1
|
Xu HL, Wan SR, An Y, Wu Q, Xing YH, Deng CH, Zhang PP, Long Y, Xu BT, Jiang ZZ. Targeting cell death in NAFLD: mechanisms and targeted therapies. Cell Death Discov 2024; 10:399. [PMID: 39244571 PMCID: PMC11380694 DOI: 10.1038/s41420-024-02168-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 08/22/2024] [Accepted: 08/28/2024] [Indexed: 09/09/2024] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a group of chronic liver disease which ranges from simple steatosis (NAFL) to non-alcoholic steatohepatitis (NASH) and is characterized by lipid accumulation, inflammation activation, fibrosis, and cell death. To date, a number of preclinical studies or clinical trials associated with therapies targeting fatty acid metabolism, inflammatory factors and liver fibrosis are performed to develop effective drugs for NAFLD/NASH. However, few therapies are cell death signaling-targeted even though the various cell death modes are present throughout the progression of NAFLD/NASH. Here we summarize the four types of cell death including apoptosis, necroptosis, pyroptosis, and ferroptosis in the NAFLD and the underlying molecular mechanisms by which the pathogenic factors such as free fatty acid and LPS induce cell death in the pathogenesis of NAFLD. In addition, we also review the effects of cell death-targeted therapies on NAFLD. In summary, our review provides comprehensive insight into the roles of various cell death modes in the progression of NAFLD, which we hope will open new avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Hui-Li Xu
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, PR China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, Sichuan, PR China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, PR China
| | - Sheng-Rong Wan
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, PR China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, Sichuan, PR China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, PR China
| | - Ying An
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, PR China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, Sichuan, PR China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, PR China
| | - Qi Wu
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, PR China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, Sichuan, PR China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, PR China
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, PR China
- Precision Pathology Diagnosis for Serious Diseases Key Laboratory of LuZhou, Luzhou, Sichuan, PR China
| | - Yi-Hang Xing
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, PR China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, Sichuan, PR China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, PR China
| | - Chen-Hao Deng
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, PR China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, Sichuan, PR China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, PR China
| | - Ping-Ping Zhang
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, PR China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, Sichuan, PR China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, PR China
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, PR China
- Precision Pathology Diagnosis for Serious Diseases Key Laboratory of LuZhou, Luzhou, Sichuan, PR China
| | - Yang Long
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, PR China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, Sichuan, PR China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, PR China
| | - Bu-Tuo Xu
- The People's Hospital of Pingyang, Wenzhou, Zhejiang, PR China.
| | - Zong-Zhe Jiang
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, PR China.
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, Sichuan, PR China.
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, PR China.
- Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, PR China.
| |
Collapse
|
2
|
You YP, Yan L, Ke HY, Li YP, Shi ZJ, Zhou ZY, Yang HY, Yuan T, Gan YQ, Lu N, Xu LH, Hu B, Ou-Yang DY, Zha QB, He XH. Baicalin inhibits PANoptosis by blocking mitochondrial Z-DNA formation and ZBP1-PANoptosome assembly in macrophages. Acta Pharmacol Sin 2024:10.1038/s41401-024-01376-8. [PMID: 39223367 DOI: 10.1038/s41401-024-01376-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
PANoptosis is an emerging form of regulated cell death (RCD) characterized by simultaneous activation of pyroptotic, apoptotic, and necroptotic signaling that not only participates in pathologies of inflammatory diseases but also has a critical role against pathogenic infections. Targeting PANoptosis represents a promising therapeutic strategy for related inflammatory diseases, but identification of inhibitors for PANoptosis remains an unmet demand. Baicalin () is an active flavonoid isolated from Scutellaria baicalensis Georgi (Huangqin), a traditional Chinese medicinal herb used for heat-clearing and detoxifying. Numerous studies suggest that baicalin possesses inhibitory activities on various forms of RCD including apoptosis/secondary necrosis, pyroptosis, and necroptosis, thereby mitigating inflammatory responses. In this study we investigated the effects of baicalin on PANoptosis in macrophage cellular models. Primary macrophages (BMDMs) or J774A.1 macrophage cells were treated with 5Z-7-oxozeaenol (OXO, an inhibitor for TAK1) in combination with TNF-α or LPS. We showed that OXO plus TNF-α or LPS induced robust lytic cell death, which was dose-dependently inhibited by baicalin (50-200 μM). We demonstrated that PANoptosis induction was accompanied by overt mitochondrial injury, mitochondrial DNA (mtDNA) release and Z-DNA formation. Z-DNA was formed from cytosolic oxidized mtDNA. Both oxidized mtDNA and mitochondrial Z-DNA puncta were co-localized with the PANoptosome (including ZBP1, RIPK3, ASC, and caspase-8), a platform for mediating PANoptosis. Intriguingly, baicalin not only prevented mitochondrial injury but also blocked mtDNA release, Z-DNA formation and PANoptosome assembly. Knockdown of ZBP1 markedly decreased PANoptotic cell death. In a mouse model of hemophagocytic lymphohistiocytosis (HLH), administration of baicalin (200 mg/kg, i.g., for 4 times) significantly mitigated lung and liver injury and reduced levels of serum TNF-α and IFN-γ, concomitant with decreased levels of PANoptosis hallmarks in these organs. Baicalin also abrogated the hallmarks of PANoptosis in liver-resident macrophages (Kupffer cells) in HLH mice. Collectively, our results demonstrate that baicalin inhibits PANoptosis in macrophages by blocking mitochondrial Z-DNA formation and ZBP1-PANoptosome assembly, thus conferring protection against inflammatory diseases. PANoptosis is a form of regulated cell death displaying simultaneous activation of pyroptotic, apoptotic, and necroptotic signaling. This study shows that induction of PANoptosis is linked to mitochondrial dysfunction and mitochondrial Z-DNA formation. Baicalin inhibits PANoptosis in macrophages in vitro via blocking mitochondrial dysfunction and the mitochondrial Z-DNA formation and thereby impeding the assembly of ZBP1-associated PANoptosome. In a mouse model of hemophagocytic lymphohistiocytosis (HLH), baicalin inhibits the activation of PANoptotic signaling in liver-resident macrophages (Kupffer cells) in vivo, thus mitigating systemic inflammation and multiple organ injury in mice.
Collapse
Affiliation(s)
- Yi-Ping You
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, China
- Department of Immunology and Microbiology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
- Center of Reproductive Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
- Department of Clinical Laboratory, The Fifth Affiliated Hospital (Heyuan Shenhe People's Hospital), Jinan University, Heyuan, 517000, China
- Guangdong Provincial Key Laboratory of Spine and Spinal Cord Reconstruction, The Fifth Affiliated Hospital (Heyuan Shenhe People's Hospital), Jinan University, Heyuan, 517000, China
| | - Liang Yan
- Department of Immunology and Microbiology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
- Center of Reproductive Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
- Guangdong Provincial Key Laboratory of Spine and Spinal Cord Reconstruction, The Fifth Affiliated Hospital (Heyuan Shenhe People's Hospital), Jinan University, Heyuan, 517000, China
| | - Hua-Yu Ke
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, China
- Department of Immunology and Microbiology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
- Guangdong Provincial Key Laboratory of Spine and Spinal Cord Reconstruction, The Fifth Affiliated Hospital (Heyuan Shenhe People's Hospital), Jinan University, Heyuan, 517000, China
| | - Ya-Ping Li
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, China
- Department of Immunology and Microbiology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Zi-Jian Shi
- Department of Fetal Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
| | - Zhi-Ya Zhou
- Department of Immunology and Microbiology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Hai-Yan Yang
- Department of Immunology and Microbiology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Tao Yuan
- Department of Immunology and Microbiology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
- Guangdong Provincial Key Laboratory of Spine and Spinal Cord Reconstruction, The Fifth Affiliated Hospital (Heyuan Shenhe People's Hospital), Jinan University, Heyuan, 517000, China
| | - Ying-Qing Gan
- Department of Immunology and Microbiology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Na Lu
- Department of Immunology and Microbiology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Li-Hui Xu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, China
- Department of Immunology and Microbiology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
- Guangdong Provincial Key Laboratory of Spine and Spinal Cord Reconstruction, The Fifth Affiliated Hospital (Heyuan Shenhe People's Hospital), Jinan University, Heyuan, 517000, China
| | - Bo Hu
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
| | - Dong-Yun Ou-Yang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, China.
- Department of Immunology and Microbiology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China.
| | - Qing-Bing Zha
- Center of Reproductive Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China.
- Department of Clinical Laboratory, The Fifth Affiliated Hospital (Heyuan Shenhe People's Hospital), Jinan University, Heyuan, 517000, China.
- Guangdong Provincial Key Laboratory of Spine and Spinal Cord Reconstruction, The Fifth Affiliated Hospital (Heyuan Shenhe People's Hospital), Jinan University, Heyuan, 517000, China.
| | - Xian-Hui He
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, China.
- Department of Immunology and Microbiology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China.
- Center of Reproductive Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China.
- Department of Clinical Laboratory, The Fifth Affiliated Hospital (Heyuan Shenhe People's Hospital), Jinan University, Heyuan, 517000, China.
- Guangdong Provincial Key Laboratory of Spine and Spinal Cord Reconstruction, The Fifth Affiliated Hospital (Heyuan Shenhe People's Hospital), Jinan University, Heyuan, 517000, China.
| |
Collapse
|
3
|
Zhu J, Tang W, Wu X, Mu M, Zhang Q, Zhao X. Tectorigenin improves metabolic dysfunction-associated steatohepatitis by down-regulating tRF-3040b and promoting mitophagy to inhibit pyroptosis pathway. Biochem Biophys Res Commun 2024; 720:150118. [PMID: 38776757 DOI: 10.1016/j.bbrc.2024.150118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/26/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024]
Abstract
Tectorigenin (TEC) as a plant extract has the advantage of low side effects on metabolic dysfunction-associated steatohepatitis (MASH) treatment. Our previous study have shown that tRNA-derived RNA fragments (tRFs) associated with autophagy and pyroptosis in MASH, but whether TEC can mitigate MASH through tRFs-mediated mitophagy is not fully understood. This study aims to investigate whether TEC relies on tRFs to adjust the crosstalk of hepatocyte mitophagy with pyroptosis in MASH. Immunofluorescence results of PINK1 and PRKN with MitoTracker Green-labeled mitochondria verified that TEC enhanced mitophagy. Additionally, TEC inhibited pyroptosis, as reflected by the level of GSDME, NLRP3, IL-1β, and IL-18 decreased after TEC treatment, while the effect of pyroptosis inhibition by TEC was abrogated by Pink1 silencing. We found that the upregulation expression of tRF-3040b caused by MASH was suppressed by TEC. The promotion of mitophagy and the suppression of pyroptosis induced by TEC were abrogated by tRF-3040b mimics. TEC reduced lipid deposition, inflammation, and pyroptosis, and promoted mitophagy in mice, but tRF-3040b agomir inhibited these effects. In summary, our findings provided that TEC significantly reduced the expression of tRF-3040b to enhance mitophagy, thereby inhibiting pyroptosis in MASH. We elucidated a powerful theoretical basis and provided safe and effective potential drugs for MASH with the prevention and treatment.
Collapse
Affiliation(s)
- Juanjuan Zhu
- Department of Infectious Diseases, The Affiliated Hospital of Guizhou Medical University, Guizhou, China.
| | | | - Xian Wu
- Department of Infectious Diseases, The Affiliated Hospital of Guizhou Medical University, Guizhou, China
| | - Mao Mu
- Department of Infectious Diseases, The Affiliated Hospital of Guizhou Medical University, Guizhou, China
| | - Quan Zhang
- Department of Infectious Diseases, The Affiliated Hospital of Guizhou Medical University, Guizhou, China
| | - Xueke Zhao
- Department of Infectious Diseases, The Affiliated Hospital of Guizhou Medical University, Guizhou, China
| |
Collapse
|
4
|
Zhang HJ, Luo JZ, Lan CL, Teng X, Ge B, Liu JQ, Xie HX, Yang KJ, Qin CJ, Zhou X, Peng T. Baicalin protects against hepatocyte injury caused by aflatoxin B 1 via the TP53-related ferroptosis Pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 281:116661. [PMID: 38954907 DOI: 10.1016/j.ecoenv.2024.116661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 06/02/2024] [Accepted: 06/26/2024] [Indexed: 07/04/2024]
Abstract
OBJECTIVE Baicalin has antioxidative, antiviral, and anti-inflammatory properties. However, its ability to alleviate oxidative stress (OS) and DNA damage in liver cells exposed to aflatoxin B1 (AFB1), a highly hepatotoxic compound, remains uncertain. In this study, the protective effects of baicalin on AFB1-induced hepatocyte injury and the mechanisms underlying those effects were investigated. METHODS Stable cell lines expressing CYP3A4 were established using lentiviral vectors to assess oxidative stress levels by conducting assays to determine the content of reactive oxygen species (ROS), malondialdehyde (MDA), and superoxide dismutase (SOD). Additionally, DNA damage was evaluated by 8-hydroxy-2-deoxyguanosine (8-OHdG) and comet assays. Transcriptome sequencing, molecular docking, and in vitro experiments were conducted to determine the mechanisms underlying the effects of baicalin on AFB1-induced hepatocyte injury. In vivo, a rat model of hepatocyte injury induced by AFB1 was used to evaluate the effects of baicalin. RESULTS In vitro, baicalin significantly attenuated AFB1-induced injury caused due to OS, as determined by a decrease in ROS, MDA, and SOD levels. Baicalin also considerably decreased AFB1-induced DNA damage in hepatocytes. This protective effect of baicalin was found to be closely associated with the TP53-mediated ferroptosis pathway. To elaborate, baicalin physically interacts with P53, leading to the suppression of the expression of GPX4 and SLC7A11, which in turn inhibits ferroptosis. In vivo findings showed that baicalin decreased DNA damage and ferroptosis in AFB1-treated rat liver tissues, as determined by a decrease in the expression of γ-H2AX and an increase in GPX4 and SLC7A11 levels. Overexpression of TP53 weakened the protective effects of baicalin. CONCLUSIONS Baicalin can alleviate AFB1-induced OS and DNA damage in liver cells via the TP53-mediated ferroptosis pathway. In this study, a theoretical foundation was established for the use of baicalin in protecting the liver from the toxic effects of AFB1.
Collapse
Affiliation(s)
- Han-Jing Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, China; Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, Nanning 530021, China; Department of Hepatobiliary Surgery, The First Affiliated Hospital of University of South China, Hengyang Medical School, Hengyang, Hunan 421001, China
| | - Jian-Zhu Luo
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, China
| | - Chen-Lu Lan
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, China; Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, Nanning 530021, China
| | - Xiong Teng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, China; Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, Nanning 530021, China
| | - Bin Ge
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, China; Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, Nanning 530021, China
| | - Jun-Qi Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, China; Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, Nanning 530021, China
| | - Hai-Xiang Xie
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, China; Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, Nanning 530021, China
| | - Ke-Jian Yang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, China; Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, Nanning 530021, China
| | - Chong-Jiu Qin
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, China; Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, Nanning 530021, China
| | - Xin Zhou
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, China; Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, Nanning 530021, China.
| | - Tao Peng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, China; Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, Nanning 530021, China.
| |
Collapse
|
5
|
Li SJ, Liu AB, Yu YY, Ma JH. The role and mechanism of pyroptosis and potential therapeutic targets in non-alcoholic fatty liver disease (NAFLD). Front Cell Dev Biol 2024; 12:1407738. [PMID: 39022762 PMCID: PMC11251954 DOI: 10.3389/fcell.2024.1407738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/10/2024] [Indexed: 07/20/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a clinical pathological syndrome characterized by the excessive accumulation of fat within liver cells, which can progress to end-stage liver disease in severe cases, posing a threat to life. Pyroptosis is a distinct, pro-inflammatory form of cell death, differing from traditional apoptosis. In recent years, there has been growing research interest in the association between pyroptosis and NAFLD, encompassing the mechanisms and functions of pyroptosis in the progression of NAFLD, as well as potential therapeutic targets. Controlled pyroptosis can activate immune cells, eliciting host immune responses to shield the body from harm. However, undue activation of pyroptosis may worsen inflammatory responses, induce cellular or tissue damage, disrupt immune responses, and potentially impact liver function. This review elucidates the involvement of pyroptosis and key molecular players, including NOD-like receptor thermal protein domain associated protein 3(NLRP3) inflammasome, gasdermin D (GSDMD), and the caspase family, in the pathogenesis and progression of NAFLD. It emphasizes the promising prospects of targeting pyroptosis as a therapeutic approach for NAFLD and offers valuable insights into future directions in the field of NAFLD treatment.
Collapse
Affiliation(s)
- Shu-Jing Li
- Department of Pediatrics Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - An-Bu Liu
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Yuan-Yuan Yu
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Jin-Hai Ma
- Department of Pediatrics Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| |
Collapse
|
6
|
Xue Y, Wei Y, Cao L, Shi M, Sheng J, Xiao Q, Cheng Z, Luo T, Jiao Q, Wu A, Chen C, Zhong L, Zhang C. Protective effects of scutellaria-coptis herb couple against non-alcoholic steatohepatitis via activating NRF2 and FXR pathways in vivo and in vitro. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116933. [PMID: 37482263 DOI: 10.1016/j.jep.2023.116933] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/15/2023] [Accepted: 07/17/2023] [Indexed: 07/25/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Scutellaria-coptis herb couple (SC) is a classic herbal pair used in many Traditional Chinese Medicine (TCM) formulations in the treatment of endocrine and metabolic deseases. Diabetes mellitus and non-alcoholic steatohepatitis (NASH) are both endocrine and metabolic diseases. Previous studies have shown that SC has anti-diabetic effects. However, the effect and mechanism of SC against NASH remains unclear. AIM OF THE STUDY This study aimed to demonstrate the effect and mechanism of SC against NASH through the nuclear factor-erythroid 2-related factor 2 (Nrf2) and farnesoid X receptor (FXR) dual signaling pathways in vivo and in vitro. MATERIALS AND METHODS The high fat diet-fed rat model, and HepG2 and RAW264.7 cell models were used. Serum biochemical indexes and liver histopathological changes were examined. Metabolomics, transcriptomics, and flow cytometry were performed. RT-qPCR and western blot analysis were performed to provide expression of NRF2 and FXR pathway signal molecules during SC's anti-NASH treatment in vivo and in vitro. RESULTS SC had anti-NASH effects in vivo with significantly improvement of serum NASH biochemical index and hepatopathological structure; meanwhile, SC significantly elevated the expression levels of FXR protein in liver and intestinal tissues, and cholesterol 7a-hydroxylase (CYP7A1) protein in liver. The mRNA expression levels of Takeda G protein receptor 5 (TGR5), CYP7A1, fibroblast growth factor receptor-4 (FGFR4), FXR, small heterodimer partner (SHP), fibroblast growth factor 15/19 (FGF15/19) and glucagon-like peptide-1 (GLP-1) were significantly elevated by SC. SC reduced the levels of NorCA, isoLCA and α-MCA in the feces of NAFLD rats. In vitro, SC-containing serum (SC-CS) was found to significantly reduce intracellular lipid deposition, inhibit ROS production, reduce intracellular Malondialdehyde (MDA) and IL-1β levels, and enhance the activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px). Six differential genes closely related to oxidative stress and Nrf2 were identified by transcriptomic analysis. SC-CS up-regulated the expression of NRF2, and reduced the expression of TXNIP and Caspase-1 genes in RAW264.7 cells. In addition, SC-CS reduced the expression of Keap1 and NF-κB, and up-regulated the expression of Nrf2, heme oxygenase-1 (HO-1), quinone oxidoreductase 1 (NQO1), and SOD; SC-CS elevated the protein level of NRF2, and reduced the protein level of TXNIP in HepG2 cells. CONCLUSIONS the mechanisms of SC action against NASH was closely related to the simultaneous activations of both NRF2 and FXR signaling pathways. These findings provide a new insight into the anti-NASH application of SC in clinical settings and demonstrate the potential of SC in the treatment of NASH.
Collapse
Affiliation(s)
- Yanan Xue
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, PR China
| | - Yue Wei
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, PR China
| | - Lan Cao
- Research Center of Chinese Medicine Resources and Ethnic Medicine, Jiangxi University of Chinese Medicine, PR China
| | - Min Shi
- College of Life Science, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, PR China
| | - Junqing Sheng
- College of Life Science, Nanchang University, Nanchang, 330031, PR China
| | - Qin Xiao
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, PR China
| | - Ziwen Cheng
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, PR China
| | - Tao Luo
- First Affiliated Hospital of Nanchang University, 330006, PR China
| | - Quanhui Jiao
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, PR China
| | - Ailan Wu
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, PR China
| | - Chen Chen
- School of Biomedical Sciences, University of Queensland, Brisbane, QLD, 4072, Australia.
| | - Lingyun Zhong
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, PR China.
| | - Changhua Zhang
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, PR China; Nanchang Research Institute, Sun Yat-sen University, Jiangxi, 330096, PR China.
| |
Collapse
|
7
|
Xue Y, Wei Y, Cao L, Shi M, Sheng J, Xiao Q, Cheng Z, Luo T, Jiao Q, Wu A, Chen C, Zhong L, Zhang C. Protective effects of scutellaria-coptis herb couple against non-alcoholic steatohepatitis via activating NRF2 and FXR pathways in vivo and in vitro. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116933. [DOI: https:/doi.org/10.1016/j.jep.2023.116933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/14/2024]
|
8
|
Singh S, Sharma S, Sharma H. Potential Impact of Bioactive Compounds as NLRP3 Inflammasome Inhibitors: An Update. Curr Pharm Biotechnol 2024; 25:1719-1746. [PMID: 38173061 DOI: 10.2174/0113892010276859231125165251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/22/2023] [Accepted: 10/26/2023] [Indexed: 01/05/2024]
Abstract
The inflammasome NLRP3 comprises a caspase recruitment domain, a pyrin domain containing receptor 3, an apoptosis-linked protein like a speck containing a procaspase-1, and an attached nucleotide domain leucine abundant repeat. There are a wide variety of stimuli that can activate the inflammasome NLRP3. When activated, the protein NLRP3 appoints the adapter protein ASC. Adapter ASC protein then recruits the procaspase-1 protein, which causes the procaspase- 1 protein to be cleaved and activated, which induces cytokines. At the same time, abnormal activation of inflammasome NLRP3 is associated with many diseases, such as diabetes, atherosclerosis, metabolic syndrome, cardiovascular and neurodegenerative diseases. As a result, a significant amount of effort has been put into comprehending the mechanisms behind its activation and looking for their specific inhibitors. In this review, we primarily focused on phytochemicals that inhibit the inflammasome NLRP3, as well as discuss the defects caused by NLRP3 signaling. We conducted an in-depth research review by searching for relevant articles in the Scopus, Google Scholar, and PubMed databases. By gathering information on phytochemical inhibitors that block NLRP3 inflammasome activation, a complicated balance between inflammasome activation or inhibition with NLRP3 as a key role was revealed in NLRP3-driven clinical situations.
Collapse
Affiliation(s)
- Sonia Singh
- Department of Pharmacy, Institute of Pharmaceutical Research, GLA University, Uttar Pradesh-281406, India
| | - Shiwangi Sharma
- Department of Pharmacy, Institute of Pharmaceutical Research, GLA University, Uttar Pradesh-281406, India
| | - Himanshu Sharma
- Department of Computer Engineering & Applications, GLA University, Uttar Pradesh-281406, India
| |
Collapse
|
9
|
He W, Xu C, Mao D, Zheng Y, Wang N, Wang M, Mao N, Wang T, Li Y. Recent advances in pyroptosis, liver disease, and traditional Chinese medicine: A review. Phytother Res 2023; 37:5473-5494. [PMID: 37622684 DOI: 10.1002/ptr.7989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/29/2023] [Accepted: 08/09/2023] [Indexed: 08/26/2023]
Abstract
In recent years, the incidence of liver disease has increased, becoming a major cause of death. Various liver diseases are intricately linked to pyroptosis, which is one of the most common forms of programmed cell death. As a powerful weapon in the fight against liver diseases, traditional Chinese medicine (TCM) can affect pyroptosis via a number of routes, including the classical, nucleotide oligomerization domain-like receptors protein 3/caspase-1/gasdermin D (GSDMD) pathway, the nonclassical lipopolysaccharide/caspase-11/GSDMD pathway, the ROS/caspase-3/gasdermin E pathway, the caspase-9/caspase-3/GSDMD pathway, and the Apaf-1/caspase-11/caspase-3 pathway. In this review, we provide an overview of pyroptosis, the interplay between pyroptosis and liver diseases, and the mechanisms through which TCM regulates pyroptosis in liver diseases. The information used in the text was collected and compiled from the databases of PubMed, Web of Science, Scopus, CNKI, and Wanfang Data up to June 2023. The search was not limited with regard to the language and country of the articles. Research and review articles were included, and papers with duplicate results or unrelated content were excluded. We examined the current understanding of the relationship between pyroptosis and liver diseases as well as the advances in TCM interventions to provide a resource for the identification of potential targets for TCM in the treatment of liver diseases.
Collapse
Affiliation(s)
- Wenxing He
- Faculty of Chinese Medicine Science, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Canli Xu
- Faculty of Chinese Medicine Science, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Dewen Mao
- Department of Hepatology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Yang Zheng
- Faculty of Chinese Medicine Science, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Na Wang
- Department of Hepatology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Minggang Wang
- Department of Hepatology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Nan Mao
- Department of Acupuncture-Moxibustion and Tuina, Jiangbin Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
| | - Ting Wang
- The First Clinical Medical College, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Yanjie Li
- Department of Hepatology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| |
Collapse
|
10
|
Zhong Y, Hang L, Wang F, Shen B, Shen C, Xue Y, Jia H, Wang L, Yuan H. Herpetetrone nanosuspensions enhance drug solubility and bioavailability to improve anti-hepatic fibrosis effects. J Microencapsul 2023; 40:587-598. [PMID: 37733492 DOI: 10.1080/02652048.2023.2258974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 09/08/2023] [Indexed: 09/23/2023]
Abstract
The aim of this study was to enhance the dissolution rate and oral bioavailability of herpetetrone (HPT) by preparing nanosuspensions (NSs) and evaluate the changes in its anti-hepatic fibrosis effect. Herpetetrone nanosuspension (HPT-NS) was prepared using the ultrasound-precipitation technique, and characterised on the basis of mean diameter, zeta potential (ZP), encapsulation efficiency percent (EE%), scanning electron microscopy (SEM), and X-ray powder diffraction (XRPD). In addition, the pharmacokinetics and anti-hepatic fibrosis activity were evaluated. HPT-NS prepared with the optimised formulation was found to be spherical with mean diameter of 177.48 ± 6.13 nm, polydispersity index (PDI) of 0.108 ± 0.002 and ZP of -17.28 ± 2.02 mV. The EE (m/m, %) was 83.25 ± 0.27. XRPD analyses confirmed that the amorphous state of HPT in HPT-NS remained unchanged. The dissolution rate of HPT-NS was significantly higher than that of HPT coarse suspensions (HPT-CSs). Following oral administration, Cmax and AUC0-t of HPT-NS showed a significant increase (p < 0.05). In vitro, HPT inhibited the proliferation of HSC-T6 cells and induced apoptosis by up-regulating the expression of Bax proteins and down-regulating the expression of Bcl-2 and TGF-β1 proteins. Compared with HPT-CS, HPT-NS exhibited a more pronounced anti-fibrotic effect. HPT-NS, as a new drug formulation designed to improve the solubility and bioavailability of the drug, shows promising potential in enhancing the anti-liver fibrosis effect.
Collapse
Affiliation(s)
- Yuji Zhong
- Department of Pharmacy, Air Force Medical Center, PLA, Air Force Medical University, Beijing, China
- School of Medicine, Huaqiao University, Quanzhou, China
| | - Lingyu Hang
- Department of Pharmacy, Air Force Medical Center, PLA, Air Force Medical University, Beijing, China
| | - Fang Wang
- Department of Pharmacy, Air Force Medical Center, PLA, Air Force Medical University, Beijing, China
- School of Medicine, Huaqiao University, Quanzhou, China
| | - Baode Shen
- Department of Pharmacy, Air Force Medical Center, PLA, Air Force Medical University, Beijing, China
| | - Chengying Shen
- Department of Pharmacy, Air Force Medical Center, PLA, Air Force Medical University, Beijing, China
| | - Yuye Xue
- Department of Pharmacy, Air Force Medical Center, PLA, Air Force Medical University, Beijing, China
| | - Haiqiang Jia
- Department of Pharmacy, Air Force Medical Center, PLA, Air Force Medical University, Beijing, China
- School of Medicine, Huaqiao University, Quanzhou, China
| | - Liqiang Wang
- School of Medicine, Huaqiao University, Quanzhou, China
| | - Hailong Yuan
- Department of Pharmacy, Air Force Medical Center, PLA, Air Force Medical University, Beijing, China
| |
Collapse
|
11
|
Dinda B, Dinda M, Dinda S, De UC. An overview of anti-SARS-CoV-2 and anti-inflammatory potential of baicalein and its metabolite baicalin: Insights into molecular mechanisms. Eur J Med Chem 2023; 258:115629. [PMID: 37437351 DOI: 10.1016/j.ejmech.2023.115629] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/26/2023] [Accepted: 07/06/2023] [Indexed: 07/14/2023]
Abstract
The current Coronavirus Disease 2019 (COVID-19) pandemic, caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), is highly contagious infection that breaks the healthcare systems of several countries worldwide. Till to date, no effective antiviral drugs against COVID-19 infection have reached the market, and some repurposed drugs and vaccines are prescribed for the treatment and prevention of this disease. The currently prescribed COVID-19 vaccines are less effective against the newly emergent variants of concern of SARS-CoV-2 due to several mutations in viral spike protein and obviously there is an urgency to develop new antiviral drugs against this disease. In this review article, we systematically discussed the anti-SARS-CoV-2 and anti-inflammatory efficacy of two flavonoids, baicalein and its 7-O-glucuronide, baicalin, isolated from Scutellaria baicalensis, Oroxylum indicum, and other plants as well as their pharmacokinetics and oral bioavailability, for development of safe and effective drugs for COVID-19 treatment. Both baicalein and baicalin target the activities of viral S-, 3CL-, PL-, RdRp- and nsp13-proteins, and host mitochondrial OXPHOS for suppression of viral infection. Moreover, these compounds prevent sepsis-related inflammation and organ injury by modulation of host innate immune responses. Several nanoformulated and inclusion complexes of baicalein and baicalin have been reported to increase oral bioavailability, but their safety and efficacy in SARS-CoV-2-infected transgenic animals are not yet evaluated. Future studies on these compounds are required for use in clinical trials of COVID-19 patients.
Collapse
Affiliation(s)
- Biswanath Dinda
- Department of Chemistry, Tripura University, Suryamaninagar, Agartala, Tripura, India.
| | - Manikarna Dinda
- Department of Biochemistry and Molecular Genetics, University of Virginia, School of Medicine, Charlottesville, VA, USA
| | - Subhajit Dinda
- Department of Chemistry, Government Degree College, Kamalpur, Dhalai, Tripura, India
| | - Utpal Chandra De
- Department of Chemistry, Tripura University, Suryamaninagar, Agartala, Tripura, India
| |
Collapse
|
12
|
Li L, Qin Y, Xin X, Wang S, Liu Z, Feng X. The great potential of flavonoids as candidate drugs for NAFLD. Biomed Pharmacother 2023; 164:114991. [PMID: 37302319 DOI: 10.1016/j.biopha.2023.114991] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/13/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) has a global prevalence of approximately 25 % and is associated with high morbidity and high mortality. NAFLD is a leading cause of cirrhosis and hepatocellular carcinoma. Its pathophysiology is complex and still poorly understood, and there are no drugs used in the clinic to specifically treat NAFLD. Its pathogenesis involves the accumulation of excess lipids in the liver, leading to lipid metabolism disorders and inflammation. Phytochemicals with the potential to prevent or treat excess lipid accumulation have recently received increasing attention, as they are potentially more suitable for long-term use than are traditional therapeutic compounds. In this review, we summarize the classification, biochemical properties, and biological functions of flavonoids and how they are used in the treatment of NAFLD. Highlighting the roles and pharmacological uses of these compounds will be of importance for enhancing the prevention and treatment of NAFLD.
Collapse
Affiliation(s)
- Liangge Li
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education; Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China; School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Yiming Qin
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education; Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China; School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Xijian Xin
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education; Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China; School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Shendong Wang
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education; Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China; School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Zhaojun Liu
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education; Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China; School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Xiujing Feng
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education; Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China; School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China.
| |
Collapse
|
13
|
Pathak MP, Pathak K, Saikia R, Gogoi U, Patowary P, Chattopadhyay P, Das A. Therapeutic potential of bioactive phytoconstituents found in fruits in the treatment of non-alcoholic fatty liver disease: A comprehensive review. Heliyon 2023; 9:e15347. [PMID: 37101636 PMCID: PMC10123163 DOI: 10.1016/j.heliyon.2023.e15347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 03/15/2023] [Accepted: 04/03/2023] [Indexed: 04/28/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD), a chronic liver condition affects a large number of people around the world with a frequency of 25% of all the chronic liver disease worldwide. Several targets viz. anti-inflammatory, anti-apoptotic and, anti-fibrotic factors, anti-oxidant and insulin-sensitizing pathways, metabolic regulators as well as repurposing traditional medications have been studied for the pharmacologic therapy of NAFLD. Newer pharmacotherapies like caspases blockade, agonists of PPAR and farnesoid X receptor agonists are currently being investigated in treating human NAFLD. However, NAFLD has no FDA-approved pharmacological therapy, therefore there is a considerable unmet therapy need. Apart from the conventional treatment regime, the current approaches to treating NAFLD include lifestyle interventions including healthy diet with adequate nutrition and physical activity. Fruits are known to play a key role in the well-being of human health. Fruits are loaded with a repertoire of bioactive phytoconstituents like catechins, phytosterols, proanthocyanidin, genestin, daidzen, resveratrol, magiferin found in fruits like pear, apricot, strawberries, oranges, apples, bananas, grapes, kiwi, pineapple, watermelon, peach, grape seed and skin, mango, currants, raisins, dried dates, passion fruit and many more. These bioactive phytoconstituents are reported to demonstrate promising pharmacological efficacy like reduction in fatty acid deposition, increased lipid metabolism, modulation of insulin signaling pathway, gut microbiota and hepatic inflammation, inhibition of histone acetyltransferase enzymatic activity to name a few. Not only fruits, but their derivatives like oils, pulp, peel, or their preparations are also found to be equally beneficial in various liver diseases like NAFLD, NASH. Although most of the fruits contains potent bioactive phytoconstituents, however, the presence of sugar in fruits put a question mark on the ameliorative property of the fruits and there has been contrasting reports on the glycemic control post fruit consumption in type 2 diabetic patients. This review is an attempt to summarize the beneficial effects of fruit phytoconstituents on NAFLD based on epidemiological, clinical and experimental evidence, focusing especially on their mechanisms of action.
Collapse
Affiliation(s)
- Manash Pratim Pathak
- Faculty of Pharmaceutical Science, Assam down town University, Panikhaiti, Guwahati-781026, Assam, India
| | - Kalyani Pathak
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh 786004, Assam, India
| | - Riya Saikia
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh 786004, Assam, India
| | - Urvashee Gogoi
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh 786004, Assam, India
| | - Pompy Patowary
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh 786004, Assam, India
- Division of Pharmaceutical Technology, Defence Research Laboratory, Tezpur 784001, Assam, India
| | - Pronobesh Chattopadhyay
- Division of Pharmaceutical Technology, Defence Research Laboratory, Tezpur 784001, Assam, India
| | - Aparoop Das
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh 786004, Assam, India
| |
Collapse
|
14
|
Yang JY, Ma YX, Liu Y, Peng XJ, Chen XZ. A Comprehensive Review of Natural Flavonoids with Anti-SARS-CoV-2 Activity. Molecules 2023; 28:molecules28062735. [PMID: 36985705 PMCID: PMC10054335 DOI: 10.3390/molecules28062735] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/11/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
The COVID-19 pandemic caused by SARS-CoV-2 has majorly impacted public health and economies worldwide. Although several effective vaccines and drugs are now used to prevent and treat COVID-19, natural products, especially flavonoids, showed great therapeutic potential early in the pandemic and thus attracted particular attention. Quercetin, baicalein, baicalin, EGCG (epigallocatechin gallate), and luteolin are among the most studied flavonoids in this field. Flavonoids can directly or indirectly exert antiviral activities, such as the inhibition of virus invasion and the replication and inhibition of viral proteases. In addition, flavonoids can modulate the levels of interferon and proinflammatory factors. We have reviewed the previously reported relevant literature researching the pharmacological anti-SARS-CoV-2 activity of flavonoids where structures, classifications, synthetic pathways, and pharmacological effects are summarized. There is no doubt that flavonoids have great potential in the treatment of COVID-19. However, most of the current research is still in the theoretical stage. More studies are recommended to evaluate the efficacy and safety of flavonoids against SARS-CoV-2.
Collapse
Affiliation(s)
- Jun-Yu Yang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou 341000, China
- College of Pharmacy, Gannan Medical University, Ganzhou 341000, China
| | - Yi-Xuan Ma
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou 341000, China
- College of Pharmacy, Gannan Medical University, Ganzhou 341000, China
| | - Yan Liu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou 341000, China
| | - Xiang-Jun Peng
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou 341000, China
- Jiangxi Province Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering, Gannan Medical University, Ganzhou 341000, China
| | - Xiang-Zhao Chen
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou 341000, China
- Jiangxi Province Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering, Gannan Medical University, Ganzhou 341000, China
| |
Collapse
|
15
|
Ye M, Fan S, Li X, Yang S, Ji C, Ji F, Zhou B. Four flavonoids from propolis ameliorate free fatty acids-induced non-alcoholic steatohepatitis in HepG2 cells: Involvement of enhanced AMPK activation, mTOR-NF-κBp65 interaction, and PTEN expression. J Funct Foods 2023. [DOI: 10.1016/j.jff.2023.105460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023] Open
|
16
|
Shi H, Qiao F, Lu W, Huang K, Wen Y, Ye L, Chen Y. Baicalin improved hepatic injury of NASH by regulating NRF2/HO-1/NRLP3 pathway. Eur J Pharmacol 2022; 934:175270. [DOI: 10.1016/j.ejphar.2022.175270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 09/01/2022] [Accepted: 09/08/2022] [Indexed: 11/03/2022]
|
17
|
Bao M, Ma Y, Liang M, Sun X, Ju X, Yong Y, Liu X. Research progress on pharmacological effects and new dosage forms of baicalin. Vet Med Sci 2022; 8:2773-2784. [DOI: 10.1002/vms3.960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Minglong Bao
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences Guangdong Ocean University Zhanjiang P. R. China
| | - Yunfei Ma
- College of Veterinary Medicine, China Agricultural University Beijing P. R. China
| | - Mei Liang
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences Guangdong Ocean University Zhanjiang P. R. China
| | - Xinyi Sun
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences Guangdong Ocean University Zhanjiang P. R. China
| | - Xianghong Ju
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences Guangdong Ocean University Zhanjiang P. R. China
| | - Yanhong Yong
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences Guangdong Ocean University Zhanjiang P. R. China
| | - Xiaoxi Liu
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences Guangdong Ocean University Zhanjiang P. R. China
| |
Collapse
|
18
|
Shi H, Qiao F, Huang K, Lu W, Zhang X, Ke Z, Wu Y, Cao L, Chen Y. Exploring therapeutic mechanisms of San-Huang-Tang in nonalcoholic fatty liver disease through network pharmacology and experimental validation. JOURNAL OF ETHNOPHARMACOLOGY 2022; 296:115477. [PMID: 35764198 DOI: 10.1016/j.jep.2022.115477] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 04/10/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE San-Huang-Tang (SHT), a traditional Chinese medicine (TCM) formula, has been clinically used to treat obesity and type 2 diabetes mellitus. Recently it has proved that SHT have a good effect on non-alcoholic fatty liver disease (NAFLD). AIM OF THE STUDY Our study was designed to investigate the therapeutic mechanisms of the SHT against NAFLD. The data of SHT were obtained through network pharmacology platform and validated experimentally in vivo and in vitro. MATERIALS AND METHODS The candidate targets of SHT were predicted by network pharmacological analysis and crucial targets were chosen by the protein-protein interaction (PPI) network. Furthermore, Gene Ontology (GO) and Kyoto encyclopedia of genes and Genomes (KEGG) were applied to analyze the NAFLD-related signaling pathways affected by SHT, and then the analysis results were verified with molecular biological experiments in vivo and in vitro. RESULTS Molecules were screened with network pharmacological analysis, and then the improvement of insulin resistance of NAFLD mice was measured by IPITTs and IPGTTs. Through series of molecular experiments, it is revealed that SHT could increase the transcription of insulin receptor (INSR) and insulin receptor substrate (IRS1), and enhance the phosphorylation of both threonine protein kinase (AKT) and forkhead box O1 (FoxO1). CONCLUSIONS Screened by bioinformatics and verified by experiments in vivo and in vitro, SHT could contribute to NAFLD by affecting insulin resistance via activating INSR/IRS1/AKT/FoxO1 pathway. Our research findings provide not only an experimental basis for the therapeutic effect of SHT but also a new target against NAFLD.
Collapse
Affiliation(s)
- Huilian Shi
- Department of Infectious Diseases, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, PR China
| | - Fei Qiao
- Department of Infectious Diseases, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, PR China
| | - Kaiyue Huang
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Weiting Lu
- Department of Infectious Diseases, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, PR China
| | - Xinzhuang Zhang
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Pharmaceutical Co.,Ltd, Lianyungang, Jiangsu, PR China
| | - Zhipeng Ke
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Pharmaceutical Co.,Ltd, Lianyungang, Jiangsu, PR China
| | - Yanchi Wu
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Liang Cao
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Pharmaceutical Co.,Ltd, Lianyungang, Jiangsu, PR China; Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, PR China.
| | - Yuanyuan Chen
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu, PR China.
| |
Collapse
|
19
|
Liu T, Xu G, Liang L, Xiao X, Zhao Y, Bai Z. Pharmacological effects of Chinese medicine modulating NLRP3 inflammasomes in fatty liver treatment. Front Pharmacol 2022; 13:967594. [PMID: 36160411 PMCID: PMC9492967 DOI: 10.3389/fphar.2022.967594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/11/2022] [Indexed: 11/13/2022] Open
Abstract
Inflammation is a key contributing factor in the pathogenesis of fatty liver diseases (FLD), such as nonalcoholic fatty liver disease (NAFLD) and alcohol-associated liver diseases (ALDs). The NLRP3 inflammasome is widely present in the hepatic parenchymal and non-parenchymal cells, which are assembled and activated by sensing intracellular and extracellular danger signals resulting in the matures of IL-1β/IL-18 and pyroptosis. Moreover, the aberrant activation of the NLRP3 inflammasome is considered the main factor to drives immune outbreaks in relation to hepatic injury, inflammation, steatosis, and fibrosis. Therefore, inhibition of NLRP3 inflammasome may be a promising therapeutic target for FLD. Currently, accumulating evidence has revealed that a number of traditional Chinese medicines (TCM) exert beneficial effects on liver injury via inhibiting the NLRP3 inflammasome activation. Here, we summarized the mechanism of NLRP3 inflammasomes in the progression of FLD, and TCM exerts beneficial effects on FLD via positive modulation of inflammation. We describe that TCM is a promising valuable resource for the prevention and treatment agents against FLD and has the potential to be developed into clinical drugs.
Collapse
Affiliation(s)
- Tingting Liu
- Senior Department of Hepatology, Fifth Medical Center of PLA General Hospital, Beijing, China
- Military Institute of Chinese Materia, Fifth Medical Center of PLA General Hospital, Beijing, China
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- The Third Affiliated Hospital of Zunyi Medical University (The First People’s Hospital of Zunyi), Guizhou, China
| | - Guang Xu
- Military Institute of Chinese Materia, Fifth Medical Center of PLA General Hospital, Beijing, China
- *Correspondence: Zhaofang Bai, ; Guang Xu, ; Yanling Zhao,
| | - Longxin Liang
- Senior Department of Hepatology, Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Xiaohe Xiao
- Senior Department of Hepatology, Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Yanling Zhao
- Department of Pharmacy, The Fifth Medical Center of PLA General Hospital, Beijing, China
- *Correspondence: Zhaofang Bai, ; Guang Xu, ; Yanling Zhao,
| | - Zhaofang Bai
- Senior Department of Hepatology, Fifth Medical Center of PLA General Hospital, Beijing, China
- Military Institute of Chinese Materia, Fifth Medical Center of PLA General Hospital, Beijing, China
- *Correspondence: Zhaofang Bai, ; Guang Xu, ; Yanling Zhao,
| |
Collapse
|
20
|
Li Y, Wang J, Huang D, Yu C. Baicalin Alleviates Contrast-Induced Acute Kidney Injury Through ROS/NLRP3/Caspase-1/GSDMD Pathway-Mediated Proptosis in vitro. Drug Des Devel Ther 2022; 16:3353-3364. [PMID: 36196145 PMCID: PMC9527036 DOI: 10.2147/dddt.s379629] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 09/16/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose To investigate the effect of baicalin on the reactive oxygen species (ROS)/ NOD-like receptor protein 3 (NLRP3)/Caspase-1/gasdermin-D (GSDMD) inflammasome pathway and its related mechanism in regulating pyroptosis of human renal tubular epithelial cells (HK-2) induced by contrast media. Methods Iohexol was used to act on HK-2 cells to establish a renal tubular cell pyroptosis model; and the signal pathway genes were silenced, cytokines were detected by enzyme-linked immunosorbent assay (ELISA), and cell viability, gene expression, and protein expression were evaluated by double fluorescence staining and flow cytometry. To assess the cytotoxicity caused by the contrast agent; cells were pretreated with different concentrations of baicalin; and then the cells were exposed to iohexol again, and the relevant indicators were tested again. Results After HK-2 cells were exposed to iohexol, the NLRP3 inflammasome pathway markers NLRP3, interleukin (IL)-1β, and IL-18 mRNA levels as well as the protein expression levels of NLRP3, ASC, Caspase-1, and GSDMD were up-regulated. In addition, the effect also significantly increased the IL-18, IL-1β, lactate dehydrogenase (LDH), superoxide dismutase (SOD), malondialdehyde (MDA) release, and cellular ROS levels. The results of Annexin V-FITC/PI flow cytometry showed that the level of apoptosis was increased. However, after the intervention of baicalin, the changes in the above indexes caused by iohexol stimulation of HK-2 cells were inhibited. Conclusion Exposure to iohexol can induce pyroptosis of HK-2 cells through the ROS/NLRP3/Caspase-1/GSDMD signaling pathway. Baicalin ameliorated iohexol-induced pyroptosis in HK-2 cells by regulating the NLRP3 inflammasome pathway.
Collapse
Affiliation(s)
- Yanyan Li
- College of Pharmacy, Chongqing Medical University, Chongqing, People’s Republic of China
- Chongqing Traditional Chinese Medicine Hospital, Chongqing, People’s Republic of China
| | - Junda Wang
- Chongqing Traditional Chinese Medicine Hospital, Chongqing, People’s Republic of China
| | - Dan Huang
- Chongqing Traditional Chinese Medicine Hospital, Chongqing, People’s Republic of China
| | - Chao Yu
- College of Pharmacy, Chongqing Medical University, Chongqing, People’s Republic of China
- Correspondence: Chao Yu, College of Pharmacy, Chongqing Medical University, Yixueyuan Road, Yuzhong District, Chongqing, 400016, People’s Republic of China, Tel +86 23-68485589, Fax +86 23-68486294, Email
| |
Collapse
|
21
|
Huang Q, Xin X, Sun Q, An Z, Gou X, Feng Q. Plant-derived bioactive compounds regulate the NLRP3 inflammasome to treat NAFLD. Front Pharmacol 2022; 13:896899. [PMID: 36016562 PMCID: PMC9396216 DOI: 10.3389/fphar.2022.896899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 06/29/2022] [Indexed: 11/29/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a liver disorder characterized by abnormal accumulation of hepatic fat and inflammatory response with complex pathogenesis. Over activation of the pyrin domain-containing protein 3 (NLRP3) inflammasome triggers the secretion of interleukin (IL)-1β and IL-18, induces pyroptosis, and promotes the release of a large number of pro-inflammatory proteins. All of which contribute to the development of NAFLD. There is a great deal of evidence indicating that plant-derived active ingredients are effective and safe for NAFLD management. This review aims to summarize the research progress of 31 active plant-derived components (terpenoids, flavonoids, alkaloids, and phenols) that alleviate lipid deposition, inflammation, and pyroptosis by acting on the NLRP3 inflammasome studied in both in vitro and in vivo NAFLD models. These studies confirmed that the NLRP3 inflammasome and its related genes play a key role in NAFLD amelioration, providing a starting point for further study on the correlation of plant-derived compounds treatment with the NLRP3 inflammasome and NAFLD.
Collapse
Affiliation(s)
- Qian Huang
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xin Xin
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - QinMei Sun
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ziming An
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaojun Gou
- Central Laboratory, Baoshan District Hospital of Integrated Traditional Chinese and Western Medicine of Shanghai, Shanghai, China
| | - Qin Feng
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, China
- Key Laboratory of Liver and Kidney Diseases, Shanghai University of Traditional Chinese Medicine, Ministry of Education, Shanghai, China
- *Correspondence: Qin Feng,
| |
Collapse
|
22
|
Chen M, Rong R, Xia X. Spotlight on pyroptosis: role in pathogenesis and therapeutic potential of ocular diseases. J Neuroinflammation 2022; 19:183. [PMID: 35836195 PMCID: PMC9281180 DOI: 10.1186/s12974-022-02547-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 07/05/2022] [Indexed: 11/10/2022] Open
Abstract
Pyroptosis is a programmed cell death characterized by swift plasma membrane disruption and subsequent release of cellular contents and pro-inflammatory mediators (cytokines), including IL‐1β and IL‐18. It differs from other types of programmed cell death such as apoptosis, autophagy, necroptosis, ferroptosis, and NETosis in terms of its morphology and mechanism. As a recently discovered form of cell death, pyroptosis has been demonstrated to be involved in the progression of multiple diseases. Recent studies have also suggested that pyroptosis is linked to various ocular diseases. In this review, we systematically summarized and discussed recent scientific discoveries of the involvement of pyroptosis in common ocular diseases, including diabetic retinopathy, age-related macular degeneration, AIDS-related human cytomegalovirus retinitis, glaucoma, dry eye disease, keratitis, uveitis, and cataract. We also organized new and emerging evidence suggesting that pyroptosis signaling pathways may be potential therapeutic targets in ocular diseases, hoping to provide a summary of overall intervention strategies and relevant multi-dimensional evaluations for various ocular diseases, as well as offer valuable ideas for further research and development from the perspective of pyroptosis.
Collapse
Affiliation(s)
- Meini Chen
- Eye Center of Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.,Hunan Key Laboratory of Ophthalmology, Changsha, 410008, Hunan, People's Republic of China.,National Clinical Research Center for Geriatric Diseases (Xiangya Hospital), Changsha, 410008, Hunan, People's Republic of China
| | - Rong Rong
- Eye Center of Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.,Hunan Key Laboratory of Ophthalmology, Changsha, 410008, Hunan, People's Republic of China.,National Clinical Research Center for Geriatric Diseases (Xiangya Hospital), Changsha, 410008, Hunan, People's Republic of China
| | - Xiaobo Xia
- Eye Center of Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China. .,Hunan Key Laboratory of Ophthalmology, Changsha, 410008, Hunan, People's Republic of China. .,National Clinical Research Center for Geriatric Diseases (Xiangya Hospital), Changsha, 410008, Hunan, People's Republic of China.
| |
Collapse
|
23
|
Huang YT, Liang QQ, Zhang HR, Chen SY, Xu LH, Zeng B, Xu R, Shi FL, Ouyang DY, Zha QB, He XH. Baicalin inhibits necroptosis by decreasing oligomerization of phosphorylated MLKL and mitigates caerulein-induced acute pancreatitis in mice. Int Immunopharmacol 2022; 108:108885. [PMID: 35623294 DOI: 10.1016/j.intimp.2022.108885] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 11/05/2022]
Abstract
Necroptosis is a form of regulated necrosis mainly controlled by receptor-interacting protein kinases 3 (RIPK3) and mixed lineage kinase domain-like protein (MLKL). Necroptosis has important roles in defensing against pathogenic infections, but it is also implicated in various inflammatory diseases including pancreatitis. Baicalin, a flavonoid from Scutellaria baicalensis Georgi, has been shown to possess anti-inflammatory and anti-pyroptosis properties, yet it is unclear whether baicalin can inhibit necroptosis and confer protection against necroptosis-related diseases. Here we reported that baicalin significantly inhibited necroptosis in macrophages induced by lipopolysaccharide plus pan-caspase inhibitor (IDN-6556), or by tumor-necrosis factor-α in combination with LCL-161 (Smac mimetic) and IDN-6556 (TSI). Mechanistically, baicalin did not inhibit the phosphorylation of RIPK1, RIPK3 and MLKL, nor membrane translocation of p-MLKL, during necroptotic induction, but instead inhibited p-MLKL oligomerization that is required for executing necroptosis. As intracellular reactive oxygen species (ROS) has been reported to be involved in p-MLKL oligomerization, we assessed the effects of N-acetyl-L-cysteine (NAC), an ROS scavenger, on necroptosis and found that NAC significantly attenuated TSI-induced necroptosis and intracellular ROS production concomitantly with reduced levels of oligomerized p-MLKL, mirroring the effect of baicalin. Indeed, inhibitory effect of baicalin was associated with reduced TSI-induced superoxide (indicating mitochondrial ROS) production and increased mitochondrial membrane potential within cells during necroptosis. Besides, oral administration of baicalin significantly reduced the severity of caerulein-induced acute pancreatitis in mice, an animal model of necroptosis-related disease. Collectively, baicalin can inhibit necroptosis through attenuating p-MLKL oligomerization and confers protection against caerulein-induced pancreatitis in mice.
Collapse
Affiliation(s)
- Yuan-Ting Huang
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; Department of Clinical Laboratory, The Fifth Affiliated Hospital of Jinan University, Heyuan 517000, China
| | - Qi-Qi Liang
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Hong-Rui Zhang
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Si-Yuan Chen
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Li-Hui Xu
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Bo Zeng
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Rong Xu
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Fu-Li Shi
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Dong-Yun Ouyang
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| | - Qing-Bing Zha
- Department of Clinical Laboratory, The Fifth Affiliated Hospital of Jinan University, Heyuan 517000, China; Department of Fetal Medicine, The First Affiliated Hospital of Jinan University, Guangzhou 510632, China.
| | - Xian-Hui He
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; Department of Clinical Laboratory, The Fifth Affiliated Hospital of Jinan University, Heyuan 517000, China.
| |
Collapse
|
24
|
Cell pyroptosis in health and inflammatory diseases. Cell Death Dis 2022; 8:191. [PMID: 35411030 PMCID: PMC8995683 DOI: 10.1038/s41420-022-00998-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/24/2022] [Accepted: 03/28/2022] [Indexed: 02/07/2023]
Abstract
Inflammation is a defense mechanism that can protect the host against microbe invasion. A proper inflammatory response can maintain homeostasis, but continuous inflammation can cause many chronic inflammatory diseases. To properly treat inflammatory disorders, the molecular mechanisms underlying the development of inflammation need to be fully elucidated. Pyroptosis is an inflammation-related cell death program, that is different from other types of cell death. Pyroptosis plays crucial roles in host defense against infections through the release of proinflammatory cytokines and cell lysis. Accumulating evidence indicates that pyroptosis is associated with inflammatory diseases, such as arthritis, pneumonia, and colonitis. Furthermore, pyroptosis is also closely involved in cancers that develop as a result of inflammation, such as liver cancer, esophageal cancer, pancreatic cancer, and colon cancer. Here, we review the function and mechanism of pyroptosis in inflammatory disease development and provide a comprehensive description of the potential role of pyroptosis in inflammatory diseases.
Collapse
|
25
|
Zhu J, Wen Y, Zhang Q, Nie F, Cheng M, Zhao X. The monomer TEC of blueberry improves NASH by augmenting tRF-47-mediated autophagy/pyroptosis signaling pathway. J Transl Med 2022; 20:128. [PMID: 35287671 PMCID: PMC8919551 DOI: 10.1186/s12967-022-03343-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 03/06/2022] [Indexed: 02/06/2023] Open
Abstract
Abstract
Background
Nonalcoholic steatohepatitis (NASH) is one of the most common liver diseases and has no safe and effective drug for treatment. We have previously reported the function of blueberry, but the effective monomer and related molecular mechanism remain unclear.
Methods
The monomer of blueberry was examined by ultra performance liquid chromatography-mass spectrometry (UPLC-MS). The NASH cell model was constructed by exposing HepG2 cells to free fatty acids. The NASH mouse model was induced by a high-fat diet for 12 weeks. NASH cell and mouse models were treated with different concentrations of blueberry monomers. The molecular mechanism was studied by Oil Red O staining, ELISA, enzyme activity, haematoxylin–eosin (H&E) staining, immunohistochemistry, immunofluorescence, western blot, RNA sequencing, and qRT-PCR.
Results
We identified one of the main monomer of blueberry as tectorigenin (TEC). Cyanidin-3-O glucoside (C3G) and TEC could significantly inhibit the formation of lipid droplets in steatosis hepatocytes, and the effect of TEC on the formation of lipid droplets was significantly higher than that of C3G. TEC can promote cell proliferation and inhibit the release of inflammatory mediators in NASH cell model. Additionally, TEC administration provided a protective role against high-fat diets induced lipid damage, and suppressed lipid accumulation. In NASH mouse model, TEC can activate autophagy, inhibit pyroptosis and the release of inflammatory mediators. In NASH cell model, TEC inhibited pyroptosis by stimulating autophagy. Then, small RNA sequencing revealed that TEC up-regulated the expression of tRF-47-58ZZJQJYSWRYVMMV5BO (tRF-47). The knockdown of tRF-47 blunted the beneficial effects of TEC on NASH in vitro, including inhibition of autophagy, activation of pyroptosis and release of inflammatory factors. Similarly, suppression of tRF-47 promoted the lipid injury and lipid deposition in vivo.
Conclusions
These results demonstrated that tRF-47-mediated autophagy and pyroptosis plays a vital role in the function of TEC to treat NASH, suggesting that TEC may be a promising drug for the treatment of NASH.
Collapse
|
26
|
Ibrahim A, Nasr M, El-Sherbiny IM. Baicalin as an emerging magical nutraceutical molecule: Emphasis on pharmacological properties and advances in pharmaceutical delivery. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
27
|
Bao M, Liang M, Sun X, Mohyuddin SG, Chen S, Wen J, Yong Y, Ma X, Yu Z, Ju X, Liu X. Baicalin Alleviates LPS-Induced Oxidative Stress via NF-κB and Nrf2–HO1 Signaling Pathways in IPEC-J2 Cells. Front Vet Sci 2022; 8:808233. [PMID: 35146015 PMCID: PMC8822581 DOI: 10.3389/fvets.2021.808233] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/28/2021] [Indexed: 12/12/2022] Open
Abstract
Baicalin is a natural plant extract with anti-inflammatory and anti-oxidant activities. However, the molecular mechanism of baicalin on oxidative stress in IPEC-J2 cells exposed to LPS remains to be unclear. In this study, LPS stimulation significantly increased Toll-like receptor 4, tumor necrosis factor-α, and interleukins (IL-6 and IL-1β) expression in IPEC-J2 cells, and it activated the nuclear factor (NF-κB) expression. While, baicalin exerted anti-inflammatory effects by inhibiting NF-κB signaling pathway. LPS stimulation significantly increased the levels of the oxidative stress marker MDA, inhibited the anti-oxidant enzymes catalase and superoxide dismutase, which were all reversed by baicalin pre-treatment. It was found that baicalin treatment activated the nuclear import of nuclear factor-erythroid 2 related factor 2 (Nrf2) protein, and significantly increased the mRNA and protein expression of its downstream anti-oxidant factors such as heme oxygenase-1 and quinone oxidoreductase-1, which suggested that baicalin exerted anti-oxidant effects by activating the Nrf2-HO1 signaling pathway. Thus, pretreatment with baicalin inhibited LPS - induced oxidative stress and protected the normal physiological function of IPEC-J2 cells via NF-κB and Nrf2–HO1 signaling pathways.
Collapse
|
28
|
Zhou Z, Zhang J, You L, Wang T, Wang K, Wang L, Kong X, Gao Y, Sun X. Application of herbs and active ingredients ameliorate non-alcoholic fatty liver disease under the guidance of traditional Chinese medicine. Front Endocrinol (Lausanne) 2022; 13:1000727. [PMID: 36204095 PMCID: PMC9530134 DOI: 10.3389/fendo.2022.1000727] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 08/29/2022] [Indexed: 11/15/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a global health problem, and its prevalence has been on the rise in recent years. Traditional Chinese Medicine (TCM) contains a wealth of therapeutic resources and has been in use for thousands of years regarding the prevention of liver disease and has been shown to be effective in the treatment of NAFLD in China. but the molecular mechanisms behind it have not been elucidated. In this article, we have updated and summarized the research and evidence concerning herbs and their active ingredients for the treatment in vivo and vitro models of NAFLD or NASH, by searching PubMed, Web of Science and SciFinder databases. In particular, we have found that most of the herbs and active ingredients reported so far have the effect of clearing heat and dispelling dampness, which is consistent with the concept of dampness-heat syndrome, in TCM theory. we have attempted to establish the TCM theory and modern pharmacological mechanisms links between herbs and monomers according to their TCM efficacy, experiment models, targets of modulation and amelioration of NAFLD pathology. Thus, we provide ideas and perspectives for further exploration of the pathogenesis of NAFLD and herbal therapy, helping to further the scientific connotation of TCM theories and promote the modernization of TCM.
Collapse
Affiliation(s)
- Zhijia Zhou
- Department of Hepatology, ShuGuang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jinghao Zhang
- Department of Hepatology, ShuGuang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Liping You
- Department of Hepatology, ShuGuang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tao Wang
- Department of Hepatology, ShuGuang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Kaixia Wang
- Department of Hepatology, ShuGuang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Infection, Oriental Hospital Affiliated to Tongji University, Shanghai, China
| | - Lingtai Wang
- Department of Hepatology, ShuGuang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaoni Kong
- Central Laboratory, ShuGuang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Xiaoni Kong, ; Yueqiu Gao, ; Xuehua Sun,
| | - Yueqiu Gao
- Department of Hepatology, ShuGuang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Xiaoni Kong, ; Yueqiu Gao, ; Xuehua Sun,
| | - Xuehua Sun
- Department of Hepatology, ShuGuang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Xiaoni Kong, ; Yueqiu Gao, ; Xuehua Sun,
| |
Collapse
|
29
|
Gao X, Liu S, Tan L, Ding C, Fan W, Gao Z, Li M, Tang Z, Wu Y, Xu L, Yan L, Luo Y, Song S. Estrogen Receptor α Regulates Metabolic-Associated Fatty Liver Disease by Targeting NLRP3-GSDMD Axis-Mediated Hepatocyte Pyroptosis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:14544-14556. [PMID: 34817168 DOI: 10.1021/acs.jafc.1c05400] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Metabolic-associated fatty liver disease (MAFLD) is currently one of the main causes of chronic liver disease, but its potential mechanism remains unclear. This study proved that estrogen receptor α (ERα) could negatively control hepatocyte pyroptosis by inhibiting NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome activation, gasdermin D (GSDMD)-N generation, propidium iodide (PI) uptake, lactate dehydrogenase (LDH) release, and pro-inflammatory cytokine (IL-1β and IL-18) release. Furthermore, inhibition of pyroptosis ameliorated ERα deletion-induced metabolic dysfunction, insulin resistance, and liver injury. Mechanistically, ERα was confirmed to inhibit pyroptosis by directly interacting with GSDMD, and GSDMD blockade reversed the ERα inhibition-induced pyroptosis and improved lipid accumulation in hepatocytes. Notably, the treatment of wild-type (WT) mice with genistein, a phytoestrogen, could attenuate high-fat diet (HFD)-induced liver lipid steatosis and inhibit NLRP3-GSDMD-mediated pyroptosis. Results provide new insights into the underlying mechanism of pyroptosis regulation and uncover the potential treatment target of MAFLD.
Collapse
Affiliation(s)
- Xiaona Gao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi 330000, People's Republic of China
| | - Shuhui Liu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Lei Tan
- Administration for Market Regulation of Guangdong Province Key Laboratory of Supervision for Edible Agricultural Products, Shenzhen Centre of Inspection and Testing for Agricultural Products, Shenzhen, Guangdong 518000, People's Republic of China
| | - Chenchen Ding
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Wentao Fan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Zhangshan Gao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Mengcong Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Zhihui Tang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Yuting Wu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Lei Xu
- Fujian Agricultural Vocational Technical College, Fuzhou, Fujian 350119, People's Republic of China
| | - Liping Yan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Yan Luo
- Administration for Market Regulation of Guangdong Province Key Laboratory of Supervision for Edible Agricultural Products, Shenzhen Centre of Inspection and Testing for Agricultural Products, Shenzhen, Guangdong 518000, People's Republic of China
| | - Suquan Song
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| |
Collapse
|
30
|
Inhibition of the PERK/TXNIP/NLRP3 Axis by Baicalin Reduces NLRP3 Inflammasome-Mediated Pyroptosis in Macrophages Infected with Mycobacterium tuberculosis. Mediators Inflamm 2021; 2021:1805147. [PMID: 34790063 PMCID: PMC8592748 DOI: 10.1155/2021/1805147] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/28/2021] [Accepted: 10/06/2021] [Indexed: 12/25/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) remains a significant threat to global health as it induces granuloma and systemic inflammatory responses during active tuberculosis. Mtb can induce macrophage pyroptosis, leading to the release of IL-1β and tissue damage, promoting its spread. Here, we established an in vitro Mtb-infected macrophage model to seek an effective antipyroptosis agent. Baicalin, isolated from Radix Scutellariae, was found to reduce pyroptosis in Mtb-infected macrophages. Baicalin could inhibit activation of the PERK/eIF2α pathway and thus downregulates TXNIP expression and subsequently reduces activation of the NLRP3 inflammasome, resulting in reduced pyroptosis in Mtb-infected macrophages. In conclusion, baicalin reduced pyroptosis by inhibiting the PERK/TXNIP/NLRP3 axis and might thus be a new adjuvant host-directed therapy (HDT) drug.
Collapse
|
31
|
Luo X, Bao X, Weng X, Bai X, Feng Y, Huang J, Liu S, Jia H, Yu B. The protective effect of quercetin on macrophage pyroptosis via TLR2/Myd88/NF-κB and ROS/AMPK pathway. Life Sci 2021; 291:120064. [PMID: 34688696 DOI: 10.1016/j.lfs.2021.120064] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 10/05/2021] [Accepted: 10/14/2021] [Indexed: 12/15/2022]
Abstract
AIMS Pyroptosis is a pro-inflammatory form of programmed cell death, which plays a vital role in the development of inflammatory diseases. As a natural flavonoid, quercetin has been shown to possess anti-inflammatory activity, but its effects on macrophage pyroptosis is still unclear. Therefore, this study aims to investigate the effects of quercetin on macrophage pyroptosis and the underlying mechanism. MATERIAL AND METHODS LPS/ATP treatment was used to induce THP-1 macrophage pyroptosis. Cell counting kit-8 (CCK-8) assay was used to evaluate cell viability. Scanning electron microscope (SEM) was used to detect cell morphology. Hoechst/propidium iodide (PI) staining and lactate dehydrogenase (LDH) assay were performed to evaluate the cell membrane integrity. The expression of key components and effectors of nod-like receptors3 (NLRP3) inflammasome were examined by real-time PCR and western blot. Immunofluorescence staining was used to detect reactive oxygen species (ROS) level and P65 nuclear translocation. KEY FINDINGS Our results showed that quercetin prevented THP-1 macrophage pyroptosis by reducing the expression of NLRP3 and cleaved-caspase1, as well as IL-1β and N-GSDMD in a concentration dependent manner. Quercetin suppressed NLRP3 inflammasome activation by inhibiting ROS overproduction. Moreover, quercetin inhibited the phosphorylation of P65 and its translocation from cytoplasm into nuclear. In addition, we found that quercetin suppressed the increase of TLR2/Myd88 and p-AMPK induced by LPS/ATP, while both TLR2 and AMPK agonist weakened the inhibitory effect of quercetin on the activity of NLRP3 inflammasome and alleviated the protective effect on macrophages pyroptosis. SIGNIFICANCE Quercetin possesses a protective effect on macrophages pyroptosis via TLR2/Myd88/NF-κB and ROS/AMPK pathway.
Collapse
Affiliation(s)
- Xing Luo
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, Harbin 150001, PR China; Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin 150001, PR China
| | - Xiaoyi Bao
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, Harbin 150001, PR China; Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin 150001, PR China
| | - Xiuzhu Weng
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, Harbin 150001, PR China
| | - Xiaoxuan Bai
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, Harbin 150001, PR China
| | - Yi Feng
- Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin 150001, PR China
| | - Jianxin Huang
- Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin 150001, PR China
| | - Shaoyu Liu
- Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin 150001, PR China; Bin xian People's Hospital, Harbin 150400, PR China
| | - Haibo Jia
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, Harbin 150001, PR China; Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin 150001, PR China.
| | - Bo Yu
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, Harbin 150001, PR China; Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin 150001, PR China
| |
Collapse
|
32
|
Xu J, Li S, Jiang L, Gao X, Liu W, Zhu X, Huang W, Zhao H, Wei Z, Wang K, Yang Z. Baicalin protects against zearalenone-induced chicks liver and kidney injury by inhibiting expression of oxidative stress, inflammatory cytokines and caspase signaling pathway. Int Immunopharmacol 2021; 100:108097. [PMID: 34521024 DOI: 10.1016/j.intimp.2021.108097] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 08/20/2021] [Accepted: 08/26/2021] [Indexed: 12/16/2022]
Abstract
Zearalenone (ZEA) is a secondary metabolite produced by fungi such as Fusarium and Fusarium flavum, which is classified as a mycotoxin. Crops and feed in a humid surrounding are widely polluted by ZEA, which further endangering the healthful aquaculture of poultry and even human health. Up to now, prevention and cure of mycotoxicosis is still a crucial subject of poultry husbandry. Baicalin (BAI) is a flavonoid refined from dried roots of Scutellaria baicalensis possessing the function of hepatoprotective, anti-inflammatory, anti-oxidant, and anti-atherosclerotic efficacies.etc. But whether Baicalin also has a protective effect against ZEA intoxication is unclear. Therefore, the aim of this study was to establish a model of ZEA-induced toxic injury in chicks, and then to investigate the way in which Baicalin plays a protective role in the mechanism of ZEA-induced liver and kidney injury in chicks. The results exhibit that Baicalin could not only significantly decrease aspartate aminotransferase (AST) , alanine aminotransferase (ALT) and creatinine (Cre) levels in serum, but also ameliorate ZEA-induced pathologic changes of liver and kidney. Baicalin could also significantly regulate ZEA-induced the changes of catalase (CAT) , malondialdehyde (MDA) , total sulfhydryl group , except for glutathione peroxidase (GSH-px) , and inhibit the mRNA levels of inflammatory cytokines tumor necrosis factor-α (TNF-α) , interleukin-1β (IL-1β) and cyclooxygenase-2 (COX-2) with caspase-3 and caspase-11 in the caspase signaling pathway , meanwhile inhibit the cell apoptosis in immunohistochemistry. In summary, we successfully established a model of ZEA-induced liver injury in chicks, and confirm that Baicalin can reduce ZEA-induced liver and kidney injury in chicks. The mechanism of these effects is via inhibiting inflammation, oxidative stress and apoptosis, which also indicates the potential applicability of Baicalin for the prevention and treatment of ZEA-induced toxicity in chicks.
Collapse
Affiliation(s)
- Jingnan Xu
- College of Life Sciences and Engineering, Foshan University, Foshan, Guangdong Province 528225, PR China
| | - Shurou Li
- College of Life Sciences and Engineering, Foshan University, Foshan, Guangdong Province 528225, PR China
| | - Liqiang Jiang
- College of Life Sciences and Engineering, Foshan University, Foshan, Guangdong Province 528225, PR China
| | - Xinxin Gao
- College of Life Sciences and Engineering, Foshan University, Foshan, Guangdong Province 528225, PR China
| | - Wei Liu
- College of Life Sciences and Engineering, Foshan University, Foshan, Guangdong Province 528225, PR China
| | - Xingyi Zhu
- College of Life Sciences and Engineering, Foshan University, Foshan, Guangdong Province 528225, PR China
| | - Wenlong Huang
- College of Life Sciences and Engineering, Foshan University, Foshan, Guangdong Province 528225, PR China
| | - Haiguang Zhao
- College of Life Sciences and Engineering, Foshan University, Foshan, Guangdong Province 528225, PR China
| | - Zhengkai Wei
- College of Life Sciences and Engineering, Foshan University, Foshan, Guangdong Province 528225, PR China
| | - Kai Wang
- College of Life Sciences and Engineering, Foshan University, Foshan, Guangdong Province 528225, PR China.
| | - Zhengtao Yang
- College of Life Sciences and Engineering, Foshan University, Foshan, Guangdong Province 528225, PR China.
| |
Collapse
|
33
|
Dai X, Feng J, Chen Y, Huang S, Shi X, Liu X, Sun Y. Traditional Chinese Medicine in nonalcoholic fatty liver disease: molecular insights and therapeutic perspectives. Chin Med 2021; 16:68. [PMID: 34344394 PMCID: PMC8330116 DOI: 10.1186/s13020-021-00469-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 07/13/2021] [Indexed: 12/19/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) has become the world's largest chronic liver disease, while there is still no specific drug to treat NAFLD. Traditional Chinese Medicine (TCM) have been widely used in hepatic diseases for centuries in Asia, and TCM's holistic concept and differentiation treatment of NAFLD show their advantages in the treatment of this complex metabolic disease. However, the multi-compounds and multi-targets are big obstacle for the study of TCM. Here, we summarize the pharmacological actions of active ingredients from frequently used single herbs in TCM compounds. The combined mechanism of herbs in TCM compounds are further discussed to explore their comprehensive effects on NAFLD. This article aims to summarize multiple functions and find the common ground for TCM treatment on NAFLD, thus providing enrichment to the scientific connotation of TCM theories and promotes the exploration of TCM therapies on NAFLD.
Collapse
Affiliation(s)
- Xianmin Dai
- Department of Clinical Pharmacy, Second Military Medical University/Naval Medical University, 200433, Shanghai, China
| | - Jiayi Feng
- Department of Clinical Pharmacy, Second Military Medical University/Naval Medical University, 200433, Shanghai, China
| | - Yi Chen
- Department of Clinical Pharmacy, Second Military Medical University/Naval Medical University, 200433, Shanghai, China
| | - Si Huang
- Department of Clinical Pharmacy, Second Military Medical University/Naval Medical University, 200433, Shanghai, China
| | - Xiaofei Shi
- Department of Clinical Pharmacy, Second Military Medical University/Naval Medical University, 200433, Shanghai, China
| | - Xia Liu
- Department of Clinical Pharmacy, Second Military Medical University/Naval Medical University, 200433, Shanghai, China.
| | - Yang Sun
- Department of Clinical Pharmacy, Second Military Medical University/Naval Medical University, 200433, Shanghai, China.
| |
Collapse
|
34
|
Zhao M, Dai Y, Li P, Wang J, Ma T, Xu S. Inhibition of NLRP3 inflammasome activation and pyroptosis with the ethyl acetate fraction of Bungeanum ameliorated cognitive dysfunction in aged mice. Food Funct 2021; 12:10443-10458. [PMID: 34231604 DOI: 10.1039/d1fo00876e] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Zanthoxylum bungeanum Maxim (Rutaceae), a medicinal herb and foodstuff, has previously been demonstrated as useful for the potential prevention of age-related cognitive dysfunction. However, the mechanisms and material basis remain elusively understood. The prevention of cognitive impairment by four fractions of Z. bungeanum was evaluated in d-galactose-induced aging mice, including petroleum ether (PE), methylene chloride (DCM), ethyl acetate (EA), and n-butanol (N-BAI). The results showed that mice treated with EA and N-BAI had significantly alleviated d-galactose-induced memory deficit. In addition, EA could clearly protect neurons from cell death, alleviate oxidative damage and inhibit the activation of microglia in aging mice. Our data also showed that the activation of the NLRP3 inflammasome, the expression of pyroptosis-related proteins, and the release of IL-1β and IL-18 could be remarkably inhibited by the EA fraction in aging mice and LPS/ATP-induced BV-2 microglial cells. Besides, the chemical composition of an active EA fraction was qualitatively analyzed by using HPLC-MS/MS. Thirty-four compounds were tentatively identified based on their retention times, accurate mass, and MS/MS spectra. Moreover, eighteen reference compounds were analyzed by HPLC-MS/MS and their contents of EA were determined. The work demonstrated that the ethyl acetate fraction of Bungeanum ameliorated cognitive deficits, and its effects may be related to ameliorating oxidative stress and suppressing the NLRP3 inflammasome pathway and GSDMD-mediated pyroptosis in aging mice.
Collapse
Affiliation(s)
- Meihuan Zhao
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China. and Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Yuan Dai
- Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China and School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, PR China
| | - Ping Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China. and Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Jie Wang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China. and Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Tengyun Ma
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China. and Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Shijun Xu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China. and Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| |
Collapse
|
35
|
Jiangzhi Ligan Decoction Inhibits GSDMD-Mediated Canonical/Noncanonical Pyroptosis Pathways and Alleviates High-Fat Diet-Induced Nonalcoholic Fatty Liver Disease. DISEASE MARKERS 2021; 2021:9963534. [PMID: 34239622 PMCID: PMC8235964 DOI: 10.1155/2021/9963534] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 06/05/2021] [Indexed: 01/11/2023]
Abstract
Increasing evidence suggests that gasdermin D (GSDMD) mediated pyroptosis signaling pathways play a vital role in the pathogenesis of nonalcoholic fatty liver disease (NAFLD). Jiangzhi Ligan Decoction (JZLGD) has been verified to prevent NAFLD, but its specific mechanism has not been determined. In this study, an NAFLD model was established in Sprague-Dawley rats by a high-fat diet (HFD). After 12 weeks, JZLGD was orally administered once a day for 6 additional weeks. We investigated the effects of JZLGD on NAFLD rats and determined the GSDMD pathway-associated proteins to explore whether such effects were associated with pyroptosis. Our data show that JZLGD significantly reduced the liver index; improved serum lipid levels, liver function parameters, and lipid droplet content; and relieved NAFLD. We further found that the serum levels of the proinflammatory factors interleukin-1β (IL-1β), IL-18, tumor necrosis factor-α, and IL-6 were obviously decreased in the JZLGD group. HFD rats treated with GSDMD exhibited NLRP3, caspase-1, lipopolysaccharide (LPS), and caspase-11 activation; however, these effects were blunted by JZLGD treatment. Taken together, JZLGD may exert hepatoprotective effects against NAFLD in a rat HFD model by regulating GSDMD-mediated canonical/noncanonical pyroptosis pathways.
Collapse
|
36
|
Özenver N, Efferth T. Phytochemical inhibitors of the NLRP3 inflammasome for the treatment of inflammatory diseases. Pharmacol Res 2021; 170:105710. [PMID: 34089866 DOI: 10.1016/j.phrs.2021.105710] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/15/2021] [Accepted: 05/31/2021] [Indexed: 02/07/2023]
Abstract
The NLRP3 inflammasome holds a crucial role in innate immune responses. Pathogen- and danger-associated molecular patterns may initiate inflammasome activation and following inflammatory cytokine release. The inflammasome formation and its-associated activity are involved in various pathological conditions such as cardiovascular, central nervous system, metabolic, renal, inflammatory and autoimmune diseases. Although the mechanism behind NLRP3-mediated disorders have not been entirely illuminated, many phytochemicals and medicinal plants have been described to prevent inflammatory disorders. In the present review, we mainly introduced phytochemicals inhibiting NLRP3 inflammasome in addition to NLRP3-mediated diseases. For this purpose, we performed a systematic literature search by screening PubMed, Scopus, and Google Scholar databases. By compiling the data of phytochemical inhibitors targeting NLRP3 inflammasome activation, a complex balance between inflammasome activation or inhibition with NLRP3 as central player was pointed out in NLRP3-driven pathological conditions. Phytochemicals represent potential therapeutic leads, enabling the generation of chemical derivatives with improved pharmacological features to treat NLRP3-mediated inflammatory diseases.
Collapse
Affiliation(s)
- Nadire Özenver
- Department of Pharmacognosy, Faculty of Pharmacy, Hacettepe University, 06100 Ankara, Turkey; Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany.
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany.
| |
Collapse
|
37
|
Sodium Houttuyfonate Ameliorates β-amyloid 1-42-Induced Memory Impairment and Neuroinflammation through Inhibiting the NLRP3/GSDMD Pathway in Alzheimer's Disease. Mediators Inflamm 2021; 2021:8817698. [PMID: 34188608 PMCID: PMC8195664 DOI: 10.1155/2021/8817698] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 01/26/2021] [Accepted: 05/18/2021] [Indexed: 01/21/2023] Open
Abstract
Objective Our research is designed to explore the function of sodium houttuyfonate (SH) on Alzheimer's disease (AD) and its potential molecular mechanisms. Methods In our study, the Morris water maze (MWM) test was used to assess the role of SH on spatial learning and memory deficiency in amyloid-β peptide (Aβ)1-42-induced AD mice. We explored the functions of SH on proinflammatory cytokines, neuron apoptosis, and damage in vivo and in vitro by using an enzyme-linked immunosorbent assay (ELISA), quantitative real-time polymerase chain reaction (qRT-PCR), flow cytometry, western blot, and Nissl staining. Moreover, the effect of SH on oxidative stress in vivo and in vitro was also detected. To explore the underlying molecular mechanisms of SH on AD, the expressions of proteins and mRNA involved in the NOD-like receptor pyrin domain containing-3/gasdermin D (NLRP3/GSDMD) pathway were determined using western blot, immunofluorescence staining, and qRT-PCR. Results Our data demonstrated that SH ameliorated spatial learning and memory deficiency in Aβ 1-42-induced AD mice. Moreover, SH significantly improved hippocampal neuron damage and inhibited oxidative stress, neuroinflammation, and neuron apoptosis in Aβ 1-42-induced AD mice and PC12 cells. The results also revealed that SH protected Aβ 1-42-induced AD through inhibiting the NLRP3/GSDMD pathway. Conclusion The present study demonstrated that SH could ameliorate Aβ 1-42-induced memory impairment neuroinflammation and pyroptosis through inhibiting the NLRP3/GSDMD pathway in AD, suggesting that SH may be a potential candidate for AD treatment.
Collapse
|
38
|
Fatima N, Sheikh N, Satoskar AR, Jha BK, Akhtar T, Tayyeb A, Ashfaq I. Interaction of tacrolimus through hedgehog signaling pathway: An in vitro evaluation using rat hepatocytes. Hum Exp Toxicol 2021; 40:1955-1961. [PMID: 33977768 DOI: 10.1177/09603271211017313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Tacrolimus (TAC) is the drug of choice in immunosuppressive therapy for organ transplantation; however, adverse effects are still a major concern. The current study aims to decipher the short-term exposure of TAC on rat hepatocytes in relation to activation of hedgehog (HH) signaling pathway. Time dependent study was conducted using primary rat hepatocytes treated with TAC (36 µM) for 6, 12, 24 and 48 h. Western blot analysis was performed using cell lysate in order to analyze the regulation of HH pathway proteins including HHIP, SMO, PTCH, IHH, SHH, and GLI transcription factors. The study revealed change in protein expression of HH signaling molecules with activation of HH pathway, due to downregulation of HHIP, and enrichment of HH ligands with activation of SMO and GLI transcription factors. It is therefore, concluded that short term TAC exposure leads to upregulation of HH pathway in liver, which may initially act to repair the liver damage but can worsen the condition in case of prolonged immunosuppressive therapy. This insight could lead to understand association of off target effects of immunosuppressive drugs and occurrence of other liver diseases in transplant patients when it comes to long term immunosuppressive therapy. These findings also illuminate a novel direction that use of HH inhibitor might provide a therapeutic strategy for immune suppression related liver disorders.
Collapse
Affiliation(s)
- N Fatima
- Cell and Molecular Biology Lab, Institute of Zoology, University of the Punjab, Lahore, Pakistan.,Department of Pathology and Microbiology, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | - N Sheikh
- Cell and Molecular Biology Lab, Institute of Zoology, University of the Punjab, Lahore, Pakistan
| | - A R Satoskar
- Department of Pathology and Microbiology, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | - B K Jha
- Department of Pathology and Microbiology, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | - T Akhtar
- Department of Pharmacology, University of Health Sciences, Lahore, Pakistan
| | - A Tayyeb
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| | - I Ashfaq
- Cell and Molecular Biology Lab, Institute of Zoology, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
39
|
Mitochondrial Mutations and Genetic Factors Determining NAFLD Risk. Int J Mol Sci 2021; 22:ijms22094459. [PMID: 33923295 PMCID: PMC8123173 DOI: 10.3390/ijms22094459] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 02/07/2023] Open
Abstract
NAFLD (non-alcoholic fatty liver disease) is a widespread liver disease that is often linked with other life-threatening ailments (metabolic syndrome, insulin resistance, diabetes, cardiovascular disease, atherosclerosis, obesity, and others) and canprogress to more severe forms, such as NASH (non-alcoholic steatohepatitis), cirrhosis, and HCC (hepatocellular carcinoma). In this review, we summarized and analyzed data about single nucleotide polymorphism sites, identified in genes related to NAFLD development and progression. Additionally, the causative role of mitochondrial mutations and mitophagy malfunctions in NAFLD is discussed. The role of mitochondria-related metabolites of the urea cycle as a new non-invasive NAFLD biomarker is discussed. While mitochondria DNA mutations and SNPs (single nucleotide polymorphisms) canbe used as effective diagnostic markers and target for treatments, age and ethnic specificity should be taken into account.
Collapse
|
40
|
Yang JY, Li M, Zhang CL, Liu D. Pharmacological properties of baicalin on liver diseases: a narrative review. Pharmacol Rep 2021; 73:1230-1239. [PMID: 33595821 PMCID: PMC8460515 DOI: 10.1007/s43440-021-00227-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 01/22/2021] [Accepted: 02/01/2021] [Indexed: 12/12/2022]
Abstract
Baicalin is the main active component of Scutellaria baicalensis, widely used in traditional Chinese medicine thanks to its various pharmacological effects, such as anti-tumor, anti-inflammatory, and antibacterial properties, as well as cardiovascular, hepatic, and renal protective effect. Recently, the protective effects of baicalin on liver disease have received much more attention. Several studies showed that baicalin protects against several types of liver diseases including viral hepatitis, fatty liver disease, xenobiotic induced liver injury, cholestatic liver injury, and hepatocellular carcinoma, with a variety of pharmacological mechanisms. A comprehensive understanding of the mechanism of baicalin can provide a valuable reference for its clinical use, but up to now, no narrative review is available that summarizes the pharmacological effects of baicalin to clarify its potential use in the treatment of liver diseases. Therefore, this review summarizes the progress of baicalin research and the underlying mechanism in the treatment of various liver diseases, to promote further research and its clinical application.
Collapse
Affiliation(s)
- Jin-Yu Yang
- Department of Pharmacy, Tongji Hospital Affiliated Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang avenue, Wuhan, 430030, Hubei, China
| | - Min Li
- Department of Pharmacy, Tongji Hospital Affiliated Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang avenue, Wuhan, 430030, Hubei, China
| | - Cheng-Liang Zhang
- Department of Pharmacy, Tongji Hospital Affiliated Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang avenue, Wuhan, 430030, Hubei, China.
| | - Dong Liu
- Department of Pharmacy, Tongji Hospital Affiliated Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang avenue, Wuhan, 430030, Hubei, China.
| |
Collapse
|
41
|
Song JW, Long JY, Xie L, Zhang LL, Xie QX, Chen HJ, Deng M, Li XF. Applications, phytochemistry, pharmacological effects, pharmacokinetics, toxicity of Scutellaria baicalensis Georgi. and its probably potential therapeutic effects on COVID-19: a review. Chin Med 2020; 15:102. [PMID: 32994803 PMCID: PMC7517065 DOI: 10.1186/s13020-020-00384-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 09/18/2020] [Indexed: 12/11/2022] Open
Abstract
Scutellaria baicalensis Georgi. (SB) is a common heat-clearing medicine in traditional Chinese medicine (TCM). It has been used for thousands of years in China and its neighboring countries. Clinically, it is mostly used to treat diseases such as cold and cough. SB has different harvesting periods and processed products for different clinical symptoms. Botanical researches proved that SB included in the Chinese Pharmacopoeia (1st, 2020) was consistent with the medicinal SB described in ancient books. Modern phytochemical analysis had found that SB contains hundreds of active ingredients, of which flavonoids are its major components. These chemical components are the material basis for SB to exert pharmacological effects. Pharmacological studies had shown that SB has a wide range of pharmacological activities such as antiinflammatory, antibacterial, antiviral, anticancer, liver protection, etc. The active ingredients of SB were mostly distributed in liver and kidney, and couldn't be absorbed into brain via oral absorption. SB's toxicity was mostly manifested in liver fibrosis and allergic reactions, mainly caused by baicalin. The non-medicinal application prospects of SB were broad, such as antibacterial plastics, UV-resistant silk, animal feed, etc. In response to the Coronavirus Disease In 2019 (COVID-19), based on the network pharmacology research, SB's active ingredients may have potential therapeutic effects, such as baicalin and baicalein. Therefore, the exact therapeutic effects are still need to be determined in clinical trials. SB has been reviewed in the past 2 years, but the content of these articles were not comprehensive and accurate. In view of the above, we made a comprehensive overview of the research progress of SB, and expect to provide ideas for the follow-up study of SB.
Collapse
Affiliation(s)
- Jia-Wen Song
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu, 611137 China
| | - Jia-Ying Long
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu, 611137 China
| | - Long Xie
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu, 611137 China
| | - Lin-Lin Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu, 611137 China
| | - Qing-Xuan Xie
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu, 611137 China
| | - Hui-Juan Chen
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu, 611137 China
| | - Mao Deng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu, 611137 China
| | - Xiao-Fang Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu, 611137 China
| |
Collapse
|
42
|
Wu C, Xu H, Li J, Hu X, Wang X, Huang Y, Li Y, Sheng S, Wang Y, Xu H, Ni W, Zhou K. Baicalein Attenuates Pyroptosis and Endoplasmic Reticulum Stress Following Spinal Cord Ischemia-Reperfusion Injury via Autophagy Enhancement. Front Pharmacol 2020; 11:1076. [PMID: 32903577 PMCID: PMC7438740 DOI: 10.3389/fphar.2020.01076] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 07/02/2020] [Indexed: 12/20/2022] Open
Abstract
Background Spinal cord ischemia-reperfusion injury (SCIRI) is the main complication after the repair of a complex thoracoabdominal aortic aneurysm. Many clinical treatments are not ideal due to the complex pathophysiological process of this injury. Baicalein (BA), a component derived from the roots of the herb Scutellaria baicalensis, may contribute to the successful treatment of ischemia/reperfusion injury. Purpose In the present study, the effects of BA on spinal cord ischemia-reperfusion injury and the underlying mechanisms were assessed. Materials and Methods Spinal cord ischemia was induced in C57BL/6 mice by blocking the aortic arch. Fifty-five mice were then randomly divided into four groups: Sham, SCIR+Vehicle, SCIR+BA, and SCIR+BA +3MA groups. At 0 and 24 h pre-SCIRI and at 24 h and 7 days post-SCIRI, evaluations with the Basso mouse scale (BMS) were performed. On postoperative 24 h, the spinal cord was harvested to assess pyroptosis, endoplasmic reticulum stress mediated apoptosis and autophagy. Results BA enhanced the functional recovery of spinal cord ischemia-reperfusion injury. In addition, BA attenuated pyroptosis, alleviated endoplasmic reticulum stress-mediated apoptosis, and activated autophagy. However, the effects of BA on the functional recovery of SCIRI, pyroptosis and endoplasmic reticulum stress-mediated apoptosis were reversed by the inhibition of autophagy. Conclusions In general, our findings revealed that BA enhances the functional recovery of spinal cord ischemia-reperfusion injury by dampening pyroptosis and alleviating endoplasmic reticulum stress-mediated apoptosis, which are mediated by the activation of autophagy.
Collapse
Affiliation(s)
- Chenyu Wu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
| | - Hui Xu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
| | - Jiafeng Li
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
| | - Xinli Hu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
| | - Xingyu Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
| | - Yijia Huang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
| | - Yao Li
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
| | - Sunren Sheng
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
| | - Yongli Wang
- Department of Orthopaedics, Huzhou Central Hospital, Huzhou, China
| | - Huazi Xu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
| | - Wenfei Ni
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
| | - Kailiang Zhou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
| |
Collapse
|