1
|
Liao S, Chen Y. The Role of Bioactive Small Molecules in COPD Pathogenesis. COPD 2024; 21:2307618. [PMID: 38329475 DOI: 10.1080/15412555.2024.2307618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/15/2024] [Indexed: 02/09/2024]
Abstract
Chronic obstructive pulmonary disease (COPD) is recognized as a predominant contributor to mortality worldwide, which causes significant burdens to both society and individuals. Given the limited treatment options for COPD, there lies a critical realization: the imperative for expeditious development of novel therapeutic modalities that can effectively alleviate disease progression and enhance the quality of life experienced by COPD patients. Within the intricate field of COPD pathogenesis, an assortment of biologically active small molecules, encompassing small protein molecules and their derivatives, assumes crucial roles through diverse mechanisms. These mechanisms relate to the regulation of redox balance, the inhibition of the release of inflammatory mediators, and the modulation of cellular functions. Therefore, the present article aims to explore and elucidate the distinct roles played by different categories of biologically active small molecules in contributing to the pathogenesis of COPD.
Collapse
Affiliation(s)
- Sha Liao
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing, China
| | - Yahong Chen
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing, China
| |
Collapse
|
2
|
Xu HP, Niu H, Wang H, Lin J, Yao JJ. Knockdown of RTEL1 Alleviates Chronic Obstructive Pulmonary Disease by Modulating M1, M2 Macrophage Polarization and Inflammation. COPD 2024; 21:2316607. [PMID: 38420994 DOI: 10.1080/15412555.2024.2316607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 02/05/2024] [Indexed: 03/02/2024]
Abstract
Chronic obstructive pulmonary disease (COPD) is a common chronic disease characterized by airflow obstruction, which seriously threatens people's health. The COPD mouse model was established with cigarette smoke induction. Hematoxylin-eosin staining and Masson staining were carried out to observe the pathological changes of lung tissues in COPD mice. RTEL1 was silenced in COPD mice, and immunohistochemistry was used to detect RTEL1, ki67 and Caspase-3 expression. The role of RTEL1 in inflammation were evaluated by ELISA, and the impacts of RTEL1 on M1 and M2 macrophage markers (iNOS and CD206) were evaluated by qPCR and western blotting. In COPD model, there was an increase in the number of inflammatory cells, with slightly disorganized cell arrangement, unclear hierarchy, condensed and solidified nuclei, while knockdown of RTEL1 improved the inflammatory infiltration. Moreover, knockdown of RTEL1 reduced ki67-positive cells and increased Caspase-3 positive cells in COPD group. The increased inflammatory factors (IL-1β, MMP-9, TNF-α, IL-4, IL-6, and IL-23) in COPD were suppressed by knockdown of RTEL1, while iNOS was raised and CD206 was inhibited. In conclusion, knockdown of RTEL1 promoted M1 and inhibited M2 macrophage polarization and inflammation to alleviate COPD.
Collapse
Affiliation(s)
- He-Ping Xu
- Department of Emergency Medicine, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Huan Niu
- Department of Emergency Medicine, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Hong Wang
- Department of Emergency Medicine, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Jie Lin
- Department of Emergency Medicine, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Jin-Jian Yao
- Department of Emergency Medicine, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| |
Collapse
|
3
|
Gao X, Shao S, Zhang X, Li C, Jiang Q, Li B. Interaction between CD244 and SHP2 regulates inflammation in chronic obstructive pulmonary disease via targeting the MAPK/NF-κB signaling pathway. PLoS One 2024; 19:e0312228. [PMID: 39423200 PMCID: PMC11488738 DOI: 10.1371/journal.pone.0312228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 10/02/2024] [Indexed: 10/21/2024] Open
Abstract
This study delved into the interplay between CD244 and Src Homology 2 Domain Containing Phosphatase-2 (SHP2) in chronic obstructive pulmonary disease (COPD) pathogenesis, focusing on apoptosis and inflammation in cigarette smoke extract (CSE)-treated human bronchial epithelial (HBE) cells. Analysis of the GSE100153 dataset identified 290 up-regulated and 344 down-regulated differentially expressed genes (DEGs). Weighted gene co-expression network analysis (WGCNA) highlighted the turquoise module had the highest correlation with COPD samples. Functional enrichment analysis linked these DEGs to critical COPD processes and pathways like neutrophil degranulation, protein kinase B activity, and diabetic cardiomyopathy. Observations on CD244 expression revealed its upregulation with increasing CSE concentrations, suggesting a dose-dependent relationship with inflammatory cytokines (IL-6, IL-8, TNF-α). CD244 knockdown mitigated CSE-induced apoptosis and inflammation, while overexpression exacerbated these responses. Co-immunoprecipitation (Co-IP) confirmed the physical interaction between CD244 and SHP2, emphasizing their regulatory connection. Analysis of Concurrently, the Nuclear Factor-kappa B (NF-κB) and Mitogen-activated protein kinase (MAPK) signaling pathways showed that modulating CD244 expression impacted key pathway components (p-JNK, p-IKKβ, p-ERK, p-P38, p-lkBα, p-P65), an effect reversed upon SHP2 knockdown. These findings underscore the pivotal role of the CD244/SHP2 axis in regulating inflammatory and apoptotic responses in CSE-exposed HBE cells, suggesting its potential as a therapeutic target in COPD treatment strategies.
Collapse
Affiliation(s)
- Xiaobing Gao
- Department of Emergency Medicine, General Hospital of Central Theater Command, Wuhan, Hubei Province, China
| | - Suhua Shao
- Department of Emergency Medicine, General Hospital of Central Theater Command, Wuhan, Hubei Province, China
| | - Xi Zhang
- Department of Outpatient, General Hospital of Central Theater Command, Wuhan, Hubei Province, China
| | - Changjie Li
- Laboratory of Shanghai Yijian Medical Testing Institute, Shanghai, China
| | - Qianqian Jiang
- Health Management Center, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Bo Li
- Department of Emergency Medicine, General Hospital of Central Theater Command, Wuhan, Hubei Province, China
| |
Collapse
|
4
|
Dai Y, Wu J, Wang J, Wang H, Guo B, Jiang T, Cai Z, Han J, Zhang H, Xu B, Zhou X, Wang C. Magnesium Ions Promote the Induction of Immunosuppressive Bone Microenvironment and Bone Repair through HIF-1α-TGF-β Axis in Dendritic Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311344. [PMID: 38661278 DOI: 10.1002/smll.202311344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 03/22/2024] [Indexed: 04/26/2024]
Abstract
The effect of immunoinflammation on bone repair during the recovery process of bone defects needs to be further explored. It is reported that Mg2+ can promote bone repair with immunoregulatory effect, but the underlying mechanism on adaptive immunity is still unclear. Here, by using chitosan and hyaluronic acid-coated Mg2+ (CSHA-Mg) in bone-deficient mice, it is shown that Mg2+ can inhibit the activation of CD4+ T cells and increase regulatory T cell formation by inducing immunosuppressive dendritic cells (imDCs). Mechanistically, Mg2+ initiates the activation of the MAPK signaling pathway through TRPM7 channels on DCs. This process subsequently induces the downstream HIF-1α expression, a transcription factor that amplifies TGF-β production and inhibits the effective T cell function. In vivo, knock-out of HIF-1α in DCs or using a HIF-1α inhibitor PX-478 reverses inhibition of bone inflammation and repair promotion upon Mg2+-treatment. Moreover, roxadustat, which stabilizes HIF-1α protein expression, can significantly promote immunosuppression and bone repair in synergism with CSHA-Mg. Thus, the findings identify a key mechanism for DCs and its HIF-1α-TGF-β axis in the induction of immunosuppressive bone microenvironment, providing potential targets for bone regeneration.
Collapse
Affiliation(s)
- Yuya Dai
- Department of Orthopedic, Changzheng Hospital Affiliated to Naval Medical University, Shanghai, 200003, China
| | - Jinhui Wu
- Department of Orthopedic, Changzheng Hospital Affiliated to Naval Medical University, Shanghai, 200003, China
| | - Junyou Wang
- State-Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Haoze Wang
- Nation Key Laboratory of Medical Immunology, Institute of Immunology, Naval Medical University (Second Military Medical University), Shanghai, 200433, China
| | - Bingqing Guo
- Changzhou Hospital of Traditional Chinese Medicine, Changzhou, 213000, China
| | - Tao Jiang
- Changzhou Hospital of Traditional Chinese Medicine, Changzhou, 213000, China
| | - Zhuyun Cai
- Department of Orthopedic, Changzheng Hospital Affiliated to Naval Medical University, Shanghai, 200003, China
| | - Junjie Han
- Department of Orthopedic, Changzheng Hospital Affiliated to Naval Medical University, Shanghai, 200003, China
| | - Haoyu Zhang
- Nation Key Laboratory of Medical Immunology, Institute of Immunology, Naval Medical University (Second Military Medical University), Shanghai, 200433, China
| | - Bangzhe Xu
- Department of Orthopedic, Changzheng Hospital Affiliated to Naval Medical University, Shanghai, 200003, China
| | - Xuhui Zhou
- Department of Orthopedic, Changzheng Hospital Affiliated to Naval Medical University, Shanghai, 200003, China
| | - Ce Wang
- Department of Orthopedic, Changzheng Hospital Affiliated to Naval Medical University, Shanghai, 200003, China
| |
Collapse
|
5
|
Wang X, Aga EB, Tse WM, Tse KWG, Ye B. Protective Effect of the Total Alkaloid Extract from Bulbus Fritillariae pallidiflorae in a Mouse Model of Cigarette Smoke-Induced Chronic Obstructive Pulmonary Disease. Int J Chron Obstruct Pulmon Dis 2024; 19:1273-1289. [PMID: 38881716 PMCID: PMC11178083 DOI: 10.2147/copd.s459166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 05/20/2024] [Indexed: 06/18/2024] Open
Abstract
Purpose In recent years, the incidence of chronic obstructive pulmonary disease (COPD) has been increasing year by year, but therapeutic drugs has no breakthrough. The total alkaloid extract from Bulbus Fritillariae pallidiflorae (BFP-TA) is widely used in treating lung diseases. Therefore, this study aimed to investigate the protective effect and mechanism of BFP-TA in COPD mice. Methods BFP-TA was prepared by macroporous adsorbent resin, and the material basis of BFP-TA was analyzed by HPLC-ELSD and UHPLC-MS/MS. Then, the COPD mouse model was induced by cigarette smoke (CS) for 12 weeks, administered at weeks 9-12. Subsequently, the body weight, lung-body ratio, pulmonary function, histopathology, and the levels of pro-inflammatory cytokines, matrix metalloproteinases (MMPs) and oxidative stress markers in the serum of mice were determined. The expressions of related protein of EMT and MAPK signaling pathways in the lung tissues of mice were detected by Western blot. Results The alkaloid relative content of BFP-TA is 64.28%, and nine alkaloids in BFP-TA were identified and quantified by UHPLC-MS/MS. Subsequently, the animal experiment showed that BFP-TA could improve pulmonary function, and alleviate inflammatory cell infiltration, pulmonary emphysema, and collagen fiber deposition in the lung of COPD mice. Furthermore, BFP-TA could decrease the levels of pro-inflammatory cytokines (TNF-α, IL-6 and IL-1β), MMPs (MMP-9 and MMP-12) and MDA, while increase the levels of TIMP-1 and SOD. Moreover, BFP-TA could decrease the protein expressions of collagen I, vimentin, α-SMA, MMP-9, MMP-9/TIMP-1, Bax, p-JNK/JNK, p-P38/P38, and p-ERK/ERK, while increase the level of E-cadherin. Conclusion This study is the first to demonstrate the protective effect of BFP-TA in CS-induced COPD mouse model. Furthermore, BFP-TA may improve airway remodeling by inhibiting the EMT process and potentially exert anti-inflammatory effect by inhibiting the MAPK signaling pathway.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - Er-Bu Aga
- Medical College of Tibet University, Lasa, Tibet, 850002, People's Republic of China
| | - Wai Ming Tse
- Nin Jiom Medicine Manufactory (H.K.) Limited, Hong Kong, 999077, People's Republic of China
| | - Kathy Wai Gaun Tse
- Nin Jiom Medicine Manufactory (H.K.) Limited, Hong Kong, 999077, People's Republic of China
| | - Bengui Ye
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
- Medical College of Tibet University, Lasa, Tibet, 850002, People's Republic of China
| |
Collapse
|
6
|
Hu T, Mu C, Li Y, Hao W, Yu X, Wang Y, Han W, Li Q. GPS2 ameliorates cigarette smoking-induced pulmonary vascular remodeling by modulating the ras-Raf-ERK axis. Respir Res 2024; 25:210. [PMID: 38755610 PMCID: PMC11100185 DOI: 10.1186/s12931-024-02831-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 05/01/2024] [Indexed: 05/18/2024] Open
Abstract
BACKGROUND Mitogen-activated protein kinase (MAPK)signaling-mediated smoking-associated pulmonary vascular remodeling (PVR) plays an important role in the pathogenesis of group 3 pulmonary hypertension (PH). And G protein pathway suppressor 2 (GPS2) could suppress G-protein signaling such as Ras and MAPK, but its role in cigarette smoking -induced PVR (CS-PVR) is unclear. METHODS An in vivo model of smoke-exposed rats was constructed to assess the role of GPS2 in smoking-induced PH and PVR. In vitro, the effects of GPS2 overexpression and silencing on the function of human pulmonary arterial smooth cells (HPASMCs) and the underlying mechanisms were explored. RESULTS GPS2 expression was downregulated in rat pulmonary arteries (PAs) and HPASMCs after CS exposure. More importantly, CS-exposed rats with GPS2 overexpression had lower right ventricular systolic pressure (RVSP), right ventricular hypertrophy index (RVHI), and wall thickness (WT%) than those without. And enhanced proliferation and migration of HPASMCs induced by cigarette smoking extract (CSE) can be evidently inhibited by overexpressed GPS2. Besides, GPS2siRNA significantly enhanced the proliferation, and migration of HPASMCs as well as activated Ras and Raf/ERK signaling, while these effects were inhibited by zoledronic acid (ZOL). In addition, GPS2 promoter methylation level in rat PAs and HPASMCs was increased after CS exposure, and 5-aza-2-deoxycytidine (5-aza) inhibited CSE-induced GPS2 hypermethylation and downregulation in vitro. CONCLUSIONS GPS2 overexpression could improve the CS-PVR, suggesting that GPS2 might serve as a novel therapeutic target for PH-COPD in the future.
Collapse
Affiliation(s)
- Ting Hu
- Department of Respiratory and Critical Care Medicine, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
- Qingdao Key Lab of Common Diseases, Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, 5 Donghai Middle Road, Qingdao, 266071, China
| | - Chaohui Mu
- Department of Respiratory and Critical Care Medicine, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
- Qingdao Key Lab of Common Diseases, Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, 5 Donghai Middle Road, Qingdao, 266071, China
| | - Yanmiao Li
- Department of Respiratory and Critical Care Medicine, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
- Qingdao Key Lab of Common Diseases, Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, 5 Donghai Middle Road, Qingdao, 266071, China
| | - Wanming Hao
- Qingdao Key Lab of Common Diseases, Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, 5 Donghai Middle Road, Qingdao, 266071, China
- Department of Respiratory and Critical Care Medicine, Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, 5 Donghai Middle Road, Qingdao, 266071, China
| | - Xinjuan Yu
- Qingdao Key Lab of Common Diseases, Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, 5 Donghai Middle Road, Qingdao, 266071, China
- Department of Respiratory and Critical Care Medicine, Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, 5 Donghai Middle Road, Qingdao, 266071, China
| | - Yixuan Wang
- Qingdao Key Lab of Common Diseases, Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, 5 Donghai Middle Road, Qingdao, 266071, China
- Department of Respiratory and Critical Care Medicine, Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, 5 Donghai Middle Road, Qingdao, 266071, China
| | - Wei Han
- Qingdao Key Lab of Common Diseases, Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, 5 Donghai Middle Road, Qingdao, 266071, China.
- Department of Respiratory and Critical Care Medicine, Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, 5 Donghai Middle Road, Qingdao, 266071, China.
| | - Qinghai Li
- Qingdao Key Lab of Common Diseases, Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, 5 Donghai Middle Road, Qingdao, 266071, China.
- Department of Respiratory and Critical Care Medicine, Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, 5 Donghai Middle Road, Qingdao, 266071, China.
| |
Collapse
|
7
|
Yang T, Li Z, Chen S, Lan T, Lu Z, Fang L, Zhao H, Li Q, Luo Y, Yang B, Shu J. Ultra-sensitive analysis of exhaled biomarkers in ozone-exposed mice via PAI-TOFMS assisted with machine learning algorithms. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134151. [PMID: 38554517 DOI: 10.1016/j.jhazmat.2024.134151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/23/2024] [Accepted: 03/26/2024] [Indexed: 04/01/2024]
Abstract
Ground-level ozone ranks sixth among common air pollutants. It worsens lung diseases like asthma, emphysema, and chronic bronchitis. Despite recent attention from researchers, the link between exhaled breath and ozone-induced injury remains poorly understood. This study aimed to identify novel exhaled biomarkers in ozone-exposed mice using ultra-sensitive photoinduced associative ionization time-of-flight mass spectrometry and machine learning. Distinct ion peaks for acetonitrile (m/z 42, 60, and 78), butyronitrile (m/z 70, 88, and 106), and hydrogen sulfide (m/z 35) were detected. Integration of tissue characteristics, oxidative stress-related mRNA expression, and exhaled breath condensate free-radical analysis enabled a comprehensive exploration of the relationship between ozone-induced biological responses and potential biomarkers. Under similar exposure levels, C57BL/6 mice exhibited pulmonary injury characterized by significant inflammation, oxidative stress, and cardiac damage. Notably, C57BL/6 mice showed free radical signals, indicating a distinct susceptibility profile. Immunodeficient non-obese diabetic Prkdc-/-/Il2rg-/- (NPI) mice exhibited minimal biological responses to pulmonary injury, with little impact on the heart. These findings suggest a divergence in ozone-induced damage pathways in the two mouse types, leading to alterations in exhaled biomarkers. Integrating biomarker discovery with comprehensive biopathological analysis forms a robust foundation for targeted interventions to manage health risks posed by ozone exposure.
Collapse
Affiliation(s)
- Teng Yang
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhen Li
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing 100049, China; Binzhou Institute of Technology, Weiqiao-UCAS Science and Technology Park, Binzhou, Shandong Province 256606, China.
| | - Siwei Chen
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ting Lan
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhongbing Lu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Longfa Fang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems. Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020 China
| | - Huan Zhao
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qirun Li
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yinwei Luo
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing 100049, China; Binzhou Institute of Technology, Weiqiao-UCAS Science and Technology Park, Binzhou, Shandong Province 256606, China
| | - Bo Yang
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinian Shu
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
8
|
Saleem S. Targeting MAPK signaling: A promising approach for treating inflammatory lung disease. Pathol Res Pract 2024; 254:155122. [PMID: 38246034 DOI: 10.1016/j.prp.2024.155122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 01/06/2024] [Accepted: 01/08/2024] [Indexed: 01/23/2024]
Abstract
The extracellular signals that initiate intracellular reactions are dispatched by the mitogen-activated protein kinases (MAPKs), which oversee a multitude of cellular activities. p38, Extracellular signal-regulated kinase (ERK), and c-Jun NH2-terminal kinase (JNK) are members of the vertebrate family of MAPKs, and each MAPK signaling pathway consists of a MAPK kinase (MAP3K), a MAPK kinase (MAP2K), and a MAPK. These signaling pathways orchestrate numerous cellular processes, including cell growth, survival, differentiation, and apoptosis. The emergence of various inflammatory respiratory diseases in humans has been linked to the dysregulation of MAPK signaling pathways. Conditions such as asthma, lung cancer, pulmonary fibrosis, and COPD are among the prevalent respiratory ailments where MAPK plays a pivotal role. Additionally, MAPK is implicated in infectious diseases, including COVID-19, pneumonia, and tuberculosis. COPD, asthma, emphysema, chronic bronchitis, and other inflammatory lung disorders highlight the significance of MAPK as a potential target for therapeutic development. Further studies are needed to delve into the molecular mechanisms by which the MAPK signaling pathway contributes to inflammatory lung disorders, representing an area that demands continued research.
Collapse
Affiliation(s)
- Shakir Saleem
- Department of Public Health, College of Health Sciences, Saudi Electronic University, P.O. Box 93499, Riyadh 11673, Saudi Arabia.
| |
Collapse
|
9
|
Wang B, He J, Cui Y, Yu S, Zhang H, Wei P, Zhang Q. The HIF-1α/EGF/EGFR Signaling Pathway Facilitates the Proliferation of Yak Alveolar Type II Epithelial Cells in Hypoxic Conditions. Int J Mol Sci 2024; 25:1442. [PMID: 38338723 PMCID: PMC10855765 DOI: 10.3390/ijms25031442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/09/2024] [Accepted: 01/21/2024] [Indexed: 02/12/2024] Open
Abstract
The yak is a unique creature that thrives in low-oxygen environments, showcasing its adaptability to high-altitude settings with limited oxygen availability due to its unique respiratory system. However, the impact of hypoxia on alveolar type II (AT2) epithelial cell proliferation in yaks remains unexplored. In this study, we investigated the effects of different altitudes on 6-month-old yaks and found an increase in alveolar septa thickness and AT2 cell count in a high-altitude environment characterized by hypoxia. This was accompanied by elevated levels of hypoxia-inducible factor-1α (HIF-1α) and epidermal growth factor receptor (EGFR) expression. Additionally, we observed a significant rise in Ki67-positive cells and apoptotic lung epithelial cells among yaks inhabiting higher altitudes. Our in vitro experiments demonstrated that exposure to hypoxia activated HIF-1α, EGF, and EGFR expression leading to increased proliferation rates among yak AT2 cells. Under normal oxygen conditions, activation of HIF-1α enhanced EGF/EGFR expressions which subsequently stimulated AT2 cell proliferation. Furthermore, activation of EGFR expression under normoxic conditions further promoted AT2 cell proliferation while simultaneously suppressing apoptosis. Conversely, inhibition of EGFR expression under hypoxic conditions had contrasting effects. In summary, hypoxia triggers the proliferation of yak AT2 cells via activation facilitated by the HIF-1α/EGF/EGFR signaling cascade.
Collapse
Affiliation(s)
- Biao Wang
- Laboratory of Animal Anatomy & Tissue Embryology, Department of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (B.W.); (J.H.); (S.Y.); (H.Z.); (P.W.); (Q.Z.)
| | - Junfeng He
- Laboratory of Animal Anatomy & Tissue Embryology, Department of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (B.W.); (J.H.); (S.Y.); (H.Z.); (P.W.); (Q.Z.)
| | - Yan Cui
- Laboratory of Animal Anatomy & Tissue Embryology, Department of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (B.W.); (J.H.); (S.Y.); (H.Z.); (P.W.); (Q.Z.)
- Gansu Province Livestock Embryo Engineering Research Center, Department of Clinical Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Sijiu Yu
- Laboratory of Animal Anatomy & Tissue Embryology, Department of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (B.W.); (J.H.); (S.Y.); (H.Z.); (P.W.); (Q.Z.)
- Gansu Province Livestock Embryo Engineering Research Center, Department of Clinical Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Huizhu Zhang
- Laboratory of Animal Anatomy & Tissue Embryology, Department of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (B.W.); (J.H.); (S.Y.); (H.Z.); (P.W.); (Q.Z.)
| | - Pengqiang Wei
- Laboratory of Animal Anatomy & Tissue Embryology, Department of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (B.W.); (J.H.); (S.Y.); (H.Z.); (P.W.); (Q.Z.)
| | - Qian Zhang
- Laboratory of Animal Anatomy & Tissue Embryology, Department of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (B.W.); (J.H.); (S.Y.); (H.Z.); (P.W.); (Q.Z.)
| |
Collapse
|
10
|
Tao BB, Zhu Q, Zhu YC. Mechanisms Underlying the Hydrogen Sulfide Actions: Target Molecules and Downstream Signaling Pathways. Antioxid Redox Signal 2024; 40:86-109. [PMID: 37548532 DOI: 10.1089/ars.2023.0401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Significance: As a new important gas signaling molecule like nitric oxide (NO) and carbon dioxide (CO), hydrogen sulfide (H2S), which can be produced by endogenous H2S-producing enzymes through l-cysteine metabolism in mammalian cells, has attracted wide attention for long. H2S has been proved to play an important regulatory role in numerous physiological and pathophysiological processes. However, the deep mechanisms of those different functions of H2S still remain uncertain. A better understanding of the mechanisms can help us develop novel therapeutic strategies. Recent Advances: H2S can play a regulating role through various mechanisms, such as regulating epigenetic modification, protein expression levels, protein activity, protein localization, redox microenvironment, and interaction with other gas signaling molecules such as NO and CO. In addition to discussing the molecular mechanisms of H2S from the above perspectives, this article will review the regulation of H2S on common signaling pathways in the cells, including the phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt), mitogen-activated protein kinase (MAPK), Janus kinase (JAK)/signal transducer, and activator of transcription (STAT) signaling pathway. Critical Issues: Although there are many studies on the mechanism of H2S, little is known about its direct target molecules. This article will also review the existing reports about them. Furthermore, the interaction between direct target molecules of H2S and the downstream signaling pathways involved also needs to be clarified. Future Directions: An in-depth discussion of the mechanism of H2S and the direct target molecules will help us achieving a deeper understanding of the physiological and pathophysiological processes regulated by H2S, and lay a foundation for developing new clinical therapeutic drugs in the future. Innovation: This review focuses on the regulation of H2S on signaling pathways and the direct target molecules of H2S. We also provide details on the underlying mechanisms of H2S functions from the following aspects: epigenetic modification, regulation of protein expression levels, protein activity, protein localization, redox microenvironment, and interaction with other gas signaling molecules such as NO and CO. Further study of the mechanisms underlying H2S will help us better understand the physiological and pathophysiological processes it regulates, and help develop new clinical therapeutic drugs in the future. Antioxid. Redox Signal. 40, 86-109.
Collapse
Affiliation(s)
- Bei-Bei Tao
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai, China
| | - Qi Zhu
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai, China
| | - Yi-Chun Zhu
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai, China
| |
Collapse
|
11
|
Zhang Y, Sheng Y, Gao Y, Lin Y, Cheng B, Li H, Zhang L, Xu H. Exploration of the Pathogenesis of Chronic Obstructive Pulmonary Disease Caused by Smoking-Based on Bioinformatics Analysis and In Vitro Experimental Evidence. TOXICS 2023; 11:995. [PMID: 38133396 PMCID: PMC10747869 DOI: 10.3390/toxics11120995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/02/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023]
Abstract
This study was aimed at investigating the pathogenesis of chronic obstructive pulmonary disease (COPD) caused by smoking-based on bioinformatics analysis and in vitro experimental evidence. The GEO, GEO2R, TargetScan, miRDB, miRWalk, DAVID, and STRING databases were used for bioinformatics analysis. The mRNA expression and the protein levels were determined by real-time PCR and ELISA. After taking the intersection of the diversified results of the databases, four differentially expressed miRNAs (hsa-miR-146a, hsa-miR-708, hsa-miR-150, and hsa-miR-454) were screened out. Subsequently, a total of 57 target genes of the selected miRNAs were obtained. The results of DAVID analysis showed that the selected miRNAs participated in COPD pathogenesis through long-term potentiation, the TGF-β signaling pathway, the PI3K-Akt signaling pathway, etc. The results of STRING prediction showed that TP53, EP300, and MAPK1 were the key nodes of the PPI network. The results of the confirmatory experiment showed that, compared with the control group, the mRNA expression of ZEB1, MAPK1, EP300, and SP1 were up-regulated, while the expression of MYB was down-regulated and the protein levels of ZEB1, MAPK1, and EP300 were increased. Taken together, miRNAs (hsa-miR-146a, hsa-miR-708, hsa-miR-150, and hsa-miR-454) and their regulated target genes and downstream protein molecules (ZEB1, EP300, and MAPK1) may be closely related to the pathological process of COPD.
Collapse
Affiliation(s)
- Yingchi Zhang
- School of Public Health, Ningxia Medical University, Yinchuan 750004, China (Y.S.); (Y.G.); (Y.L.); (H.L.)
- The Key Laboratory of Environmental Factors and Chronic Disease Control, Yinchuan 750004, China
- Xi’an Center for Disease Control and Prevention, Xi’an 710000, China
| | - Yuxin Sheng
- School of Public Health, Ningxia Medical University, Yinchuan 750004, China (Y.S.); (Y.G.); (Y.L.); (H.L.)
- The Key Laboratory of Environmental Factors and Chronic Disease Control, Yinchuan 750004, China
| | - Yanrong Gao
- School of Public Health, Ningxia Medical University, Yinchuan 750004, China (Y.S.); (Y.G.); (Y.L.); (H.L.)
- The Key Laboratory of Environmental Factors and Chronic Disease Control, Yinchuan 750004, China
| | - Yujia Lin
- School of Public Health, Ningxia Medical University, Yinchuan 750004, China (Y.S.); (Y.G.); (Y.L.); (H.L.)
- The Key Laboratory of Environmental Factors and Chronic Disease Control, Yinchuan 750004, China
| | - Bin Cheng
- School of Public Health, Ningxia Medical University, Yinchuan 750004, China (Y.S.); (Y.G.); (Y.L.); (H.L.)
- The Key Laboratory of Environmental Factors and Chronic Disease Control, Yinchuan 750004, China
| | - Hongmei Li
- School of Public Health, Ningxia Medical University, Yinchuan 750004, China (Y.S.); (Y.G.); (Y.L.); (H.L.)
- The Key Laboratory of Environmental Factors and Chronic Disease Control, Yinchuan 750004, China
- The Key Laboratory of Fertility Preservation and Maintenance of the Ministry of Education, Ningxia Medical University, Yinchuan 750004, China
- School of Basic Medicine, Ningxia Medical University, Yinchuan 750004, China
| | - Ling Zhang
- School of Public Health, Ningxia Medical University, Yinchuan 750004, China (Y.S.); (Y.G.); (Y.L.); (H.L.)
- The Key Laboratory of Environmental Factors and Chronic Disease Control, Yinchuan 750004, China
| | - Haiming Xu
- School of Public Health, Ningxia Medical University, Yinchuan 750004, China (Y.S.); (Y.G.); (Y.L.); (H.L.)
- The Key Laboratory of Environmental Factors and Chronic Disease Control, Yinchuan 750004, China
| |
Collapse
|
12
|
Li F, Ye C, Wang X, Li X, Wang X. Honokiol ameliorates cigarette smoke-induced damage of airway epithelial cells via the SIRT3/SOD2 signalling pathway. J Cell Mol Med 2023; 27:4009-4020. [PMID: 37795870 PMCID: PMC10746946 DOI: 10.1111/jcmm.17981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 09/13/2023] [Accepted: 09/26/2023] [Indexed: 10/06/2023] Open
Abstract
Cigarette smoking can cause damage of airway epithelial cells and contribute to chronic obstructive pulmonary disease (COPD). Honokiol is originally isolated from Magnolia obovata with multiple biological activities. Here, we investigated the protective effects of honokiol on cigarette smoke extract (CSE)-induced injury of BEAS-2B cells. BEAS-2B cells were treated with 300 mg/L CSE to construct an in vitro cell injury model, and cells were further treated with 2, 5 and 10 μM honokiol, then cell viability and LDH leakage were analysed by CCK-8 and LDH assay kits, respectively. Apoptosis was detected by flow cytometry analysis. ELISA was used to measure the levels of tumour necrosis factor (TNF)-ɑ, IL-1β, IL-6, IL-8 and MCP-1. The results showed that honokiol (0.5-20 μM) showed non-toxic effects on BEAS-2B cells. Treatment with honokiol (2, 5 and 10 μM) reduced CSE (300 mg/L)-induced decrease in cell viability and apoptosis in BEAS-2B cells. Honokiol also decreased CSE-induced inflammation through inhibiting expression and secretion of inflammatory cytokines, such as TNF-ɑ, IL-1β, IL-6, IL-8 and MCP-1. Moreover, honokiol repressed CSE-induced reactive oxygen species (ROS) production, decrease of ATP content and mitochondrial biogenesis, as well as mitochondrial membrane potential. Mechanistically, honokiol promoted the expression of SIRT3 and its downstream target genes, which are critical regulators of mitochondrial function and oxidative stress. Silencing of SIRT3 reversed the protective effects of honokiol on CSE-induced damage and mitochondrial dysfunction in BEAS-2B cells. These results indicated that honokiol attenuated CSE-induced damage of airway epithelial cells through regulating SIRT3/SOD2 signalling pathway.
Collapse
Affiliation(s)
- Fei Li
- Department of Pulmonary and Critical Care MedicineShanxi Provincial People's HospitalTaiyuanChina
| | - Chunyu Ye
- The Fifth Clinical Medical College of Shanxi Medical UniversityTaiyuanChina
| | - Xiuli Wang
- Department of Biochemistry and Molecular BiologyShanxi Medical UniversityTaiyuanChina
| | - Xinting Li
- Department of Biochemistry and Molecular BiologyShanxi Medical UniversityTaiyuanChina
| | - Xiaoxia Wang
- Department of Biochemistry and Molecular BiologyShanxi Medical UniversityTaiyuanChina
| |
Collapse
|
13
|
Cao Y, Pan H, Yang Y, Zhou J, Zhang G. Screening of potential key ferroptosis-related genes in Chronic Obstructive Pulmonary Disease. Int J Chron Obstruct Pulmon Dis 2023; 18:2849-2860. [PMID: 38059012 PMCID: PMC10697092 DOI: 10.2147/copd.s422835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 11/11/2023] [Indexed: 12/08/2023] Open
Abstract
Purpose Ferroptosis plays essential roles in the development of COPD. We aim to identify the potential ferroptosis-related genes of COPD through bioinformatics analysis. Methods The RNA expression profile dataset GSE148004 was obtained from the GEO database. The ferroptosis-related genes were obtained from the FerrDb database. The potential differentially expressed ferroptosis-related genes of COPD were screened by R software. Then, protein-protein interactions (PPI), correlation analysis, gene-ontology (GO) enrichment analysis, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were applied for the differentially expressed ferroptosis-related genes. Finally, hub gene-microRNA(miRNA), hug gene-transcription factor interaction networks were constructed by miRTarBase v8.0 and JASPAR respectively, and hub gene drugs were predicted by the Enrichr database. Results A total of 41 differentially expressed ferroptosis-related genes (22 up-regulated genes and 19 down-regulated genes) were identified between 7 COPD patients and 9 healthy controls. The PPI results demonstrated that these ferroptosis-related genes interacted with each other. The GO and KEGG enrichment analyses of differentially expressed ferroptosis-related genes indicated several enriched terms related to ferroptosis, central carbon metabolism in cancer, and the HIF-1 signaling pathway. The crucial miRNAs and drugs associated with the top genes were identified. Conclusion We identified 41 potential ferroptosis-related genes in COPD through bioinformatics analysis. HIF1A, PPARG, and KRAS may affect the development of COPD by regulating ferroptosis. These results may expand our understanding of COPD and might be useful in the treatment of COPD.
Collapse
Affiliation(s)
- Yumeng Cao
- Department of Respiratory and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, People’s Republic of China
| | - Huaqin Pan
- Transplantation Intensive Care Unit, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan, Hubei, 430071, People’s Republic of China
| | - Yanwei Yang
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, People’s Republic of China
| | - Jingrun Zhou
- Department of Respiratory and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, People’s Republic of China
| | - Guqin Zhang
- Department of Respiratory and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, People’s Republic of China
| |
Collapse
|
14
|
Deng M, Tong R, Bian Y, Hou G. Astaxanthin attenuates cigarette smoking-induced oxidative stress and inflammation in a sirtuin 1-dependent manner. Biomed Pharmacother 2023; 159:114230. [PMID: 36696799 DOI: 10.1016/j.biopha.2023.114230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/22/2022] [Accepted: 01/08/2023] [Indexed: 01/25/2023] Open
Abstract
Oxidative stress and chronic inflammation play key roles in the pathogenesis of chronic obstructive pulmonary disease (COPD). Astaxanthin (AXT) is a keto-carotenoid with a variety of biological functions, including antioxidant and anti-inflammatory effects This study aimed to explore the protective role and underlying mechanism of AXT in the pathogenesis of COPD. In this study, we found AXT alleviated pulmonary emphysema in a CS-exposed mouse model and regulated the expression of MMP-9/TIMP-1. And, AXT attenuates CSE-induced small airway fibrosis. Meanwhile, AXT inhibited Nrf2-modulated oxidative stress and the p65 NF-κB-regulated inflammatory pathway in both the mouse model and CSE-treated HBE cells. Mechanistically, AXT could directly bind to SIRT1 (the binding energy of the complex was -8.8 kcal/mol) and regulate the deacetylation activity of SIRT1. Finally, by activating SIRT1 deacetylation, AXT deacetylated Nrf2 and contributed to its action of reducing oxidative stress by generating antioxidant enzymes, and inhibiting p65 NF-κB transcriptional activity to suppress the inflammatory response. Our results show that treatment with AXT significantly reverses the oxidative stress and inflammation induced by cigarette smoke both in vivo and in vitro in a sirtuin 1-dependent manner.
Collapse
Affiliation(s)
- Mingming Deng
- National Center for Respiratory Medicine; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital. No.2, East Yinghua Road, Chaoyang District, Beijing 100029, China
| | - Run Tong
- National Center for Respiratory Medicine; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital. No.2, East Yinghua Road, Chaoyang District, Beijing 100029, China
| | - Yiding Bian
- National Center for Respiratory Medicine; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital. No.2, East Yinghua Road, Chaoyang District, Beijing 100029, China
| | - Gang Hou
- National Center for Respiratory Medicine; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital. No.2, East Yinghua Road, Chaoyang District, Beijing 100029, China..
| |
Collapse
|
15
|
Dong T, Lin WZ, Zhu XH, Yuan KY, Hou LL, Huang ZW. Osteomodulin protects dental pulp stem cells from cisplatin-induced apoptosis in vitro. Stem Cell Rev Rep 2023; 19:188-200. [PMID: 35781607 DOI: 10.1007/s12015-022-10399-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2022] [Indexed: 01/29/2023]
Abstract
Human dental pulp stem cells (hDPSCs) are considered promising multipotent cell sources for tissue regeneration. Regulation of apoptosis and maintaining the cell homeostasis is a critical point for the application of hDPSCs. Osteomodulin (OMD), a member of the small leucine-rich proteoglycan family, was proved an important regulatory protein of hDPSCs in our previous research. Thus, the role of OMD in the apoptosis of hDPSCs was explored in this study. The expression of OMD following apoptotic induction was investigated and then the hDPSCs stably overexpressing or knocking down OMD were established by lentiviral transfection. The proportion of apoptotic cells and apoptosis-relative genes and proteins were examined with flow cytometry, Hoechst staining, Caspase 3 activity assay, qRT-PCR and western blotting. RNA-Seq analysis was used to explore possible biological function and mechanism. Results showed that the expression of OMD decreased following the apoptotic induction. Overexpression of OMD enhanced the viability of hDPSCs, decreased the activity of Caspase-3 and protected hDPSCs from apoptosis. Knockdown of OMD showed the opposite results. Mechanistically, OMD may act as a negative modulator of apoptosis via activation of the Akt/Glycogen synthase kinase 3β (GSK-3β)/β-Catenin signaling pathway and more functional and mechanistic possibilities were revealed with RNA-Seq analysis. The present study provided evidence of OMD as a negative regulator of apoptosis in hDPSCs. Akt/GSK-3β/β-Catenin signaling pathway was involved in this process and more possible mechanism detected needed further exploration. This anti-apoptotic function of OMD provided a promising application prospect for hDPSCs in tissue regeneration.
Collapse
Affiliation(s)
- Ting Dong
- Department of Endodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Wen-Zhen Lin
- Department of Endodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Xiao-Han Zhu
- Department of Endodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Ke-Yong Yuan
- Department of Endodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Li-Li Hou
- Department of Nursing, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiaotong University, 639 Zhizaoju Road, Shanghai, 200011, China.
| | - Zheng-Wei Huang
- Department of Endodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China.
- National Clinical Research Center for Oral Diseases, Shanghai, China.
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China.
| |
Collapse
|
16
|
Ma H, Zhou Z, Chen L, Wang L, Muge Q. Anemoside B4 prevents chronic obstructive pulmonary disease through alleviating cigarette smoke-induced inflammatory response and airway epithelial hyperplasia. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 107:154431. [PMID: 36115169 DOI: 10.1016/j.phymed.2022.154431] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 08/02/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Cigarette smoke (CS) is one of the major risk factors for chronic obstructive pulmonary disease (COPD) and increases the risk of lung cancer (LC). Anemoside B4 (B4) is the main bioactive ingredient in Pulsatilla chinensis (P. chinensis), a traditional medicinal herb for various diseases. It has a wide range of anti-inflammatory, anti-oxidation and anti-cancer activities. However, in recent years, there is no relevant literature report on the therapeutic effect of B4 on COPD, and the anti-inflammatory and inhibitory effects of anemoside B4 on basal cell hyperplasia in CS-induced COPD have not been clearly established. PURPOSE In the present study, we investigated whether anemoside B4 could alleviate CS or cigarette smoke extract (CSE) induced inflammation of COPD and further prevent basal cell hyperplasia, hoping to find its possible mechanism. METHODS In this study, a COPD mouse model was established in C57BL mice by CS exposure 3 months. Bronchial pathology and basal cell hyperplasia were observed by HE staining and immunostaining. The contents of glutathione peroxidase catalase (GSH-PX), malondialdehyde (MDA) and superoxide dismutase (MPO) were determined by GSH-PX, MDA and SOD assay kits, respectively. 16HBE cells were cultured with 5% CSE with or without treatment with B4 (1, 10, 100 μM) or DEX (20 μM) in vitro. Cell viability was assessed by a cell counting kit 8 (CCK-8). Reactive oxygen species (ROS) generation was tested by DCFH-DA. Moreover, anti-inflammatory mechanism of anemoside B4 was further determined by pro-inflammatory cytokines production using RT-PCR. Protein expression levels of MAPK/AP-1/TGF-β signaling pathway were measured by western blot. RESULTS Anemoside B4 improved the lung function of mice, relieved lung inflammation and reduced the MDA, MPO and GSH-Px in the plasma. At the same time, B4 repressed the oxidative stress response and played a role in balancing the levels of protease and anti-protease. During the process of bronchial basal cell hyperplasia, B4 alleviated the degree of cell hyperplasia, and prevented further deterioration of hyperplasia through increased P53 and inhibited FHIT protein. In addition, B4 reduced ROS levels in human bronchial epithelial cells stimulated by CSE in vitro study. Meanwhile, B4 treatment also significantly attenuated increased IL-1β, TGF-β, IL-8 and TNF-α from CSE treated human bronchial epithelial cells. The expression of p-P38, AP-1(c-fos, and c-Jun), TGF-β proteins in MAPK/AP-1/TGF-β signaling pathway were decreased and the signal cascade reaction was blocked. CONCLUSION Anemoside B4 protects against CS-induced COPD. These findings indicated that B4 may have therapeutic potential for the prevention and treatment of COPD.
Collapse
Affiliation(s)
- Huimiao Ma
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang 330006, PR China; National Pharmaceutical Engineering Center for Solid Preparation of Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang 330006, PR China; Key Laboratory for evaluation on Anti-tumor Effect of Chinese Medicine by Strengthening Body Resistance to Eliminate Pathogenic Factors, Nanchang 330006, PR China
| | - Ziye Zhou
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang 330006, PR China; National Pharmaceutical Engineering Center for Solid Preparation of Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang 330006, PR China; Key Laboratory for evaluation on Anti-tumor Effect of Chinese Medicine by Strengthening Body Resistance to Eliminate Pathogenic Factors, Nanchang 330006, PR China
| | - Lanying Chen
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang 330006, PR China; National Pharmaceutical Engineering Center for Solid Preparation of Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang 330006, PR China; Key Laboratory for evaluation on Anti-tumor Effect of Chinese Medicine by Strengthening Body Resistance to Eliminate Pathogenic Factors, Nanchang 330006, PR China.
| | - Lingling Wang
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang 330006, PR China; National Pharmaceutical Engineering Center for Solid Preparation of Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang 330006, PR China
| | - Qi Muge
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang 330006, PR China; National Pharmaceutical Engineering Center for Solid Preparation of Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang 330006, PR China; Key Laboratory for evaluation on Anti-tumor Effect of Chinese Medicine by Strengthening Body Resistance to Eliminate Pathogenic Factors, Nanchang 330006, PR China
| |
Collapse
|
17
|
Zhu Z, Lian X, Bhatia M. Hydrogen Sulfide: A Gaseous Mediator and Its Key Role in Programmed Cell Death, Oxidative Stress, Inflammation and Pulmonary Disease. Antioxidants (Basel) 2022; 11:2162. [PMID: 36358533 PMCID: PMC9687070 DOI: 10.3390/antiox11112162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/21/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022] Open
Abstract
Hydrogen sulfide (H2S) has been acknowledged as a novel gaseous mediator. The metabolism of H2S in mammals is tightly controlled and is mainly achieved by many physiological reactions catalyzed by a suite of enzymes. Although the precise actions of H2S in regulating programmed cell death, oxidative stress and inflammation are yet to be fully understood, it is becoming increasingly clear that H2S is extensively involved in these crucial processes. Since programmed cell death, oxidative stress and inflammation have been demonstrated as three important mechanisms participating in the pathogenesis of various pulmonary diseases, it can be inferred that aberrant H2S metabolism also functions as a critical contributor to pulmonary diseases, which has also been extensively investigated. In the meantime, substantial attention has been paid to developing therapeutic approaches targeting H2S for pulmonary diseases. In this review, we summarize the cutting-edge knowledge on the metabolism of H2S and the relevance of H2S to programmed cell death, oxidative stress and inflammation. We also provide an update on the crucial roles played by H2S in the pathogenesis of several pulmonary diseases. Finally, we discuss the perspective on targeting H2S metabolism in the treatment of pulmonary diseases.
Collapse
Affiliation(s)
- Zhixing Zhu
- Department of Pathology and Biomedical Science, University of Otago, Christchurch 8140, New Zealand
- Department of Internal Medicine (Pulmonary and Critical Care Medicine), The Second Clinical Medical School of Fujian Medical University, Quanzhou 362002, China
| | - Xihua Lian
- Department of Pathology and Biomedical Science, University of Otago, Christchurch 8140, New Zealand
- Department of Internal Medicine (Pulmonary and Critical Care Medicine), The Second Clinical Medical School of Fujian Medical University, Quanzhou 362002, China
| | - Madhav Bhatia
- Department of Pathology and Biomedical Science, University of Otago, Christchurch 8140, New Zealand
| |
Collapse
|
18
|
Xu YR, Wang AL, Li YQ. Hypoxia-inducible factor 1-alpha is a driving mechanism linking chronic obstructive pulmonary disease to lung cancer. Front Oncol 2022; 12:984525. [PMID: 36338690 PMCID: PMC9634253 DOI: 10.3389/fonc.2022.984525] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 10/10/2022] [Indexed: 11/27/2022] Open
Abstract
Patients with chronic obstructive pulmonary disease (COPD), irrespective of their smoking history, are more likely to develop lung cancer than the general population. This is mainly because COPD is characterized by chronic persistent inflammation and hypoxia, which are the risk factors for lung cancer. However, the mechanisms underlying this observation are still unknown. Hypoxia-inducible factor 1-alpha (HIF-1α) plays an important role in the crosstalk that exists between inflammation and hypoxia. Furthermore, HIF-1α is the main regulator of somatic adaptation to hypoxia and is highly expressed in hypoxic environments. In this review, we discuss the molecular aspects of the crosstalk between hypoxia and inflammation, showing that HIF-1α is an important signaling pathway that drives COPD progression to lung cancer. Here, we also provide an overview of HIF-1α and its principal regulatory mechanisms, briefly describe HIF-1α-targeted therapy in lung cancer, and summarize substances that may be used to target HIF-1α at the level of COPD-induced inflammation.
Collapse
Affiliation(s)
- Yuan-rui Xu
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, China
| | - An-long Wang
- Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, China
| | - Ya-qing Li
- Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, China
- *Correspondence: Ya-qing Li,
| |
Collapse
|
19
|
Jiang S, Chen Y. The role of sulfur compounds in chronic obstructive pulmonary disease. Front Mol Biosci 2022; 9:928287. [PMID: 36339716 PMCID: PMC9626809 DOI: 10.3389/fmolb.2022.928287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 10/03/2022] [Indexed: 11/19/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a common respiratory disease that brings about great social and economic burden, with oxidative stress and inflammation affecting the whole disease progress. Sulfur compounds such as hydrogen sulfide (H2S), thiols, and persulfides/polysulfides have intrinsic antioxidant and anti-inflammatory ability, which is engaged in the pathophysiological process of COPD. Hydrogen sulfide mainly exhibits its function by S-sulfidation of the cysteine residue of the targeted proteins. It also interacts with nitric oxide and acts as a potential biomarker for the COPD phenotype. Thiols’ redox buffer such as the glutathione redox couple is a major non-enzymatic redox buffer reflecting the oxidative stress in the organism. The disturbance of redox buffers was often detected in patients with COPD, and redressing the balance could delay COPD exacerbation. Sulfane sulfur refers to a divalent sulfur atom bonded with another sulfur atom. Among them, persulfides and polysulfides have an evolutionarily conserved modification with antiaging effects. Sulfur compounds and their relative signaling pathways are also associated with the development of comorbidities in COPD. Synthetic compounds which can release H2S and persulfides in the organism have gradually been developed. Naturally extracted sulfur compounds with pharmacological effects also aroused great interest. This study discussed the biological functions and mechanisms of sulfur compounds in regulating COPD and its comorbidities.
Collapse
|
20
|
Zhang S, Lu X, Fang X, Wang Z, Cheng S, Song J. Cigarette smoke extract combined with LPS reduces ABCA3 expression in chronic pulmonary inflammation may be related to PPARγ/ P38 MAPK signaling pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 244:114086. [PMID: 36115154 DOI: 10.1016/j.ecoenv.2022.114086] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/08/2022] [Accepted: 09/13/2022] [Indexed: 06/15/2023]
Abstract
ABCA3 (ATP-binding cassette class A3) is a transmembrane transporter that plays a positive role in chronic pulmonary inflammation by regulating lipid metabolism. However, it is not completely clear whether ABCA3 and its signaling factors are involved in chronic pulmonary inflammation induced by the combination of CSE (cigarette smoke extract) and LPS (lipopolysaccharide). In this study, we used the method of combining CSE and LPS which was widely used to study lung inflammation-related diseases and has been proven effective in our group's studies to create in vivo and in vitro pulmonary inflammation models. The result showed that, after CSE in combination with LPS treatment, ABCA3 expression was downregulated in rat lung in vivo and in a human alveolar cell line in vitro. ABCA3 expression was upregulated, and related inflammatory factors were downregulated in the state of overexpression of PPARγ or inhibition of the p38 MAPK pathway, while PPARγ deletion or MAPK14 overexpression showed the opposite results. The level of PPARγ remained unchanged, and the expression of ABCA3 was upregulated in the state of the p38 MAPK pathway was inhibited under overexpression of PPARγ. These results indicate that CSE combined with LPS can result in downregulation of ABCA3 under conditions of inflammation, and that the p38 MAPK signaling pathway mediated by PPARγ can regulate the expression changes of ABCA3, thus providing new targets for treating chronic pulmonary inflammation.
Collapse
Affiliation(s)
- Shuyi Zhang
- Institute for Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei 230032, China; Institute for the Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, 230032, Hefei, China
| | - Xianwang Lu
- Institute for Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei 230032, China; Institute for the Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, 230032, Hefei, China
| | - Xin Fang
- Institute for Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei 230032, China; Institute for the Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, 230032, Hefei, China
| | - Zihao Wang
- Institute for Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei 230032, China; Institute for the Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, 230032, Hefei, China
| | - Shihao Cheng
- Institute for Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei 230032, China; Institute for the Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, 230032, Hefei, China
| | - Jue Song
- Institute for Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei 230032, China; Institute for the Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, 230032, Hefei, China.
| |
Collapse
|
21
|
Multi-omics analyses of airway host-microbe interactions in chronic obstructive pulmonary disease identify potential therapeutic interventions. Nat Microbiol 2022; 7:1361-1375. [PMID: 35995842 DOI: 10.1038/s41564-022-01196-8] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 07/05/2022] [Indexed: 11/08/2022]
Abstract
The mechanistic role of the airway microbiome in chronic obstructive pulmonary disease (COPD) remains largely unexplored. We present a landscape of airway microbe-host interactions in COPD through an in-depth profiling of the sputum metagenome, metabolome, host transcriptome and proteome from 99 patients with COPD and 36 healthy individuals in China. Multi-omics data were integrated using sequential mediation analysis, to assess in silico associations of the microbiome with two primary COPD inflammatory endotypes, neutrophilic or eosinophilic inflammation, mediated through microbial metabolic interaction with host gene expression. Hypotheses of microbiome-metabolite-host interaction were identified by leveraging microbial genetic information and established metabolite-human gene pairs. A prominent hypothesis for neutrophil-predominant COPD was altered tryptophan metabolism in airway lactobacilli associated with reduced indole-3-acetic acid (IAA), which was in turn linked to perturbed host interleukin-22 signalling and epithelial cell apoptosis pathways. In vivo and in vitro studies showed that airway microbiome-derived IAA mitigates neutrophilic inflammation, apoptosis, emphysema and lung function decline, via macrophage-epithelial cell cross-talk mediated by interleukin-22. Intranasal inoculation of two airway lactobacilli restored IAA and recapitulated its protective effects in mice. These findings provide the rationale for therapeutically targeting microbe-host interaction in COPD.
Collapse
|
22
|
Xu S, Zhou Y, Yu L, Huang X, Huang J, Wang K, Liu Z. Protective Effect of Eurotium cristatum Fermented Loose Dark Tea and Eurotium cristatum Particle on MAPK and PXR/AhR Signaling Pathways Induced by Electronic Cigarette Exposure in Mice. Nutrients 2022; 14:nu14142843. [PMID: 35889800 PMCID: PMC9318283 DOI: 10.3390/nu14142843] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/29/2022] [Accepted: 07/02/2022] [Indexed: 02/01/2023] Open
Abstract
Electronic-cigarette smoke (eCS) has been shown to cause a degree of oxidative stress and inflammatory damage in lung tissue. The aim of this study was to evaluate the repair mechanism of Eurotium cristatum fermented loose dark tea (ECT) and Eurotium cristatum particle metabolites (ECP) sifted from ECT after eCS-induced injury in mice. Sixty C57BL/6 mice were randomly divided into a blank control group, an eCS model group, an eCS + 600 mg/kg ECP treatment group, an eCS + 600 mg/kg ECT treatment group, an eCS + 600 mg/kg ECP prevention group, and an eCS + 600 mg/kg ECT prevention group. The results show that ECP and ECT significantly reduced the eCS-induced oxidative stress and inflammation and improved histopathological changes in the lungs in mice with eCS-induced liver injury. Western blot analysis further revealed that ECP and ECT significantly inhibited the eCS-induced upregulation of the phosphorylation levels of the extracellular Regulated protein Kinases (ERK), c-Jun N-terminal kinase (JNK) and p38mitogen-activated protein kinases (p38MAPK) proteins, and significantly increased the eCS-induced downregulation of the expression levels of the pregnane X receptor (PXR) and aryl hydrocarbon receptor (AhR) proteins. Conclusively, these findings show that ECP and ECT have a significant repairing effect on the damage caused by eCS exposure through the MAPK and PXR/AhR signaling pathways; ECT has a better effect on preventing eCS-induced injury and is suitable as a daily healthcare drink; ECP has a better therapeutic effect after eCS-induced injury, and might be a potential therapeutic candidate for the treatment of eCS-induced injury.
Collapse
Affiliation(s)
- Shuai Xu
- Key Laboratory of Tea Science of Ministry of Education, National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (S.X.); (Y.Z.); (X.H.); (J.H.); (K.W.)
| | - Yufei Zhou
- Key Laboratory of Tea Science of Ministry of Education, National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (S.X.); (Y.Z.); (X.H.); (J.H.); (K.W.)
| | - Lijun Yu
- Key Laboratory of Tea Science of Ministry of Education, National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (S.X.); (Y.Z.); (X.H.); (J.H.); (K.W.)
- Hunan Provincial Key Laboratory for Germplasm Innovation and Utilization of Crop, Hunan Agricultural University, Changsha 410128, China
- Correspondence: (L.Y.); (Z.L.)
| | - Xiangxiang Huang
- Key Laboratory of Tea Science of Ministry of Education, National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (S.X.); (Y.Z.); (X.H.); (J.H.); (K.W.)
| | - Jianan Huang
- Key Laboratory of Tea Science of Ministry of Education, National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (S.X.); (Y.Z.); (X.H.); (J.H.); (K.W.)
- Hunan Provincial Key Laboratory for Germplasm Innovation and Utilization of Crop, Hunan Agricultural University, Changsha 410128, China
| | - Kunbo Wang
- Key Laboratory of Tea Science of Ministry of Education, National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (S.X.); (Y.Z.); (X.H.); (J.H.); (K.W.)
- Hunan Provincial Key Laboratory for Germplasm Innovation and Utilization of Crop, Hunan Agricultural University, Changsha 410128, China
| | - Zhonghua Liu
- Key Laboratory of Tea Science of Ministry of Education, National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (S.X.); (Y.Z.); (X.H.); (J.H.); (K.W.)
- Hunan Provincial Key Laboratory for Germplasm Innovation and Utilization of Crop, Hunan Agricultural University, Changsha 410128, China
- Correspondence: (L.Y.); (Z.L.)
| |
Collapse
|
23
|
Cai Z, Wang Q, Xu J, Zhou J, Jiang Z, Pan D, Zhang Y, Tao L, Peng J, Chen Y, Shen X. Enhanced protective activity of 1,8-Cineole on emphysema using hyaluronic acid-coated liposomes via quantitative pulmonary administration in mice. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
24
|
Shrestha D, Massey N, Bhat SM, Jelesijević T, Sahin O, Zhang Q, Bailey KL, Poole JA, Charavaryamath C. Nrf2 Activation Protects Against Organic Dust and Hydrogen Sulfide Exposure Induced Epithelial Barrier Loss and K. pneumoniae Invasion. Front Cell Infect Microbiol 2022; 12:848773. [PMID: 35521223 PMCID: PMC9062039 DOI: 10.3389/fcimb.2022.848773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 03/21/2022] [Indexed: 11/23/2022] Open
Abstract
Agriculture workers report various respiratory symptoms owing to occupational exposure to organic dust (OD) and various gases. Previously, we demonstrated that pre-exposure to hydrogen sulfide (H2S) alters the host response to OD and induces oxidative stress. Nrf2 is a master-regulator of host antioxidant response and exposures to toxicants is known to reduce Nrf2 activity. The OD exposure-induced lung inflammation is known to increase susceptibility to a secondary microbial infection. We tested the hypothesis that repeated exposure to OD or H2S leads to loss of Nrf2, loss of epithelial cell integrity and that activation of Nrf2 rescues this epithelial barrier dysfunction. Primary normal human bronchial epithelial (NHBE) cells or mouse precision cut-lung slices (PCLS) were treated with media, swine confinement facility organic dust extract (ODE) or H2S or ODE+H2S for one or five days. Cells were also pretreated with vehicle control (DMSO) or RTA-408, a Nrf2 activator. Acute exposure to H2S and ODE+H2S altered the cell morphology, decreased the viability as per the MTT assay, and reduced the Nrf2 expression as well as increased the keap1 levels in NHBE cells. Repeated exposure to ODE or H2S or ODE+H2S induced oxidative stress and cytokine production, decreased tight junction protein occludin and cytoskeletal protein ezrin expression, disrupted epithelial integrity and resulted in increased Klebsiella pneumoniae invasion. RTA-408 (pharmacological activator of Nrf2) activated Nrf2 by decreasing keap1 levels and reduced ODE+H2S-induced changes including reversing loss of barrier integrity, inflammatory cytokine production and microbial invasion in PCLS but not in NHBE cell model. We conclude that Nrf2 activation has a partial protective function against ODE and H2S.
Collapse
Affiliation(s)
- Denusha Shrestha
- Department of Biomedical Sciences, Iowa State University, Ames, IA, United States
| | - Nyzil Massey
- Department of Biomedical Sciences, Iowa State University, Ames, IA, United States
| | - Sanjana Mahadev Bhat
- Department of Biomedical Sciences, Iowa State University, Ames, IA, United States
- Immunobiology Interdepartmental Graduate Program, Iowa State University, Ames, IA, United States
| | - Tomislav Jelesijević
- Department of Comparative Biomedical Sciences, Louisiana State University, Baton Rouge, LA, United States
| | - Orhan Sahin
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA, United States
| | - Qijing Zhang
- Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, United States
| | - Kristina L. Bailey
- Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - Jill A. Poole
- Department of Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - Chandrashekhar Charavaryamath
- Department of Biomedical Sciences, Iowa State University, Ames, IA, United States
- *Correspondence: Chandrashekhar Charavaryamath,
| |
Collapse
|
25
|
Xu Y, Li J, Lin Z, Liang W, Qin L, Ding J, Chen S, Zhou L. Isorhamnetin Alleviates Airway Inflammation by Regulating the Nrf2/Keap1 Pathway in a Mouse Model of COPD. Front Pharmacol 2022; 13:860362. [PMID: 35401244 PMCID: PMC8988040 DOI: 10.3389/fphar.2022.860362] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 03/07/2022] [Indexed: 12/20/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a severely disabling chronic lung disease characterized by persistent airway inflammation, which leads to limited expiratory airflow that deteriorates over time. Isorhamnetin (Iso) is one of the most important active components in the fruit of Hippophae rhamnoides L. and leaves of Ginkgo biloba L, which is widely used in many pulmonary disease studies because of its anti-inflammatory effects. Here, we investigated the pharmacological action of Iso in CS-induced airway inflammation and dissected the anti-inflammation mechanisms of Iso in COPD mice. A mouse model of COPD was established by exposure to cigarette smoke (CS) and intratracheal inhalation of lipopolysaccharide (LPS). Our results illustrated that Iso treatment significantly reduced leukocyte recruitment and excessive secretion of interleukin-6 (IL-6), monocyte chemoattractant protein-1 (MCP-1), and regulated upon activation, normal T-cell expressed and secreted (RANTES) in BALF of CS-induced COPD mice in a dose-dependent manner. This improved airway collagen deposition and emphysema, and further alleviated the decline in lung functions and systemic symptoms of hypoxia and weight loss. Additionally, Iso treatment obviously improves the T lymphocyte dysregualtion in peripheral blood of COPD mice. Mechanistically, Iso may degrade Keap1 through ubiquitination of p62, thereby activating the nuclear factor erythroid 2-related factor (Nrf2) pathway to increase the expression of protective factors, such as heme oxygenase-1 (HO-1), superoxide dismutase (SOD) 1, and SOD2, in lungs of CS-exposed mice, which plays an anti-inflammatory role in COPD. In conclusion, our study indicates that Iso significantly alleviates the inflammatory response in CS-induced COPD mice mainly by affecting the Nrf2/Keap1 pathway. More importantly, Iso exhibited anti-inflammatory effects comparable with Dex in COPD and we did not observe discernible side effects of Iso. The high safety profile of Iso may make it a potential drug candidate for COPD.
Collapse
Affiliation(s)
- Yifan Xu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Institute of Combination Chinese and Western Medicine, Guangzhou Medical University, Guangzhou, China
| | - Jing Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Institute of Combination Chinese and Western Medicine, Guangzhou Medical University, Guangzhou, China
| | - Zhiwei Lin
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Weiquan Liang
- Department of Respiratory Medicine, The Second People’s Hospital of Foshan, Foshan, China
| | - Lijie Qin
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jiabin Ding
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shuqi Chen
- Institute of Combination Chinese and Western Medicine, Guangzhou Medical University, Guangzhou, China
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Luqian Zhou
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- *Correspondence: Luqian Zhou,
| |
Collapse
|
26
|
Marks RB, Wee JY, Jacobson SV, Hashimoto K, O’Connell KL, Golden SA, Baker PM, Law KC. The Role of the Lateral Habenula in Suicide: A Call for Further Exploration. Front Behav Neurosci 2022; 16:812952. [PMID: 35359586 PMCID: PMC8964288 DOI: 10.3389/fnbeh.2022.812952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 02/15/2022] [Indexed: 11/29/2022] Open
Abstract
Despite decades of significant effort in research, policy, and prevention, suicide rates have continued to rise to the current peak of 14.6 per 100,000 deaths. This has resulted in a concerted effort to identify biomarkers associated with suicidal behavior in the brain, to provide predictions that are better than the chance of discerning who will die by suicide. We propose that the lateral habenula (LHb), and its dysfunction during a suicidal crisis, is a critical component of the transition from suicidal ideations to self-harm. Moreover, the LHb—a key functional node in brain reward circuitry—has not been ascribed a contributory role in suicidal behavior. We argue that the LHb anchors a “suicide circuit” and call for suicide researchers to directly examine the role of the LHb, and its long-term modulation, in response to the negative affect in suicidal behavior. Discerning the neural mechanisms of this contribution will require the collaboration of neuroscientists and psychologists. Consequently, we highlight and discuss research on LHb as it relates to suicidal ideation, suicidal behavior, or death by suicide. In so doing we hope to address the bench-to-bedside translational issues currently involved in suicide research and suggest a developmental framework that focuses on specific structures motivated by theoretical anchors as a way to incorporate neurobiological findings within the context of clinical theory.
Collapse
Affiliation(s)
- Rocky B. Marks
- Department of Clinical Psychology, Seattle Pacific University, Seattle, WA, United States
- Correspondence: Rocky B. Marks Keyne Catherine Law
| | - Janelle Y. Wee
- Department of Clinical Psychology, Seattle Pacific University, Seattle, WA, United States
| | - Samantha V. Jacobson
- Department of Clinical Psychology, Seattle Pacific University, Seattle, WA, United States
| | - Kimi Hashimoto
- Department of Clinical Psychology, Seattle Pacific University, Seattle, WA, United States
| | - Katherine L. O’Connell
- Department of Clinical Psychology, Seattle Pacific University, Seattle, WA, United States
| | - Sam Adler Golden
- Department of Biological Structure, University of Washington, Seattle, WA, United States
| | | | - Keyne Catherine Law
- Department of Clinical Psychology, Seattle Pacific University, Seattle, WA, United States
- Correspondence: Rocky B. Marks Keyne Catherine Law
| |
Collapse
|
27
|
Yang Y, Li Y, Yuan H, Liu X, Ren Y, Gao C, Jiao T, Cai Y, Zhao S. Integrative Analysis of the lncRNA-Associated ceRNA Regulatory Network Response to Hypoxia in Alveolar Type II Epithelial Cells of Tibetan Pigs. Front Vet Sci 2022; 9:834566. [PMID: 35211545 PMCID: PMC8861501 DOI: 10.3389/fvets.2022.834566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/14/2022] [Indexed: 11/13/2022] Open
Abstract
The function of alveolar type II epithelial (ATII) cells is severely hampered by oxygen deficiency, and understanding the regulatory mechanisms controlling responses to hypoxia may assist in relieving injury induced by hypoxia. In this study, we cultured ATII cells from Tibetan pigs and Landrace pigs under hypoxic and normoxic environments to screen for differentially expressed (DE) lncRNAs, DEmiRNAs, and construct their associated ceRNA regulatory networks in response to hypoxia. Enrichment analysis revealed that target genes of DElncRNAs of Tibetan pigs and Landrace pig between the normoxic (TN, LN) and hypoxic (TL, LL) groups significantly enriched in the proteoglycans in cancer, renal cell carcinoma, and erbB signaling pathways, while the target genes of DEmiRNAs were significantly enriched in the axon guidance, focal adhesion, and mitogen-activated protein kinase (MAPK) signaling pathways. Hypoxia induction was shown to potentially promote apoptosis by activating the focal adhesion/PI3K-Akt/glycolysis pathway. The ssc-miR-20b/MSTRG.57127.1/ssc-miR-7-5p axis potentially played a vital role in alleviating hypoxic injury by regulating ATII cell autophagy under normoxic and hypoxic conditions. MSTRG.14861.4-miR-11971-z-CCDC12, the most affected axis, regulated numerous RNAs and may thus regulate ATII cell growth in Tibetan pigs under hypoxic conditions. The ACTA1/ssc-miR-30c-3p/MSTRG.23871.1 axis is key for limiting ATII cell injury and improving dysfunction and fibrosis mediated by oxidative stress in Landrace pigs. Our findings provide a deeper understanding of the lncRNA/miRNA/mRNA regulatory mechanisms of Tibetan pigs under hypoxic conditions.
Collapse
Affiliation(s)
- Yanan Yang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Yongqing Li
- Xinjiang Academy of Animal Sciences, Urumqi, China
| | - Haonan Yuan
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Xuanbo Liu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Yue Ren
- Institute of Animal Husbandry and Veterinary Medicine, Academy of Agriculture and Animal Husbandry Sciences, Lhasa, China
| | - Caixia Gao
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Ting Jiao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
- College of Grassland Science, Gansu Agricultural University, Lanzhou, China
| | - Yuan Cai
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Shengguo Zhao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
- *Correspondence: Shengguo Zhao
| |
Collapse
|
28
|
Peng Q, Zhao B, Lin J, Liu H, Zhou R, Lan D, Yao C, Cong S, Tao S, Zhu Y, Wang R, Qi S. SPRC Suppresses Experimental Periodontitis by Modulating Th17/Treg Imbalance. Front Bioeng Biotechnol 2022; 9:737334. [PMID: 35087796 PMCID: PMC8787365 DOI: 10.3389/fbioe.2021.737334] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 12/16/2021] [Indexed: 12/28/2022] Open
Abstract
Object: The aims of the study were to explore the protective effects of S-propargyl-cysteine (SPRC) on periodontitis and to determine the underlying mechanisms. Methods: A rat periodontitis model was constructed by injecting LPS and SPRC (0, 25, and 50 mg/kg/d) was administered intraperitoneally. H2S and CSE level were detected. The alveolar bone level was evaluated by micro-CT, HE staining and methylene blue staining analysis. Inflammation-related factors, Treg and Th17 cells were detected by immunohistochemistry, RT-PCR, immunofluorescence, Western blot and flow cytometry. Phosphorylation levels of ERK1/2 and CREB were analysed. Results: The administration of SPRC significantly increased the expression of CSE in the gingival tissue and the concentration of endogenous H2S in the peripheral blood. Simultaneously, SPRC significantly inhibited the resorption of alveolar bone based on the H&E staining, micro-CT and methylene blue staining analysis. Compared with the periodontitis group, the levels of IL-17A, IL-10 were downregulated and IL-6,TGF-β1 were upregulated in the SPRC groups. In the SPRC group, the percentage of TH17 cells and the expression of ROR-γt were downregulated, while the percentage of Tregs and the expression of Foxp3 were upregulated accompanied with inhibition of phosphorylation ERK1/2 and CREB. Conclusion: SPRC can prevent the progression of periodontitis by regulating the Th17/Treg balance by inhibition of the ERK/CREB signalling pathway.
Collapse
Affiliation(s)
- Qian Peng
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Hubei No. 3 People's Hospital of Jianghan University, Wuhan, China
| | - Bingkun Zhao
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jie Lin
- Pharmacy Department, Minda Hospital of Hubei Minzu University, Enshi, China
| | - Haixia Liu
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Rong Zhou
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Dongmei Lan
- Medical College of Anhui University of Science and Technology, Huainan, China
| | - Chao Yao
- Medical College of Anhui University of Science and Technology, Huainan, China
| | - Shaohua Cong
- Jiading Central Hospital, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Shen Tao
- The First People's Hospital of KunShan, Kunshan, China
| | - Yizhun Zhu
- State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Taipa, Macao SAR, China
| | - Raorao Wang
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shengcai Qi
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Prothodontics, Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital, Fudan University, Shanghai, China
| |
Collapse
|
29
|
Zhang Y, Yue T, Gu W, Liu A, Cheng M, Zheng H, Bao D, Li F, Piao JG. pH-responsive hierarchical H2S-releasing nano-disinfectant with deep-penetrating and anti-inflammatory properties for synergistically enhanced eradication of bacterial biofilms and wound infection. J Nanobiotechnology 2022; 20:55. [PMID: 35093073 PMCID: PMC8800305 DOI: 10.1186/s12951-022-01262-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 01/13/2022] [Indexed: 02/08/2023] Open
Abstract
Background Methicillin-resistant Staphylococcus aureus (MRSA) biofilm-associated bacterial infection is the primary cause of nosocomial infection and has long been an ongoing threat to public health. MRSA biofilms are often resistant to multiple antimicrobial strategies, mainly due to the existence of a compact protective barrier; thus, protecting themselves from the innate immune system and antibiotic treatment via limited drug penetration. Results A hierarchically structured hydrogen sulfide (H2S)-releasing nano-disinfectant was presented, which was composed of a zinc sulfide (ZnS) core as a H2S generator and indocyanine green (ICG) as a photosensitizer. This nano-disinfectant (ICG-ZnS NPs) sensitively responded to the biofilm microenvironment and demonstrated efficient eradication of MRSA biofilms via a synergistic effect of Zn2+, gas molecule-mediated therapy, and hyperthermia. Physically boosted by released H2S and a near-infrared spectroscopy-induced hyperthermia effect, ICG-ZnS NPs destroyed the compactness of MRSA biofilms showing remarkable deep-penetration capability. Moreover, on-site generation of H2S gas adequately ameliorated excessive inflammation, suppressed secretion of inflammatory cytokines, and expedited angiogenesis, therefore markedly accelerating the in vivo healing process of cutaneous wounds infected with MRSA biofilms. Conclusion ICG-ZnS NPs combined with NIR laser irradiation exhibited significant anti-biofilm activity in MRSA biofilms, can accelerate the healing process through deep-penetration and anti-inflammatory effectuation. The proposed strategy has great potential as an alternative to antibiotic treatment when combating multidrug-resistant bacterial biofilms. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-022-01262-7.
Collapse
|
30
|
Yang Y, Yuan H, Liu X, Wang Z, Li Y, Ren Y, Gao C, Jiao T, Cai Y, Zhao S. Transcriptome and Metabolome Integration Provides New Insights Into the Regulatory Networks of Tibetan Pig Alveolar Type II Epithelial Cells in Response to Hypoxia. Front Genet 2022; 13:812411. [PMID: 35126479 PMCID: PMC8814526 DOI: 10.3389/fgene.2022.812411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 01/03/2022] [Indexed: 11/19/2022] Open
Abstract
Tibetan pigs show a widespread distribution in plateau environments and exhibit striking physiological and phenotypic differences from others pigs for adaptation to hypoxic conditions. However, the regulation of mRNAs and metabolites as well as their functions in the alveolar type II epithelial (ATII) cells of Tibetan pigs remain undefined. Herein, we carried out integrated metabolomic and transcriptomic profiling of ATII cells between Tibetan pigs and Landrace pigs across environments with different oxygen levels to delineate their signature pathways. We observed that the differentially accumulated metabolites (DAMs) and differentially expressed genes (DEGs) profiles displayed marked synergy of hypoxia-related signature pathways in either Tibetan pigs or Landrace pigs. A total of 1,470 DEGs shared between normoxic (TN, ATII cells of Tibetan pigs were cultured under 21% O2; LN, ATII cells of Landrace pigs were cultured under 21% O2) and hypoxic (TL, ATII cells of Tibetan pigs were cultured under 2% O2; LL, ATII cells of Landrace pigs were cultured under 2% O2) groups and 240 DAMs were identified. Functional enrichment assessment indicated that the hypoxia-related genes and metabolites were primarily involved in glycolysis and aldosterone synthesis and secretion. We subsequently constructed an interaction network of mRNAs and metabolites related to hypoxia, such as guanosine-3′, 5′-cyclic monophosphate, Gly-Tyr, and phenylacetylglycine. These results indicated that mitogen-activated protein kinase (MAPK) signaling, aldosterone synthesis and secretion, and differences in the regulation of MCM and adenosine may play vital roles in the better adaptation of Tibetan pigs to hypoxic environments relative to Landrace pigs. This work provides a new perspective and enhances our understanding of mRNAs and metabolites that are activated in response to hypoxia in the ATII cells of Tibetan pigs.
Collapse
Affiliation(s)
- Yanan Yang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Haonan Yuan
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Xuanbo Liu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Zhengwen Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Yongqing Li
- Xinjiang Academy of Animal Sciences, Ürümqi, China
| | - Yue Ren
- Academy of Agriculture and Animal Husbandry Sciences, Institute of Animal Husbandry and Veterinary Medicine, Lhasa, China
| | - Caixia Gao
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Ting Jiao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
- College of Grassland Science, Gansu Agricultural University, Lanzhou, China
| | - Yuan Cai
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Shengguo Zhao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
- *Correspondence: Shengguo Zhao,
| |
Collapse
|
31
|
Ren Y, Yang X, Luo Z, Wu J, Lin H. HIF-1α aggravates pathologic myopia through the miR-150-5p/LAMA4/p38 MAPK signaling axis. Mol Cell Biochem 2022; 477:1065-1074. [PMID: 35034256 DOI: 10.1007/s11010-021-04305-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 11/17/2021] [Indexed: 11/29/2022]
Abstract
Therapeutic inhibition of hypoxia-inducible factor-1alpha (HIF-1α) action has emerged as a potential approach for managing several diseases, including myopia. Herein, we analyzed the role of HIF-1α in the progression of pathologic myopia by regulating the miR-150-5p/LAMA4/p38 MAPK axis. Microarray-based gene expression profiling of pathologic myopia was employed to identify differentially expressed genes. Human scleral fibroblasts (HSFs) were cultured under the hypoxic conditions. Interaction among HIF-1α, miR-150-5p, and LAMA4 was identified. Gain- and loss-of-function experiments were performed in hypoxia-exposed HSFs to evaluate the effect of the HIF-1α/miR-150-5p/LAMA4/p38 MAPK axis on the extracellular matrix (ECM) degradation of HSFs and the subsequent pathologic myopia progression. Increased LAMA4 but decreased miR-150-5p was found in serum sample of pathologic myopia patients. HIF-1α and LAMA4 were abundantly expressed, and p38 MAPK was activated while miR-150-5p was weakly expressed in hypoxia-exposed HSFs. HIF-1α was enriched in the promoter region of miR-150-5p and downregulated its expression, thus repressing the ECM degradation of HSFs as shown by increased COL1A1 and TIMP-2 and reduced MMP2. In addition, LAMA4 was a downstream target of miR-150-5p and under the negative regulation by miR-150-5p. Overexpression of miR-150-5p promoted the ECM degradation of HSFs by inhibiting LAMA4 expression and p38 MAPK signaling pathway. However, upregulation of LAMA4 reversed the promoting effect of miR-150-5p on ECM degradation of HSFs. Overall, our findings suggest that HIF-1α can decline miR-150-5p expression and facilitate LAMA4-mediated p38 MAPK signaling pathway activation, thus arresting ECM degradation of HSFs and eventually inducing pathologic myopia.
Collapse
Affiliation(s)
- Yalin Ren
- Department of Ophthalmology, The University of Hong Kong-Shenzhen Hospital, No. 1, Haiyuan 1st Road, Futian District, Shenzhen, 518053, People's Republic of China.
| | - Xiaobo Yang
- Department of Ophthalmology, The University of Hong Kong-Shenzhen Hospital, No. 1, Haiyuan 1st Road, Futian District, Shenzhen, 518053, People's Republic of China
| | - Zhi Luo
- Department of Ophthalmology, The University of Hong Kong-Shenzhen Hospital, No. 1, Haiyuan 1st Road, Futian District, Shenzhen, 518053, People's Republic of China
| | - Jing Wu
- Department of Ophthalmology, The University of Hong Kong-Shenzhen Hospital, No. 1, Haiyuan 1st Road, Futian District, Shenzhen, 518053, People's Republic of China
| | - Haiyan Lin
- Department of Ophthalmology, The University of Hong Kong-Shenzhen Hospital, No. 1, Haiyuan 1st Road, Futian District, Shenzhen, 518053, People's Republic of China
| |
Collapse
|
32
|
Rui C, Defu L, Lingling W, Jiahui D, Richeng X, Yuanyuan Y, Zhenhui G, Wenjie H. Cigarette Smoke or Motor Vehicle Exhaust Exposure Induces PD-L1 Upregulation in Lung Epithelial Cells in COPD Model Rats. COPD 2022; 19:206-215. [PMID: 35416743 DOI: 10.1080/15412555.2022.2058924] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/16/2022] [Accepted: 03/23/2022] [Indexed: 10/18/2022]
Abstract
A high smoking-independent chronic obstructive pulmonary disease (COPD) prevalence is observed in lung cancer patients. However, the underlying connection between these two diseases still remains unclear. Cigarette smoking and ambient air pollution are common risk factors for COPD and lung cancer. In this study, we established rat COPD model through exposure to cigarette smoke (CS) or motor vehicle exhaust (MVE). The model rats developed COPD-like phenotypes, manifested as lung functions decline, lung inflammation, emphysema-like alveolar enlargement and airway remodeling. The programmed death-ligand 1 (PD-L1), a factor contributing to immune escape of tumor cells, was overexpressed in lungs from COPD model rats, though more severe COPD phenotypes did not bring with further PD-L1 overexpression in lung. The upregulations of proinflammatory cytokines and PD-L1 were also observed in cultured human bronchial epithelial cells BEAS-2B upon treatment with cigarette smoke extract (CSE) or diesel-related particulate matter 2.5 (PM2.5, SEM1650b). The inflammatory cytokines produced in BEAS-2B cells reflected the PD-L1 levels. Furthermore, ERK1/2, a kinase mediating PD-L1 upregulation in premalignant bronchial cells or NSCLC cells, and STAT1/3, which was reportedly associated with PD-L1 expression in lung tumors, were activated in COPD rats' lungs or in BEAS-2B cells treated with CSE or PM2.5. Therefore, we proposed that inflammation associated PD-L1 overexpression in airway epithelial cells could be the underlying factor facilitating lung cancer incidence in COPD.
Collapse
Affiliation(s)
- Chen Rui
- Department of Critical Care Medicine, The First School of Clinical Medicine, Southern Medical University (General Hospital of Southern Theater Command of PLA), Guangzhou, PR China
- Guangzhou Key Laboratory of Geriatric Infection and Organ Function Support, Branch of National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Guangzhou, PR China
| | - Li Defu
- Department of Respiratory Medicine, the Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, PR China
| | - Wang Lingling
- Department of Critical Care Medicine, The First School of Clinical Medicine, Southern Medical University (General Hospital of Southern Theater Command of PLA), Guangzhou, PR China
- Guangzhou Key Laboratory of Geriatric Infection and Organ Function Support, Branch of National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Guangzhou, PR China
| | - Dong Jiahui
- Department of Critical Care Medicine, The First School of Clinical Medicine, Southern Medical University (General Hospital of Southern Theater Command of PLA), Guangzhou, PR China
- Guangzhou Key Laboratory of Geriatric Infection and Organ Function Support, Branch of National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Guangzhou, PR China
| | - Xiong Richeng
- Department of Critical Care Medicine, The First School of Clinical Medicine, Southern Medical University (General Hospital of Southern Theater Command of PLA), Guangzhou, PR China
- Guangzhou Key Laboratory of Geriatric Infection and Organ Function Support, Branch of National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Guangzhou, PR China
| | - Ye Yuanyuan
- Department of Respiratory Medicine, the Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, PR China
| | - Guo Zhenhui
- Department of Critical Care Medicine, The First School of Clinical Medicine, Southern Medical University (General Hospital of Southern Theater Command of PLA), Guangzhou, PR China
- Guangzhou Key Laboratory of Geriatric Infection and Organ Function Support, Branch of National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Guangzhou, PR China
| | - Huang Wenjie
- Department of Respiratory Medicine, The First School of Clinical Medicine, Southern Medical University (General Hospital of Southern Theater Command of PLA), Guangzhou, PR China
| |
Collapse
|
33
|
Ali FF, Mohammed HH, Elroby Ali DM. Protective effect of hydrogen sulfide against stress-induced lung injury: involvement of Nrf2, NFκB/iNOS, and HIF-1α signaling pathways. Cell Stress Chaperones 2022; 27:55-70. [PMID: 34881408 PMCID: PMC8821758 DOI: 10.1007/s12192-021-01248-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 11/24/2021] [Accepted: 12/01/2021] [Indexed: 10/19/2022] Open
Abstract
Stress is a common phenomenon that is attracting increasing attention. Hydrogen sulfide (H2S) is a gasotransmitter that plays an important role in many physiological and pathological events. Our study aimed to estimate the effect and the underlying mechanisms of the H2S donor, sodium hydrosulfide (NaHS), against immobilization stress (IS)-induced lung injury. Forty adult male rats were classified into control group, NaHS group, and IS groups with and without NaHS treatment. Serum was obtained to determine corticosterone (CORT), total antioxidant capacity (TAC), tumor necrosis factor-α (TNF-α), and interleukin-10 (IL-10) levels. Lung H2S, nitric oxide (NO), inducible nitric oxide synthase (iNOS), and malondialdehyde (MDA) levels were measured. Lung expressions of H2S synthesizing enzymes and Western blot analysis of nuclear factor erythroid 2-related factor 2 (Nrf2) and hypoxia-inducible factor 1 alpha (HIF 1α) were estimated. Histopathological changes and immunohistochemical assessment of nuclear factor kappa B (NF-κB) and caspase-3 were also done. Pretreatment with NaHS led to marked histological protection from lung damage seen in IS rats. Furthermore, pretreatment with NaHS before IS protected lung H2S levels and expressions of H2S-synthesizing enzymes. Similarly, the levels of CORT, TNF-α, IL-10, MDA, TAC, NO, iNOS, HIF-1 α, and nuclear Nrf2 and expressions of NF-kB and caspase 3 were all maintained at near control levels in contrast to that in the IS rats. In conclusion, NaHS is protective against stress-induced lung injury due to its antioxidant, anti-inflammatory, anti-fibrotic, and antiapoptotic effects. Thus, NaHS can be used to minimize stress complications on lung.
Collapse
Affiliation(s)
- Fatma F Ali
- Medical Physiology Department, Faculty of Medicine, Minia University, Minia, Egypt.
| | | | - Doaa M Elroby Ali
- Biochemistry Department, Faculty of Pharmacy, Sohag University, Sohag, Egypt
| |
Collapse
|
34
|
Olson KR. A Case for Hydrogen Sulfide Metabolism as an Oxygen Sensing Mechanism. Antioxidants (Basel) 2021; 10:antiox10111650. [PMID: 34829521 PMCID: PMC8615108 DOI: 10.3390/antiox10111650] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/08/2021] [Accepted: 10/13/2021] [Indexed: 12/30/2022] Open
Abstract
The ability to detect oxygen availability is a ubiquitous attribute of aerobic organisms. However, the mechanism(s) that transduce oxygen concentration or availability into appropriate physiological responses is less clear and often controversial. This review will make the case for oxygen-dependent metabolism of hydrogen sulfide (H2S) and polysulfides, collectively referred to as reactive sulfur species (RSS) as a physiologically relevant O2 sensing mechanism. This hypothesis is based on observations that H2S and RSS metabolism is inversely correlated with O2 tension, exogenous H2S elicits physiological responses identical to those produced by hypoxia, factors that affect H2S production or catabolism also affect tissue responses to hypoxia, and that RSS efficiently regulate downstream effectors of the hypoxic response in a manner consistent with a decrease in O2. H2S-mediated O2 sensing is then compared to the more generally accepted reactive oxygen species (ROS) mediated O2 sensing mechanism and a number of reasons are offered to resolve some of the confusion between the two.
Collapse
Affiliation(s)
- Kenneth R Olson
- Department of Physiology, Indiana University School of Medicine-South Bend, South Bend, IN 46617, USA
| |
Collapse
|
35
|
Tang H, Liu H. Roles of single gene in plant hypoxia and pathogen responses. PLANT SIGNALING & BEHAVIOR 2021; 16:1934295. [PMID: 34077334 PMCID: PMC8331024 DOI: 10.1080/15592324.2021.1934295] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 05/20/2023]
Abstract
Hypoxia stress can be caused by submergence or pathogen infection. These two stresses often occur sequentially or at the same time in nature. Therefore, plants have evolved economical and efficient strategies to deal with them, such as "single-gene multi-functions", that is, one gene could play roles in hypoxia or pathogen responses at the corresponding stress. This review mainly introduces the ERF-VII (ethylene response factor VII) and WRKYs (WRKY transcription factors) that can play roles in these two stresses. Meanwhile, the relationship between hypoxia and pathology has certain similarities in animals and plants, so we can learn from their related studies and develop new ideas for disease therapy and breeding.
Collapse
Affiliation(s)
- Hu Tang
- Key Laboratory for Bio-resources and Eco-environment & State Key Lab of Hydraulics & Mountain River Engineering, College of Life Sciences, Sichuan University, Chengdu, China
- College of Tea Science, Guizhou University, Guiyang, China
| | - Huanhuan Liu
- Key Laboratory for Bio-resources and Eco-environment & State Key Lab of Hydraulics & Mountain River Engineering, College of Life Sciences, Sichuan University, Chengdu, China
- CONTACT Huanhuan Liu Key Laboratory for Bio-resources and Eco-environment & State Key Lab of Hydraulics & Mountain River Engineering, College of Life Sciences, Sichuan University, ChengduChina
| |
Collapse
|
36
|
Hydrogen Sulfide and the Immune System. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1315:99-128. [PMID: 34302690 DOI: 10.1007/978-981-16-0991-6_5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Hydrogen sulfide (H2S) is the "third gasotransmitter" recognized alongside nitric oxide (NO) and carbon monoxide (CO). H2S exhibits an array of biological effects in mammalian cells as revealed by studies showing important roles in the cardiovascular system, in cell signalling processes, post-translational modifications and in the immune system. Regarding the latter, using pharmacological and genetic approaches scientists have shown this molecule to have both pro- and anti-inflammatory effects in mammalian systems. The anti-inflammatory effects of H2S appeared to be due to its inhibitory action on the nuclear factor kappa beta signalling pathway; NF-kB representing a transcription factor involved in the regulation pro-inflammatory mediators like nitric oxide, prostaglandins, and cytokines. In contrast, results from several animal model describe a more complicated picture and report on pro-inflammatory effects linked to exposure to this molecule; linked to dosage used and point of administration of this molecule. Overall, roles for H2S in several inflammatory diseases spanning arthritis, atherosclerosis, sepsis, and asthma have been described by researchers. In light this work fascinating research, this chapter will cover H2S biology and its many roles in the immune system.
Collapse
|
37
|
Pral LP, Fachi JL, Corrêa RO, Colonna M, Vinolo MAR. Hypoxia and HIF-1 as key regulators of gut microbiota and host interactions. Trends Immunol 2021; 42:604-621. [PMID: 34171295 DOI: 10.1016/j.it.2021.05.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/05/2021] [Accepted: 05/07/2021] [Indexed: 12/11/2022]
Abstract
Oxygen (O2) availability is a key factor regulating microbiota composition and the homeostatic function of cells in the intestinal mucosa of vertebrates. Microbiota-derived metabolites increase O2 consumption by intestinal epithelial cells (IECs), reducing its availability in the gut and leading to hypoxia. This physiological hypoxia activates cellular hypoxic sensors that adapt the metabolism and function of IECs and mucosa-resident cells, such as type-3 innate lymphoid cells (ILC3s). In this review, we discuss recent evidence suggesting that the intricate and multidirectional interactions among the microbiota, hypoxia/hypoxic sensors, and mammalian host cells (IECs and ILC3s) determine how the intestinal barrier and host-microbiota-pathogens connections are molded. Understanding these interactions might provide new treatment possibilities for dysbiosis, as well as certain inflammatory and infectious diseases.
Collapse
Affiliation(s)
- Laís P Pral
- Laboratory of Immunoinflammation, Department of Genetics and Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - José L Fachi
- Laboratory of Immunoinflammation, Department of Genetics and Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil; Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Renan O Corrêa
- Laboratory of Immunoinflammation, Department of Genetics and Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA.
| | - Marco A R Vinolo
- Laboratory of Immunoinflammation, Department of Genetics and Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil; Experimental Medicine Research Cluster, Campinas, Brazil; Obesity and Comorbidities Research Center (OCRC), University of Campinas, Campinas, Brazil.
| |
Collapse
|
38
|
Huang Y, Wang G, Zhou Z, Tang Z, Zhang N, Zhu X, Ni X. Endogenous Hydrogen Sulfide Is an Important Factor in Maintaining Arterial Oxygen Saturation. Front Pharmacol 2021; 12:677110. [PMID: 34135757 PMCID: PMC8200772 DOI: 10.3389/fphar.2021.677110] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 05/18/2021] [Indexed: 12/30/2022] Open
Abstract
The gasotransmitter H2S is involved in various physiological and pathophysiological processes. The aim of this study was to investigate the physiological functions of H2S in the lungs. In the model of mouse with genetic deficiency in a H2S natural synthesis enzyme cystathionine-γ-lyase (CSE), we found that arterial oxygen saturation (SaO2) was decreased compared with wild type mice. Hypoxyprobe test showed that mild hypoxia occurred in the tissues of heart, lungs and kidneys in Cse-/- mice. H2S donor GYY4137 treatment increased SaO2 and ameliorated hypoxia state in cardiac and renal tissues. Further, we revealed that lung blood perfusion and airway responsiveness were not linked to reduced SaO2 level. Lung injury was found in Cse-/- mice as evidenced by alveolar wall thickening, diffuse interstitial edema and leukocyte infiltration in pulmonary tissues. IL-8, IL-1β, and TNF-α levels were markedly increased and oxidative stress levels were also significantly higher with increased levels of the pro-oxidative biomarker, MDA, decreased levels of the anti-oxidative biomarkers, T-AOC and GSH/GSSG, and reduced superoxide dismutase (SOD) activity in lung tissues of Cse-/- mice compared with those of wild type mice. GYY4137 treatment ameliorated lung injury and suppressed inflammatory state and oxidative stress in lung tissues of Cse-/- mice. A decrease in SaO2 was found in normal mice under hypoxia. These mice displayed lung injury as evidenced by alveolar wall thickening, interstitial edema and leukocyte infiltration. Increased levels of inflammatory cytokines and oxidative stress were also found in lung tissues of the mice with hypoxia insult. GYY4137 treatment increased SaO2 and ameliorated lung injury, inflammation and oxidative stress. Our data indicate that endogenous H2S is an important factor in maintaining normal SaO2 by preventing oxidative stress and inflammation in the lungs.
Collapse
Affiliation(s)
- Yan Huang
- National Clinical Research Center for Geriatric Disorders and Research Center for Molecular Metabolomics, Xiangya Hospital, Central South University, Changsha, China.,Department of Physiology, Second Military Medical University, Shanghai, China.,Reproductive medicine center, Department of obstetrics and Gynecology, General Hospital of Southern Theater Command, Guangzhou, China
| | - Gang Wang
- National Clinical Research Center for Geriatric Disorders and Research Center for Molecular Metabolomics, Xiangya Hospital, Central South University, Changsha, China.,Department of Physiology, Second Military Medical University, Shanghai, China.,National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Zhan Zhou
- National Clinical Research Center for Geriatric Disorders and Research Center for Molecular Metabolomics, Xiangya Hospital, Central South University, Changsha, China
| | - Zhengshan Tang
- National Clinical Research Center for Geriatric Disorders and Research Center for Molecular Metabolomics, Xiangya Hospital, Central South University, Changsha, China
| | - Ningning Zhang
- Department of Physiology, Second Military Medical University, Shanghai, China
| | - Xiaoyan Zhu
- Department of Physiology, Second Military Medical University, Shanghai, China
| | - Xin Ni
- National Clinical Research Center for Geriatric Disorders and Research Center for Molecular Metabolomics, Xiangya Hospital, Central South University, Changsha, China.,Department of Physiology, Second Military Medical University, Shanghai, China
| |
Collapse
|
39
|
Hydrogen Sulfide Ameliorates Lipopolysaccharide-Induced Memory Impairment in Mice by Reducing Apoptosis, Oxidative, and Inflammatory Effects. Neurotox Res 2021; 39:1310-1322. [PMID: 34021860 DOI: 10.1007/s12640-021-00374-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 04/19/2021] [Accepted: 05/10/2021] [Indexed: 01/06/2023]
Abstract
Hydrogen sulfide (H2S) is reported to have a neuroprotective activity; however, the role of H2S in neuroinflammation-induced neuronal damage is ambiguous. Here, we aimed to evaluate the underlying mechanisms for the neuroprotective effect of NaHS, a known H2S donor, against lipopolysaccharide (LPS)-induced memory impairment (MI). All the treatments were administered for 28 days, and LPS (0.25 mg/kg i.p.) was co-administered intermittently for 7 days from days 15 to 21. Morris water maze (MWM) and Y-maze tests were performed to evaluate MI. Neurodegeneration was histopathologically examined, and the brain homogenates were characterized for reduced glutathione (GSH), superoxide dismutase (SOD), malondialdehyde (MDA), tumor necrosis factor (TNF)-α, interleukin (IL)-6, caspase-3, c-Jun, and acetylcholinesterase (AChE) by biochemical analysis. H2S administration significantly improved spatial and working memory in MWM and Y-maze tasks, respectively. Exogenous H2S significantly reversed LPS-induced oxidative stress as evidenced by improved GSH, MDA, and SOD levels. H2S pretreatment significantly attenuated LPS-induced apoptosis and inflammation by decreasing c-Jun and caspase-3 levels and inhibiting TNF-α and IL-6, respectively. The decrease in these markers was supported by H&E and Nissl staining, which confirmed the anti-necrotic activity of H2S. However, there was no significant improvement in LPS-induced increase in AChE activity. These results indicate that chronic systemic inflammation leads to neurodegeneration and MI and H2S exerts its neuroprotective effect due to its anti-oxidative, anti-inflammatory, and anti-apoptotic potential via modulation of JNK and extrinsic apoptosis pathways.
Collapse
|
40
|
Zhang Y, Huang W, Zheng Z, Wang W, Yuan Y, Hong Q, Lin J, Li X, Meng Y. Cigarette smoke-inactivated SIRT1 promotes autophagy-dependent senescence of alveolar epithelial type 2 cells to induce pulmonary fibrosis. Free Radic Biol Med 2021; 166:116-127. [PMID: 33609723 DOI: 10.1016/j.freeradbiomed.2021.02.013] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 01/30/2021] [Accepted: 02/08/2021] [Indexed: 12/15/2022]
Abstract
The senescence of alveolar epithelial type 2 (AT2) cells is implicated in the pathogenesis of idiopathic pulmonary fibrosis (IPF). Cigarette smoke (CS) is a strong risk factor for IPF and it is also a pro-senescent factor. Here we aimed to investigate whether and how CS induces AT2 cells senescence via a SIRT1/autophagy dependent pathway. Our results showed that CS extract (CSE) reduced autophagy and mitophagy and increased mitochondrial reactive oxygen species (mitoROS) in MLE-12 cells, an AT2 cell line. The autophagy inducer rapamycin (RAPA) and the mitochondria-targeted antioxidant mitoquinone (mitoQ) inhibited CSE-related senescence and decreased mitoROS. Next, we found that CSE promoted DNA damage, downregulated the nicotinamide adenine dinucleotide (NAD+)/nicotinamide adenine dinucleotide (NADH) ratio and suppressed SIRT1 activity. Activating SIRT1 with its activator SRT1720 attenuated senescence through an autophagy-dependent pathway. The NAD+ precursor nicotinamide mononucleotide and the poly ADP-ribose polymerase (PARP1) inhibitor olaparib also exerted anti-senescent effects by activating SIRT1. Moreover, the results showed that mitoQ and RAPA, in turn, elevated SIRT1 activity by inhibiting DNA damage. Consistent with these results, SRT1720 and mitoQ mitigated CS-induced AT2 cells senescence and lung fibrosis in vivo. Moreover, autophagy in AT2 cells was rescued by SRT1720. Taken together, our results suggested that CS-induced senescence of AT2 cells was due to decreased autophagy mediated by SIRT1 inactivation, which was attributed to competitive consumption of NAD+ caused by DNA damage-induced PARP1 activation. The reduction in autophagy, in turn, decreased SIRT1 activity by promoting mitochondrial oxidative stress-related DNA damage, thereby establishing a positive feedback loop between SIRT1 and autophagy in CS-induced AT2 cells senescence. Consequently, CS-inactivated SIRT1 promoted autophagy-dependent senescence of AT2 cells to induce pulmonary fibrosis.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wenhui Huang
- Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zemao Zheng
- Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wei Wang
- Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yafei Yuan
- Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qiaohui Hong
- Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jiajia Lin
- Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xu Li
- Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Ying Meng
- Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
41
|
Page LK, Staples KJ, Spalluto CM, Watson A, Wilkinson TMA. Influence of Hypoxia on the Epithelial-Pathogen Interactions in the Lung: Implications for Respiratory Disease. Front Immunol 2021; 12:653969. [PMID: 33868294 PMCID: PMC8044850 DOI: 10.3389/fimmu.2021.653969] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/09/2021] [Indexed: 12/11/2022] Open
Abstract
Under normal physiological conditions, the lung remains an oxygen rich environment. However, prominent regions of hypoxia are a common feature of infected and inflamed tissues and many chronic inflammatory respiratory diseases are associated with mucosal and systemic hypoxia. The airway epithelium represents a key interface with the external environment and is the first line of defense against potentially harmful agents including respiratory pathogens. The protective arsenal of the airway epithelium is provided in the form of physical barriers, and the production of an array of antimicrobial host defense molecules, proinflammatory cytokines and chemokines, in response to activation by receptors. Dysregulation of the airway epithelial innate immune response is associated with a compromised immunity and chronic inflammation of the lung. An increasing body of evidence indicates a distinct role for hypoxia in the dysfunction of the airway epithelium and in the responses of both innate immunity and of respiratory pathogens. Here we review the current evidence around the role of tissue hypoxia in modulating the host-pathogen interaction at the airway epithelium. Furthermore, we highlight the work needed to delineate the role of tissue hypoxia in the pathophysiology of chronic inflammatory lung diseases such as asthma, cystic fibrosis, and chronic obstructive pulmonary disease in addition to novel respiratory diseases such as COVID-19. Elucidating the molecular mechanisms underlying the epithelial-pathogen interactions in the setting of hypoxia will enable better understanding of persistent infections and complex disease processes in chronic inflammatory lung diseases and may aid the identification of novel therapeutic targets and strategies.
Collapse
Affiliation(s)
- Lee K. Page
- Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton, United Kingdom
| | - Karl J. Staples
- Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton, United Kingdom
- NIHR Southampton Biomedical Research Centre, Southampton Centre for Biomedical Research, Southampton General Hospital, Southampton, United Kingdom
| | - C. Mirella Spalluto
- Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton, United Kingdom
- NIHR Southampton Biomedical Research Centre, Southampton Centre for Biomedical Research, Southampton General Hospital, Southampton, United Kingdom
| | - Alastair Watson
- Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton, United Kingdom
- NIHR Southampton Biomedical Research Centre, Southampton Centre for Biomedical Research, Southampton General Hospital, Southampton, United Kingdom
- Birmingham Medical School, University of Birmingham, Birmingham, United Kingdom
| | - Tom M. A. Wilkinson
- Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton, United Kingdom
- NIHR Southampton Biomedical Research Centre, Southampton Centre for Biomedical Research, Southampton General Hospital, Southampton, United Kingdom
| |
Collapse
|
42
|
Ganguly A, Ofman G, Vitiello PF. Hydrogen Sulfide-Clues from Evolution and Implication for Neonatal Respiratory Diseases. CHILDREN (BASEL, SWITZERLAND) 2021; 8:213. [PMID: 33799529 PMCID: PMC7999351 DOI: 10.3390/children8030213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 11/17/2022]
Abstract
Reactive oxygen species (ROS) have been the focus of redox research in the realm of oxidative neonatal respiratory diseases such as bronchopulmonary dysplasia (BPD). Over the years, nitric oxide (NO) and carbon monoxide (CO) have been identified as important gaseous signaling molecules involved in modulating the redox homeostasis in the developing lung. While animal data targeting aspects of these redox pathways have been promising in treating and/or preventing experimental models of neonatal lung disease, none are particularly effective in human neonatal clinical trials. In recent years, hydrogen sulfide (H2S) has emerged as a novel gasotransmitter involved in a magnitude of cellular signaling pathways and functions. The importance of H2S signaling may lie in the fact that early life-forms evolved in a nearly anoxic, sulfur-rich environment and were dependent on H2S for energy. Recent studies have demonstrated an important role of H2S and its synthesizing enzymes in lung development, which normally takes place in a relatively hypoxic intrauterine environment. In this review, we look at clues from evolution and explore the important role that the H2S signaling pathway may play in oxidative neonatal respiratory diseases and discuss future opportunities to explore this phenomenon in the context of neonatal chronic lung disease.
Collapse
Affiliation(s)
- Abhrajit Ganguly
- Center for Pregnancy and Newborn Research, Department of Pediatrics, Section of Neonatal-Perinatal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (G.O.); (P.F.V.)
| | | | | |
Collapse
|
43
|
Schiliro M, Bartman CM, Pabelick C. Understanding hydrogen sulfide signaling in neonatal airway disease. Expert Rev Respir Med 2021; 15:351-372. [PMID: 33086886 PMCID: PMC10599633 DOI: 10.1080/17476348.2021.1840981] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 10/20/2020] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Airway dysfunction leading to chronic lung disease is a common consequence of premature birth and mechanisms responsible for early and progressive airway remodeling are not completely understood. Current therapeutic options are only partially effective in reducing the burden of neonatal airway disease and premature decline of lung function. Gasotransmitter hydrogen sulfide (H2S) has been recently recognized for its therapeutic potential in lung diseases. AREAS COVERED Contradictory to its well-known toxicity at high concentrations, H2S has been characterized to have anti-inflammatory, antioxidant, and antiapoptotic properties at physiological concentrations. In the respiratory system, endogenous H2S production participates in late lung development and exogenous H2S administration has a protective role in a variety of diseases such as acute lung injury and chronic pulmonary hypertension and fibrosis. Literature searches performed using NCBI PubMed without publication date limitations were used to construct this review, which highlights the dichotomous role of H2S in the lung, and explores its promising beneficial effects in lung diseases. EXPERT OPINION The emerging role of H2S in pathways involved in chronic lung disease of prematurity along with its recent use in animal models of BPD highlight H2S as a potential novel candidate in protecting lung function following preterm birth.
Collapse
Affiliation(s)
- Marta Schiliro
- Departments of Anesthesiology, Mayo Clinic, Rochester, MN, USA
| | | | - Christina Pabelick
- Departments of Anesthesiology, Mayo Clinic, Rochester, MN, USA
- Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
44
|
Wang YZ, Ngowi EE, Wang D, Qi HW, Jing MR, Zhang YX, Cai CB, He QL, Khattak S, Khan NH, Jiang QY, Ji XY, Wu DD. The Potential of Hydrogen Sulfide Donors in Treating Cardiovascular Diseases. Int J Mol Sci 2021; 22:2194. [PMID: 33672103 PMCID: PMC7927090 DOI: 10.3390/ijms22042194] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/05/2021] [Accepted: 02/10/2021] [Indexed: 02/08/2023] Open
Abstract
Hydrogen sulfide (H2S) has long been considered as a toxic gas, but as research progressed, the idea has been updated and it has now been shown to have potent protective effects at reasonable concentrations. H2S is an endogenous gas signaling molecule in mammals and is produced by specific enzymes in different cell types. An increasing number of studies indicate that H2S plays an important role in cardiovascular homeostasis, and in most cases, H2S has been reported to be downregulated in cardiovascular diseases (CVDs). Similarly, in preclinical studies, H2S has been shown to prevent CVDs and improve heart function after heart failure. Recently, many H2S donors have been synthesized and tested in cellular and animal models. Moreover, numerous molecular mechanisms have been proposed to demonstrate the effects of these donors. In this review, we will provide an update on the role of H2S in cardiovascular activities and its involvement in pathological states, with a special focus on the roles of exogenous H2S in cardiac protection.
Collapse
Affiliation(s)
- Yi-Zhen Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; (Y.-Z.W.); (E.E.N.); (D.W.); (H.-W.Q.); (M.-R.J.); (Y.-X.Z.); (C.-B.C.); (Q.-L.H.); (S.K.); (N.H.K.)
| | - Ebenezeri Erasto Ngowi
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; (Y.-Z.W.); (E.E.N.); (D.W.); (H.-W.Q.); (M.-R.J.); (Y.-X.Z.); (C.-B.C.); (Q.-L.H.); (S.K.); (N.H.K.)
- Department of Biological Sciences, Faculty of Science, Dar es Salaam University College of Education, Dar es Salaam 2329, Tanzania
| | - Di Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; (Y.-Z.W.); (E.E.N.); (D.W.); (H.-W.Q.); (M.-R.J.); (Y.-X.Z.); (C.-B.C.); (Q.-L.H.); (S.K.); (N.H.K.)
| | - Hui-Wen Qi
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; (Y.-Z.W.); (E.E.N.); (D.W.); (H.-W.Q.); (M.-R.J.); (Y.-X.Z.); (C.-B.C.); (Q.-L.H.); (S.K.); (N.H.K.)
| | - Mi-Rong Jing
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; (Y.-Z.W.); (E.E.N.); (D.W.); (H.-W.Q.); (M.-R.J.); (Y.-X.Z.); (C.-B.C.); (Q.-L.H.); (S.K.); (N.H.K.)
| | - Yan-Xia Zhang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; (Y.-Z.W.); (E.E.N.); (D.W.); (H.-W.Q.); (M.-R.J.); (Y.-X.Z.); (C.-B.C.); (Q.-L.H.); (S.K.); (N.H.K.)
| | - Chun-Bo Cai
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; (Y.-Z.W.); (E.E.N.); (D.W.); (H.-W.Q.); (M.-R.J.); (Y.-X.Z.); (C.-B.C.); (Q.-L.H.); (S.K.); (N.H.K.)
| | - Qing-Lin He
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; (Y.-Z.W.); (E.E.N.); (D.W.); (H.-W.Q.); (M.-R.J.); (Y.-X.Z.); (C.-B.C.); (Q.-L.H.); (S.K.); (N.H.K.)
- School of Nursing and Health, Henan University, Kaifeng 475004, China
| | - Saadullah Khattak
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; (Y.-Z.W.); (E.E.N.); (D.W.); (H.-W.Q.); (M.-R.J.); (Y.-X.Z.); (C.-B.C.); (Q.-L.H.); (S.K.); (N.H.K.)
- Kaifeng Municipal Key Laboratory of Cell Signal Transduction, Henan Provincial Engineering Centre for Tumor Molecular Medicine, Henan University, Kaifeng 475004, China
- School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Nazeer Hussain Khan
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; (Y.-Z.W.); (E.E.N.); (D.W.); (H.-W.Q.); (M.-R.J.); (Y.-X.Z.); (C.-B.C.); (Q.-L.H.); (S.K.); (N.H.K.)
- Kaifeng Municipal Key Laboratory of Cell Signal Transduction, Henan Provincial Engineering Centre for Tumor Molecular Medicine, Henan University, Kaifeng 475004, China
- School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Qi-Ying Jiang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; (Y.-Z.W.); (E.E.N.); (D.W.); (H.-W.Q.); (M.-R.J.); (Y.-X.Z.); (C.-B.C.); (Q.-L.H.); (S.K.); (N.H.K.)
| | - Xin-Ying Ji
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; (Y.-Z.W.); (E.E.N.); (D.W.); (H.-W.Q.); (M.-R.J.); (Y.-X.Z.); (C.-B.C.); (Q.-L.H.); (S.K.); (N.H.K.)
- Kaifeng Key Laboratory of Infection and Biological Safety, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Dong-Dong Wu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; (Y.-Z.W.); (E.E.N.); (D.W.); (H.-W.Q.); (M.-R.J.); (Y.-X.Z.); (C.-B.C.); (Q.-L.H.); (S.K.); (N.H.K.)
- School of Stomatology, Henan University, Kaifeng 475004, China
| |
Collapse
|
45
|
Disrupted H 2S Signaling by Cigarette Smoking and Alcohol Drinking: Evidence from Cellular, Animal, and Clinical Studies. Antioxidants (Basel) 2021; 10:antiox10010049. [PMID: 33401622 PMCID: PMC7824711 DOI: 10.3390/antiox10010049] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/21/2020] [Accepted: 12/30/2020] [Indexed: 12/20/2022] Open
Abstract
The role of endogenous hydrogen sulfide (H2S) as an antioxidant regulator has sparked interest in its function within inflammatory diseases. Cigarette and alcohol use are major causes of premature death, resulting from chronic oxidative stress and subsequent tissue damage. The activation of the Nrf2 antioxidant response by H2S suggests that this novel gasotransmitter may function to prevent or potentially reverse disease progression caused by cigarette smoking or alcohol use. The purpose of this study is to review the interrelationship between H2S signaling and cigarette smoking or alcohol drinking. Based on the databases of cellular, animal, and clinical studies from Pubmed using the keywords of H2S, smoking, and/or alcohol, this review article provides a comprehensive insight into disrupted H2S signaling by alcohol drinking and cigarette smoking-caused disorders. Major signaling and metabolic pathways involved in H2S-derived antioxidant and anti-inflammatory responses are further reviewed. H2S supplementation may prove to be an invaluable asset in treating or preventing diseases in those suffering from cigarette or alcohol addiction.
Collapse
|
46
|
Yu B, Ke XG, Yuan C, Chen PY, Zhang Y, Lin N, Yang YF, Wu HZ. Network Pharmacology Integrated Molecular Docking Reveals the Anti-COVID-19 Mechanism of Xingnaojing Injection. Nat Prod Commun 2020. [DOI: 10.1177/1934578x20978025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In the process of fighting against COVID-19 in China, Xingnaojing injection has been recommended for its clinical treatment, but the information about its active components and mechanism is still lacking. Therefore, in this work, using network pharmacology and molecular docking, we studied the active components of Xingnaojing injection having anti-COVID-19 properties. Using the DL parameter, TCMSP and CNKI databases were used to screen the active components of the Xingnaojing injection. Then, the SwissTargetPrediction webserver was used to collect the corresponding gene targets, and the gene targets related to COVID-19 were searched in the Genecards database. The DAVID database was used to enrich the function of gene targets, and the KOBAS3.0 database for the annotation of related KEGG pathways. The “components–targets–pathways” network of Xingnaojing injection was constructed with Cytoscape 3.6.1 software. The protein–protein interaction networks were analyzed using the String database. Specific proteins, SARS-COV-2 3 Cl, ACE2, and the active components were imported into Discovery Studio 2016 Client for molecular docking studies. From the Xingnaojing injection, a total of 58 active components, including Divanillalaceton and Q27139023, were screened. These were linked to 53 gene targets including mitogen-activated protein kinase 1 (MAPK1), tumor necrosis factorTNF, epidermal growth factor receptor, MAPK3, and 196 signaling pathways related to COVID-19, such as apoptosis, C-type lectin receptor signaling pathway, and hypoxia-inducible factor 1 signaling pathway. Furthermore, molecular docking studies were performed to study potential binding between the key targets and selected active components. Xingnaojing injection exhibits anti-COVID-19 effects via multiple components, multiple targets, and multiple pathways. These results set a scientific basis for further elucidation of the anti-COVID-19 mechanism of Xingnaojing injection.
Collapse
Affiliation(s)
- Bing Yu
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
- Key Laboratory of Traditional Chinese Medicine Resources and Chemistry of Hubei Province, Wuhan, China
| | - Xin-Ge Ke
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
- Key Laboratory of Traditional Chinese Medicine Resources and Chemistry of Hubei Province, Wuhan, China
| | - Chong Yuan
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
- Key Laboratory of Traditional Chinese Medicine Resources and Chemistry of Hubei Province, Wuhan, China
| | - Peng-Yu Chen
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
- Key Laboratory of Traditional Chinese Medicine Resources and Chemistry of Hubei Province, Wuhan, China
| | - Ying Zhang
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
- Key Laboratory of Traditional Chinese Medicine Resources and Chemistry of Hubei Province, Wuhan, China
| | - Ning Lin
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Yan-Fang Yang
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
- Key Laboratory of Traditional Chinese Medicine Resources and Chemistry of Hubei Province, Wuhan, China
- Collaborative Innovation Center of Traditional Chinese Medicine of New Products for Geriatrics Hubei Province, Wuhan, China
| | - He-Zhen Wu
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
- Key Laboratory of Traditional Chinese Medicine Resources and Chemistry of Hubei Province, Wuhan, China
- Collaborative Innovation Center of Traditional Chinese Medicine of New Products for Geriatrics Hubei Province, Wuhan, China
| |
Collapse
|
47
|
Bartman CM, Schiliro M, Helan M, Prakash YS, Linden D, Pabelick C. Hydrogen sulfide, oxygen, and calcium regulation in developing human airway smooth muscle. FASEB J 2020; 34:12991-13004. [PMID: 32777143 PMCID: PMC7857779 DOI: 10.1096/fj.202001180r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 12/22/2022]
Abstract
Preterm infants can develop airway hyperreactivity and impaired bronchodilation following supplemental O2 (hyperoxia) in early life, making it important to understand mechanisms of hyperoxia effects. Endogenous hydrogen sulfide (H2 S) has anti-inflammatory and vasodilatory effects with oxidative stress. There is little understanding of H2 S signaling in developing airways. We hypothesized that the endogenous H2 S system is detrimentally influenced by O2 and conversely H2 S signaling pathways can be leveraged to attenuate deleterious effects of O2 . Using human fetal airway smooth muscle (fASM) cells, we investigated baseline expression of endogenous H2 S machinery, and effects of exogenous H2 S donors NaHS and GYY4137 in the context of moderate hyperoxia, with intracellular calcium regulation as a readout of contractility. Biochemical pathways for endogenous H2 S generation and catabolism are present in fASM, and are differentially sensitive to O2 toward overall reduction in H2 S levels. H2 S donors have downstream effects of reducing [Ca2+ ]i responses to bronchoconstrictor agonist via blunted plasma membrane Ca2+ influx: effects blocked by O2 . However, such detrimental O2 effects are targetable by exogenous H2 S donors such as NaHS and GYY4137. These data provide novel information regarding the potential for H2 S to act as a bronchodilator in developing airways in the context of oxygen exposure.
Collapse
Affiliation(s)
| | - Marta Schiliro
- Department of Anesthesiology, Mayo Clinic, Rochester, MN, USA
| | - Martin Helan
- Department of Anesthesiology, Mayo Clinic, Rochester, MN, USA
- Department of Anesthesiology and Intensive Care, Masaryk University, Brno, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital Brno, Brno, Czech Republic
| | - Y. S. Prakash
- Department of Anesthesiology, Mayo Clinic, Rochester, MN, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - David Linden
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Christina Pabelick
- Department of Anesthesiology, Mayo Clinic, Rochester, MN, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
48
|
Abstract
The outbreak of COVID-19 pneumonia caused by a new coronavirus (severe acute respiratory syndrome coronavirus 2, SARS-CoV-2) is posing a global health emergency and has led to more than 380,000 deaths worldwide. The cell entry of SARS-CoV-2 depends on two host proteins angiotensin-converting enzyme 2 (ACE2) and transmembrane protease serine 2 (TMPRSS2). There is currently no vaccine available and also no effective drug for the treatment of COVID-19. Hydrogen sulfide (H2S) as a novel gasotransmitter has been shown to protect against lung damage via its anti-inflammation, antioxidative stress, antiviral, prosurvival, and antiaging effects. In light of the research advances on H2S signaling in biology and medicine, this review proposed H2S as a potential defense against COVID-19. It is suggested that H2S may block SARS-CoV-2 entry into host cells by interfering with ACE2 and TMPRSS2, inhibit SARS-CoV-2 replication by attenuating virus assembly/release, and protect SARS-CoV-2-induced lung damage by suppressing immune response and inflammation development. Preclinical studies and clinical trials with slow-releasing H2S donor(s) or the activators of endogenous H2S-generating enzymes should be considered as a preventative treatment or therapy for COVID-19.
Collapse
Affiliation(s)
- Guangdong Yang
- Cardiovascular and Metabolic Research Unit, Laurentian University, Sudbury, Ontario, Canada.,Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Ontario, Canada
| |
Collapse
|