1
|
Sun J, Zeng Q, Wu Z, Huang L, Sun T, Ling C, Zhang B, Chen C, Wang H. Berberine inhibits NLRP3 inflammasome activation and proinflammatory macrophage M1 polarization to accelerate peripheral nerve regeneration. Neurotherapeutics 2024; 21:e00347. [PMID: 38570276 PMCID: PMC11067341 DOI: 10.1016/j.neurot.2024.e00347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 03/07/2024] [Accepted: 03/08/2024] [Indexed: 04/05/2024] Open
Abstract
Berberine (BBR) has demonstrated potent anti-inflammatory effects by modulating macrophage polarization. Nevertheless, the precise mechanisms through which berberine regulates post-injury inflammation within the peripheral nerve system remain elusive. This study seeks to elucidate the role of BBR and its underlying mechanisms in inflammation following peripheral nerve injury (PNI). Adult male C57BL/6J mice subjected to PNI were administered daily doses of berberine (0, 60, 120, 180, 240 mg/kg) via gavage from day 1 through day 28. Evaluation of the sciatic function index (SFI) and paw withdrawal threshold revealed that BBR dose-dependently enhanced both motor and sensory functions. Immunofluorescent staining for anti-myelin basic protein (anti-MBP) and anti-neurofilament-200 (anti-NF-200), along with histological staining comprising hematoxylin-eosin (HE), luxol fast blue (LFB), and Masson staining, demonstrated that BBR dose-dependently promoted structural regeneration. Molecular analyses including qRT-PCR, Western blotting, enzyme-linked immunosorbent assay (ELISA), and immunofluorescence confirmed that inactivation of the NLRP3 inflammasome by MCC950 shifted macrophages from the pro-inflammatory M1 phenotype to the anti-inflammatory M2 phenotype, while also impeding macrophage infiltration. Furthermore, BBR significantly downregulated the expression of the NLRP3 inflammasome and its associated molecules in macrophages, thereby mitigating NLRP3 inflammasome activation-induced macrophage M1 polarization and inflammation. In summary, BBR's neuroprotective effects were concomitant with the suppression of inflammation after PNI, achieved through the inhibition of NLRP3 inflammasome activation-induced macrophage M1 polarization.
Collapse
Affiliation(s)
- Jun Sun
- Department of Neurosurgery, The Third Affiliated Hospital of Sun Yat-sen University, No. 600 Tianhe Road, Guangzhou, 510630, Guangdong, PR China.
| | - Qiuhua Zeng
- Department of Radiology, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, Guangdong, PR China
| | - Zhimin Wu
- Department of Neurosurgery, The Third Affiliated Hospital of Sun Yat-sen University, No. 600 Tianhe Road, Guangzhou, 510630, Guangdong, PR China
| | - Lixin Huang
- Department of Neurosurgery, The Third Affiliated Hospital of Sun Yat-sen University, No. 600 Tianhe Road, Guangzhou, 510630, Guangdong, PR China
| | - Tao Sun
- Department of Neurosurgery, The Third Affiliated Hospital of Sun Yat-sen University, No. 600 Tianhe Road, Guangzhou, 510630, Guangdong, PR China
| | - Cong Ling
- Department of Neurosurgery, The Third Affiliated Hospital of Sun Yat-sen University, No. 600 Tianhe Road, Guangzhou, 510630, Guangdong, PR China
| | - Baoyu Zhang
- Department of Neurosurgery, The Third Affiliated Hospital of Sun Yat-sen University, No. 600 Tianhe Road, Guangzhou, 510630, Guangdong, PR China
| | - Chuan Chen
- Department of Neurosurgery, The Third Affiliated Hospital of Sun Yat-sen University, No. 600 Tianhe Road, Guangzhou, 510630, Guangdong, PR China.
| | - Hui Wang
- Department of Neurosurgery, The Third Affiliated Hospital of Sun Yat-sen University, No. 600 Tianhe Road, Guangzhou, 510630, Guangdong, PR China.
| |
Collapse
|
2
|
Cai WW, Gao Y, Cheng JW, Yu Y, Zong SY, Li YH, Wang Y, Song YN, Mao XT, Guan J, Xu L, Zhang DY, Li K, Wei F. Berberine modulates the immunometabolism and differentiation of CD4 + T cells alleviating experimental arthritis by suppression of M1-exo-miR155. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 124:155255. [PMID: 38181528 DOI: 10.1016/j.phymed.2023.155255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 09/29/2023] [Accepted: 12/01/2023] [Indexed: 01/07/2024]
Abstract
BACKGROUND The inflammatory cascade mediated by macrophages and T cells is considered to be an important factor in promoting the progression of rheumatoid arthritis (RA). Our previous study found that berberine (BBR) can therapeutically impact adjuvant arthritis (AA) in rats through the regulation of macrophage polarization and the balance of Th17/Treg. However, whether BBR's effects on CD4+T cells response are related to its suppression of M1 macrophage still unclear. PURPOSE The study aimed to estimate the mechanism of BBR in regulating the immunometabolism and differentiation of CD4+T cells are related to exosome derived from M1-macrophage (M1-exo). STUDY-DESIGN/METHODS Mice model of collagen-induced arthritis (CIA) was established to investigate the antiarthritic effect of BBR was related with regulation of M1-exo to balance T cell subsets. Bioinformatics analysis using the GEO database and meta-analysis. In vitro, we established the co-culture system involving M1-exo and CD4+ T cells to examine whether BBR inhibits CD4+T cell activation and differentiation by influencing M1-exo-miR155. Exosome was characterized using transmission electron microscopy and western blot analysis, macrophage and CD4+T cell subpopulation were detected by flow cytometry. Further, the metabolic profiles of CD4+T cells were assessed by ECAR, OCR, and the level of glucose, lactate, intracellular ATP. RESULT BBR reinstates CD4+ T cell homeostasis and reduces miR155 levels in both M1-exo and CD4+ T cells obtained from mice with CIA. In vitro, we found exosomes are indispensable for M1-CM on T lymphocyte activation and differentiation. BBR reversed M1-exo facilitating the activation and differentiation of CD4+T cells. Furthermore, BBR reversed glycolysis reprogramming of CD4+T cells induced by M1-exo, while these regulation effects were significantly weakened by miR155 mimic. CONCLUSION The delivery of miR-155 by M1-exo contributes to CD4+ T cell immunometabolism dysfunction, a process implicated in the development of RA. The anti-arthritic effect of BBR is associated with the suppression of glycolysis and the disruption of CD4+ T cell subsets balance, achieved by reducing the transfer of M1-exo-miR155 into T cells.
Collapse
Affiliation(s)
- Wei-Wei Cai
- School of Pharmacy, Bengbu Medical College, No.2600, Donghai Avenue, Bengbu, Anhui, China
| | - Yi Gao
- School of Pharmacy, Bengbu Medical College, No.2600, Donghai Avenue, Bengbu, Anhui, China
| | - Jing-Wen Cheng
- School of Pharmacy, Bengbu Medical College, No.2600, Donghai Avenue, Bengbu, Anhui, China
| | - Yun Yu
- School of Pharmacy, Bengbu Medical College, No.2600, Donghai Avenue, Bengbu, Anhui, China
| | - Shi-Ye Zong
- School of Pharmacy, Bengbu Medical College, No.2600, Donghai Avenue, Bengbu, Anhui, China
| | - Yu-Hui Li
- School of Pharmacy, Bengbu Medical College, No.2600, Donghai Avenue, Bengbu, Anhui, China
| | - Ying Wang
- School of Pharmacy, Bengbu Medical College, No.2600, Donghai Avenue, Bengbu, Anhui, China; Biochemical Engineering Center of Anhui, Bengbu, Anhui, China
| | - Yi-Ning Song
- School of Pharmacy, Bengbu Medical College, No.2600, Donghai Avenue, Bengbu, Anhui, China; Biochemical Engineering Center of Anhui, Bengbu, Anhui, China
| | - Xiao-Ting Mao
- School of Pharmacy, Bengbu Medical College, No.2600, Donghai Avenue, Bengbu, Anhui, China
| | - Jie Guan
- School of Pharmacy, Bengbu Medical College, No.2600, Donghai Avenue, Bengbu, Anhui, China
| | - Long Xu
- School of Pharmacy, Bengbu Medical College, No.2600, Donghai Avenue, Bengbu, Anhui, China
| | - Die-Yu Zhang
- School of Pharmacy, Bengbu Medical College, No.2600, Donghai Avenue, Bengbu, Anhui, China
| | - Kai Li
- School of Pharmacy, Bengbu Medical College, No.2600, Donghai Avenue, Bengbu, Anhui, China
| | - Fang Wei
- School of Pharmacy, Bengbu Medical College, No.2600, Donghai Avenue, Bengbu, Anhui, China; Biochemical Engineering Center of Anhui, Bengbu, Anhui, China.
| |
Collapse
|
3
|
Li Y, Teng M, Yang H, Li S, Liu X, Zhang J, Qiu Y, Li L. Impact of macrophage differentiation on hematopoietic function enhancement by Shenzhu ErKang Syrup. Aging (Albany NY) 2024; 16:169-190. [PMID: 38175693 PMCID: PMC10817372 DOI: 10.18632/aging.205358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 11/16/2023] [Indexed: 01/05/2024]
Abstract
Shenzhu Erkang Syrup (SZEK) is a traditional Chinese medicine that improves spleen and stomach function, tonifying the Qi and activating the blood; however, its therapeutic effects in hematopoietic dysfunction and their underlying mechanism remain unexplored. In this study, mice were given cyclophosphamide (100 mg/kg) by intraperitoneal injections for three days to produce hematopoietic dysfunction model. We investigated the hematopoietic effect and mechanism of SZEK in mice with hematopoietic dysfunction via histopathological examination, flow cytometry, enzyme-linked immunosorbent assay, and Western blotting combined with intestinal flora and serum metabolomics analysis. In mice with hematopoietic dysfunction, SZEK (gavage, 0.3 mL/25 g) alleviated pathological damage to the bone marrow and spleen; increased the number of naïve cells (Lin-), hematopoietic stem cells (Lin-Sca-1+c-Kit+), long-term self-renewing hematopoietic stem cells (Lin-Sca-1+c-Kit+CD48-CD150+), B lymphocytes (CD45+CD19+), and macrophages (CD11b+F4/80+) in the bone marrow; and reduced inflammation. Preliminary intestinal flora and serum metabolome analyses indicated that the pro-hematopoietic mechanism of SZEK was associated with macrophage differentiation. Further validation revealed that SZEK promoted hematopoiesis by decreasing the number of M2 macrophages and inhibiting the secretion of negative hematopoietic regulatory factors in mice with hematopoietic dysfunction.
Collapse
Affiliation(s)
- Yuan Li
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, College of Plant Protection, Jilin Agricultural University, Changchun 130118, Jilin, China
- School of Life Sciences, Jilin University, Changchun 130012, Jilin, China
| | - Meng Teng
- School of Life Sciences, Jilin University, Changchun 130012, Jilin, China
| | - Hongxin Yang
- School of Life Sciences, Jilin University, Changchun 130012, Jilin, China
| | - Siyu Li
- School of Life Sciences, Jilin University, Changchun 130012, Jilin, China
| | - Xin Liu
- School of Life Sciences, Jilin University, Changchun 130012, Jilin, China
| | - Jicheng Zhang
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Ye Qiu
- Department of Pharmacy, Changchun University of Chinese Medicine, Changchun 130012, Jilin, China
| | - Lanzhou Li
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, College of Plant Protection, Jilin Agricultural University, Changchun 130118, Jilin, China
- School of Life Sciences, Jilin University, Changchun 130012, Jilin, China
| |
Collapse
|
4
|
Promsuwan S, Sawamoto K, Xu L, Nagashimada M, Nagata N, Takiyama Y. A natural Nrf2 activator glucoraphanin improves hepatic steatosis in high-fat diet-induced obese male mice associated with AMPK activation. Diabetol Int 2024; 15:86-98. [PMID: 38264234 PMCID: PMC10800329 DOI: 10.1007/s13340-023-00658-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/09/2023] [Indexed: 01/25/2024]
Abstract
Genetic and pharmacological activation of the transcription factor nuclear factor, erythroid derived 2, like 2 (Nrf2) alleviates high-fat diet (HFD)-induced obesity in mice; however, synthetic Nrf2 activators are not clinically available due to safety concerns. Dietary glucoraphanin (GR), a naturally occurring compound found in cruciferous vegetables that activates Nrf2 and induces its target antioxidant genes. We previously demonstrated that GR increased thermogenesis and mitigated HFD-induced obesity in lean healthy mice. In this study, we investigated the therapeutic effects of GR on pre-existing obesity and associated metabolic disorders, such as hepatic steatosis, with or without low-fat dietary intervention. Eight-week-old male C57BL/6J mice were fed an HFD for 9 weeks to induce obesity. Subsequently, these obese mice were fed either the HFD or a normal chow diet, supplemented with or without GR, for an additional 11 weeks. GR supplementation did not decrease the body weight of HFD-fed mice; however, it significantly reduced plasma alanine aminotransferase and aspartate aminotransferase levels and hepatic triglyceride accumulation. These improvements in liver damage by GR were associated with decreased expression levels of fatty acid synthesis genes and proinflammatory chemokine genes, suppressed c-Jun N-terminal kinase activation, and reduced proinflammatory phenotypes of macrophages in the liver. Moreover, metabolome analysis identified increased hepatic levels of adenosine 5'-monophosphate (AMP) in HFD-GR mice compared with those in HFD mice, which agreed with increased phosphorylation levels of AMP-activated protein kinase. Our results show that GR may have a therapeutic potential for treating obesity-associated hepatic steatosis. Supplementary Information The online version contains supplementary material available at 10.1007/s13340-023-00658-6.
Collapse
Affiliation(s)
- Suratsawadee Promsuwan
- Division of Diabetes, Department of Internal Medicine, Asahikawa Medical University, 2-1-1-1 Midorigaoka Higashi, Asahikawa, 078-8510 Japan
| | - Kazuki Sawamoto
- Division of Diabetes, Department of Internal Medicine, Asahikawa Medical University, 2-1-1-1 Midorigaoka Higashi, Asahikawa, 078-8510 Japan
| | - Liang Xu
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035 Zhejiang China
| | - Mayumi Nagashimada
- Division of Health Sciences, Graduate School of Medical Science, Kanazawa University, Kanazawa, 920-0942 Japan
| | - Naoto Nagata
- Department of Cellular and Molecular Function Analysis, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, 920-8640 Japan
| | - Yumi Takiyama
- Division of Diabetes, Department of Internal Medicine, Asahikawa Medical University, 2-1-1-1 Midorigaoka Higashi, Asahikawa, 078-8510 Japan
| |
Collapse
|
5
|
Wang X, Zhou L, Wang H, Chen W, Jiang L, Ming G, Wang J. Metabolic reprogramming, autophagy, and ferroptosis: Novel arsenals to overcome immunotherapy resistance in gastrointestinal cancer. Cancer Med 2023; 12:20573-20589. [PMID: 37860928 PMCID: PMC10660574 DOI: 10.1002/cam4.6623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 09/05/2023] [Accepted: 09/29/2023] [Indexed: 10/21/2023] Open
Abstract
BACKGROUND Gastrointestinal cancer poses a serious health threat owing to its high morbidity and mortality. Although immune checkpoint blockade (ICB) therapies have achieved meaningful success in most solid tumors, the improvement in survival in gastrointestinal cancers is modest, owing to sparse immune response and widespread resistance. Metabolic reprogramming, autophagy, and ferroptosis are key regulators of tumor progression. METHODS A literature review was conducted to investigate the role of the metabolic reprogramming, autophagy, and ferroptosis in immunotherapy resistance of gastrointestinal cancer. RESULTS Metabolic reprogramming, autophagy, and ferroptosis play pivotal roles in regulating the survival, differentiation, and function of immune cells within the tumor microenvironment. These processes redefine the nutrient allocation blueprint between cancer cells and immune cells, facilitating tumor immune evasion, which critically impacts the therapeutic efficacy of immunotherapy for gastrointestinal cancers. Additionally, there exists profound crosstalk among metabolic reprogramming, autophagy, and ferroptosis. These interactions are paramount in anti-tumor immunity, further promoting the formation of an immunosuppressive microenvironment and resistance to immunotherapy. CONCLUSIONS Consequently, it is imperative to conduct comprehensive research on the roles of metabolic reprogramming, autophagy, and ferroptosis in the resistance of gastrointestinal tumor immunotherapy. This understanding will illuminate the clinical potential of targeting these pathways and their regulatory mechanisms to overcome immunotherapy resistance in gastrointestinal cancers.
Collapse
Affiliation(s)
- Xiangwen Wang
- Department of General SurgeryThe First Hospital of Lanzhou UniversityLanzhouChina
| | - Liwen Zhou
- Department of StomatologyThe First Hospital of Lanzhou UniversityLanzhouChina
| | - Hongpeng Wang
- Department of General SurgeryThe First Hospital of Lanzhou UniversityLanzhouChina
| | - Wei Chen
- Department of General SurgeryThe First Hospital of Lanzhou UniversityLanzhouChina
| | - Lei Jiang
- Department of General SurgeryThe First Hospital of Lanzhou UniversityLanzhouChina
| | - Guangtao Ming
- Department of General SurgeryThe First Hospital of Lanzhou UniversityLanzhouChina
| | - Jun Wang
- Department of General SurgeryThe First Hospital of Lanzhou UniversityLanzhouChina
| |
Collapse
|
6
|
Cheng JW, Yu Y, Zong SY, Cai WW, Wang Y, Song YN, Xian H, Wei F. Berberine ameliorates collagen-induced arthritis in mice by restoring macrophage polarization via AMPK/mTORC1 pathway switching glycolytic reprogramming. Int Immunopharmacol 2023; 124:111024. [PMID: 37827054 DOI: 10.1016/j.intimp.2023.111024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/29/2023] [Accepted: 10/03/2023] [Indexed: 10/14/2023]
Abstract
Dysfunction of macrophage polarization majorly contributes to the progression of rheumatoid arthritis (RA). Polarization and functions of activated macrophages are closely associated with the reprogramming of intracellular metabolisms. Previously, we demonstrated that the anti-arthritis effect of berberine (BBR) in rats with adjuvant-induced arthritis (AA) may be related to AMP-activated protein kinase (AMPK) activation (a key regulator in the biological energy metabolism), and balanced macrophage polarization. However, the specific molecular mechanism of BBR in macrophage metabolism is yet to be elucidated. In this study, we clarified that BBR ameliorated articular inflammation and restored M1/M2 ratio in collagen-induced arthritis (CIA) mice in an AMPK-dependent manner. Mechanistically, BBR reversed the effects of mTORC1 agonist leucine (Leu) on regulating macrophage polarization through activation of AMPK to switch glycolytic reprogramming. Furthermore, BBR inhibition of mTORC1 rely on activation of AMPK to phosphorylate raptor and TSC2 instead of destroying its structure. Our study revealed that the activation of AMPK is required for the BBR-mediated anti-arthritis effect by downregulating mTORC1/HIF-1α and inhibiting the glycolysis in M1 macrophages.
Collapse
Affiliation(s)
- Jing-Wen Cheng
- School of Pharmacy, Bengbu Medical College, No. 2600, Donghai Avenue, Bengbu, Anhui, China
| | - Yun Yu
- School of Pharmacy, Bengbu Medical College, No. 2600, Donghai Avenue, Bengbu, Anhui, China
| | - Shi-Ye Zong
- School of Pharmacy, Bengbu Medical College, No. 2600, Donghai Avenue, Bengbu, Anhui, China
| | - Wei-Wei Cai
- School of Pharmacy, Bengbu Medical College, No. 2600, Donghai Avenue, Bengbu, Anhui, China
| | - Ying Wang
- School of Pharmacy, Bengbu Medical College, No. 2600, Donghai Avenue, Bengbu, Anhui, China; Biochemical Engineering Center of Anhui, Bengbu, Anhui, China
| | - Yi-Ning Song
- School of Pharmacy, Bengbu Medical College, No. 2600, Donghai Avenue, Bengbu, Anhui, China; Biochemical Engineering Center of Anhui, Bengbu, Anhui, China
| | - Hao Xian
- School of Pharmacy, Bengbu Medical College, No. 2600, Donghai Avenue, Bengbu, Anhui, China
| | - Fang Wei
- School of Pharmacy, Bengbu Medical College, No. 2600, Donghai Avenue, Bengbu, Anhui, China; Biochemical Engineering Center of Anhui, Bengbu, Anhui, China.
| |
Collapse
|
7
|
Wang Y, Xu Y, Tan J, Ye J, Cui W, Hou J, Liu P, Li J, Wang S, Zhao Q. Anti-inflammation is an important way that Qingre-Huazhuo-Jiangsuan recipe treats acute gouty arthritis. Front Pharmacol 2023; 14:1268641. [PMID: 37881185 PMCID: PMC10597652 DOI: 10.3389/fphar.2023.1268641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 09/21/2023] [Indexed: 10/27/2023] Open
Abstract
Background: Acute gouty arthritis (AGA) significantly impairs patients' quality of life. Currently, existing therapeutic agents exhibit definite efficacy but also lead to serious adverse reactions. Therefore, it is essential to develop highly efficient therapeutic agents with minimal adverse reactions, especially within traditional Chinese medicine (TCM). Additionally, food polyphenols have shown potential in treating various inflammatory diseases. The Qingre-Huazhuo-Jiangsuan-Recipe (QHJR), a modification of Si-Miao-San (SMS), has emerged as a TCM remedy for AGA with no reported side effects. Recent research has also highlighted a strong genetic link to gout. Methods: The TCM System Pharmacology (TCMSP) database was used to collect the main chemical components of QHJR and AGA-related targets for predicting the metabolites in QHJR. HPLC-Q-Orbitrap-MS was employed to identify the ingredients of QHJR. The collected metabolites were then used to construct a Drugs-Targets Network in Cytoscape software, ranked based on their "Degree" of significance. Differentially expressed genes (DEGs) were screened in the Gene Expression Omnibus (GEO) database using GEO2R online analysis. Subsequently, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed. The DEGs were utilized to construct a Protein-Protein Interaction (PPI) Network via the STRING database. In vivo experimental validation was conducted using colchicine, QHJR, rapamycin (RAPA), and 3-methyladenine (3-MA) as controls to observe QHJR's efficacy in AGA. Synovial tissues from rats were collected, and qRT-PCR and Western blot assays were employed to investigate Ampk-related factors (Ampk, mTOR, ULK1), autophagy-related factors (Atg5, Atg7, LC3, p62), and inflammatory-related factors (NLRP3). ELISA assays were performed to measure inflammatory-related factor levels (IL-6, IL-1β, TNF-α), and H&E staining was used to examine tissue histology. Results: Network analysis screened out a total of 94 metabolites in QHJR for AGA. HPLC-Q-Orbitrap-MS analysis identified 27 of these metabolites. Notably, five metabolites (Neochlorogenic acid, Caffeic acid, Berberine, Isoliquiritigenin, Formononetin) were not associated with any individual herbal component of QHJR in TCMSP database, while six metabolites (quercetin, luteolin, formononetin, naringenin, taxifolin, diosgenin) overlapped with the predicted results from the previous network analysis. Further network analysis highlighted key components, such as Caffeic acid, cis-resveratrol, Apigenin, and Isoliquiritigenin. Other studies have found that their treatment of AGA is achieved through reducing inflammation, consistent with this study, laying the foundation for the mechanism study of QHJR against AGA. PPI analysis identified TNF, IL-6, and IL-1β as hub genes. GO and KEGG analyses indicated that anti-inflammation was a key mechanism in AGA treatment. All methods demonstrated that inflammatory expression increased in the Model group but was reversed by QHJR. Additionally, autophagy-related expression increased following QHJR treatment. The study suggested that AMPKα and p-AMPKα1 proteins were insensitive to 3 MA and RAPA, implying that AMPK may not activate autophagy directly but through ULK1 and mTOR. Conclusion: In conclusion, this study confirms the effectiveness of QHJR, a modified formulation of SMS (a classic traditional Chinese medicine prescription for treating gout), against AGA. QHJR, as a TCM formula, offers advantages such as minimal safety concerns and potential long-term use. The study suggests that the mechanism by which QHJR treats AGA may involve the activation of the AMPK/mTOR/ULK1 pathway, thereby regulating autophagy levels, reducing inflammation, and alleviating AGA. These findings provide new therapeutic approaches and ideas for the clinical treatment of AGA.
Collapse
Affiliation(s)
- Yazhuo Wang
- Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yang Xu
- Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jingrui Tan
- Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jiaxue Ye
- Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Weizhen Cui
- Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jie Hou
- Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Peiyu Liu
- Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jianwei Li
- Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shiyuan Wang
- Institute of Nursing, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Qingyang Zhao
- Institute of Nursing, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
8
|
Li M, Tian F, Guo J, Li X, Ma L, Jiang M, Zhao J. Therapeutic potential of Coptis chinensis for arthritis with underlying mechanisms. Front Pharmacol 2023; 14:1243820. [PMID: 37637408 PMCID: PMC10450980 DOI: 10.3389/fphar.2023.1243820] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/01/2023] [Indexed: 08/29/2023] Open
Abstract
Arthritis is a common degenerative disease of joints, which has become a public health problem affecting human health, but its pathogenesis is complex and cannot be eradicated. Coptis chinensis (CC) has a variety of active ingredients, is a natural antibacterial and anti-inflammatory drug. In which, berberine is its main effective ingredient, and has good therapeutic effects on rheumatoid arthritis (RA), osteoarthritis (OA), gouty arthritis (GA). RA, OA and GA are the three most common types of arthritis, but the relevant pathogenesis is not clear. Therefore, molecular mechanism and prevention and treatment of arthritis are the key issues to be paid attention to in clinical practice. In general, berberine, palmatine, coptisine, jatrorrhizine, magnoflorine and jatrorrhizine hydrochloride in CC play the role in treating arthritis by regulating Wnt1/β-catenin and PI3K/AKT/mTOR signaling pathways. In this review, active ingredients, targets and mechanism of CC in the treatment of arthritis were expounded, and we have further explained the potential role of AHR, CAV1, CRP, CXCL2, IRF1, SPP1, and IL-17 signaling pathway in the treatment of arthritis, and to provide a new idea for the clinical treatment of arthritis by CC.
Collapse
Affiliation(s)
- Mengyuan Li
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| | - Fei Tian
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jinling Guo
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| | - Xiankuan Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lin Ma
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Miaomiao Jiang
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jing Zhao
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
- Department of Geriatric, Fourth Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
9
|
Eo SJ, Leem YH. Effects of exercise intensity on the reactive astrocyte polarization in the medial prefrontal cortex. Phys Act Nutr 2023; 27:19-24. [PMID: 37583068 PMCID: PMC10440185 DOI: 10.20463/pan.2023.0014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/26/2023] [Accepted: 06/29/2023] [Indexed: 08/17/2023] Open
Abstract
PURPOSE Physical exercise contributes to neuroplasticity by promoting cognitive functions, such as learning and memory. The astrocytic phenotype is closely associated with synaptic plasticity. This study aimed to determine whether astrocyte polarization and synaptic alterations in the medial prefrontal cortex (mPFC) are affected differently by high- and moderate-intensity exercise. METHODS Mice were subjected to moderate-(MIE) and high-intensity treadmill running (HIE). Memory capacity was assessed using the novel object recognition and modified Y-maze tests. For immunohistochemistry, c-Fos-positive cells were counted in the mPFC. Using western blot analysis, astrocyte phenotype markers were quantified in whole-cell lysates, and synaptic molecules were determined in the synaptosomal fraction. RESULTS Exercise lengthened the approach time to novel objects regardless of intensity in the NOR test, whereas MIE only improved spatial memory. Exercise induced c-Fos expression in the anterior cingulate cortex (ACC) and c-Fos-positive cells were higher in MIE than in HIE in the ACC area. In the prelimbic/infralimbic cortex region, the number of c-Fos-positive cells were enhanced in MIE and decreased in HIE mice. The A1 astrocyte marker (C3) was increased in HIE mice, while the A2 astrocyte markers were enhanced in exercised mice, regardless of the intensity. In the synaptosomal fraction, synaptic proteins were elevated by exercise regardless of intensity. CONCLUSION These results suggest that exercise intensity affects neuronal plasticity by modulating the reactive state of astrocytes in the mPFC.
Collapse
Affiliation(s)
- Su-Ju Eo
- Department of Beauty Health Design, Open Cyber University of Korea, Seoul, Republic of Korea
| | - Yea-Hyun Leem
- Department of Molecular Medicine and Inflammation-Cancer Microenvironment Research Center, School of Medicine, Ewha Womans University, Seoul, Republic of Korea
| |
Collapse
|
10
|
Li L, Mou X, Xie H, Zhang A, Li J, Wang R, Seid A, Tang LY, Wang L, Leung PC, Spielmann H, Wang CC, Fan X. In vitro tests to evaluate embryotoxicity and irritation of Chinese herbal medicine (Pentaherbs formulation) for atopic dermatitis. JOURNAL OF ETHNOPHARMACOLOGY 2023; 305:116149. [PMID: 36632857 DOI: 10.1016/j.jep.2023.116149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/30/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Atopic dermatitis (AD) is a common chronic inflammatory skin disorder and its prevalence is increasing in the last few decades. No treatment can cure the condition. Pregnancy often worsens the clinical manifestation. There are considerable interests in Chinese Herbal Medicine (CHM) as an alternative treatment for AD. A well tolerated CHM formula (Pentaherbs formulation, PHF) has been proven efficacious in improving life quality and reducing topical corticosteroid use in children with moderate-to-severe AD. However, safety data of PHF are not available. AIM OF THE STUDY Our study aimed to evaluate the safety of PHF and its 5 individual herbal extracts, including embryotoxicity by Embryonic Stem Cell Test (EST) and irritation by Skin Irritation Test (SIT). MATERIALS AND METHODS Quality of 5 herbal extracts of PHF was confirmed by chromatography. In EST, mouse embryonic stem cell line (D3) and mouse fibroblast cell line (3T3) were used to study potential embryotoxicity. Three endpoints were assessed by concentration-response curves after 10 days' culture: 50% inhibition of D3 differentiation into beating cardiomyocytes (ID50D3), 50% cytotoxic effects on D3 (IC50D3) and on fibroblasts (IC503T3). A biostatistically based prediction model (PM) was applied to predict the embryotoxic potentials of each CHM. In SIT, epidermis equivalent commercially available kits (EpiDerm™) were used, and concentration-viability curves were obtained by MTT assay to detect skin irritations of each CHM. RESULTS Chemical authentication confirmed that 5 test herbal extracts contained their main active compounds. EST results indicated that the formula PHF and its individual CHMs were non-embryotoxic, except one CHM, Amur Corktree Bark (Huang Bai, Phellodendron chinense C.K.Schneid), was weakly embryotoxic. SIT results showed that cell viability was above 50% after treatment with different concentrations of all tested CHMs. CONCLUSIONS Our in vitro tests provided preliminary evidence for safety of the formula PHF in embryonic stem cell test and skin irritation model, but PHF shall be cautiously used in pregnant women with AD. Further studies are needed to support its clinical application as an alternative treatment for AD, especially to the patients who plan for pregnancy or at lactation stages.
Collapse
Affiliation(s)
- Lu Li
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China; Innovation Center in Zhejiang University, State Key Laboratory of Component-Based Chinese Medicine, Hangzhou, 310058, China; Future Health Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, 314100, China; Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine; Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, 310016, China; Department of Obstetrics and Gynaecology; Li Ka Shing Institute of Health Sciences; School of Biomedical Sciences; and Sichuan University-Chinese University of Hong Kong Joint Reproductive Medicine Laboratory, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong; Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong.
| | - Xuan Mou
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China; Innovation Center in Zhejiang University, State Key Laboratory of Component-Based Chinese Medicine, Hangzhou, 310058, China.
| | - Hongliang Xie
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China; Innovation Center in Zhejiang University, State Key Laboratory of Component-Based Chinese Medicine, Hangzhou, 310058, China.
| | - Aolin Zhang
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China; Innovation Center in Zhejiang University, State Key Laboratory of Component-Based Chinese Medicine, Hangzhou, 310058, China.
| | - Junwei Li
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China; Innovation Center in Zhejiang University, State Key Laboratory of Component-Based Chinese Medicine, Hangzhou, 310058, China.
| | - Rongyun Wang
- College of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - André Seid
- Institut für Pharmazie (Pharmakologie und Toxikologie), Freie Universität Berlin, Berlin, Germany.
| | - Ling Yin Tang
- Department of Obstetrics and Gynaecology; Li Ka Shing Institute of Health Sciences; School of Biomedical Sciences; and Sichuan University-Chinese University of Hong Kong Joint Reproductive Medicine Laboratory, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong.
| | - Ling Wang
- Hangzhou TCM Hospital of Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Ping Chung Leung
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong.
| | - Horst Spielmann
- Institut für Pharmazie (Pharmakologie und Toxikologie), Freie Universität Berlin, Berlin, Germany.
| | - Chi Chiu Wang
- Department of Obstetrics and Gynaecology; Li Ka Shing Institute of Health Sciences; School of Biomedical Sciences; and Sichuan University-Chinese University of Hong Kong Joint Reproductive Medicine Laboratory, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong; College of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Xiaohui Fan
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China; Innovation Center in Zhejiang University, State Key Laboratory of Component-Based Chinese Medicine, Hangzhou, 310058, China; Future Health Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, 314100, China.
| |
Collapse
|
11
|
Leem YH, Park JS, Park JE, Kim DY, Kim HS. Suppression of neuroinflammation and α-synuclein oligomerization by rotarod walking exercise in subacute MPTP model of Parkinson's disease. Neurochem Int 2023; 165:105519. [PMID: 36931345 DOI: 10.1016/j.neuint.2023.105519] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 02/27/2023] [Accepted: 03/12/2023] [Indexed: 03/17/2023]
Abstract
Parkinson's disease (PD) belongs to an α-synucleinopathy and manifests motor dysfunction attributed to nigrostriatal dopaminergic degeneration. In clinical practice, the beneficial role of physical therapy such as motor skill learning training has been recognized in PD-linked motor defects. Nevertheless, the disease-modifying effects of motor skill learning training on PD-related pathology remain unclear. Here, we investigated the disease-modifying effects of rotarod walking exercise (RWE), a modality of motor skill learning training, in a subacute 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD. In motor function and dopaminergic degeneration, RWE improved MPTP-induced deficits. In addition, RWE enhanced the expression of neurotrophic factors BDNF/GDNF, PGC1-α, Nurr1, and p-AMPK, thereby recovering dopaminergic neuronal cell death. Moreover, RWE inhibited microglial activation and the expression of pro-inflammatory markers, such as p-IκBα, iNOS, IL-1β, TNF-α, and cathepsin D, while elevating anti-inflammatory IL-10 and TGF-β. RWE also decreased oxidative stress markers in the substantia nigra, such as 4-HNE and 8-OHdG-positive cells, while increasing Nrf2-controlled antioxidant enzymes. Regarding the effect of RWE on α-synuclein, it reduced the monomer/oligomer forms of α-synuclein and phosphorylation at serine 129. Further mechanistic studies revealed that RWE suppressed the expression of matrix metalloproteinase-3 and p-GSK3β (Y216), which play key roles in α-synuclein aggregation. These data collectively suggest that inhibition of neuroinflammation and α-synuclein oligomerization by RWE may contribute to the improvement of PD pathology.
Collapse
Affiliation(s)
- Yea-Hyun Leem
- Department of Molecular Medicine, Inflammation-Cancer Microenvironment Research Center, School of Medicine, Ewha Womans University, Seoul, South Korea.
| | - Jin-Sun Park
- Department of Molecular Medicine, Inflammation-Cancer Microenvironment Research Center, School of Medicine, Ewha Womans University, Seoul, South Korea.
| | - Jung-Eun Park
- Department of Molecular Medicine, Inflammation-Cancer Microenvironment Research Center, School of Medicine, Ewha Womans University, Seoul, South Korea.
| | - Do-Youn Kim
- Department of Molecular Medicine, Inflammation-Cancer Microenvironment Research Center, School of Medicine, Ewha Womans University, Seoul, South Korea.
| | - Hee-Sun Kim
- Department of Molecular Medicine, Inflammation-Cancer Microenvironment Research Center, School of Medicine, Ewha Womans University, Seoul, South Korea; Department of Brain & Cognitive Sciences, Ewha Womans University, Seoul, South Korea.
| |
Collapse
|
12
|
Feng L, Luo G, Li Y, Zhang C, Liu Y, Liu Y, Chen H, He D, Zhu Y, Gan L. Curcumin-dependent phenotypic transformation of microglia mediates resistance to pseudorabies-induced encephalitis. Vet Res 2023; 54:25. [PMID: 36918933 PMCID: PMC10015794 DOI: 10.1186/s13567-023-01149-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 01/10/2023] [Indexed: 03/15/2023] Open
Abstract
Pseudorabies virus (PRV) causes viral encephalitis, a devastating disease with high mortality worldwide. Curcumin (CUR) can reduce inflammatory damage by altering the phenotype of microglia; however, whether and how these changes mediate resistance to PRV-induced encephalitis is still unclear. In this study, BV2 cells were infected with/without PRV for 24 h and further treated with/without CUR for 24 h. The results indicated that CUR promoted the polarization of PRV-infected BV2 cells from the M1 phenotype to the M2 phenotype and reversed PRV-induced mitochondrial dysfunction. Furthermore, M1 BV2 cell secretions induced signalling pathways leading to apoptosis in PC-12 neuronal cells, and this effect was abrogated by the secretions of M2 BV2 cells. RNA sequencing and bioinformatics analysis predicted that this phenotypic shift may be due to changes in energy metabolism. Furthermore, Western blot analysis showed that CUR inhibited the increase in AMP-activated protein kinase (AMPK) phosphorylation, glycolysis, and triacylglycerol synthesis and the reduction in oxidative phosphorylation induced by PRV infection. Moreover, the ATP levels in M2 BV2 cells were higher than those in M1 cells. Furthermore, CUR prevented the increase in mortality, elevated body temperature, slowed growth, nervous system excitation, brain tissue congestion, vascular cuffing, and other symptoms of PRV-induced encephalitis in vivo. Thus, this study demonstrated that CUR protected against PRV-induced viral encephalitis by switching the phenotype of BV2 cells, thereby protecting neurons from inflammatory injury, and this effect was mediated by improving mitochondrial function and the AMPK/NF-κB p65-energy metabolism-related pathway.
Collapse
Affiliation(s)
- Luqiu Feng
- College of Veterinary Medicine, Southwest University, Chongqing, 402460, China
| | - Guodong Luo
- College of Veterinary Medicine, Southwest University, Chongqing, 402460, China
| | - Yuhang Li
- College of Veterinary Medicine, Southwest University, Chongqing, 402460, China
| | - Chen Zhang
- College of Veterinary Medicine, Southwest University, Chongqing, 402460, China
| | - Yuxuan Liu
- College of Veterinary Medicine, Southwest University, Chongqing, 402460, China
| | - Yanqing Liu
- College of Veterinary Medicine, Southwest University, Chongqing, 402460, China
| | - Hongyue Chen
- Chongqing General Station of Animal Husbandry Technology Promotion, Chongqing, 401120, China
| | - Daoling He
- Chongqing General Station of Animal Husbandry Technology Promotion, Chongqing, 401120, China
| | - Yan Zhu
- Chongqing General Station of Animal Husbandry Technology Promotion, Chongqing, 401120, China
| | - Ling Gan
- College of Veterinary Medicine, Southwest University, Chongqing, 402460, China.
| |
Collapse
|
13
|
Xiong K, Deng J, Yue T, Hu W, Zeng X, Yang T, Xiao T. Berberine promotes M2 macrophage polarisation through the IL-4-STAT6 signalling pathway in ulcerative colitis treatment. Heliyon 2023; 9:e14176. [PMID: 36923882 PMCID: PMC10009548 DOI: 10.1016/j.heliyon.2023.e14176] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 02/17/2023] [Accepted: 02/23/2023] [Indexed: 03/05/2023] Open
Abstract
Aim This study focusses on the anti-inflammatory and immune-modulatory roles of berberine (BBR) in ulcerative colitis (UC) treatment. Additionally, the underlying mechanisms of BBR were systematically explored. Methods A 3% (w/v) dextran sodium sulphate (DSS) solution was used for establishing the mice UC model. M2 macrophage polarisation was induced in RAW 264.7 cells using interleukin 4 (IL-4), whereas M1 macrophage polarisation was induced using lipopolysaccharide. Colon length, colon mucosa damage index (CMDI), and haematoxylin-eosin (HE) staining were used to evaluate colon damage induced by DSS. M1/M2 macrophages in the colon tissue were identified using immunofluorescence (IF) staining with CD86+ or CD163+. M1/M2 macrophages in the abdomen were examined using flow cytometry. An enzyme-linked immunosorbent assay was conducted to identify M1/M2 macrophage supernatant biomarkers in RAW 264.7 cells. Western blotting, immunohistochemical staining, and real-time PCR were performed to investigate the potential mechanisms of BBR for treating UC in vivo and in vitro. Results BBR was found to prolong colon length, ameliorate CMDI and alleviate the colon's pathological changes in UC mice. In DSS-induced UC mice, M1 macrophages predominated. BBR promoted M2 macrophages and suppressed M1 macrophages in the colon and abdomen of DSS-induced UC mice. Additionally, BBR significantly decreased M1-specific markers (IFN-γ and IL-1β) while increasing M2-specific markers (IL-10 and TGF-β) in the supernatants of RAW 264.7 cells. BBR upregulated the mRNA expression of IL-4, STAT6, and Chil3 while downregulating TNF-α, IFN-γ, and NOS2 expression in vivo. Moreover, BBR activated the downstream targets of the IL-4-STAT6 signalling pathway and enhanced the phosphorylation of STAT6 in vivo and in vitro to polarise M2 macrophage. Conclusion In UC mice, BBR suppressed M1 macrophages while promoting M2 macrophages. M1 macrophage suppression and M2 macrophage activation were strongly correlated with the anti-inflammatory and immune-modulating activities of BBR. BBR induced the polarisation of M2 macrophages by activating the IL-4-STAT6 signalling pathway, which contributed to its therapeutic efficacy against UC.
Collapse
Affiliation(s)
- Kai Xiong
- Colorectal and Anal Surgery, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, No 71 Baoshan North Road, Guiyang, 550001, China
| | - Jia Deng
- Colorectal and Anal Surgery, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, No 71 Baoshan North Road, Guiyang, 550001, China
| | - Tinghui Yue
- Colorectal and Anal Surgery, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, No 71 Baoshan North Road, Guiyang, 550001, China
| | - Wenting Hu
- Colorectal and Anal Surgery, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, No 71 Baoshan North Road, Guiyang, 550001, China
| | - Xinglin Zeng
- Colorectal and Anal Surgery, Chengdu Anorectal Hospital, Chengdu, 610075, China
| | - Tao Yang
- Colorectal and Anal Surgery, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, No 71 Baoshan North Road, Guiyang, 550001, China
| | - Tianbao Xiao
- Colorectal and Anal Surgery, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, No 71 Baoshan North Road, Guiyang, 550001, China
| |
Collapse
|
14
|
Ye Z, Wang P, Feng G, Wang Q, Liu C, Lu J, Chen J, Liu P. Cryptotanshinone attenuates LPS-induced acute lung injury by regulating metabolic reprogramming of macrophage. Front Med (Lausanne) 2023; 9:1075465. [PMID: 36714100 PMCID: PMC9880059 DOI: 10.3389/fmed.2022.1075465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/29/2022] [Indexed: 01/15/2023] Open
Abstract
Background Acute lung injury (ALI) is a life-threatening inflammatory disease without effective therapeutic regimen. Macrophage polarization plays a key role in the initiation and resolution of pulmonary inflammation. Therefore, modulating macrophage phenotype is a potentially effective way for acute lung injury. Cryptotanshinone (CTS) is a lipophilic bioactive compound extracted from the root of Salvia miltiorrhiza with a variety of pharmacological effects, especially the anti-inflammatory role. In this study, we investigated the therapeutic and immunomodulatory effects of CTS on ALI. Materials and methods The rat model of ALI was established by intratracheal instillation of LPS (5 mg/kg) to evaluate the lung protective effect of CTS in vivo and to explore the regulation of CTS on the phenotype of lung macrophage polarization. LPS (1 μg/mL) was used to stimulate RAW264.7 macrophages in vitro to further explore the effect of CTS on the polarization and metabolic reprogramming of RAW264.7 macrophages and to clarify the potential mechanism of CTS anti-ALI. Results CTS significantly improved lung function, reduced pulmonary edema, effectively inhibited pulmonary inflammatory infiltration, and alleviated ALI. Both in vivo and in vitro results revealed that CTS inhibited the differentiation of macrophage into the M1 phenotype and promoted polarization into M2 phenotype during ALI. Further in vitro studies indicated that CTS significantly suppressed LPS-induced metabolic transition from aerobic oxidation to glycolysis in macrophages. Mechanistically, CTS blocked LPS-induced metabolic transformation of macrophages by activating AMPK. Conclusion These findings demonstrated that CTS regulates macrophage metabolism by activating AMPK, and then induced M1-type macrophages to transform into M2-type macrophages, thereby alleviating the inflammatory response of ALI, suggesting that CTS might be a potential anti-ALI agent.
Collapse
Affiliation(s)
- Zesen Ye
- Laboratory of Pharmacology and Toxicology, National-Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Guangdong Province Engineering Laboratory for Druggability and New Drug Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Panxia Wang
- School of Pharmaceutical Science, Guangzhou Medical University, Guangzhou, China
| | - Guodong Feng
- Laboratory of Pharmacology and Toxicology, National-Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Guangdong Province Engineering Laboratory for Druggability and New Drug Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Quan Wang
- Laboratory of Pharmacology and Toxicology, National-Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Guangdong Province Engineering Laboratory for Druggability and New Drug Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Cui Liu
- Laboratory of Pharmacology and Toxicology, National-Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Guangdong Province Engineering Laboratory for Druggability and New Drug Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jing Lu
- Laboratory of Pharmacology and Toxicology, National-Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Guangdong Province Engineering Laboratory for Druggability and New Drug Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China,Jing Lu,
| | - Jianwen Chen
- Laboratory of Pharmacology and Toxicology, National-Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Guangdong Province Engineering Laboratory for Druggability and New Drug Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China,Jianwen Chen,
| | - Peiqing Liu
- Laboratory of Pharmacology and Toxicology, National-Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Guangdong Province Engineering Laboratory for Druggability and New Drug Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China,*Correspondence: Peiqing Liu,
| |
Collapse
|
15
|
Xian H, Wang Y, Bao X, Zhang H, Wei F, Song Y, Wang Y, Wei Y, Wang Y. Hexokinase inhibitor 2-deoxyglucose coordinates citrullination of vimentin and apoptosis of fibroblast-like synoviocytes by inhibiting HK2 /mTORC1-induced autophagy. Int Immunopharmacol 2023; 114:109556. [PMID: 36516539 DOI: 10.1016/j.intimp.2022.109556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/04/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022]
Abstract
High hexokinase 2 (HK2) expression is associated with aberrant activation of fibroblast-like synoviocytes (FLSs) in rheumatoid arthritis (RA). However, the mechanism by which this occurs has not been fully elucidated. To investigate the role of HK2 and its underlying mechanism, adjuvant arthritis (AA) rats were treated with the HK2 inhibitor, 2-deoxyglucose (2-DG). In conjunction with HK2 knockdown experiments in FLSs, we evaluated the effect of HK2 on the citrullination of vimentin (cVIM), autophagy and apoptosis-associated protein expression, including that of cVIM, LC3, p62, Beclin1, Bax, Bcl2, and caspase 3. We further investigated the interaction of HK2 with downstream mTORC1 signaling effectors. Correlation analysis revealed that 2-DG treatment and HK2 knockdown upregulated the expression levels of caspase3, Bax, and p62 and downregulated the expression levels of LC3, Bcl2, and Beclin1, as well as decreasing vimentin citrullination. Furthermore, interactions between HK2 and mTOR decreased, coinciding with mTORC1 pathway activation. These findings suggest that the regulation of apoptosis and cVIM by HK2/mTORC1-dependent autophagy involves the inhibition of aberrant FLSs activation in the rat model of arthritis.
Collapse
Affiliation(s)
- Hao Xian
- School of Pharmacy, Bengbu Medical College, No. 2600 Donghai Avenue, Bengbu 233000, Anhui, China; Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu, China
| | - Yating Wang
- School of Pharmacy, Bengbu Medical College, No. 2600 Donghai Avenue, Bengbu 233000, Anhui, China; Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu, China
| | - Xiurong Bao
- School of Pharmacy, Bengbu Medical College, No. 2600 Donghai Avenue, Bengbu 233000, Anhui, China; Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu, China
| | - Hanmeng Zhang
- School of Pharmacy, Bengbu Medical College, No. 2600 Donghai Avenue, Bengbu 233000, Anhui, China; Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu, China
| | - Fang Wei
- School of Pharmacy, Bengbu Medical College, No. 2600 Donghai Avenue, Bengbu 233000, Anhui, China; Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu, China
| | - Yining Song
- School of Pharmacy, Bengbu Medical College, No. 2600 Donghai Avenue, Bengbu 233000, Anhui, China; Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu, China
| | - Yumeng Wang
- School of Pharmacy, Bengbu Medical College, No. 2600 Donghai Avenue, Bengbu 233000, Anhui, China
| | - Yingmei Wei
- School of Pharmacy, Bengbu Medical College, No. 2600 Donghai Avenue, Bengbu 233000, Anhui, China; Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu, China
| | - Ying Wang
- School of Pharmacy, Bengbu Medical College, No. 2600 Donghai Avenue, Bengbu 233000, Anhui, China; Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu, China.
| |
Collapse
|
16
|
Cao H, Gao S, Jogani R, Sugimura R. The Tumor Microenvironment Reprograms Immune Cells. Cell Reprogram 2022; 24:343-352. [PMID: 36301256 DOI: 10.1089/cell.2022.0047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Tumor tissue comprises a highly complex network of diverse cell types. The tumor microenvironment (TME) can be mainly subdivided into cancer cells and stromal cell compartments, the latter include different types of immune cells, fibroblasts, endothelial cells, and pericytes. Tumor cells reprogram immune cells and other stromal cells in the TME to constrain their antitumor capacity by creating an immunosuppressive milieu and metabolism competition. Moreover, the reprogramming effect on immune cells is localized not only in the tumor but also at the systemic level. With wide application of single-cell sequencing technology, tumor-specific characteristics of immune cells and other stromal cells in the TME have been dissected. In this review, we mainly focus on how tumor cells reprogram immune cells both within the TME and peripheral blood. This information can further help us to improve the efficiency of current immunotherapy as well as bring up new ideas to combat cancer.
Collapse
Affiliation(s)
- Handi Cao
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong.,Centre for Translational Stem Cell Biology, Science Park, Hong Kong
| | - Sanxing Gao
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong
| | - Ritika Jogani
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong
| | - Ryohichi Sugimura
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong.,Centre for Translational Stem Cell Biology, Science Park, Hong Kong
| |
Collapse
|
17
|
Ghavipanje N, Fathi Nasri MH, Farhangfar SH, Ghiasi SE, Vargas-Bello-Pérez E. Berberine supplementation modulates the somatotropic axis and ameliorates glucose tolerance in dairy goats during late gestation and early lactation. BMC Vet Res 2022; 18:357. [PMID: 36153497 PMCID: PMC9508731 DOI: 10.1186/s12917-022-03452-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 09/14/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Pregnancy, parturition, and the onset of lactation represent an enormous physiological and hormonal challenge to the homeostasis of dairy animals, being a risk for their health and reproduction. Thus, as a part of the homothetic changes in preparturition period, goats undergo a period of IR as well as uncoupled GH/IGF-1 axis. The objective for this study was to determine the effect of berberine (BBR) during the peripartal period on hormonal alteration and somatotropic axis in dairy goats as well as glucose and insulin kinetics during an intravenous glucose tolerance test (IVGTT). At 21 days before the expected kidding date, 24 primiparous Saanen goats were assigned randomly to 4 dietary treatments. Goats were fed a basal diet from wk. 3 antepartum (AP) until wk. 3 postpartum (PP) supplemented with 0 (CTRL), 1 (BBR1), 2 (BBR2), and 4 (BBR4) g/d BBR. Blood samples were collected on days - 21, - 14, - 7, 0, 7, 14, and 21 relative to the expected kidding date. An IVGTT was also performed on day 22 PP. RESULTS Compared with CTRL, supplementation with either BBR2 or BBR4 increased DMI at kidding day and PP, as well as body conditional score (BCS) and milk production (p ≤ 0.05). On d 7 and 14 PP plasma glucose was higher in BBR2- and BBR4-treated than in CTRL. The glucagon concentration was not affected by BBR during the experimental period. However, supplemental BBR indicated a tendency to decrease in cortisol concentration on days 7 (p = 0.093) and 14 (p = 0.100) PP. Lower plasma GH was observed in BBR than in non-BBR goats (p ≤ 0.05). Plasma IGF-1 concentration was enhanced in both BBR2 and BBR4 at kidding and day 7 PP (p ≤ 0.05). During the IVGTT, glucose area under the curve (AUC), clearance rate (CR), T1/2, and Tbasal was lower (p ≤ 0.05) in both BBR2 and BBR4 goats as compared with CTRL. Likewise, the insulin CR was higher (p ≤ 0.05) in goats receiving either BBR2 or BBR4 which was accompanied by a lower insulin T1/2 and AUC. CONCLUSIONS Altogether, our results indicated an improved glucose and insulin status along with the modulation of the somatotropic axis and glucose and insulin response to IVGTT in dairy goats supplemented with 2 and 4 g/d BBR.
Collapse
Affiliation(s)
- Navid Ghavipanje
- Department of Animal Science, Faculty of Agriculture, University of Birjand, Birjand, 97175-331, Iran.
| | | | | | - Seyyed Ehsan Ghiasi
- Department of Animal Science, Faculty of Agriculture, University of Birjand, Birjand, 97175-331, Iran
| | - Einar Vargas-Bello-Pérez
- Department of Animal Sciences, School of Agriculture, Policy and Development, University of Reading, P.O. Box 237, Earley Gate, Reading, RG6 6EU, UK.
| |
Collapse
|
18
|
Single Cell Analysis Reveals Reciprocal Tumor-Macrophage Intercellular Communications Related with Metabolic Reprogramming in Stem-like Gastric Cancer. Cells 2022; 11:cells11152373. [PMID: 35954218 PMCID: PMC9368184 DOI: 10.3390/cells11152373] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 07/26/2022] [Accepted: 08/01/2022] [Indexed: 02/04/2023] Open
Abstract
Metabolic alterations and direct cell–cell interactions in the tumor microenvironment (TME) affect the prognostic molecular landscape of tumors; thus, it is imperative to investigate metabolic activity at the single-cell level rather than in bulk samples to understand the high-resolution mechanistic influences of cell-type specific metabolic pathway alterations on tumor cells. To investigate tumor metabolic reprogramming and intercellular communication at the single-cell level, we analyzed eighty-four metabolic pathways, seven metabolic signatures, and tumor-stroma cell interaction using 21,084 cells comprising gastric cancer and paired normal tissue. High EMT-score cells and stem-like subtype tumors showed elevated glycosaminoglycan metabolism, which was associated with poor patient outcome. Adenocarcinoma and macrophage cells had higher reactive oxidative species levels than the normal controls; they largely constituted the highest stemness cluster. They were found to reciprocally communicate through the common ligand RPS19. Consequently, ligand-target regulated transcriptional reprogramming resulted in HS6ST2 expression in adenocarcinoma cells and SERPINE1 expression in macrophages. Gastric cancer patients with increased SERPINE1 and HS6ST2 expression had unfavorable prognoses, suggesting these as potential drug targets. Our findings indicate that malignant stem-like/EMT cancer cell state might be regulated through reciprocal cancer cell-macrophage intercellular communication and metabolic reprogramming in the heterogeneous TME of gastric cancer at the single-cell level.
Collapse
|
19
|
Sun JX, Xu XH, Jin L. Effects of Metabolism on Macrophage Polarization Under Different Disease Backgrounds. Front Immunol 2022; 13:880286. [PMID: 35911719 PMCID: PMC9331907 DOI: 10.3389/fimmu.2022.880286] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 06/21/2022] [Indexed: 11/20/2022] Open
Abstract
Macrophages are versatile immune cells associated with various diseases, and their phenotypes and functions change on the basis of the surrounding environments. Reprogramming of metabolism is required for the proper polarization of macrophages. This review will focus on basic metabolic pathways, the effects of key enzymes and specific products, relationships between cellular metabolism and macrophage polarization in different diseases and the potential prospect of therapy targeted key metabolic enzymes. In particular, the types and characteristics of macrophages at the maternal-fetal interface and their effects on a successful conception will be discussed.
Collapse
Affiliation(s)
| | | | - Liping Jin
- *Correspondence: Liping Jin, ; Xiang-Hong Xu,
| |
Collapse
|
20
|
Cao J, Ni Y, Zhang H, Ning X, Qi X. Inhibition of Kruppel-like factor 7 attenuates cell proliferation and inflammation of fibroblast-like synoviocytes in rheumatoid arthritis through NF-κB and MAPK signaling pathway. Exp Anim 2022; 71:356-367. [PMID: 35321971 PMCID: PMC9388335 DOI: 10.1538/expanim.21-0200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease, which can lead to joint inflammation and progressive joint destruction. Kruppel-like factor 7 (KLF7) is the member of KLF family and
plays an important role in multiple biological progresses. However, its precise roles in RA have not been described. Present study aimed to investigate the role of KLF7 in RA-fibroblast-like
synoviocytes (FLSs). Data showed that KLF7 expression was obviously upregulated in synovial tissues of rats with adjuvant-induced arthritis. Functional studies demonstrated that the loss of
KLF7 may suppress cell proliferation and the expression of pro-inflammatory factors (IL-6, IL-1β, IL-17A) and matrix metalloproteinase (MMP-1, MMP-3, MMP-13) in FLSs through the inhibition
of phosphorylation of nuclear factor κB (NF-κB) p65 and JNK. We further showed that miR-9a-5p specifically interacts with KLF7 to negatively regulate the expression of KLF7 in RA-FLSs. Taken
together, our results demonstrated that KLF7 which targeted by miR-9a-5p might participate in the pathogenesis of RA by promoting cell proliferation, pro-inflammatory cytokine release and
MMP expression through the activation of NF-κB and JNK pathways in RA-FLSs. Hence, KLF7 could be a novel target for RA therapy.
Collapse
Affiliation(s)
- Jingjing Cao
- Teaching and Research Section of Internal Medicine, Hebei Medical University.,Department of Rheumatology and Immunology, Hebei General Hospital
| | - Yanhui Ni
- Department of Cardiology, Hebei General Hospital
| | | | - Xiaoran Ning
- Department of Rheumatology and Immunology, Hebei General Hospital
| | - Xiaoyong Qi
- Teaching and Research Section of Internal Medicine, Hebei Medical University.,Department of Cardiology Center, Hebei General Hospital
| |
Collapse
|
21
|
Ge H, Xu C, Chen H, Liu L, Zhang L, Wu C, Lu Y, Yao Q. Traditional Chinese Medicines as Effective Reversals of Epithelial-Mesenchymal Transition Induced-Metastasis of Colorectal Cancer: Molecular Targets and Mechanisms. Front Pharmacol 2022; 13:842295. [PMID: 35308223 PMCID: PMC8931761 DOI: 10.3389/fphar.2022.842295] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 01/28/2022] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) is the third most common type of cancer worldwide. Distant metastasis is the major cause of cancer-related mortality in patients with CRC. Epithelial-mesenchymal transition (EMT) is a critical process triggered during tumor metastasis, which is also the main impetus and the essential access within this duration. Therefore, targeting EMT-related molecular pathways has been considered a novel strategy to explore effective therapeutic agents against metastatic CRC. Traditional Chinese medicines (TCMs) with unique properties multi-target and multi-link that exert their therapeutic efficacies holistically, which could inhibit the invasion and metastasis ability of CRC cells via inhibiting the EMT process by down-regulating transforming growth factor-β (TGF-β)/Smads, PI3K/Akt, NF-κB, Wnt/β-catenin, and Notch signaling pathways. The objective of this review is to summarize and assess the anti-metastatic effect of TCM-originated bioactive compounds and Chinese medicine formulas by mediating EMT-associated signaling pathways in CRC therapy, providing a foundation for further research on the exact mechanisms of action through which TCMs affect EMT transform in CRC.
Collapse
Affiliation(s)
- Hongzhang Ge
- Department of Integrated Traditional Chinese and Western Medicine, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
- Key Laboratory of Integration of Chinese and Western Medicine Oncology, Zhejiang Cancer Hospital, Hangzhou, China
- Key Laboratory of Head and Neck Cancer Translational Research of Zhejiang Province, Zhejiang Cancer Hospital, Hangzhou, China
| | - Chao Xu
- Department of Integrated Traditional Chinese and Western Medicine, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
- Key Laboratory of Integration of Chinese and Western Medicine Oncology, Zhejiang Cancer Hospital, Hangzhou, China
- Key Laboratory of Head and Neck Cancer Translational Research of Zhejiang Province, Zhejiang Cancer Hospital, Hangzhou, China
| | - Haitao Chen
- Department of Integrated Traditional Chinese and Western Medicine, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
- Key Laboratory of Integration of Chinese and Western Medicine Oncology, Zhejiang Cancer Hospital, Hangzhou, China
- Key Laboratory of Head and Neck Cancer Translational Research of Zhejiang Province, Zhejiang Cancer Hospital, Hangzhou, China
| | - Ling Liu
- Department of Integrated Traditional Chinese and Western Medicine, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
- Key Laboratory of Integration of Chinese and Western Medicine Oncology, Zhejiang Cancer Hospital, Hangzhou, China
- Key Laboratory of Head and Neck Cancer Translational Research of Zhejiang Province, Zhejiang Cancer Hospital, Hangzhou, China
| | - Lei Zhang
- Department of Integrated Traditional Chinese and Western Medicine, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
- Key Laboratory of Integration of Chinese and Western Medicine Oncology, Zhejiang Cancer Hospital, Hangzhou, China
- Key Laboratory of Head and Neck Cancer Translational Research of Zhejiang Province, Zhejiang Cancer Hospital, Hangzhou, China
| | - Changhong Wu
- Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yi Lu
- Department of Clinical Nutrition, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Qinghua Yao
- Department of Integrated Traditional Chinese and Western Medicine, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
- Key Laboratory of Integration of Chinese and Western Medicine Oncology, Zhejiang Cancer Hospital, Hangzhou, China
- Key Laboratory of Head and Neck Cancer Translational Research of Zhejiang Province, Zhejiang Cancer Hospital, Hangzhou, China
- Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
- Department of Clinical Nutrition, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
- *Correspondence: Qinghua Yao,
| |
Collapse
|
22
|
Sung JY, Cheong JH. New Immunometabolic Strategy Based on Cell Type-Specific Metabolic Reprogramming in the Tumor Immune Microenvironment. Cells 2022; 11:768. [PMID: 35269390 PMCID: PMC8909366 DOI: 10.3390/cells11050768] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/17/2022] [Accepted: 02/21/2022] [Indexed: 02/07/2023] Open
Abstract
Immunometabolism is an emerging discipline in cancer immunotherapy. Tumor tissues are heterogeneous and influenced by metabolic reprogramming of the tumor immune microenvironment (TIME). In the TIME, multiple cell types interact, and the tumor and immune cells compete for limited nutrients, resulting in altered anticancer immunity. Therefore, metabolic reprogramming of individual cell types may influence the outcomes of immunotherapy. Understanding the metabolic competition for access to limited nutrients between tumor cells and immune cells could reveal the breadth and complexity of the TIME and aid in developing novel therapeutic approaches for cancer. In this review, we highlight that, when cells compete for nutrients, the prevailing cell type gains certain advantages over other cell types; for instance, if tumor cells prevail against immune cells for nutrients, the former gains immune resistance. Thus, a strategy is needed to selectively suppress such resistant tumor cells. Although challenging, the concept of cell type-specific metabolic pathway inhibition is a potent new strategy in anticancer immunotherapy.
Collapse
Affiliation(s)
- Ji-Yong Sung
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Jae-Ho Cheong
- Department of Surgery, Yonsei University College of Medicine, Seoul 03722, Korea
- Yonsei Biomedical Research Institute, Yonsei University College of Medicine, Seoul 03722, Korea
- Department of Biochemistry & Molecular Biology, Yonsei University College of Medicine, Seoul 03722, Korea
| |
Collapse
|
23
|
Cai W, Cheng J, Zong S, Yu Y, Wang Y, Song Y, He R, Yuan S, Chen T, Hu M, Pan Y, Ma R, Liu H, Wei F. The glycolysis inhibitor 2-deoxyglucose ameliorates adjuvant-induced arthritis by regulating macrophage polarization in an AMPK-dependent manner. Mol Immunol 2021; 140:186-195. [PMID: 34735867 DOI: 10.1016/j.molimm.2021.10.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/29/2021] [Accepted: 10/12/2021] [Indexed: 11/21/2022]
Abstract
Macrophages are highly plastic cells critical for the development of rheumatoid arthritis (RA). Macrophages exhibit a high degree of pro-inflammatory plasticity in RA, accompanied by a metabolic reprogramming from oxidative phosphorylation (OXPHOS) to glycolysis. 2-deoxyglucose (2-DG), a glycolysis inhibitor, has previously been shown to exhibit anti-inflammatory and anti-arthritic properties. However, the specific mechanisms of inflammatory modulation by 2-DG remain unclear. This study used 2-DG to treat rats with adjuvant arthritis (AA) and investigated its specific anti-arthritic mechanisms in the murine-derived macrophage cell line RAW264.7 in vitro. 2-DG reduced the arthritis index as well as alleviated cellular infiltration, synovial hyperplasia, and bone erosion in AA rats. Moreover, 2-DG treatment modulated peritoneal macrophage polarization, increasing levels of the arginase1 (Arg1) and decreasing expression of the inducible nitric oxide synthase (iNOS). 2-DG activated AMP-activated protein kinase (AMPK) via phosphorylation and reduced activation of the nuclear factor κB (NF-κB) in peritoneal macrophages of AA rats. In vitro, we verified that 2-DG promoted macrophage transition from M1 to M2-type by upregulating the expression of p-AMPKα and suppressing NF-κB activation in LPS-stimulated RAW264.7 cells. LPS-induced macrophages exhibited a metabolic shift from glycolysis to OXPHOS following 2-DG treatment, as observed by reduced extracellular acidification rate (ECAR), lactate export, glucose consumption, as well as an elevated oxygen consumption rate (OCR) and intracellular ATP concentration. Importantly, changes in polarization and metabolism in response to 2-DG were dampened after AMPKα knockdown. These findings indicate that the anti-arthritic 2-DG effect is mediated by a modulation of macrophage polarization in an AMPK-dependent manner.
Collapse
Affiliation(s)
- Weiwei Cai
- School of Pharmacy, Bengbu Medical College, No.2600, Donghai Avenue, Bengbu, Anhui, China
| | - Jingwen Cheng
- School of Pharmacy, Bengbu Medical College, No.2600, Donghai Avenue, Bengbu, Anhui, China
| | - Shiye Zong
- School of Pharmacy, Bengbu Medical College, No.2600, Donghai Avenue, Bengbu, Anhui, China
| | - Yun Yu
- School of Pharmacy, Bengbu Medical College, No.2600, Donghai Avenue, Bengbu, Anhui, China
| | - Ying Wang
- School of Pharmacy, Bengbu Medical College, No.2600, Donghai Avenue, Bengbu, Anhui, China; Biochemical Engineering Center of Anhui, Bengbu, Anhui, China
| | - Yining Song
- School of Pharmacy, Bengbu Medical College, No.2600, Donghai Avenue, Bengbu, Anhui, China; Biochemical Engineering Center of Anhui, Bengbu, Anhui, China
| | - Rui He
- School of Pharmacy, Bengbu Medical College, No.2600, Donghai Avenue, Bengbu, Anhui, China
| | - Siqi Yuan
- School of Pharmacy, Bengbu Medical College, No.2600, Donghai Avenue, Bengbu, Anhui, China
| | - Tao Chen
- School of Pharmacy, Bengbu Medical College, No.2600, Donghai Avenue, Bengbu, Anhui, China
| | - Mengru Hu
- School of Pharmacy, Bengbu Medical College, No.2600, Donghai Avenue, Bengbu, Anhui, China
| | - Yousheng Pan
- School of Pharmacy, Bengbu Medical College, No.2600, Donghai Avenue, Bengbu, Anhui, China
| | - Ran Ma
- School of Pharmacy, Bengbu Medical College, No.2600, Donghai Avenue, Bengbu, Anhui, China
| | - Hao Liu
- School of Pharmacy, Bengbu Medical College, No.2600, Donghai Avenue, Bengbu, Anhui, China; Biochemical Engineering Center of Anhui, Bengbu, Anhui, China.
| | - Fang Wei
- School of Pharmacy, Bengbu Medical College, No.2600, Donghai Avenue, Bengbu, Anhui, China; Biochemical Engineering Center of Anhui, Bengbu, Anhui, China.
| |
Collapse
|
24
|
Zhou X, Huang D, Wang R, Wu M, Zhu L, Peng W, Tu H, Deng X, Zhu H, Zhang Z, Wang X, Cao X. Targeted therapy of rheumatoid arthritis via macrophage repolarization. Drug Deliv 2021; 28:2447-2459. [PMID: 34766540 PMCID: PMC8592611 DOI: 10.1080/10717544.2021.2000679] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The polarization of macrophages plays a critical role in the physiological and pathological progression of rheumatoid arthritis (RA). Activated M1 macrophages overexpress folate receptors in arthritic joints. Hence, we developed folic acid (FA)-modified liposomes (FA-Lips) to encapsulate triptolide (TP) (FA-Lips/TP) for the targeted therapy of RA. FA-Lips exhibited significantly higher internalization efficiency in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells than liposomes (Lips) in the absence of folate. Next, an adjuvant-induced arthritis (AIA) rat model was established to explore the biodistribution profiles of FA-Lips which showed markedly selective accumulation in inflammatory paws. Moreover, FA-Lips/TP exhibited greatly improved therapeutic efficacy and low toxicity in AIA rats by targeting M1 macrophages and repolarizing macrophages from M1 to M2 subtypes. Overall, a safe FA-modified liposomal delivery system encapsulating TP was shown to achieve inflammation-targeted therapy against RA via macrophage repolarization.
Collapse
Affiliation(s)
- Xu Zhou
- Sichuan Provincial Orthopedic Hospital, Chengdu, China
| | - Dandan Huang
- Key Laboratory of Drug Targeting and Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Runkong Wang
- Sichuan Provincial Orthopedic Hospital, Chengdu, China
| | - Mingquan Wu
- Sichuan Provincial Orthopedic Hospital, Chengdu, China
| | - Liyang Zhu
- Sichuan Provincial Orthopedic Hospital, Chengdu, China
| | - Wei Peng
- Sichuan Provincial Orthopedic Hospital, Chengdu, China
| | - He Tu
- Sichuan Provincial Orthopedic Hospital, Chengdu, China
| | - Xuangeng Deng
- Sichuan Provincial Orthopedic Hospital, Chengdu, China
| | - He Zhu
- Sichuan Provincial Orthopedic Hospital, Chengdu, China
| | - Zhong Zhang
- Sichuan Provincial Orthopedic Hospital, Chengdu, China
| | - Xinming Wang
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xi Cao
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
25
|
Liu XY, Pei WJ, Wu YZ, Ren FL, Yang SY, Wang X. Transdermal delivery of triptolide-phospholipid complex to treat rheumatoid arthritis. Drug Deliv 2021; 28:2127-2136. [PMID: 34617835 PMCID: PMC8510618 DOI: 10.1080/10717544.2021.1986603] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The aim of this study was to develop and evaluate a triptolide phospholipid complex (TPCX) for the treatment of rheumatoid arthritis (RA) by transdermal delivery. TPCX was prepared and characterized by differential scanning calorimetry (DSC), Fourier-transform infrared spectroscopy (FTIR) analysis, transmission electron microscope (TEM), and scanning electron microscope (SEM). The solubility of TPCX was determined. Then, a TPCX cream was prepared to evaluate its percutaneous permeability and the antiarthritis effect. The transdermal permeability was determined using the Franz method, and a microdialysis system was used for skin pharmacokinetic study. A rat model of RA was prepared to evaluate the pharmacological effects. TPCX increased the solubility of triptolide in water, and the percutaneous permeability of TPCX cream was greatly enhanced compared with triptolide cream. The skin pharmacokinetic study indicated that TPCX cream has a longer biological half-life (t1/2) and mean residence time (MRT), but it has a shorter Tmax than that of triptolide cream in vivo. The area under the curve (AUC0–t)/AUC0–∞) and the peak concentration (Cmax) of TPCX cream were obviously higher than those of triptolide cream. The TPCX-loaded cream alleviated paw swelling and slowed down the progression of arthritis by inhibiting the inflammatory response by down regulating the TNF-α, IL-1β, and IL-6 levels, thus exhibiting excellent antiarthritic effects. In summary, the prepared TPCX effectively increases the hydrophilicity of triptolide, which is good for its percutaneous absorption and enhances its effect on RA rats. TPCX can be a good candidate for the transdermal delivery to treat RA.
Collapse
Affiliation(s)
- Xin-Yi Liu
- Faculty of Pharmacy, Bengbu Medical College, Bengbu, PR China
| | - Wen-Jun Pei
- Faculty of Pharmacy, Bengbu Medical College, Bengbu, PR China
| | - Ye-Zhen Wu
- Faculty of Pharmacy, Bengbu Medical College, Bengbu, PR China
| | - Fang-Li Ren
- Faculty of Pharmacy, Bengbu Medical College, Bengbu, PR China
| | - Si-Yu Yang
- Faculty of Pharmacy, Bengbu Medical College, Bengbu, PR China
| | - Xiu Wang
- Faculty of Pharmacy, Bengbu Medical College, Bengbu, PR China
| |
Collapse
|
26
|
Gong YC, Chen X, Song QT, Gan Y, Zhang B, Li BS, Chen Z, He Y. A randomized placebo-controlled study: Phellodendron Bawei tablets combined with standard management can improve storage symptoms, sleep quality, and medication compliance in patients with benign prostatic hyperplasia compared to placebo with standard management. Transl Androl Urol 2021; 10:3423-3431. [PMID: 34532267 PMCID: PMC8421819 DOI: 10.21037/tau-21-588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 08/16/2021] [Indexed: 12/02/2022] Open
Abstract
Background Benign prostatic hyperplasia (BPH) is a common micturition disorder in middle-aged and elderly males, and it is one of the most common urology-related diseases worldwide. However, standard therapeutic drugs (α1-receptor blockers + 5α reductase inhibitors) do not provide anti-inflammatory or anti-infective effects. The Phellodendron Bawei tablet is a proprietary Chinese medicine with anti-inflammatory and anti-infective effects. Here, we analyzed whether the combination of standard therapeutic drugs and Phellodendron Bawei tablets has more advantages than placebo with standard management in improving the lower urinary tract symptoms (LUTs), sleep quality, sexual function, and medication compliance in patients with BPH. Methods This study was a prospective, double-blind, single-center, 6-month clinical trial in patients with BPH. Male patients, 45–75 years old, a history of moderate-to-severe BPH/LUTs for more than 6 months, moderate-to-severe LUTs [International Prostate Symptom Score (IPSS) ≥8], maximum urine flow rate (Qmax) of <15 mL/s, and prostate volume (PV) of >30 mL. All patients were randomly divided into two cohorts at baseline. The standard management (SM) group was treated with tamsulosin + finasteride + placebo, while the experimental group was treated with tamsulosin + finasteride + Phellodendron Bawei tablets. The clinical indicators were as follows: Age, body mass index (BMI), blood prostate-specific antigen (PSA), PV, Qmax, IPSS; IPSS voiding subscore (IPSS-V), IPSS storage subscore (IPSS-S), and IPSS quality of life (IPSS-QOL)], five-item version of the International Index of Erectile Function (IEFF-5) score, Athens Insomnia Scale (AIS) score, and the Medication Adherence Questionnaire (MAQ). And adverse drug reactions were observed. Student’s t-test was used to analyze results. Results We randomly divided 120 patients into two groups, with 60 patients in each group, and a total of 105 patients completed the study. IPSS-S (P=0.027) and AIS scores (P<0.001) improved more significantly in the Phellodendron Bawei tablets + SM group, and the MAQ score in this group was lower (P=0.003). Conclusions Phellodendron Bawei tablets combined with α1-receptor blockers and 5α-reductase inhibitors can improve lower urinary tract symptoms associated with urine storage, sleep quality, and medication compliance in patients with benign prostatic hyperplasia compared to placebo with standard management. Trial Registration Chinese Clinical Trial Registry ChiCTR2100046463.
Collapse
Affiliation(s)
- Yu-Chen Gong
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Xiang Chen
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Qing-Tian Song
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Yu Gan
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Bo Zhang
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Bing-Sheng Li
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Zhi Chen
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Yao He
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
27
|
Wu CY, Yang HY, Huang JL, Lai JH. Signals and Mechanisms Regulating Monocyte and Macrophage Activation in the Pathogenesis of Juvenile Idiopathic Arthritis. Int J Mol Sci 2021; 22:ijms22157960. [PMID: 34360720 PMCID: PMC8347893 DOI: 10.3390/ijms22157960] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/18/2021] [Accepted: 07/20/2021] [Indexed: 12/13/2022] Open
Abstract
Monocytes (Mos) and macrophages (Mφs) are key players in the innate immune system and are critical in coordinating the initiation, expansion, and regression of many autoimmune diseases. In addition, they display immunoregulatory effects that impact inflammation and are essential in tissue repair and regeneration. Juvenile idiopathic arthritis (JIA) is an umbrella term describing inflammatory joint diseases in children. Accumulated evidence suggests a link between Mo and Mφ activation and JIA pathogenesis. Accordingly, topics regarding the signals and mechanisms regulating Mo and Mφ activation leading to pathologies in patients with JIA are of great interest. In this review, we critically summarize recent advances in the understanding of how Mo and Mφ activation is involved in JIA pathogenesis and focus on the signaling pathways and mechanisms participating in the related cell activation processes.
Collapse
Affiliation(s)
- Chao-Yi Wu
- Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (C.-Y.W.); (J.-L.H.)
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan;
| | - Huang-Yu Yang
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan;
- Department of Nephrology, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Jing-Long Huang
- Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (C.-Y.W.); (J.-L.H.)
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan;
- Department of Pediatrics, New Taipei Municipal TuCheng Hospital, New Taipei City 236, Taiwan
| | - Jenn-Haung Lai
- Division of Allergy, Immunology, and Rheumatology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan 333, Taiwan
- National Defense Medical Center, Graduate Institute of Medical Science, Taipei 114, Taiwan
- Correspondence: ; Tel./Fax: +886-2-8791-8382
| |
Collapse
|
28
|
Huang DN, Wu FF, Zhang AH, Sun H, Wang XJ. Efficacy of berberine in treatment of rheumatoid arthritis: From multiple targets to therapeutic potential. Pharmacol Res 2021; 169:105667. [PMID: 33989762 DOI: 10.1016/j.phrs.2021.105667] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 05/03/2021] [Accepted: 05/06/2021] [Indexed: 12/14/2022]
Abstract
Rheumatoid arthritis is a systemic autoimmune disorder involved in persistent synovial inflammation. Berberine is a nature-derived alkaloid compound with multiple pharmacological activities in different pathologies, including RA. Recent experimental studies have clarified several determinant cellular and molecular targets of BBR in RA, and provided novel evidence supporting the promising therapeutic potential of BBR to combat RA. In this review, we recapitulate the therapeutic potential of BBR and its mechanism of action in ameliorating RA, and discuss the modulation of gut microbiota by BBR during RA. Collectively, BBR might be a promising lead drug with multi-functional activities for the therapeutic strategy of RA.
Collapse
Affiliation(s)
- Dan-Na Huang
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, China; National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plants, Nanning, Guangxi, China
| | - Fang-Fang Wu
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plants, Nanning, Guangxi, China
| | - Ai-Hua Zhang
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, China
| | - Hui Sun
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, China
| | - Xi-Jun Wang
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, China; National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plants, Nanning, Guangxi, China.
| |
Collapse
|
29
|
Integrated Molecular Docking with Network Pharmacology to Reveal the Molecular Mechanism of Simiao Powder in the Treatment of Acute Gouty Arthritis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:5570968. [PMID: 34007291 PMCID: PMC8100412 DOI: 10.1155/2021/5570968] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/12/2021] [Accepted: 04/16/2021] [Indexed: 12/26/2022]
Abstract
Background The incidence of gout has been rapidly increasing in recent years with the changing of diet. At present, modern medications used in the clinical treatment of gout showed several side effects, such as gastrointestinal damage and the increased risk of cardiovascular disease. The traditional Chinese prescription Simiao Powder (SMP) has a long history in the treatment of acute gouty arthritis (AGA) and has a good curative effect. However, the mechanism and target of its therapeutic effects are still not completely understood. Methods Potential active compounds (PACs) and targets of SMP were found in the TCMSP database, and the disease target genes related to AGA were obtained by searching CTD, DisGeNET, DrugBank, GeneCards, TTD, OMIM, and PharmGKB disease databases with “acute gouty arthritis” and “Arthritis, Gouty” as keywords, respectively. The network of “Traditional Chinese medicine (TCM)-PACs-potential targets of acute gouty arthritis” was constructed with the Cytoscape 3.7.2 software, and the target genes of acute gouty arthritis were intersected with genes regulated by active compounds of SMP. The resultant common gene targets were input into Cytoscape 3.7.2 software, and the BisoGenet plug-in was used to construct a PPI network. The GO functional enrichment analysis and KEGG pathway enrichment analysis of the intersecting target proteins were performed using R software and corresponding program packages. The molecular docking verification was carried out between the potentially active compounds of SMP and the core target at the same time. Results 40 active components and 203 targets were identified, of which 95 targets were common targets for the drugs and diseases. GO function enrichment analysis revealed that SMP regulated several biological processes, such as response to lipopolysaccharide and oxidative stress, RNA polymerase II transcription regulator complex, protein kinase complex, and other cellular and molecular processes, including DNA-binding transcription factor binding. Results of KEGG pathway analysis showed that SMP was associated with AGA-related pathways such as interleukin-17 (IL-17), tumor necrosis factor (TNF), p53, and hypoxia-inducible factor 1 (HIF-1) signaling pathways. The results of molecular docking showed that active compounds in SMP exhibited strong binding to five core protein receptors (TP53, FN1, ESR1, CDK2, and HSPA5). Conclusions Active components of SMP, such as quercetin, kaempferol, wogonin, baicalein, beta-sitosterol, and rutaecarpine, showed therapeutic effects on AGA. These compounds were strongly associated with core target proteins (such as TP53, FN1, ESR1, CDK2, and HSPA5). This study reveals that IL-17, TNF, p53, and HIF-1 signaling pathways mediate the therapeutic effects of SMP on AGA. These findings expand our understanding of the mechanism of SMP in the treatment of AGA.
Collapse
|
30
|
Berberine Delays Onset of Collagen-Induced Arthritis through T Cell Suppression. Int J Mol Sci 2021; 22:ijms22073522. [PMID: 33805383 PMCID: PMC8037694 DOI: 10.3390/ijms22073522] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/17/2021] [Accepted: 03/22/2021] [Indexed: 02/07/2023] Open
Abstract
There is evidence that berberine (BBR), a clinically relevant plant compound, ameliorates clinically apparent collagen-induced arthritis (CIA) in vivo. However, to date, there are no studies involving the use of BBR which explore its prophylactic potential in this model of rheumatoid arthritis (RA). The aim of this study was to determine if prophylactic BBR use during the preclinical phase of collagen-induced arthritis would delay arthritic symptom onset, and to characterize the cellular mechanism underlying such an effect. DBA/1J mice were injected with an emulsion of bovine type II collagen (CII) and complete Freund’s adjuvant (day 0) and a booster injection of CII in incomplete Freund’s adjuvant (day 18) to induce arthritis. Mice were then given i.p. injections of 1 mg/kg/day of BBR or PBS (vehicle with 0.01% DMSO) from days 0 to 28, were left untreated (CIA control), or were in a non-arthritic control group (n = 15 per group). Incidence of arthritis in BBR-treated mice was 50%, compared to 90% in both the CIA and PBS controls. Populations of B and T cells from the spleens and draining lymph nodes of mice were examined on day 14 (n = 5 per group) and day 28 (n = 10 per group). BBR-treated mice had significantly reduced populations of CD4+Th and CD4+CXCR5+ Tfh cells, and an increased proportion of Foxp3+ Treg at days 14 and 28, as well as reduced expression of co-stimulatory molecules CD28 and CD154 at both endpoints. The effect seen on T cell populations and co-stimulatory molecule expression in BBR-treated mice was not mirrored in CD19+ B cells. Additionally, BBR-treated mice experienced reduced anti-CII IgG2a and anti-CII total IgG serum concentrations. These results indicate a potential role for BBR as a prophylactic supplement for RA, and that its effect may be mediated specifically through T cell suppression. However, the cellular effector involved raises concern for BBR prophylactic use in the context of vaccine efficacy and other primary adaptive immune responses.
Collapse
|
31
|
Xia L, Oyang L, Lin J, Tan S, Han Y, Wu N, Yi P, Tang L, Pan Q, Rao S, Liang J, Tang Y, Su M, Luo X, Yang Y, Shi Y, Wang H, Zhou Y, Liao Q. The cancer metabolic reprogramming and immune response. Mol Cancer 2021; 20:28. [PMID: 33546704 PMCID: PMC7863491 DOI: 10.1186/s12943-021-01316-8] [Citation(s) in RCA: 475] [Impact Index Per Article: 158.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 01/15/2021] [Indexed: 02/07/2023] Open
Abstract
The overlapping metabolic reprogramming of cancer and immune cells is a putative determinant of the antitumor immune response in cancer. Increased evidence suggests that cancer metabolism not only plays a crucial role in cancer signaling for sustaining tumorigenesis and survival, but also has wider implications in the regulation of antitumor immune response through both the release of metabolites and affecting the expression of immune molecules, such as lactate, PGE2, arginine, etc. Actually, this energetic interplay between tumor and immune cells leads to metabolic competition in the tumor ecosystem, limiting nutrient availability and leading to microenvironmental acidosis, which hinders immune cell function. More interestingly, metabolic reprogramming is also indispensable in the process of maintaining self and body homeostasis by various types of immune cells. At present, more and more studies pointed out that immune cell would undergo metabolic reprogramming during the process of proliferation, differentiation, and execution of effector functions, which is essential to the immune response. Herein, we discuss how metabolic reprogramming of cancer cells and immune cells regulate antitumor immune response and the possible approaches to targeting metabolic pathways in the context of anticancer immunotherapy. We also describe hypothetical combination treatments between immunotherapy and metabolic intervening that could be used to better unleash the potential of anticancer therapies.
Collapse
Affiliation(s)
- Longzheng Xia
- Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, 283 Tongzipo Road, 410013, Changsha, Hunan, China
| | - Linda Oyang
- Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, 283 Tongzipo Road, 410013, Changsha, Hunan, China
| | - Jinguan Lin
- Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, 283 Tongzipo Road, 410013, Changsha, Hunan, China
| | - Shiming Tan
- Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, 283 Tongzipo Road, 410013, Changsha, Hunan, China
| | - Yaqian Han
- Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, 283 Tongzipo Road, 410013, Changsha, Hunan, China
| | - Nayiyuan Wu
- Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, 283 Tongzipo Road, 410013, Changsha, Hunan, China
| | - Pin Yi
- Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, 283 Tongzipo Road, 410013, Changsha, Hunan, China.,University of South China, 421001, Hengyang, Hunan, China
| | - Lu Tang
- Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, 283 Tongzipo Road, 410013, Changsha, Hunan, China.,University of South China, 421001, Hengyang, Hunan, China
| | - Qing Pan
- Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, 283 Tongzipo Road, 410013, Changsha, Hunan, China.,University of South China, 421001, Hengyang, Hunan, China
| | - Shan Rao
- Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, 283 Tongzipo Road, 410013, Changsha, Hunan, China
| | - Jiaxin Liang
- Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, 283 Tongzipo Road, 410013, Changsha, Hunan, China
| | - Yanyan Tang
- Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, 283 Tongzipo Road, 410013, Changsha, Hunan, China
| | - Min Su
- Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, 283 Tongzipo Road, 410013, Changsha, Hunan, China
| | - Xia Luo
- Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, 283 Tongzipo Road, 410013, Changsha, Hunan, China
| | - Yiqing Yang
- Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, 283 Tongzipo Road, 410013, Changsha, Hunan, China
| | - Yingrui Shi
- Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, 283 Tongzipo Road, 410013, Changsha, Hunan, China
| | - Hui Wang
- Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, 283 Tongzipo Road, 410013, Changsha, Hunan, China
| | - Yujuan Zhou
- Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, 283 Tongzipo Road, 410013, Changsha, Hunan, China.
| | - Qianjin Liao
- Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, 283 Tongzipo Road, 410013, Changsha, Hunan, China.
| |
Collapse
|
32
|
Song B, Zhang C, Hu W, Guo C, Xia Z, Hu W, Qin M, Jiang W, Lv J, Xu D, Zhang S, Fang J. Nano-designed carbon monoxide donor SMA/CORM2 exhibits protective effect against acetaminophen induced liver injury through macrophage reprograming and promoting liver regeneration. J Control Release 2021; 331:350-363. [PMID: 33482271 DOI: 10.1016/j.jconrel.2021.01.025] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/17/2020] [Accepted: 01/11/2021] [Indexed: 02/07/2023]
Abstract
Acetaminophen (APAP) induced liver injury is the most common drug-induced liver injury, accounting for the top cause of acute liver failure in the United State, however the therapeutic options for it is very limited. Excess generation of reactive oxygen species (ROS) and the subsequent inflammatory responses are the major factors of the liver injury. Carbon monoxide (CO) is an important gaseous molecule with versatile functions including anti-oxidation and anti-inflammation, and we previous reported the therapeutic potential of a nano-designed CO donor SMA/CORM2 in a dextran sulphate sodium (DSS) induced mouse colitis model. In this context, we investigated the effect of SMA/CORM2 in an APAP-induced mouse acute liver injury model and tackled the mechanisms involved. We found upregulation of heme oxygenase-1 (HO-1, endogenous CO generating enzyme) and the dynamic changes of macrophage polarization (pro-inflammatory M1/anti-inflammatory M2), which played important roles in the process of live injury. SMA/CORM2 treatment remarkably increased the CO levels in the liver and circulation, by which oxidative stresses in the liver were significantly reduced, and more importantly, it remarkably suppressed the expression of M1 macrophages but alternatively increased M2 polarization. Consequently the liver injury was significantly ameliorated, and the proliferation and regeneration were greatly promoted through the Pi3k/Akt/mTOR signaling pathway. The shift of macrophage polarization accompanied with the downregulated hypoxia-inducible factor-1α (HIF-1α) level. These findings suggested CO released from SMA/CORM2 manipulated the macrophage reprogramming toward M2 phenotype by inhibiting HIF-1α, which subsequently protected liver against inflammatory injury and benefited tissue repair. Moreover, compared to native CORM2, SMA/CORM2 exhibited superior bioavailability and protective effect. We thus anticipate the application of SMA/CORM2 as a therapeutic regimen for APAP induced liver injury as well as other inflammatory diseases and disorders.
Collapse
Affiliation(s)
- Bingdong Song
- Department of Toxicology, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, School of Public Health, Anhui Medical University, Hefei 230022, China
| | - Cheng Zhang
- Department of Toxicology, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, School of Public Health, Anhui Medical University, Hefei 230022, China
| | - Weirong Hu
- Department of Toxicology, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, School of Public Health, Anhui Medical University, Hefei 230022, China
| | - Chunyu Guo
- Department of Toxicology, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, School of Public Health, Anhui Medical University, Hefei 230022, China
| | - Zhengmei Xia
- Department of Toxicology, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, School of Public Health, Anhui Medical University, Hefei 230022, China
| | - Wanxia Hu
- School of Health Management, Anhui Medical University, No.81, MeiShan Road, Hefei 230032, Anhui, China
| | - Mingqiang Qin
- Department of Toxicology, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, School of Public Health, Anhui Medical University, Hefei 230022, China; The Fourth Affiliated Hospital, Anhui Medical University, Hefei 230022, China
| | - Weiying Jiang
- Department of Toxicology, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, School of Public Health, Anhui Medical University, Hefei 230022, China; The Fourth Affiliated Hospital, Anhui Medical University, Hefei 230022, China
| | - Jinwei Lv
- Department of Toxicology, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, School of Public Health, Anhui Medical University, Hefei 230022, China
| | - Dexiang Xu
- Department of Toxicology, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, School of Public Health, Anhui Medical University, Hefei 230022, China
| | - Shichen Zhang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei 230022, China; MOE Key Laboratory of Population Health Across Life Cycle / Anhui Provincial Key Laboratory of Population Health and Aristogenics, No. 81 Meishan Road, Hefei 230032, China.
| | - Jun Fang
- Department of Toxicology, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, School of Public Health, Anhui Medical University, Hefei 230022, China; Faculty of Pharmaceutical Science, Sojo University, Ikeda 4-22-1, Kumamoto 860-0082, Japan.
| |
Collapse
|