1
|
Kong X, Xu L, Mou Z, Lyu W, Shan K, Wang L, Liu F, Rong F, Li J, Wei P. The anti-inflammatory effects of itaconate and its derivatives in neurological disorders. Cytokine Growth Factor Rev 2024; 78:37-49. [PMID: 38981775 DOI: 10.1016/j.cytogfr.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/03/2024] [Accepted: 07/03/2024] [Indexed: 07/11/2024]
Abstract
Almost 16 % of the global population is affected by neurological disorders, including neurodegenerative and cerebral neuroimmune diseases, triggered by acute or chronic inflammation. Neuroinflammation is recognized as a common pathogenic mechanism in a wide array of neurological conditions including Alzheimer's disease, Parkinson's disease, postoperative cognitive dysfunction, stroke, traumatic brain injury, and multiple sclerosis. Inflammatory process in the central nervous system (CNS) can lead to neuronal damage and neuronal apoptosis, consequently exacerbating these diseases. Itaconate, an immunomodulatory metabolite from the tricarboxylic acid cycle, suppresses neuroinflammation and modulates the CNS immune response. Emerging human studies suggest that itaconate levels in plasma and cerebrospinal fluid may serve as biomarkers associated with inflammatory responses in neurological disorders. Preclinical studies have shown that itaconate and its highly cell-permeable derivatives are promising candidates for preventing and treating neuroinflammation-related neurological disorders. The underlying mechanism may involve the regulation of immune cells in the CNS and neuroinflammation-related signaling pathways and molecules including Nrf2/KEAP1 signaling pathway, reactive oxygen species, and NLRP3 inflammasome. Here, we introduce the metabolism and function of itaconate and the synthesis and development of its derivatives. We summarize the potential impact and therapeutic potential of itaconate and its derivatives on brain immune cells and the associated signaling pathways and molecules, based on preclinical evidence via various neurological disorder models. We also discuss the challenges and potential solutions for clinical translation to promote further research on itaconate and its derivatives for neuroinflammation-related neurological disorders.
Collapse
Affiliation(s)
- Xiangyi Kong
- Department of Anesthesiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, China; Laboratory of Anesthesia and Brain Function, Qilu hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, China
| | - Lin Xu
- Department of Anesthesiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, China; Laboratory of Anesthesia and Brain Function, Qilu hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, China
| | - Zheng Mou
- Department of Pharmacy, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, China
| | - Wenyuan Lyu
- Department of Anesthesiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, China; Laboratory of Anesthesia and Brain Function, Qilu hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, China
| | - Kaiyue Shan
- Department of Anesthesiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, China; Laboratory of Anesthesia and Brain Function, Qilu hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, China
| | - Longfei Wang
- Department of Anesthesiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, China; Laboratory of Anesthesia and Brain Function, Qilu hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, China
| | - Fanghao Liu
- Department of Anesthesiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, China; Laboratory of Anesthesia and Brain Function, Qilu hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, China
| | - Fei Rong
- Department of Anesthesiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, China; Laboratory of Anesthesia and Brain Function, Qilu hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, China
| | - Jianjun Li
- Department of Anesthesiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, China; Laboratory of Anesthesia and Brain Function, Qilu hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, China
| | - Penghui Wei
- Department of Anesthesiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, China; Laboratory of Anesthesia and Brain Function, Qilu hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, China.
| |
Collapse
|
2
|
Ye D, Wang P, Chen LL, Guan KL, Xiong Y. Itaconate in host inflammation and defense. Trends Endocrinol Metab 2024; 35:586-606. [PMID: 38448252 DOI: 10.1016/j.tem.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/02/2024] [Accepted: 02/03/2024] [Indexed: 03/08/2024]
Abstract
Immune cells undergo rapid and extensive metabolic changes during inflammation. In addition to contributing to energetic and biosynthetic demands, metabolites can also function as signaling molecules. Itaconate (ITA) rapidly accumulates to high levels in myeloid cells under infectious and sterile inflammatory conditions. This metabolite binds to and regulates the function of diverse proteins intracellularly to influence metabolism, oxidative response, epigenetic modification, and gene expression and to signal extracellularly through binding the G protein-coupled receptor (GPCR). Administration of ITA protects against inflammatory diseases and blockade of ITA production enhances antitumor immunity in preclinical models. In this article, we review ITA metabolism and its regulation, discuss its target proteins and mechanisms, and conjecture a rationale for developing ITA-based therapeutics to treat inflammatory diseases and cancer.
Collapse
Affiliation(s)
- Dan Ye
- Molecular and Cell Biology Laboratory, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China.
| | - Pu Wang
- Molecular and Cell Biology Laboratory, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Lei-Lei Chen
- Molecular and Cell Biology Laboratory, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Kun-Liang Guan
- School of Life Sciences, Westlake University, Hangzhou, China
| | - Yue Xiong
- Cullgen Inc., 12730 High Bluff Drive, San Diego, CA 92130, USA.
| |
Collapse
|
3
|
Huang H, Li G, He Y, Chen J, Yan J, Zhang Q, Li L, Cai X. Cellular succinate metabolism and signaling in inflammation: implications for therapeutic intervention. Front Immunol 2024; 15:1404441. [PMID: 38933270 PMCID: PMC11200920 DOI: 10.3389/fimmu.2024.1404441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024] Open
Abstract
Succinate, traditionally viewed as a mere intermediate of the tricarboxylic acid (TCA) cycle, has emerged as a critical mediator in inflammation. Disruptions within the TCA cycle lead to an accumulation of succinate in the mitochondrial matrix. This excess succinate subsequently diffuses into the cytosol and is released into the extracellular space. Elevated cytosolic succinate levels stabilize hypoxia-inducible factor-1α by inhibiting prolyl hydroxylases, which enhances inflammatory responses. Notably, succinate also acts extracellularly as a signaling molecule by engaging succinate receptor 1 on immune cells, thus modulating their pro-inflammatory or anti-inflammatory activities. Alterations in succinate levels have been associated with various inflammatory disorders, including rheumatoid arthritis, inflammatory bowel disease, obesity, and atherosclerosis. These associations are primarily due to exaggerated immune cell responses. Given its central role in inflammation, targeting succinate pathways offers promising therapeutic avenues for these diseases. This paper provides an extensive review of succinate's involvement in inflammatory processes and highlights potential targets for future research and therapeutic possibilities development.
Collapse
Affiliation(s)
- Hong Huang
- Department of Rheumatology of First Hospital and Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Gejing Li
- Department of Rheumatology of First Hospital and Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Yini He
- Department of Rheumatology of First Hospital and Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Jing Chen
- Department of Rheumatology of First Hospital and Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Jianye Yan
- Department of Rheumatology of First Hospital and Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Qin Zhang
- Department of Rheumatology of First Hospital and Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Liqing Li
- Department of Rheumatology of First Hospital and Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- The Central Research Laboratory, Hunan Traditional Chinese Medical College, Zhuzhou, Hunan, China
| | - Xiong Cai
- Department of Rheumatology of First Hospital and Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|
4
|
Tie H, Kuang G, Gong X, Zhang L, Zhao Z, Wu S, Huang W, Chen X, Yuan Y, Li Z, Li H, Zhang L, Wan J, Wang B. LXA4 protected mice from renal ischemia/reperfusion injury by promoting IRG1/Nrf2 and IRAK-M-TRAF6 signal pathways. Clin Immunol 2024; 261:110167. [PMID: 38453127 DOI: 10.1016/j.clim.2024.110167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 01/26/2024] [Accepted: 03/03/2024] [Indexed: 03/09/2024]
Abstract
Excessive inflammatory response and increased oxidative stress play an essential role in the pathophysiology of ischemia/reperfusion (I/R)-induced acute kidney injury (IRI-AKI). Emerging evidence suggests that lipoxin A4 (LXA4), as an endogenous negative regulator in inflammation, can ameliorate several I/R injuries. However, the mechanisms and effects of LXA4 on IRI-AKI remain unknown. In this study, A bilateral renal I/R mouse model was used to evaluate the role of LXA4 in wild-type, IRG1 knockout, and IRAK-M knockout mice. Our results showed that LXA4, as well as 5-LOX and ALXR, were quickly induced, and subsequently decreased by renal I/R. LXA4 pretreatment improved renal I/R-induced renal function impairment and renal damage and inhibited inflammatory responses and oxidative stresses in mice kidneys. Notably, LXA4 inhibited I/R-induced the activation of TLR4 signal pathway including decreased phosphorylation of TAK1, p36, and p65, but did not affect TLR4 and p-IRAK-1. The analysis of transcriptomic sequencing data and immunoblotting suggested that innate immune signal molecules interleukin-1 receptor-associated kinase-M (IRAK-M) and immunoresponsive gene 1 (IRG1) might be the key targets of LXA4. Further, the knockout of IRG1 or IRAK-M abolished the beneficial effects of LXA4 on IRI-AKI. In addition, IRG1 deficiency reversed the up-regulation of IRAK-M by LXA4, while IRAK-M knockout had no impact on the IRG1 expression, indicating that IRAK-M is a downstream molecule of IRG1. Mechanistically, we found that LXA4-promoted IRG1-itaconate not only enhanced Nrf2 activation and increased HO-1 and NQO1, but also upregulated IRAK-M, which interacted with TRAF6 by competing with IRAK-1, resulting in deactivation of TLR4 downstream signal in IRI-AKI. These data suggested that LXA4 protected against IRI-AKI via promoting IRG1/Itaconate-Nrf2 and IRAK-M-TRAF6 signaling pathways, providing the rationale for a novel strategy for preventing and treating IRI-AKI.
Collapse
Affiliation(s)
- Hongtao Tie
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing, China
| | - Ge Kuang
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing, China
| | - Xia Gong
- Department of Anatomy, Chongqing Medical University, Chongqing, China
| | - Lidan Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zizuo Zhao
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shengwang Wu
- Department of Hematology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Wenya Huang
- Yiling Women and Children's Hospital of Yichang City, Hubei, China
| | - Xiahong Chen
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing, China
| | - Yinglin Yuan
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Zhenhan Li
- Department of Endocrinology, Chongqing Traditional Chinese Medicine Hospital, Chongqing, China
| | - Hongzhong Li
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University; Chongqing, China
| | - Li Zhang
- Department of Pathophysiology, Chongqing Medical University, Chongqing, China
| | - Jingyuan Wan
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing, China; Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing, China..
| | - Bin Wang
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing, China; Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
5
|
Zou X, Wu M, Tu M, Tan X, Long Y, Xu Y, Li M. 4-octyl itaconate inhibits high glucose induced renal tubular epithelial cell fibrosis through TGF-β-ROS pathway. J Recept Signal Transduct Res 2024; 44:27-34. [PMID: 38660706 DOI: 10.1080/10799893.2024.2341678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 04/03/2024] [Indexed: 04/26/2024]
Abstract
Diabetic kidney disease (DKD) is one of the most serious complications of diabetes and has become the leading cause of end-stage kidney disease, causing serious health damage and a huge economic burden. Tubulointerstitial fibrosis play important role in the development of DKD. Itaconate, a macrophage-specific metabolite, has been reported to have anti-oxidant, anti-inflammatory effects. However, it is unknown whether it perform anti-fibrotic effect in renal tubular epithelial cells. In this current study, we observed that in human renal tubular epithelial cells (HK2), high glucose induced an increase in transforming growth factor β (TGF-β) production, and upregulated the expressions of fibronectin and collagen I through the TGF-β receptor as verified by administration of TGF-β receptor blocker LY2109761. Treatment with 4-octyl itaconate (4-OI), a derivant of itaconic acid, reduced the TGF-β production induced by high glucose and inhibited the pro-fibrotic effect of TGF-β in a dose-dependent manner. In addition, we found that 4-OI exerted its anti-fibrotic effect by inhibiting the excessive production of ROS induced by high glucose and TGF-β. In summary, 4-OI could ameliorate high glucose-induced pro-fibrotic effect in HK2 cell, and blocking the expression of TGF-β and reducing the excessive ROS production may be involved in its anti-fibrotic effect.
Collapse
Affiliation(s)
- Xiaoli Zou
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, Sichuan, China
| | - Maoyan Wu
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, Sichuan, China
- Department of Endocrinology and Metabolism, Chengdu BOE Hospital, Chengdu, Sichuan, China
| | - Mengqin Tu
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, Sichuan, China
| | - Xiaozhen Tan
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, Sichuan, China
- Experimental Medicine Center, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Yang Long
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, Sichuan, China
- Experimental Medicine Center, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Yong Xu
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, Sichuan, China
| | - Mingxiu Li
- The Suining First People's Hospital, Suining, Sichuan, China
| |
Collapse
|
6
|
Yang W, Wang Y, Tao K, Li R. Metabolite itaconate in host immunoregulation and defense. Cell Mol Biol Lett 2023; 28:100. [PMID: 38042791 PMCID: PMC10693715 DOI: 10.1186/s11658-023-00503-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 10/20/2023] [Indexed: 12/04/2023] Open
Abstract
Metabolic states greatly influence functioning and differentiation of immune cells. Regulating the metabolism of immune cells can effectively modulate the host immune response. Itaconate, an intermediate metabolite derived from the tricarboxylic acid (TCA) cycle of immune cells, is produced through the decarboxylation of cis-aconitate by cis-aconitate decarboxylase in the mitochondria. The gene encoding cis-aconitate decarboxylase is known as immune response gene 1 (IRG1). In response to external proinflammatory stimulation, macrophages exhibit high IRG1 expression. IRG1/itaconate inhibits succinate dehydrogenase activity, thus influencing the metabolic status of macrophages. Therefore, itaconate serves as a link between macrophage metabolism, oxidative stress, and immune response, ultimately regulating macrophage function. Studies have demonstrated that itaconate acts on various signaling pathways, including Keap1-nuclear factor E2-related factor 2-ARE pathways, ATF3-IκBζ axis, and the stimulator of interferon genes (STING) pathway to exert antiinflammatory and antioxidant effects. Furthermore, several studies have reported that itaconate affects cancer occurrence and development through diverse signaling pathways. In this paper, we provide a comprehensive review of the role IRG1/itaconate and its derivatives in the regulation of macrophage metabolism and functions. By furthering our understanding of itaconate, we intend to shed light on its potential for treating inflammatory diseases and offer new insights in this field.
Collapse
Affiliation(s)
- Wenchang Yang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, Hubei, China
- Department of Gastrointestinal Surgery, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yaxin Wang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Kaixiong Tao
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, Hubei, China
| | - Ruidong Li
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, Hubei, China.
| |
Collapse
|
7
|
Liu R, Gong Y, Xia C, Cao Y, Zhao C, Zhou M. Itaconate: A promising precursor for treatment of neuroinflammation associated depression. Biomed Pharmacother 2023; 167:115521. [PMID: 37717531 DOI: 10.1016/j.biopha.2023.115521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/11/2023] [Accepted: 09/14/2023] [Indexed: 09/19/2023] Open
Abstract
Neuroinflammation triggers the production of inflammatory factors, influences neuron generation and synaptic plasticity, thus playing an important role in the pathogenesis of depression and becoming an important direction of depression prevention and treatment. Itaconate is a metabolite secreted by macrophages in immunomodulatory responses, that has potent immunomodulatory effects and has been proven to exert anti-inflammatory effects in a variety of diseases. Microglia are mononuclear macrophages that reside in the central nervous system (CNS), and may be the source of endogenous itaconate in the brain. Itaconate can directly inhibit succinate dehydrogenase (SDH), reduce the production of NOD-like receptor thermal protein domain associated protein 3 (NLRP3), activate nuclear factor erythroid-2 related factor 2 (Nrf2), and block glycolysis, and thereby improving the depressive symptoms associated with the above mechanisms. Notably, itaconate also indirectly ameliorates the depressive symptoms associated with some inflammatory diseases. With the optimization of the structure and the development of new delivery systems, the application value and therapeutic potential of itaconate have been significantly improved. Dimethyl itaconate (DI) and 4-octyl itaconate (4-OI), cell-permeable derivatives of itaconate, are more suitable for crossing the blood-brain barrier (BBB), exhibiting therapeutic effects in the research of multiple diseases. This article provides an overview of the immunomodulatory effects of itaconate and its potential therapeutic efficacy in inflammatory depression, focusing on the promising application of itaconate as a precursor of antidepressants.
Collapse
Affiliation(s)
- Ruisi Liu
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China; Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yueling Gong
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China; Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Chenyi Xia
- Department of Physiology, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yemin Cao
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Cheng Zhao
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China.
| | - Mingmei Zhou
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China; Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
8
|
Zhang W, Zhao Y, He Q, Lang R. Therapeutically targeting essential metabolites to improve immunometabolism manipulation after liver transplantation for hepatocellular carcinoma. Front Immunol 2023; 14:1211126. [PMID: 37492564 PMCID: PMC10363744 DOI: 10.3389/fimmu.2023.1211126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/26/2023] [Indexed: 07/27/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most prevalent primary liver malignancy worldwide and is associated with a poor prognosis. Sophisticated molecular mechanisms and biological characteristics need to be explored to gain a better understanding of HCC. The role of metabolites in cancer immunometabolism has been widely recognized as a hallmark of cancer in the tumor microenvironment (TME). Recent studies have focused on metabolites that are derived from carbohydrate, lipid, and protein metabolism, because alterations in these may contribute to HCC progression, ischemia-reperfusion (IR) injury during liver transplantation (LT), and post-LT rejection. Immune cells play a central role in the HCC microenvironment and the duration of IR or rejection. They shape immune responses through metabolite modifications and by engaging in complex crosstalk with tumor cells. A growing number of publications suggest that immune cell functions in the TME are closely linked to metabolic changes. In this review, we summarize recent findings on the primary metabolites in the TME and post-LT metabolism and relate these studies to HCC development, IR injury, and post-LT rejection. Our understanding of aberrant metabolism and metabolite targeting based on regulatory metabolic pathways may provide a novel strategy to enhance immunometabolism manipulation by reprogramming cell metabolism.
Collapse
Affiliation(s)
- Wenhui Zhang
- Department of Hepatobiliary Surgery, Beijing Chao-Yang Hospital Affiliated to Capital Medical University, Beijing, China
| | - Yu Zhao
- Department of Urology Surgery, Beijing Chao-Yang Hospital Affiliated to Capital Medical University, Beijing, China
| | - Qiang He
- Department of Hepatobiliary Surgery, Beijing Chao-Yang Hospital Affiliated to Capital Medical University, Beijing, China
| | - Ren Lang
- Department of Hepatobiliary Surgery, Beijing Chao-Yang Hospital Affiliated to Capital Medical University, Beijing, China
| |
Collapse
|
9
|
Li Z, Zheng W, Kong W, Zeng T. Itaconate: A Potent Macrophage Immunomodulator. Inflammation 2023:10.1007/s10753-023-01819-0. [PMID: 37142886 PMCID: PMC10159227 DOI: 10.1007/s10753-023-01819-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/25/2023] [Accepted: 04/06/2023] [Indexed: 05/06/2023]
Abstract
With advances in immunometabolic studies, more and more evidence has shown that metabolic changes profoundly affect the immune function of macrophages. The tricarboxylic acid cycle is a central metabolic pathway of cells. Itaconate, a byproduct of the tricarboxylic acid cycle, is an emerging metabolic small molecule that regulates macrophage inflammation and has received much attention for its potent anti-inflammatory effects in recent years. Itaconate regulates macrophage function through multiple mechanisms and has demonstrated promising therapeutic potential in a variety of immune and inflammatory diseases. New progress in the mechanism of itaconate continues to be made, but it also implies complexity in its action and a need for a more comprehensive understanding of its role in macrophages. In this article, we review the primary mechanisms and current research progress of itaconate in regulating macrophage immune metabolism, hoping to provide new insights and directions for future research and disease treatment.
Collapse
Affiliation(s)
- Zeyu Li
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Diabetes and Metabolic Disease Clinical Research Center of Hubei Province, Wuhan, China
- Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Wuhan, China
- Hubei Branch of National Center for Clinical Medical Research of Metabolic Diseases, Wuhan, China
| | - Wenbin Zheng
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Diabetes and Metabolic Disease Clinical Research Center of Hubei Province, Wuhan, China
- Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Wuhan, China
- Hubei Branch of National Center for Clinical Medical Research of Metabolic Diseases, Wuhan, China
| | - Wen Kong
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Diabetes and Metabolic Disease Clinical Research Center of Hubei Province, Wuhan, China.
- Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Wuhan, China.
- Hubei Branch of National Center for Clinical Medical Research of Metabolic Diseases, Wuhan, China.
| | - Tianshu Zeng
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Diabetes and Metabolic Disease Clinical Research Center of Hubei Province, Wuhan, China.
- Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Wuhan, China.
- Hubei Branch of National Center for Clinical Medical Research of Metabolic Diseases, Wuhan, China.
| |
Collapse
|
10
|
Shi X, Zhou H, Wei J, Mo W, Li Q, Lv X. The signaling pathways and therapeutic potential of itaconate to alleviate inflammation and oxidative stress in inflammatory diseases. Redox Biol 2022; 58:102553. [PMID: 36459716 PMCID: PMC9713374 DOI: 10.1016/j.redox.2022.102553] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/19/2022] [Accepted: 11/22/2022] [Indexed: 11/25/2022] Open
Abstract
Endogenous small molecules are metabolic regulators of cell function. Itaconate is a key molecule that accumulates in cells when the Krebs cycle is disrupted. Itaconate is derived from cis-aconitate decarboxylation by cis-aconitate decarboxylase (ACOD1) in the mitochondrial matrix and is also known as immune-responsive gene 1 (IRG1). Studies have demonstrated that itaconate plays an important role in regulating signal transduction and posttranslational modification through its immunoregulatory activities. Itaconate is also an important bridge among metabolism, inflammation, oxidative stress, and the immune response. This review summarizes the structural characteristics and classical pathways of itaconate, its derivatives, and the compounds that release itaconate. Here, the mechanisms of itaconate action, including its transcriptional regulation of ATF3/IκBζ axis and type I IFN, its protein modification regulation of KEAP1, inflammasome, JAK1/STAT6 pathway, TET2, and TFEB, and succinate dehydrogenase and glycolytic enzyme metabolic action, are presented. Moreover, the roles of itaconate in diseases related to inflammation and oxidative stress induced by autoimmune responses, viruses, sepsis and IRI are discussed in this review. We hope that the information provided in this review will help increase the understanding of cellular immune metabolism and improve the clinical treatment of diseases related to inflammation and oxidative stress.
Collapse
|
11
|
Frieler RA, Vigil TM, Song J, Leung C, Goldstein DR, Lumeng CN, Mortensen RM. Aconitate decarboxylase 1 regulates glucose homeostasis and obesity in mice. Obesity (Silver Spring) 2022; 30:1818-1830. [PMID: 35927796 PMCID: PMC9541899 DOI: 10.1002/oby.23509] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 05/12/2022] [Accepted: 05/16/2022] [Indexed: 01/31/2023]
Abstract
OBJECTIVE The intersection between immunology and metabolism contributes to the pathogenesis of obesity-associated metabolic diseases as well as molecular control of inflammatory responses. The metabolite itaconate and the cell-permeable derivatives have robust anti-inflammatory effects; therefore, it is hypothesized that cis-aconitate decarboxylase (Acod1)-produced itaconate has a protective, anti-inflammatory effect during diet-induced obesity and metabolic disease. METHODS Wild-type and Acod1-/- mice were subjected to diet-induced obesity. Glucose metabolism was analyzed by glucose tolerance tests, insulin tolerance tests, and indirect calorimetry. Gene expression and transcriptome analysis was performed using quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and RNA sequencing. RESULTS Wild-type and Acod1-/- mice on high-fat diet had equivalent weight gain, but Acod1-/- mice had impaired glucose metabolism. Insulin tolerance tests and glucose tolerance tests after 12 weeks on high-fat diet revealed significantly higher blood glucose levels in Acod1-/- mice. This was associated with significant enrichment of inflammatory gene sets and a reduction in genes related to adipogenesis and fatty acid metabolism. Analysis of naive Acod1-/- mice showed a significant increase in fat deposition at 3 and 6 months of age and obesity and insulin resistance by 12 months. CONCLUSIONS The data show that Acod1 has an important role in the regulation of glucose homeostasis and obesity under normal and high-fat diet conditions.
Collapse
Affiliation(s)
- Ryan A. Frieler
- Department of Molecular and Integrative PhysiologyUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
| | - Thomas M. Vigil
- Department of Molecular and Integrative PhysiologyUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
| | - Jianrui Song
- Department of Internal Medicine, Division of Cardiovascular MedicineUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
| | - Christy Leung
- Department of Molecular and Integrative PhysiologyUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
| | - Daniel R. Goldstein
- Department of Internal Medicine, Division of Cardiovascular MedicineUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
| | - Carey N. Lumeng
- Department of Molecular and Integrative PhysiologyUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
- Department of Pediatrics and Communicable DiseasesUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
| | - Richard M. Mortensen
- Department of Molecular and Integrative PhysiologyUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and DiabetesUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
- Department of PharmacologyUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
| |
Collapse
|
12
|
Xiong J, Lu DL, Chen BQ, Liu TY, Wang ZX. Dimethyl Itaconate Reduces Cognitive Impairment and Neuroinflammation in APPswe/PS1ΔE9 Transgenic Mouse Model of Alzheimer's Disease. Neuromolecular Med 2022:10.1007/s12017-022-08725-y. [PMID: 35939256 DOI: 10.1007/s12017-022-08725-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 07/23/2022] [Indexed: 12/30/2022]
Abstract
Alzheimer's disease (AD) is the most common type of dementia characterized by abnormal accumulation of amyloid-β (Aβ) plaques, neuroinflammation, and neuronal loss. Dimethyl itaconate (DI), a membrane-permeable derivative of itaconate, has been recently reported to limit inflammation. However, the effect of DI in the APPswe/PS1ΔE9 (APP/PS1) transgenic mouse model of AD remains unclear. We treated APP/PS1 mice with DI or saline. Our results showed that DI ameliorated the cognitive deficits of APP/PS1 mice. Further, DI significantly decreased brain Aβ deposition and Aβ levels, inhibited cell apoptosis, decreased hippocampal and cortical neuronal damage. We also found that DI promoted the expression of the Nrf2/HO-1 signaling pathway, while inhibited cognitive impairment, cell apoptosis, and the proinflammatory cytokine levels in the brains of APP/PS1 mice. Our results indicated that DI attenuated memory impairment and neuroinflammation via the Nrf2 signaling pathway in APP/PS1 mice, suggesting that DI might be recognized as a promising candidate for the treatment of AD.
Collapse
Affiliation(s)
- Jing Xiong
- Department of Geriatrics Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266071, China
| | - Dong-Lin Lu
- Department of Neurology, The First Affiliated Hospital of Yangtze University, Jingzhou, 434000, China
| | - Bai-Qiang Chen
- Institute of Neurorehabilitation and Neurorehabilitation, Qingdao University, Qingdao, 266071, China
| | - Tong-Yun Liu
- Department of Geriatrics Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266071, China
| | - Zi-Xuan Wang
- Department of Geriatrics Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266071, China. .,Institute of Neurorehabilitation and Neurorehabilitation, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
13
|
Oh TS, Hutchins DC, Mainali R, Goslen KH, Quinn MA. Itaconate and Its Derivatives Repress Early Myogenesis In Vitro and In Vivo. Front Immunol 2022; 13:748375. [PMID: 35265064 PMCID: PMC8898833 DOI: 10.3389/fimmu.2022.748375] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 02/01/2022] [Indexed: 11/13/2022] Open
Abstract
A Krebs cycle intermediate metabolite, itaconate, has gained attention as a potential antimicrobial and autoimmune disease treatment due to its anti-inflammatory effects. While itaconate and its derivatives pose an attractive therapeutic option for the treatment of inflammatory diseases, the effects outside the immune system still remain limited, particularly in the muscle. Therefore, we endeavored to determine if itaconate signaling impacts muscle differentiation. Utilizing the well-established C2C12 model of in vitro myogenesis, we evaluated the effects of itaconate and its derivatives on transcriptional and protein markers of muscle differentiation as well as mitochondrial function. We found itaconate and the derivatives dimethyl itaconate and 4-octyl itaconate disrupt differentiation media-induced myogenesis. A primary biological effect of itaconate is a succinate dehydrogenase (SDH) inhibitor. We find the SDH inhibitors dimethyl malonate and harzianopyridone phenocopie the anti-myogenic effects of itaconate. Furthermore, we find treatment with exogenous succinate results in blunted myogenesis. Together our data indicate itaconate and its derivatives interfere with in vitro myogenesis, potentially through inhibition of SDH and subsequent succinate accumulation. We also show 4-octyl itaconate suppresses injury-induced MYOG expression in vivo. More importantly, our findings suggest the therapeutic potential of itaconate, and its derivatives could be limited due to deleterious effects on myogenesis.
Collapse
Affiliation(s)
- Tae Seok Oh
- Department of Pathology, Section on Comparative Medicine, Winston-Salem, NC, United States
| | - Damian C. Hutchins
- Department of Pathology, Section on Comparative Medicine, Winston-Salem, NC, United States
| | - Rabina Mainali
- Department of Pathology, Section on Comparative Medicine, Winston-Salem, NC, United States
| | - Kevin H. Goslen
- Department of Pathology, Section on Comparative Medicine, Winston-Salem, NC, United States
| | - Matthew A. Quinn
- Department of Pathology, Section on Comparative Medicine, Winston-Salem, NC, United States
- Department of Internal Medicine, Section on Molecular Medicine Wake Forest School of Medicine, Winston-Salem, NC, United States
| |
Collapse
|
14
|
Ren J, Yu L, Lin J, Ma L, Gao DS, Sun N, Liu Y, Fang L, Cheng Z, Sun K, Yan M. Dimethyl itaconate inhibits neuroinflammation to alleviate chronic pain in mice. Neurochem Int 2022; 154:105296. [PMID: 35121012 DOI: 10.1016/j.neuint.2022.105296] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 01/21/2022] [Accepted: 01/29/2022] [Indexed: 10/19/2022]
Abstract
The metabolite itaconate has both anti-inflammatory and immunomodulatory effects. However, its influence on chronic pain is unclear. Here, we demonstrated that intraperitoneal injection of the itaconate derivative dimethyl itaconate (DI) alleviates chronic pain symptoms, such as allodynia and hyperalgesia, in spinal nerve ligation (SNL) and inflammatory pain models. Moreover, intraperitoneal DI reduced the secretion of inflammatory cytokines (i.e., interleukin-1β, tumour necrosis factor-alpha) in dorsal root ganglion (DRG), spinal cord and hind paw tissues, suppressed the activation of macrophages in DRG and glial cells in the spinal dorsal horn and decreased the phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2) in the DRG and spinal cord. DI boosted nuclear factor-erythroid 2 p45-related factor 2 (Nrf2) levels in the DRG and spinal cord of SNL mice. Intraperitoneal administration of the Nrf2 inhibitor ML385 abolished the analgesic effect of DI and decreased the expression of Nrf2 in the DRG and spinal cord. Similarly, administration of DI potently reversed the lipopolysaccharide (LPS)-induced inflammatory effect in microglia. Reduction of endogenous itaconate levels by pretreatment with immune-responsive gene 1 (IRG1) siRNA blocked Nrf2 expression, which impaired the analgesic and anti-inflammatory effects of DI in vitro. Therefore, our findings reveal for the first time that intraperitoneal DI elicits anti-inflammatory effect and sustained chronic pain relief, which may be regarded as a promising therapeutic agent for chronic pain treatment.
Collapse
Affiliation(s)
- Jinxuan Ren
- Department of Anesthesiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lina Yu
- Department of Anesthesiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jiaqi Lin
- Department of Anesthesiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Longfei Ma
- Department of Anesthesiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Dave Schwinn Gao
- Department of Anesthesiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Na Sun
- Department of Anesthesiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Ying Liu
- Department of Anesthesiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lili Fang
- Department of Anesthesiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhenzhen Cheng
- Department of Anesthesiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Kai Sun
- Department of Anesthesiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Min Yan
- Department of Anesthesiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
15
|
Vigil TM, Frieler RA, Kilpatrick KL, Wang MM, Mortensen RM. Aconitate decarboxylase 1 suppresses cerebral ischemia-reperfusion injury in mice. Exp Neurol 2022; 347:113902. [PMID: 34699789 PMCID: PMC8642300 DOI: 10.1016/j.expneurol.2021.113902] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 01/03/2023]
Abstract
Immunometabolic changes have been shown to be a key factor in determining the immune cell response in disease models. The immunometabolite, itaconate, is produced by aconitate decarboxylase 1 (Acod1) and has been shown to inhibit inflammatory signaling in macrophages. In this study, we explore the role of Acod1 and itaconate in cerebral ischemia/reperfusion injury. We assessed the effect of global Acod1 knockout (Acod1KO, loss of endogenous itaconate) in a transient ischemia/reperfusion occlusion stroke model. Mice received a transient 90-min middle cerebral artery occlusion followed with 24-h of reperfusion. Stroke lesion volume was measured by MRI analysis and brain tissues were collected for mRNA gene expression analysis. Acod1KO mice showed significant increases in lesion volume compared to control mice, however no differences in pro-inflammatory mRNA levels were observed. Cell specific knockout of Acod1 in myeloid cells (LysM-Cre), microglia cells (CX3CR1, Cre-ERT2) and Endothelial cells (Cdh5(PAC), Cre-ERT2) did not reproduce lesion volume changes seen in global Acod1KO, indicating that circulating myeloid cells, resident microglia and endothelial cell populations are not the primary contributors to the observed phenotype. These effects however do not appear to be driven by changes in inflammatory gene regulation. These data suggests that endogenous Acod1 is protective in cerebral ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Thomas M Vigil
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, United States of America
| | - Ryan A Frieler
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, United States of America
| | - KiAundra L Kilpatrick
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, United States of America
| | - Michael M Wang
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, United States of America
| | - Richard M Mortensen
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, United States of America; Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, United States of America; Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan Medical School, Ann Arbor, MI, United States of America.
| |
Collapse
|
16
|
Itaconate as an inflammatory mediator and therapeutic target in cardiovascular medicine. Biochem Soc Trans 2021; 49:2189-2198. [PMID: 34665229 PMCID: PMC8589439 DOI: 10.1042/bst20210269] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/23/2021] [Accepted: 09/28/2021] [Indexed: 01/11/2023]
Abstract
Inflammation is a critical component of cardiovascular disease (CVD), encompassing coronary artery disease (CAD), cerebrovascular events and heart failure and is the leading cause of mortality worldwide. In recent years, metabolism has been placed centrally in the governance of the immune response. Termed immunometabolism, immune cells adapt cellular metabolic pathways to meet demands of activation and thus function. This rewiring influences not only the bioenergetics of the cell but altered metabolites act as signalling molecules to regulate cellular response. In this review, we focus on the TCA cycle derivative, itaconate, as one such metabolite with promising immunomodulatory and therapeutic potential in inflammatory cardiovascular disease.
Collapse
|
17
|
Kuo PC, Weng WT, Scofield BA, Furnas D, Paraiso HC, Yu IC, Yen JH. Immunoresponsive gene 1 modulates the severity of brain injury in cerebral ischaemia. Brain Commun 2021; 3:fcab187. [PMID: 34557667 PMCID: PMC8453405 DOI: 10.1093/braincomms/fcab187] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 05/19/2021] [Accepted: 06/04/2021] [Indexed: 12/18/2022] Open
Abstract
Inflammatory stimuli induce immunoresponsive gene 1 expression that in turn catalyses the production of itaconate through diverting cis-aconitate away from the tricarboxylic acid cycle. The immunoregulatory effect of the immunoresponsive gene 1/itaconate axis has been recently documented in lipopolysaccharide-activated mouse and human macrophages. In addition, dimethyl itaconate, an itaconate derivative, was reported to ameliorate disease severity in the animal models of psoriasis and multiple sclerosis. Currently, whether immunoresponsive gene 1/itaconate axis exerts a modulatory effect in ischaemic stroke remains unexplored. In this study, we investigated whether immunoresponsive gene 1 plays a role in modulating ischaemic brain injury. In addition, the molecular mechanism underlying the protective effects of immunoresponsive gene 1 in ischaemic stroke was elucidated. Our results showed that immunoresponsive gene 1 was highly induced in the ischaemic brain following ischaemic injury. Interestingly, we found that IRG1-/- stroke animals exhibited exacerbated brain injury, displayed with enlarged cerebral infarct, compared to wild-type stroke controls. Furthermore, IRG1-/- stroke animals presented aggravated blood-brain barrier disruption, associated with augmented Evans blue leakage and increased immune cell infiltrates in the ischaemic brain. Moreover, IRG1-/- stroke animals displayed elevated microglia activation, demonstrated with increased CD68, CD86 and Iba1 expression. Further analysis revealed that immunoresponsive gene 1 was induced in microglia after ischaemic stroke, and deficiency in immunoresponsive gene 1 resulted in repressed microglial heme oxygenase-1 expression and exacerbated ischaemic brain injury. Notably, the administration of dimethyl itaconate to compensate for the deficiency of immunoresponsive gene 1/itaconate axis led to enhanced microglial heme oxygenase-1 expression, alleviated ischaemic brain injury, improved motor function and decreased mortality in IRG1-/- stroke animals. In summary, we demonstrate for the first time that the induction of immunoresponsive gene 1 in microglia following ischaemic stroke serves as an endogenous protective mechanism to restrain brain injury through heme oxygenase-1 up-regulation. Thus, our findings suggest that targeting immunoresponsive gene 1 may represent a novel therapeutic approach for the treatment of ischaemic stroke.
Collapse
Affiliation(s)
- Ping-Chang Kuo
- Department of Microbiology and Immunology, Indiana University School of Medicine, Fort Wayne, IN 46805, USA
| | - Wen-Tsan Weng
- Department of Microbiology and Immunology, Indiana University School of Medicine, Fort Wayne, IN 46805, USA
| | - Barbara A Scofield
- Department of Microbiology and Immunology, Indiana University School of Medicine, Fort Wayne, IN 46805, USA
| | - Destin Furnas
- Department of Microbiology and Immunology, Indiana University School of Medicine, Fort Wayne, IN 46805, USA
| | - Hallel C Paraiso
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Fort Wayne, IN 46805, USA
| | - I-Chen Yu
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Fort Wayne, IN 46805, USA
| | - Jui-Hung Yen
- Department of Microbiology and Immunology, Indiana University School of Medicine, Fort Wayne, IN 46805, USA
| |
Collapse
|
18
|
Lin J, Ren J, Gao DS, Dai Y, Yu L. The Emerging Application of Itaconate: Promising Molecular Targets and Therapeutic Opportunities. Front Chem 2021; 9:669308. [PMID: 34055739 PMCID: PMC8149739 DOI: 10.3389/fchem.2021.669308] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/01/2021] [Indexed: 01/16/2023] Open
Abstract
Metabolites have recently been found to be involved in significant biological regulation and changes. Itaconate, an important intermediate metabolite isolated from the tricarboxylic acid cycle, is derived from cis-aconitate decarboxylation mediated by immune response gene 1 in mitochondrial matrix. Itaconate has emerged as a key autocrine regulatory component involved in the development and progression of inflammation and immunity. It could directly modify cysteine sites on functional substrate proteins which related to inflammasome, signal transduction, transcription, and cell death. Itaconate can be a connector among immunity, metabolism, and inflammation, which is of great significance for further understanding the mechanism of cellular immune metabolism. And it could be the potential choice for the treatment of inflammation and immune-related diseases. This study is a systematic review of the potential mechanisms of metabolite associated with different pathology conditions. We briefly summarize the structural characteristics and classical pathways of itaconate and its derivatives, with special emphasis on its promising role in future clinical application, in order to provide theoretical basis for future research and treatment intervention.
Collapse
Affiliation(s)
| | | | | | | | - Lina Yu
- Department of Anesthesiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
19
|
Winterhoff M, Chen F, Sahini N, Ebensen T, Kuhn M, Kaever V, Bähre H, Pessler F. Establishment, Validation, and Initial Application of a Sensitive LC-MS/MS Assay for Quantification of the Naturally Occurring Isomers Itaconate, Mesaconate, and Citraconate. Metabolites 2021; 11:metabo11050270. [PMID: 33925995 PMCID: PMC8146994 DOI: 10.3390/metabo11050270] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/08/2021] [Accepted: 04/13/2021] [Indexed: 01/16/2023] Open
Abstract
Itaconate is derived from the tricarboxylic acid (TCA) cycle intermediate cis-aconitate and links innate immunity and metabolism. Its synthesis is altered in inflammation-related disorders and it therefore has potential as clinical biomarker. Mesaconate and citraconate are naturally occurring isomers of itaconate that have been linked to metabolic disorders, but their functional relationships with itaconate are unknown. We aimed to establish a sensitive high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) assay for the quantification of itaconate, mesaconate, citraconate, the pro-drug 4-octyl-itaconate, and selected TCA intermediates. The assay was validated for itaconate, mesaconate, and citraconate for intra- and interday precision and accuracy, extended stability, recovery, freeze/thaw cycles, and carry-over. The lower limit of quantification was 0.098 µM for itaconate and mesaconate and 0.049 µM for citraconate in 50 µL samples. In spike-in experiments, itaconate remained stable in human plasma and whole blood for 24 and 8 h, respectively, whereas spiked-in citraconate and mesaconate concentrations changed during incubation. The type of anticoagulant in blood collection tubes affected measured levels of selected TCA intermediates. Human plasma may contain citraconate (0.4-0.6 µM, depending on the donor), but not itaconate or mesaconate, and lipopolysaccharide stimulation of whole blood induced only itaconate. Concentrations of the three isomers differed greatly among mouse organs: Itaconate and citraconate were most abundant in lymph nodes, mesaconate in kidneys, and only citraconate occurred in brain. This assay should prove useful to quantify itaconate isomers in biomarker and pharmacokinetic studies, while providing internal controls for their effects on metabolism by allowing quantification of TCA intermediates.
Collapse
Affiliation(s)
- Moritz Winterhoff
- TWINCORE Centre for Experimental and Clinical Infection Research, 30625 Hannover, Germany; (M.W.); (F.C.); (N.S.); (M.K.)
| | - Fangfang Chen
- TWINCORE Centre for Experimental and Clinical Infection Research, 30625 Hannover, Germany; (M.W.); (F.C.); (N.S.); (M.K.)
| | - Nishika Sahini
- TWINCORE Centre for Experimental and Clinical Infection Research, 30625 Hannover, Germany; (M.W.); (F.C.); (N.S.); (M.K.)
| | - Thomas Ebensen
- Helmholtz Centre for Infection Research (HZI), 38124 Braunschweig, Germany;
| | - Maike Kuhn
- TWINCORE Centre for Experimental and Clinical Infection Research, 30625 Hannover, Germany; (M.W.); (F.C.); (N.S.); (M.K.)
| | - Volkhard Kaever
- Research Core Unit Metabolomics, Hannover Medical School, 30625 Hannover, Germany; (V.K.); (H.B.)
| | - Heike Bähre
- Research Core Unit Metabolomics, Hannover Medical School, 30625 Hannover, Germany; (V.K.); (H.B.)
| | - Frank Pessler
- TWINCORE Centre for Experimental and Clinical Infection Research, 30625 Hannover, Germany; (M.W.); (F.C.); (N.S.); (M.K.)
- Helmholtz Centre for Infection Research (HZI), 38124 Braunschweig, Germany;
- Centre for Individualised Infection Medicine, 30625 Hannover, Germany
- Correspondence: or
| |
Collapse
|