
Collapse
Affiliation(s)
- Zahid Gani
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Phase X, Sector 67, SAS Nagar, Punjab 160067, India; Center of Microbial Pathogenesis, Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH 43205, USA
| | - Ajay Kumar
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Phase X, Sector 67, SAS Nagar, Punjab 160067, India; Host-Pathogen Interactions and Structural Vaccinology Section, Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Manoj Raje
- Department of Biophysics, Panjab University, Chandigarh 160014, India
| | - Chaaya Iyengar Raje
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Phase X, Sector 67, SAS Nagar, Punjab 160067, India.
| |
Collapse
|
3
|
Wang Y, Zhao M, Zou Y, Wang X, Zhang M, Sun Y. Hyaluronan Scaffold Decorated with Bifunctional Peptide Promotes Wound Healing via Antibacterial and Anti-Inflammatory. Biomacromolecules 2024; 25:7850-7860. [PMID: 39586057 DOI: 10.1021/acs.biomac.4c01130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
The invasion of bacteria and inflammation impeded infected wounds heal. Here, a hyaluronan-based scaffold (HAG-g-C) was designed by cross-linking with gallic acid-modified gelatin to provide a protein microenvironment and decorated with cathelicidin-BF (CBF), a natural antimicrobial peptide, to remove bacterial infections and reverse the inflammatory environment. In vitro, HAG-g-C presented an antibacterial effect on Staphylococcus aureus and Escherichia coli. Meanwhile, it could drive the phenotypic switch of macrophage from M1 to M2 to accelerate tissue remodeling. In a mouse model of S. aureus-infected total skin defects, HAG-g-C inhibited the process of infection at the beginning of the wound and then regulated the M1 macrophage transformed to M2 phenotype on day 12. In addition, HAG-g-C induced collagen deposition, and reduced the expression of TNF-α, thereby significantly accelerating the reconstruction of infected wounds.
Collapse
Affiliation(s)
- Yingzi Wang
- Electron Microscopy Laboratory of Renal Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P. R. China
| | - Mingda Zhao
- National Engineering Research Center for Biomaterials, Sichuan University, 29# Wangjiang Road, Chengdu, Sichuan 610064, P. R. China
- College of Biomedical Engineering, Sichuan University, 29# Wangjiang Road, Chengdu, Sichuan 610064, P. R. China
| | - Yaping Zou
- National Engineering Research Center for Biomaterials, Sichuan University, 29# Wangjiang Road, Chengdu, Sichuan 610064, P. R. China
- College of Biomedical Engineering, Sichuan University, 29# Wangjiang Road, Chengdu, Sichuan 610064, P. R. China
| | - Xiaojuan Wang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Min Zhang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Yong Sun
- National Engineering Research Center for Biomaterials, Sichuan University, 29# Wangjiang Road, Chengdu, Sichuan 610064, P. R. China
- College of Biomedical Engineering, Sichuan University, 29# Wangjiang Road, Chengdu, Sichuan 610064, P. R. China
| |
Collapse
|
4
|
Bucataru C, Ciobanasu C. Antimicrobial peptides: Opportunities and challenges in overcoming resistance. Microbiol Res 2024; 286:127822. [PMID: 38986182 DOI: 10.1016/j.micres.2024.127822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 07/12/2024]
Abstract
Antibiotic resistance represents a global health threat, challenging the efficacy of traditional antimicrobial agents and necessitating innovative approaches to combat infectious diseases. Among these alternatives, antimicrobial peptides have emerged as promising candidates against resistant pathogens. Unlike traditional antibiotics with only one target, these peptides can use different mechanisms to destroy bacteria, with low toxicity to mammalian cells compared to many conventional antibiotics. Antimicrobial peptides (AMPs) have encouraging antibacterial properties and are currently employed in the clinical treatment of pathogen infection, cancer, wound healing, cosmetics, or biotechnology. This review summarizes the mechanisms of antimicrobial peptides against bacteria, discusses the mechanisms of drug resistance, the limitations and challenges of AMPs in peptide drug applications for combating drug-resistant bacterial infections, and strategies to enhance their capabilities.
Collapse
Affiliation(s)
- Cezara Bucataru
- Alexandru I. Cuza University, Institute of Interdisciplinary Research, Department of Exact and Natural Sciences, Bulevardul Carol I, Nr.11, Iasi 700506, Romania
| | - Corina Ciobanasu
- Alexandru I. Cuza University, Institute of Interdisciplinary Research, Department of Exact and Natural Sciences, Bulevardul Carol I, Nr.11, Iasi 700506, Romania.
| |
Collapse
|
5
|
Yang N, Yu G, Lai Y, Zhao J, Chen Z, Chen L, Fu Y, Fang P, Gao W, Cai Y, Li Z, Xiao J, Zhou K, Ding J. A snake cathelicidin enhances transcription factor EB-mediated autophagy and alleviates ROS-induced pyroptosis after ischaemia-reperfusion injury of island skin flaps. Br J Pharmacol 2024; 181:1068-1090. [PMID: 37850255 DOI: 10.1111/bph.16268] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 09/17/2023] [Accepted: 10/03/2023] [Indexed: 10/19/2023] Open
Abstract
BACKGROUND AND PURPOSE Ischaemia-reperfusion (I/R) injury is a major contributor to skin flap necrosis, which presents a challenge in achieving satisfactory therapeutic outcomes. Previous studies showed that cathelicidin-BF (BF-30) protects tissues from I/R injury. In this investigation, BF-30 was synthesized and its role and mechanism in promoting survival of I/R-injured skin flaps explored. EXPERIMENTAL APPROACH Survival rate analysis and laser Doppler blood flow analysis were used to evaluate I/R-injured flap viability. Western blotting, immunofluorescence, TdT-mediated dUTP nick end labelling (TUNEL) and dihydroethidium were utilized to examine the levels of apoptosis, pyroptosis, oxidative stress, transcription factor EB (TFEB)-mediated autophagy and molecules related to the adenosine 5'-monophosphate-activated protein kinase (AMPK)-transient receptor potential mucolipin 1 (TRPML1)-calcineurin signalling pathway. KEY RESULTS The outcomes revealed that BF-30 enhanced I/R-injured island skin flap viability. Autophagy, oxidative stress, pyroptosis and apoptosis were related to the BF-30 capability to enhance I/R-injured flap survival. Improved autophagy flux and tolerance to oxidative stress promoted the inhibition of apoptosis and pyroptosis in vascular endothelial cells. Activation of TFEB increased autophagy and inhibited endothelial cell oxidative stress in I/R-injured flaps. A reduction in TFEB level led to a loss of the protective effect of BF-30, by reducing autophagy flux and increasing the accumulation of reactive oxygen species (ROS) in endothelial cells. Additionally, BF-30 modulated TFEB activity via the AMPK-TRPML1-calcineurin signalling pathway. CONCLUSION AND IMPLICATIONS BF-30 promotes I/R-injured skin flap survival by TFEB-mediated up-regulation of autophagy and inhibition of oxidative stress, which may have possible clinical applications.
Collapse
Affiliation(s)
- Ningning Yang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Gaoxiang Yu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Yingying Lai
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Jiayi Zhao
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, China
| | - Zhuliu Chen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Liang Chen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Yuedong Fu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Pin Fang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Weiyang Gao
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Yuepiao Cai
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, China
| | - Zhijie Li
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Jian Xiao
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, China
| | - Kailiang Zhou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Jian Ding
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
6
|
Li P, Pan J, Dong Y, Sun Y, Wang Y, Liao K, Chen Y, Deng X, Yu S, Hu H. Microenvironment responsive charge-switchable nanoparticles act on biofilm eradication and virulence inhibition for chronic lung infection treatment. J Control Release 2024; 365:219-235. [PMID: 37992874 DOI: 10.1016/j.jconrel.2023.11.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/19/2023] [Accepted: 11/15/2023] [Indexed: 11/24/2023]
Abstract
Chronic pulmonary infection caused by Pseudomonas aeruginosa (P. aeruginosa) is a common lung disease with high mortality, posing severe threats to public health. Highly resistant biofilm and intrinsic resistance make P. aeruginosa hard to eradicate, while powerful virulence system of P. aeruginosa may give rise to the recurrence of infection and eventual failure of antibiotic therapy. To address these issues, infection-microenvironment responsive nanoparticles functioning on biofilm eradication and virulence inhibition were simply prepared by electrostatic complexation between dimethylmaleic anhydride (DA) modified negatively charged coating and epsilon-poly(l-lysine) derived cationic nanoparticles loaded with azithromycin (AZI) (DA-AZI NPs). Charge reversal responsive to acidic condition enabled DA-AZI NPs to successively penetrate through both mucus and biofilms, followed by targeting to P. aeruginosa and permeabilizing its outer/inner membrane. Then in situ released AZI, which was induced by the lipase-triggered NPs dissociation, could easily enter into bacteria to take effects. DA-AZI NPs exhibited enhanced eradication activity against P. aeruginosa biofilms with a decrease of >99.999% of bacterial colonies, as well as remarkable inhibitory effects on the production of virulence factors and bacteria re-adhesion & biofilm re-formation. In a chronic pulmonary infection model, nebulization of DA-AZI NPs into infected mice resulted in prolonged retention and increased accumulation of the NPs in the infected sites of the lungs. Moreover, they significantly reduced the burden of P. aeruginosa, effectively alleviating lung tissue damages and inflammation. Overall, the proposed DA-AZI NPs highlight an innovative strategy for treating chronic pulmonary infection.
Collapse
Affiliation(s)
- Pengyu Li
- School of Pharmaceutical Sciences, Sun Yat-Sen University, University Town, Guangzhou 510006, PR China
| | - Jieyi Pan
- School of Pharmaceutical Sciences, Sun Yat-Sen University, University Town, Guangzhou 510006, PR China
| | - Yating Dong
- School of Pharmaceutical Sciences, Sun Yat-Sen University, University Town, Guangzhou 510006, PR China
| | - Yingying Sun
- School of Pharmaceutical Sciences, Sun Yat-Sen University, University Town, Guangzhou 510006, PR China
| | - Yalong Wang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, University Town, Guangzhou 510006, PR China
| | - Kang Liao
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, PR China
| | - Yili Chen
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, PR China
| | - Xin Deng
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong, SAR 999077, PR China
| | - Shihui Yu
- School of Pharmaceutical Sciences, Sun Yat-Sen University, University Town, Guangzhou 510006, PR China.
| | - Haiyan Hu
- School of Pharmaceutical Sciences, Sun Yat-Sen University, University Town, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, Sun Yat-Sen University, University Town, Guangzhou 510006, PR China.
| |
Collapse
|
7
|
Li H, Niu J, Wang X, Niu M, Liao C. The Contribution of Antimicrobial Peptides to Immune Cell Function: A Review of Recent Advances. Pharmaceutics 2023; 15:2278. [PMID: 37765247 PMCID: PMC10535326 DOI: 10.3390/pharmaceutics15092278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/27/2023] [Accepted: 09/02/2023] [Indexed: 09/29/2023] Open
Abstract
The development of novel antimicrobial agents to replace antibiotics has become urgent due to the emergence of multidrug-resistant microorganisms. Antimicrobial peptides (AMPs), widely distributed in all kingdoms of life, present strong antimicrobial activity against a variety of bacteria, fungi, parasites, and viruses. The potential of AMPs as new alternatives to antibiotics has gradually attracted considerable interest. In addition, AMPs exhibit strong anticancer potential as well as anti-inflammatory and immunomodulatory activity. Many studies have provided evidence that AMPs can recruit and activate immune cells, controlling inflammation. This review highlights the scientific literature focusing on evidence for the anti-inflammatory mechanisms of different AMPs in immune cells, including macrophages, monocytes, lymphocytes, mast cells, dendritic cells, neutrophils, and eosinophils. A variety of immunomodulatory characteristics, including the abilities to activate and differentiate immune cells, change the content and expression of inflammatory mediators, and regulate specific cellular functions and inflammation-related signaling pathways, are summarized and discussed in detail. This comprehensive review contributes to a better understanding of the role of AMPs in the regulation of the immune system and provides a reference for the use of AMPs as novel anti-inflammatory drugs for the treatment of various inflammatory diseases.
Collapse
Affiliation(s)
- Hanxiao Li
- Luoyang Key Laboratory of Live Carrier Biomaterial and Anmal Disease Prevention and Control, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China; (H.L.); (J.N.)
| | - Junhui Niu
- Luoyang Key Laboratory of Live Carrier Biomaterial and Anmal Disease Prevention and Control, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China; (H.L.); (J.N.)
| | - Xiaoli Wang
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang 471023, China;
| | - Mingfu Niu
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China;
| | - Chengshui Liao
- Luoyang Key Laboratory of Live Carrier Biomaterial and Anmal Disease Prevention and Control, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China; (H.L.); (J.N.)
| |
Collapse
|
8
|
Antimicrobial peptides for combating drug-resistant bacterial infections. Drug Resist Updat 2023; 68:100954. [PMID: 36905712 DOI: 10.1016/j.drup.2023.100954] [Citation(s) in RCA: 178] [Impact Index Per Article: 89.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/21/2023] [Accepted: 02/27/2023] [Indexed: 03/05/2023]
Abstract
The problem of drug resistance due to long-term use of antibiotics has been a concern for years. As this problem grows worse, infections caused by multiple bacteria are expanding rapidly and are extremely detrimental to human health. Antimicrobial peptides (AMPs) are a good alternative to current antimicrobials with potent antimicrobial activity and unique antimicrobial mechanisms, which have advantages over traditional antibiotics in fighting against drug-resistant bacterial infections. Currently, researchers have conducted clinical investigations on AMPs for drug-resistant bacterial infections while integrating new technologies in the development of AMPs, such as changing amino acid structure of AMPs and using different delivery methods for AMPs. This article introduces the basic properties of AMPs, deliberates the mechanism of drug resistance in bacteria and the therapeutic mechanism of AMPs. The current disadvantages and advances of AMPs in combating drug-resistant bacterial infections are also discussed. This article provides important insights into the research and clinical application of new AMPs for drug-resistant bacterial infections.
Collapse
|
9
|
Past, Present, and Future of Naturally Occurring Antimicrobials Related to Snake Venoms. Animals (Basel) 2023; 13:ani13040744. [PMID: 36830531 PMCID: PMC9952678 DOI: 10.3390/ani13040744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/10/2023] [Accepted: 02/11/2023] [Indexed: 02/22/2023] Open
Abstract
This review focuses on proteins and peptides with antimicrobial activity because these biopolymers can be useful in the fight against infectious diseases and to overcome the critical problem of microbial resistance to antibiotics. In fact, snakes show the highest diversification among reptiles, surviving in various environments; their innate immunity is similar to mammals and the response of their plasma to bacteria and fungi has been explored mainly in ecological studies. Snake venoms are a rich source of components that have a variety of biological functions. Among them are proteins like lectins, metalloproteinases, serine proteinases, L-amino acid oxidases, phospholipases type A2, cysteine-rich secretory proteins, as well as many oligopeptides, such as waprins, cardiotoxins, cathelicidins, and β-defensins. In vitro, these biomolecules were shown to be active against bacteria, fungi, parasites, and viruses that are pathogenic to humans. Not only cathelicidins, but all other proteins and oligopeptides from snake venom have been proteolyzed to provide short antimicrobial peptides, or for use as templates for developing a variety of short unnatural sequences based on their structures. In addition to organizing and discussing an expressive amount of information, this review also describes new β-defensin sequences of Sistrurus miliarius that can lead to novel peptide-based antimicrobial agents, using a multidisciplinary approach that includes sequence phylogeny.
Collapse
|
10
|
Yue L, Cao H, Qi J, Yuan J, Wang X, Wang Y, Shan B, Ke H, Li H, Luan N, Liu C. Pretreatment with 3-methyladenine ameliorated Pseudomonas aeruginosa-induced acute pneumonia by inhibiting cell death of neutrophils in a mouse infection model. Int J Med Microbiol 2023; 313:151574. [PMID: 36736016 DOI: 10.1016/j.ijmm.2023.151574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 01/21/2023] Open
Abstract
Pseudomonas aeruginosa is one of the leading causes of nosocomial infections worldwide. Clinical isolates that are resistant to multiple antimicrobials make it intractable. The interactions between P. aeruginosa and host cell death have multiple effects on bacterial clearance and inflammation; however, the potential intervention effects remain to be defined. Herein, we demonstrated that intravenous administration of 3-methyladenine before, but not after, P. aeruginosa infection enhanced autophagy-independent survival, which was accompanied by a decrease in the bacterial load, alleviation of pathology and reduction in inflammatory cytokines, in an acute pneumonia mouse model. Interestingly, these beneficial effects were not dependent on neutrophil recruitment or phagocytosis, but on the enhanced killing capacity induced by inhibiting the cell death of 3-MA pretreated neutrophils. These findings demonstrate a novel protective role of 3-MA pretreatment in P. aeruginosa-induced acute pneumonia.
Collapse
Affiliation(s)
- Lei Yue
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China
| | - Han Cao
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China
| | - Jialong Qi
- The First People's Hospital of Yunnan Province & Affiliated Hospital of Kunming University of Science and Technology, Kunming 650034, China
| | - Jin Yuan
- Department of Pathogen Biology and Immunology, Faculty of Basic Medical Science, Kunming Medical University, Kunming 650500, China
| | - Xin Wang
- Department of Pathogen Biology and Immunology, Faculty of Basic Medical Science, Kunming Medical University, Kunming 650500, China
| | - Yunfei Wang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China
| | - Bin Shan
- Department of Clinical Lab, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
| | - Huaxin Ke
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China
| | - Hua Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China
| | - Ning Luan
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China.
| | - Cunbao Liu
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China.
| |
Collapse
|
11
|
Huang Z, Zhang H, Fu X, Han L, Zhang H, Zhang L, Zhao J, Xiao D, Li H, Li P. Autophagy-driven neutrophil extracellular traps: The dawn of sepsis. Pathol Res Pract 2022; 234:153896. [PMID: 35462228 DOI: 10.1016/j.prp.2022.153896] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 03/28/2022] [Accepted: 04/11/2022] [Indexed: 12/12/2022]
Abstract
Sepsis is a systemic inflammatory syndrome caused by infection disorders. The core mechanism of sepsis is immune dysfunction. Neutrophils are the most abundant circulating white blood cells, which play a crucial role in mediating the innate immune response. Previous studies have shown that an effective way to treat sepsis is through the regulation of neutrophil functions. Autophagy, a highly conserved degradation process, is responsible for removing denatured proteins or damaged organelles within cells and protecting cells from external stimuli. It is a key homeostasis process that promotes neutrophil function and differentiation. Autophagy has been shown to be closely associated with inflammation and immunity. Neutrophils, the first line of innate immunity, migrate to inflammatory sites upon their activation. Neutrophil-mediated autophagy may participate in the clinical course of sepsis. In this review, we summarized and analyzed the latest research findings on the changes in neutrophil external traps during sepsis, the regulatory role of autophagy in neutrophil, and the potential application of autophagy-driven NETs in sepsis, so as to guide clinical treatment of sepsis.
Collapse
Affiliation(s)
- Zhenzhen Huang
- Department of Emergency Medicine, Lanzhou University Second Hospital, Lanzhou, China
| | - Haodong Zhang
- Department of Hypertension Center, Lanzhou University Second Hospital, Lanzhou, China
| | - Xu Fu
- Key Laboratory of Emergency Medicine, Lanzhou University Second Hospital, Lanzhou, China
| | - Li Han
- Key Laboratory of Emergency Medicine, Lanzhou University Second Hospital, Lanzhou, China
| | - Haidan Zhang
- Department of Emergency Medicine, Lanzhou University Second Hospital, Lanzhou, China
| | - Ling Zhang
- Department of Emergency Medicine, Lanzhou University Second Hospital, Lanzhou, China
| | - Jing Zhao
- Department of Emergency Medicine, Lanzhou University Second Hospital, Lanzhou, China
| | - Danyang Xiao
- Department of Emergency Medicine, Lanzhou University Second Hospital, Lanzhou, China
| | - Hongyao Li
- Department of Emergency Medicine, Lanzhou University Second Hospital, Lanzhou, China
| | - Peiwu Li
- Department of Emergency Medicine, Lanzhou University Second Hospital, Lanzhou, China.
| |
Collapse
|
12
|
Rima M, Rima M, Fajloun Z, Sabatier JM, Bechinger B, Naas T. Antimicrobial Peptides: A Potent Alternative to Antibiotics. Antibiotics (Basel) 2021; 10:1095. [PMID: 34572678 PMCID: PMC8466391 DOI: 10.3390/antibiotics10091095] [Citation(s) in RCA: 155] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/02/2021] [Accepted: 09/06/2021] [Indexed: 01/07/2023] Open
Abstract
Antimicrobial peptides constitute one of the most promising alternatives to antibiotics since they could be used to treat bacterial infections, especially those caused by multidrug-resistant pathogens. Many antimicrobial peptides, with various activity spectra and mechanisms of actions, have been described. This review focuses on their use against ESKAPE bacteria, especially in biofilm treatments, their synergistic activity, and their application as prophylactic agents. Limitations and challenges restricting therapeutic applications are highlighted, and solutions for each challenge are evaluated to analyze whether antimicrobial peptides could replace antibiotics in the near future.
Collapse
Affiliation(s)
- Mariam Rima
- Team ReSIST, INSERM U1184, School of Medicine Université Paris-Saclay, 94270 Le Kremlin-Bicetre, France;
| | - Mohamad Rima
- Laboratory of Applied Biotechnology, Azm Center for Research in Biotechnology and Its Applications, EDST, Lebanese University, Tripoli 1300, Lebanon; (M.R.); (Z.F.)
| | - Ziad Fajloun
- Laboratory of Applied Biotechnology, Azm Center for Research in Biotechnology and Its Applications, EDST, Lebanese University, Tripoli 1300, Lebanon; (M.R.); (Z.F.)
- Department of Biology, Faculty of Sciences III, Lebanese University, Tripoli 1300, Lebanon
| | - Jean-Marc Sabatier
- Institut de Neuro Physiopathologie, UMR7051, Aix-Marseille Université, Faculté de Pharmacie, 27 Boulevard Jean Moulin, 13005 Marseille, France
| | - Burkhard Bechinger
- Institut de Chimie de Strasbourg, CNRS, UMR7177, University of Strasbourg, 67008 Strasbourg, France;
- Institut Universitaire de France (IUF), 75005 Paris, France
| | - Thierry Naas
- Team ReSIST, INSERM U1184, School of Medicine Université Paris-Saclay, 94270 Le Kremlin-Bicetre, France;
- Bacteriology-Hygiene Unit, Assistance Publique/Hôpitaux de Paris, Bicêtre Hospital, 94270 Le Kremlin-Bicetre, France
- French National Reference Centre for Antibiotic Resistance: Carbapenemase-Producing Enterobacterales, 94270 Le Kremlin-Bicetre, France
| |
Collapse
|
13
|
Qi JL, He JR, Jin SM, Yang X, Bai HM, Liu CB, Ma YB. P. aeruginosa Mediated Necroptosis in Mouse Tumor Cells Induces Long-Lasting Systemic Antitumor Immunity. Front Oncol 2021; 10:610651. [PMID: 33643911 PMCID: PMC7908819 DOI: 10.3389/fonc.2020.610651] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 12/21/2020] [Indexed: 01/12/2023] Open
Abstract
Necroptosis is a form of programmed cell death (PCD) characterized by RIP3 mediated MLKL activation and increased membrane permeability via MLKL oligomerization. Tumor cell immunogenic cell death (ICD) has been considered to be essential for the anti-tumor response, which is associated with DC recruitment, activation, and maturation. In this study, we found that P. aeruginosa showed its potential to suppress tumor growth and enable long-lasting anti-tumor immunity in vivo. What's more, phosphorylation- RIP3 and MLKL activation induced by P. aeruginosa infection resulted in tumor cell necrotic cell death and HMGB1 production, indicating that P. aeruginosa can cause immunogenic cell death. The necrotic cell death can further drive a robust anti-tumor response via promoting tumor cell death, inhibiting tumor cell proliferation, and modulating systemic immune responses and local immune microenvironment in tumor. Moreover, dying tumor cells killed by P. aeruginosa can catalyze DC maturation, which enhanced the antigen-presenting ability of DC cells. These findings demonstrate that P. aeruginosa can induce immunogenic cell death and trigger a robust long-lasting anti-tumor response along with reshaping tumor microenvironment.
Collapse
Affiliation(s)
- Jia-long Qi
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Jin-rong He
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
- Institute of Medical Biology, Kunming Medical University, Kunming, China
| | - Shu-mei Jin
- Department of Pathology, Yunnan Institute of Materia, Kunming, China
| | - Xu Yang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Hong-mei Bai
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Cun-bao Liu
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Yan-bing Ma
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| |
Collapse
|
14
|
Shu Z, Yuan J, Wang H, Zhang J, Li S, Zhang H, Liu Y, Yin Y, Zhang X. Streptococcus pneumoniae PepO promotes host anti-infection defense via autophagy in a Toll-like receptor 2/4 dependent manner. Virulence 2021; 11:270-282. [PMID: 32172666 PMCID: PMC7161686 DOI: 10.1080/21505594.2020.1739411] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Macrophage is essential for host anti-bacterial defense by directly eliminating invading microbes and inducing a series of immune reactions. Here we identified a Streptococcus pneumoniae protein, PepO, as a TLR2/TLR4 bi-ligand. We found that PepO enhances macrophage unspecific phagocytosis and bactericidal activity, which is related to the induction of autophagy in macrophage, for the inhibition of autophagy significantly decreased the phagocytosis and bactericidal activity of PepO-treated macrophage. We confirmed that these effects of PepO are dependent on interacting with both TLR2 and TLR4. The tlr2 or tlr4 deficiency partially abolished the effect of PepO while tlr2/tlr4 deficiency abolished it completely. In vivo study demonstrated that PepO reduced the bacteria load in WT mice significantly, while the depletion of macrophage or tlr2/tlr4 deficiency abrogated the effect of PepO. Our findings suggested the therapeutic potential of PepO and provided experimental evidence for immunotherapy against infectious disease.
Collapse
Affiliation(s)
- Zhaoche Shu
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing, China
| | - Jun Yuan
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing, China
| | - Hong Wang
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing, China
| | - Jinghui Zhang
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing, China
| | - Sijie Li
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing, China
| | - Hong Zhang
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing, China
| | - Yusi Liu
- Department of Laboratory Medicine, The First Hospital of China Medical University, China Medical University, Shenyang, China
| | - Yibing Yin
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing, China
| | - Xuemei Zhang
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing, China
| |
Collapse
|
15
|
Liu H, Wang W, Shen W, Wang L, Zuo Y. ARHGAP24 ameliorates inflammatory response through inactivating Rac1/Akt/NF-κB pathway in acute pneumonia model of rat. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1289. [PMID: 33209869 PMCID: PMC7661869 DOI: 10.21037/atm-20-5000] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Background ARHGAP24 might play a protective effect in the development of acute pneumonia, but the underlying mechanism remained a mystery. We aimed to investigate the effect of ARHGAP24 and explore the protective mechanism based on the acute pneumonia model of rats. Methods Western blotting analysis was conducted to measure the expression of ARHGAP24 in the rat model of bacillus pyocyaneus-induced acute pneumonia after 12, 24, 36, and 48 h modeling. In the acute pneumonia model of rat, lung histopathological change, lung edema, and levels of inflammatory cytokines in the broncho alveolar lavage fluid (BALF) were respectively measured to comprehensively evaluate the beneficial effect of overexpression of ARHGAP24 mediated by adenovirus. The western blotting analysis was conducted to evaluate Rac1/Akt/NF-κB pathway-related protein expression change with ARHGAP24 overexpression. Results We found that ARHGAP24 expression tended to be lower in the acute pneumonia model of the rat after bacillus pyocyaneus treated 12, 24, 36, and 48 h. High expression of ARHGAP24 and a substantial ARHGAP24 positive area was found in the western blotting analysis and immunohistochemical staining in rats transfected with ARHGAP24. In the meantime, overexpression of ARHGAP24 suppressed the development of acute pneumonia through alleviating lung histopathological deterioration, lung edema, and levels of inflammatory cytokines in the BALF of the lung. What is more critical, ARHGAP24 overexpression inhibits the activation of Rac1, Akt, and NF-κB. Conclusions Thus, we conclude that ARHGAP24 ameliorated the inflammatory response in the acute pneumonia model of the rat through inactivating the Rac1/Akt/NF-κB pathway.
Collapse
Affiliation(s)
- Huailian Liu
- Hospital Department, Huaian City Maternal and Child Health Hospital, Huaian, China
| | - Wangpeng Wang
- Central Laboratory, Lianshui County People's Hospital, Huaian, China
| | - Wenyi Shen
- Aspiration Medicine, Lianshui County People's Hospital, Huaian, China
| | - Lili Wang
- Aspiration Medicine, Lianshui County People's Hospital, Huaian, China
| | - Yangsong Zuo
- Aspiration Medicine, Lianshui County People's Hospital, Huaian, China
| |
Collapse
|
16
|
Alford MA, Baquir B, Santana FL, Haney EF, Hancock REW. Cathelicidin Host Defense Peptides and Inflammatory Signaling: Striking a Balance. Front Microbiol 2020; 11:1902. [PMID: 32982998 PMCID: PMC7481365 DOI: 10.3389/fmicb.2020.01902] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 07/20/2020] [Indexed: 12/28/2022] Open
Abstract
Host-defense peptides (HDPs) are vital components of innate immunity in all vertebrates. While their antibacterial activity toward bacterial cells was the original focus for research, their ability to modulate immune and inflammatory processes has emerged as one of their major functions in the host and as a promising approach from which to develop novel therapeutics targeting inflammation and innate immunity. In this review, with particular emphasis on the cathelicidin family of peptides, the roles of natural HDPs are examined in managing immune activation, cellular recruitment, cytokine responses, and inflammation in response to infection, as well as their contribution(s) to various inflammatory disorders and autoimmune diseases. Furthermore, we discuss current efforts to develop synthetic HDPs as therapeutics aimed at restoring balance to immune responses that are dysregulated and contribute to disease pathologies.
Collapse
Affiliation(s)
- Morgan A. Alford
- Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, BC, Canada
| | - Beverlie Baquir
- Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, BC, Canada
| | - Felix L. Santana
- Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, BC, Canada
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Evan F. Haney
- Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, BC, Canada
| | - Robert E. W. Hancock
- Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
17
|
Qi JL, He JR, Liu CB, Jin SM, Gao RY, Yang X, Bai HM, Ma YB. Pulmonary Staphylococcus aureus infection regulates breast cancer cell metastasis via neutrophil extracellular traps (NETs) formation. MedComm (Beijing) 2020; 1:188-201. [PMID: 34766117 PMCID: PMC8491238 DOI: 10.1002/mco2.22] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/30/2020] [Accepted: 07/02/2020] [Indexed: 12/20/2022] Open
Abstract
The formation of neutrophil extracellular traps (NETs) was recently identified as one of the most important processes for the maintenance of host tissue homeostasis in bacterial infection. Meanwhile, pneumonia infection has a poor effect on cancer patients receiving immunotherapy. Whether pneumonia‐mediated NETs increase lung metastasis remains unclear. In this study, we identified a critical role for multidrug‐resistant Staphylococcus aureus infection‐induced NETs in the regulation of cancer cell metastasis. Notably, S. aureus triggered autophagy‐dependent NETs formation in vitro and in vivo and increased cancer cell metastasis. Targeting autophagy effectively regulated NETs formation, which contributed to the control of cancer metastasis in vivo. Moreover, the degradation of NETs by DNase I significantly suppresses metastasis in lung. Our work offers novel insight into the mechanisms of metastasis induced by bacterial pneumonia and provides a potential therapeutic strategy for pneumonia‐related metastasis.
Collapse
Affiliation(s)
- Jia-Long Qi
- Chinese Academy of Medical Sciences and Peking Union Medical College Institute of Medical Biology Kunming China
| | - Jin-Rong He
- Chinese Academy of Medical Sciences and Peking Union Medical College Institute of Medical Biology Kunming China.,School of Basic Medical School Kunming Medical University Kunming China
| | - Cun-Bao Liu
- Chinese Academy of Medical Sciences and Peking Union Medical College Institute of Medical Biology Kunming China
| | - Shu-Mei Jin
- Department of Pharmacology Laboratory Yunnan Institute of Materia Medica NO24, LENGSHUITANG, BIJI ROAD, XISHAN QU Kunming 650000 China
| | - Rui-Yu Gao
- Chinese Academy of Medical Sciences and Peking Union Medical College Institute of Medical Biology Kunming China
| | - Xu Yang
- Chinese Academy of Medical Sciences and Peking Union Medical College Institute of Medical Biology Kunming China
| | - Hong-Mei Bai
- Chinese Academy of Medical Sciences and Peking Union Medical College Institute of Medical Biology Kunming China
| | - Yan-Bing Ma
- Chinese Academy of Medical Sciences and Peking Union Medical College Institute of Medical Biology Kunming China
| |
Collapse
|
18
|
Cicco S, Cicco G, Racanelli V, Vacca A. Neutrophil Extracellular Traps (NETs) and Damage-Associated Molecular Patterns (DAMPs): Two Potential Targets for COVID-19 Treatment. Mediators Inflamm 2020; 2020:7527953. [PMID: 32724296 PMCID: PMC7366221 DOI: 10.1155/2020/7527953] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/11/2020] [Accepted: 06/30/2020] [Indexed: 12/17/2022] Open
Abstract
COVID-19 is a pandemic disease caused by the new coronavirus SARS-CoV-2 that mostly affects the respiratory system. The consequent inflammation is not able to clear viruses. The persistent excessive inflammatory response can build up a clinical picture that is very difficult to manage and potentially fatal. Modulating the immune response plays a key role in fighting the disease. One of the main defence systems is the activation of neutrophils that release neutrophil extracellular traps (NETs) under the stimulus of autophagy. Various molecules can induce NETosis and autophagy; some potent activators are damage-associated molecular patterns (DAMPs) and, in particular, the high-mobility group box 1 (HMGB1). This molecule is released by damaged lung cells and can induce a robust innate immunity response. The increase in HMGB1 and NETosis could lead to sustained inflammation due to SARS-CoV-2 infection. Therefore, blocking these molecules might be useful in COVID-19 treatment and should be further studied in the context of targeted therapy.
Collapse
Affiliation(s)
- Sebastiano Cicco
- Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro Medical School, Piazza G. Cesare 11, I-70124 Bari, Italy
| | - Gerolamo Cicco
- Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro Medical School, Piazza G. Cesare 11, I-70124 Bari, Italy
| | - Vito Racanelli
- Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro Medical School, Piazza G. Cesare 11, I-70124 Bari, Italy
| | - Angelo Vacca
- Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro Medical School, Piazza G. Cesare 11, I-70124 Bari, Italy
| |
Collapse
|
19
|
Hitchhiking with Nature: Snake Venom Peptides to Fight Cancer and Superbugs. Toxins (Basel) 2020; 12:toxins12040255. [PMID: 32326531 PMCID: PMC7232197 DOI: 10.3390/toxins12040255] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/25/2020] [Accepted: 04/09/2020] [Indexed: 12/24/2022] Open
Abstract
Abstract For decades, natural products in general and snake venoms (SV) in particular have been a rich source of bioactive compounds for drug discovery, and they remain a promising substrate for therapeutic development. Currently, a handful of SV-based drugs for diagnosis and treatment of various cardiovascular disorders and blood abnormalities are on the market. Likewise, far more SV compounds and their mimetics are under investigation today for diverse therapeutic applications, including antibiotic-resistant bacteria and cancer. In this review, we analyze the state of the art regarding SV-derived compounds with therapeutic potential, focusing on the development of antimicrobial and anticancer drugs. Specifically, information about SV peptides experimentally validated or predicted to act as antimicrobial and anticancer peptides (AMPs and ACPs, respectively) has been collected and analyzed. Their principal activities both in vitro and in vivo, structures, mechanisms of action, and attempts at sequence optimization are discussed in order to highlight their potential as drug leads. Key Contribution This review describes the state of the art in snake venom-derived peptides and their therapeutic applications. This work reinforces the potential of snake venom components as therapeutic agents, particularly in the quest for new antimicrobial and anticancer drugs.
Collapse
|
20
|
Liang X, Liu L, Wang Y, Guo H, Fan H, Zhang C, Hou L, Liu Z. Autophagy-driven NETosis is a double-edged sword - Review. Biomed Pharmacother 2020; 126:110065. [PMID: 32200255 DOI: 10.1016/j.biopha.2020.110065] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 02/25/2020] [Accepted: 02/28/2020] [Indexed: 02/06/2023] Open
Abstract
Autophagy is a cellular mechanism responsible for delivering protein aggregates or damaged organelles to lysosomes for degradation. It is also simultaneously a precise regulatory process, which is crucial for dealing with hunger, oxidative stress, and pathogen defense. Neutrophil Extracellular Traps (NETs), which form a part of a newly described bactericidal process, are reticular structures composed of a DNA backbone and multiple functional proteins, formed via a process known as NETosis. NETs exert their anti-infection activity by capturing pathogenic microorganisms, inhibiting their spread and inactivating virulence factors. However, NETs may also activate an immune response in non-infectious diseases, leading to tissue damage. Although the mechanism underlying this phenomenon is unclear, a large number of studies have suggested that autophagy may be involved. Autophagy-mediated NETs not only induce inflammation and tissue damage, but can also lead to cell senescence, malignant transformation, and cell death. Autophagy-dependent NETs also play a beneficial role in the hostwith respect to pathogen clearance and immune defense. Through careful review of the literature, we have found that the distinct roles of autophagy in NETosis may be dependent on the extent of autophagy and the specific manner in which it was induced. This article summarizes numerous recent studies, and reviews the role of autophagy-driven NETosis in various diseases, in the hope that this will lead to the development of more effective treatments.
Collapse
Affiliation(s)
- Xiaofei Liang
- Department of Laboratory Medicine, The First Hospital of Qiqihar, Qiqihar, 161005, China; Department of Laboratory Medicine, Affiliated Qiqihar Hospital, Southern Medical University, Qiqihar, 161005, China
| | - Li Liu
- Department of Laboratory Medicine, The First Hospital of Qiqihar, Qiqihar, 161005, China; Department of Laboratory Medicine, Affiliated Qiqihar Hospital, Southern Medical University, Qiqihar, 161005, China.
| | - Yan Wang
- Department of Laboratory Medicine, The First Hospital of Qiqihar, Qiqihar, 161005, China; Department of Laboratory Medicine, Affiliated Qiqihar Hospital, Southern Medical University, Qiqihar, 161005, China
| | - Haipeng Guo
- Department of Laboratory Medicine, The First Hospital of Qiqihar, Qiqihar, 161005, China; Department of Laboratory Medicine, Affiliated Qiqihar Hospital, Southern Medical University, Qiqihar, 161005, China
| | - Hua Fan
- Department of Laboratory Medicine, The First Hospital of Qiqihar, Qiqihar, 161005, China; Department of Laboratory Medicine, Affiliated Qiqihar Hospital, Southern Medical University, Qiqihar, 161005, China
| | - Chao Zhang
- Department of Laboratory Medicine, The First Hospital of Qiqihar, Qiqihar, 161005, China; Department of Laboratory Medicine, Affiliated Qiqihar Hospital, Southern Medical University, Qiqihar, 161005, China
| | - Lili Hou
- Department of Laboratory Medicine, The First Hospital of Qiqihar, Qiqihar, 161005, China; Department of Laboratory Medicine, Affiliated Qiqihar Hospital, Southern Medical University, Qiqihar, 161005, China
| | - Zhibo Liu
- Department of Laboratory Medicine, The First Hospital of Qiqihar, Qiqihar, 161005, China; Department of Laboratory Medicine, Affiliated Qiqihar Hospital, Southern Medical University, Qiqihar, 161005, China
| |
Collapse
|
21
|
Zhao H, Wang Y, Qiu T, Liu W, Yao P. Autophagy, an important therapeutic target for pulmonary fibrosis diseases. Clin Chim Acta 2019; 502:139-147. [PMID: 31877297 DOI: 10.1016/j.cca.2019.12.016] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 12/19/2019] [Accepted: 12/19/2019] [Indexed: 02/07/2023]
Abstract
As an evolutionarily conserved intracellular degradation pathway, autophagy is essential to cellular homeostasis. Several studies have demonstrated that autophagy showed an important effect on some pulmonary fibrosis diseases, including idiopathic pulmonary fibrosis (IPF), cystic fibrosis lung disease, silicosis and smoking-induced pulmonary fibrosis. For example, autophagy mitigates the pathological progression of IPF by regulating the apoptosis of fibroblasts and the senescence of alveolar epithelial cells. In addition, autophagy ameliorates cystic fibrosis lung disease via rescuing transmembrane conductance regulators (CFTRs) to the plasma membrane. Furthermore, autophagy alleviates the silica-induced pulmonary fibrosis by decreasing apoptosis of alveolar epithelial cells in silicosis. However, excessive macrophage autophagy aggravates the pathogenesis of silicosis fibrosis by promoting the proliferation and migration of lung fibroblasts in silicosis. Autophagy is also involved in smoking-induced pulmonary fibrosis, coal workers' pneumoconiosis, ionizing radiation-mediated pulmonary fibrosis and heavy metal nanoparticle-mediated pulmonary fibrosis. In this review, the role and signalling mechanisms of autophagy in the progression of pulmonary fibrosis diseases have been systematically analysed. It has provided a new insight into the therapeutic potential associated with autophagy in pulmonary fibrosis diseases. In conclusion, the targeting of autophagy might prove to be a prospective avenue for the therapeutic intervention of pulmonary fibrosis diseases.
Collapse
Affiliation(s)
- Hong Zhao
- Nursing College, University of South China, Hengyang, 421001, China
| | - Yiqun Wang
- Department of Anesthesiology, Affiliated Nanhua Hospital, University of South China, Hengyang, 421002, China
| | - Tingting Qiu
- Nursing College, University of South China, Hengyang, 421001, China
| | - Wei Liu
- Department of Intensive Care Units, Affiliated Nanhua Hospital, University of South China, Hengyang, 421002, China.
| | - Pingbo Yao
- Department of Clinical Technology, Changsha Health Vocational College, Changsha 410100, China.
| |
Collapse
|
22
|
Qi J, Gao R, Liu C, Shan B, Gao F, He J, Yuan M, Xie H, Jin S, Ma Y. Potential role of the antimicrobial peptide Tachyplesin III against multidrug-resistant P. aeruginosa and A. baumannii coinfection in an animal model. Infect Drug Resist 2019; 12:2865-2874. [PMID: 31576151 PMCID: PMC6765326 DOI: 10.2147/idr.s217020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 08/24/2019] [Indexed: 01/05/2023] Open
Abstract
Background Tachyplesin III, an antimicrobial peptide (AMP), provides protection against multidrug-resistant (MDR) bacterial infections and shows cytotoxicity to mammalian cells. Mixed bacterial infections, of which P. aeruginosa plus A. baumannii is the most common and dangerous combination, are critical contributors to the morbidity and mortality of long-term in-hospital respiratory medicine patients. Therefore, the development of effective therapeutic approaches to mixed bacterial infections is urgently needed. Methods and results In this study, we demonstrated that compared with individual infections, mixed infections with MDR bacteria P. aeruginosa and A. baumannii cause more serious diseases, with increased pro-inflammatory cytokines (IL-1β, IL-6, TNF-α) and chemokines (MCP-1/MIP-2) and reduced mouse survival. In vitro treatment with Tachyplesin III enhanced phagocytosis in a mouse alveolar macrophage cell line (MH-S). Strikingly, in vivo, Tachyplesin III demonstrated a potential role against mixed-MDR bacterial coinfection. The bacterial burden in bronchoalveolar lavage fluid (BALF) was significantly reduced in the Tachyplesin III-treated group. In addition, a systemic reduction in pro-inflammatory cytokines and decreased lung injury occurred with Tachyplesin III therapy. Conclusion Therefore, our study demonstrated that Tachyplesin III represents a potential therapeutic treatment against mixed-MDR bacterial infection in vivo, which sheds light on the development of therapeutic strategies against mixed-MDR bacterial infections.
Collapse
Affiliation(s)
- Jialong Qi
- Department of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, People's Republic of China
| | - Ruiyu Gao
- Department of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, People's Republic of China
| | - Cunbao Liu
- Department of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, People's Republic of China
| | - Bin Shan
- Department of Clinical Lab, The First Affiliated Hospital of Kunming Medical University, Kunming, People's Republic of China
| | - Fulan Gao
- Department of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, People's Republic of China
| | - Jinrong He
- Department of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, People's Republic of China
| | - Mingcui Yuan
- Department of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, People's Republic of China
| | - Hanghang Xie
- Department of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, People's Republic of China
| | - Shumei Jin
- Yunnan Institute of Materia Medica, Kunming, People's Republic of China
| | - Yanbing Ma
- Department of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, People's Republic of China
| |
Collapse
|