1
|
El-Maradny YA, Badawy MA, Mohamed KI, Ragab RF, Moharm HM, Abdallah NA, Elgammal EM, Rubio-Casillas A, Uversky VN, Redwan EM. Unraveling the role of the nucleocapsid protein in SARS-CoV-2 pathogenesis: From viral life cycle to vaccine development. Int J Biol Macromol 2024; 279:135201. [PMID: 39216563 DOI: 10.1016/j.ijbiomac.2024.135201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/24/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND The nucleocapsid protein (N protein) is the most abundant protein in SARS-CoV-2. Viral RNA and this protein are bound by electrostatic forces, forming cytoplasmic helical structures known as nucleocapsids. Subsequently, these nucleocapsids interact with the membrane (M) protein, facilitating virus budding into early secretory compartments. SCOPE OF REVIEW Exploring the role of the N protein in the SARS-CoV-2 life cycle, pathogenesis, post-sequelae consequences, and interaction with host immunity has enhanced our understanding of its function and potential strategies for preventing SARS-CoV-2 infection. MAJOR CONCLUSION This review provides an overview of the N protein's involvement in SARS-CoV-2 infectivity, highlighting its crucial role in the virus-host protein interaction and immune system modulation, which in turn influences viral spread. GENERAL SIGNIFICANCE Understanding these aspects identifies the N protein as a promising target for developing effective antiviral treatments and vaccines against SARS-CoV-2.
Collapse
Affiliation(s)
- Yousra A El-Maradny
- Pharmaceutical and Fermentation Industries Development Center, City of Scientific Research and Technological Applications (SRTA-City), New Borg EL-Arab, Alexandria 21934, Egypt; Microbiology and Immunology, Faculty of Pharmacy, Arab Academy for Science, Technology and Maritime Transport (AASTMT), El Alamein 51718, Egypt.
| | - Moustafa A Badawy
- Industrial Microbiology and Applied Chemistry program, Faculty of Science, Alexandria University, Egypt.
| | - Kareem I Mohamed
- Microbiology and Immunology, Faculty of Pharmacy, Arab Academy for Science, Technology and Maritime Transport (AASTMT), El Alamein 51718, Egypt.
| | - Renad F Ragab
- Microbiology and Immunology, Faculty of Pharmacy, Arab Academy for Science, Technology and Maritime Transport (AASTMT), El Alamein 51718, Egypt.
| | - Hamssa M Moharm
- Genetics, Biotechnology Department, Faculty of Agriculture, Alexandria University, Egypt.
| | - Nada A Abdallah
- Medicinal Plants Department, Faculty of Agriculture, Alexandria University, Egypt.
| | - Esraa M Elgammal
- Microbiology and Immunology, Faculty of Pharmacy, Arab Academy for Science, Technology and Maritime Transport (AASTMT), El Alamein 51718, Egypt.
| | - Alberto Rubio-Casillas
- Autlan Regional Hospital, Health Secretariat, Autlan, JAL 48900, Mexico; Biology Laboratory, Autlan Regional Preparatory School, University of Guadalajara, Autlan, JAL 48900, Mexico.
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA.
| | - Elrashdy M Redwan
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia; Centre of Excellence in Bionanoscience Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Therapeutic and Protective Proteins Laboratory, Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg EL-Arab, 21934 Alexandria, Egypt.
| |
Collapse
|
2
|
Peng C, Lv X, Zhang Z, Lin J, Li D. The Recognition Pathway of the SARS-CoV-2 Spike Receptor-Binding Domain to Human Angiotensin-Converting Enzyme 2. Molecules 2024; 29:1875. [PMID: 38675695 PMCID: PMC11054751 DOI: 10.3390/molecules29081875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
COVID-19 caused by SARS-CoV-2 has spread around the world. The receptor-binding domain (RBD) of the spike protein of SARS-CoV-2 is a critical component that directly interacts with host ACE2. Here, we simulate the ACE2 recognition processes of RBD of the WT, Delta, and OmicronBA.2 variants using our recently developed supervised Gaussian accelerated molecular dynamics (Su-GaMD) approach. We show that RBD recognizes ACE2 through three contact regions (regions I, II, and III), which aligns well with the anchor-locker mechanism. The higher binding free energy in State d of the RBDOmicronBA.2-ACE2 system correlates well with the increased infectivity of OmicronBA.2 in comparison with other variants. For RBDDelta, the T478K mutation affects the first step of recognition, while the L452R mutation, through its nearby Y449, affects the RBDDelta-ACE2 binding in the last step of recognition. For RBDOmicronBA.2, the E484A mutation affects the first step of recognition, the Q493R, N501Y, and Y505H mutations affect the binding free energy in the last step of recognition, mutations in the contact regions affect the recognition directly, and other mutations indirectly affect recognition through dynamic correlations with the contact regions. These results provide theoretical insights for RBD-ACE2 recognition and may facilitate drug design against SARS-CoV-2.
Collapse
Affiliation(s)
- Can Peng
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300350, China; (C.P.); (X.L.)
| | - Xinyue Lv
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300350, China; (C.P.); (X.L.)
| | - Zhiqiang Zhang
- Xiongan Institute of Innovation, Xiong’an New Area 070001, China;
| | - Jianping Lin
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300350, China; (C.P.); (X.L.)
| | - Dongmei Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300350, China; (C.P.); (X.L.)
| |
Collapse
|
3
|
Yap DL, Mandell C, Behar E. The Role of Perceived Risk in the Relationship Between Disgust Sensitivity and COVID-19 Vaccine Hesitancy. COGNITIVE THERAPY AND RESEARCH 2023; 47:1-12. [PMID: 37363746 PMCID: PMC10206364 DOI: 10.1007/s10608-023-10391-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/15/2023] [Indexed: 06/28/2023]
Abstract
Background Despite widespread availability of COVID vaccines and evidence of their efficacy, vaccine hesitancy remains prevalent. Several studies have examined the relationship between disgust sensitivity and vaccine hesitancy. Although results from studies using data collected prior to the COVID pandemic indicate that higher disgust sensitivity is related to greater vaccine hesitancy, results from studies using data collected during the COVID pandemic are equivocal. The present study examined whether perceived risk of contracting COVID moderated the relationship between disgust sensitivity and vaccine hesitancy. Methods Participants (n = 152) completed self-report measures of disgust sensitivity, perceived risk of contracting COVID, and COVID vaccine hesitancy (defined as both vaccine confidence and vaccine complacency). Results Perceived risk of contracting COVID significantly moderated the relationship between disgust sensitivity and vaccine complacency, with the association strengthened at low levels of perceived risk. Perceived risk of contracting COVID also marginally moderated the relationship between disgust sensitivity and vaccine confidence, with the association strengthened at low and average levels of perceived risk. Conclusions Results suggest that individuals with elevated disgust sensitivity who also report low levels of perceived risk of contracting COVID are more likely to express vaccine hesitancy. Implications of these findings are discussed. Supplementary Information The online version contains supplementary material available at 10.1007/s10608-023-10391-8.
Collapse
Affiliation(s)
- David L. Yap
- Hunter College, City University of New York, New York, USA
- The Graduate Center, City University of New York, New York, USA
- Department of Psychology, Hunter College of The City University of New York, 695 Park Avenue, 611HN, New York, NY 10065 USA
| | | | - Evelyn Behar
- Hunter College, City University of New York, New York, USA
- The Graduate Center, City University of New York, New York, USA
| |
Collapse
|
4
|
Akbar SMF, Al Mahtab M, Khan S. Cellular and Molecular Mechanisms of Pathogenic and Protective Immune Responses to SARS-CoV-2 and Implications of COVID-19 Vaccines. Vaccines (Basel) 2023; 11:vaccines11030615. [PMID: 36992199 DOI: 10.3390/vaccines11030615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/26/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has devastated the world with coronavirus disease 2019 (COVID-19), which has imparted a toll of at least 631 million reported cases with 6.57 million reported deaths. In order to handle this pandemic, vaccines against SARS-CoV-2 have been developed and billions of doses of various vaccines have been administered. In the meantime, several antiviral drugs and other treatment modalities have been developed to treat COVID-19 patients. At the end of the day, it seems that anti-SARS-CoV-2 vaccines and newly developed antiviral drugs may be improved based on various new developments. COVID-19 represents a virus-induced, immune-mediated pathological process. The severity of the disease is related to the nature and properties of the host immune responses. In addition, host immunity plays a dominant role in regulating the extent of COVID-19. The present reality regarding the role of anti-SARS-CoV-2 vaccines, persistence of SARS-CoV-2 infection even three years after the initiation of the pandemic, and divergent faces of COVID-19 have initiated several queries among huge populations, policy makers, general physicians, and scientific communities. The present review aims to provide some information regarding the molecular and cellular mechanisms underlying SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Sheikh Mohammad Fazle Akbar
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Toon 791-0295, Ehime, Japan
| | - Mamun Al Mahtab
- Interventional Hepatology Division, Department of Hepatology, Bangabandhu Sheikh Mujib Medical University, BSMMU, Dhaka 1000, Bangladesh
| | - Sakirul Khan
- Department of Microbiology, Faculty of Medicine, Oita University, Yufu 879-5593, Oita, Japan
| |
Collapse
|
5
|
Review on the Biogenesis of Platelets in Lungs and Its Alterations in SARS-CoV-2 Infection Patients. J Renin Angiotensin Aldosterone Syst 2023; 2023:7550197. [PMID: 36891250 PMCID: PMC9988383 DOI: 10.1155/2023/7550197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 01/28/2023] [Accepted: 02/08/2023] [Indexed: 03/01/2023] Open
Abstract
Thrombocytes (platelets) are the type of blood cells that are involved in hemostasis, thrombosis, etc. For the conversion of megakaryocytes into thrombocytes, the thrombopoietin (TPO) protein is essential which is encoded by the TPO gene. TPO gene is present in the long arm of chromosome number 3 (3q26). This TPO protein interacts with the c-Mpl receptor, which is present on the outer surface of megakaryocytes. As a result, megakaryocyte breaks into the production of functional thrombocytes. Some of the evidence shows that the megakaryocytes, the precursor of thrombocytes, are seen in the lung's interstitium. This review focuses on the involvement of the lungs in the production of thrombocytes and their mechanism. A lot of findings show that viral diseases, which affect the lungs, cause thrombocytopenia in human beings. One of the notable viral diseases is COVID-19 or severe acute respiratory syndrome caused by SARS-associated coronavirus 2 (SARS-CoV-2). SARS-CoV-2 caused a worldwide alarm in 2019 and a lot of people suffered because of this disease. It mainly targets the lung cells for its replication. To enter the cells, these virus targets the angiotensin-converting enzyme-2 (ACE-2) receptors that are abundantly seen on the surface of the lung cells. Recent reports of COVID-19-affected patients reveal the important fact that these peoples develop thrombocytopenia as a post-COVID condition. This review elaborates on the biogenesis of platelets in the lungs and the alterations of thrombocytes during the COVID-19 infection.
Collapse
|
6
|
Abstract
BACKGROUND The coronavirus disease 2019 (COVID-19), an acute respiratory disease caused by a novel coronavirus (SARS-CoV-2), is emerging as a worldwide public health emergency. Several scientific contributions reported the potential relevance of human leukocyte antigen (HLA) polymorphism and susceptibility to viruses, such as SARS-CoV. In our study, we examined a population of coeliac subjects presenting the HLA haplotype DQ2 and/or DQ8. Our aim was to evaluate whether HLA DQ2 and/or DQ8 haplotype play a role in SARS-CoV-2-infection. The aim was also to evaluate the difficulty in following the gluten-free diet due to all the adversities produced by the pandemic, such as the food supply disruption, and the difficulties in managing the clinical follow-up. METHODS 191 consecutive coeliac patients completed a questionnaire on their current clinical status, psychological effects, and management of the gluten-free diet experienced during the COVID-19 pandemic and questions regarding possible SARS-CoV-2 infection. RESULTS Out of the 191 patients who participated in the study, 42 were full-blown coeliac and 149 were in remission. From the answers provided, 84.8% of patients declared that they no longer consider themselves vulnerable to COVID-19 as they suffer from coeliac disease; 94.2% of patients did not encounter any difficulties in managing the gluten-free diet or in acquiring specific foods and 64.9% of patients in our study underwent diagnostic testing for SARS-CoV-2. Out of this number, 31.5% did so due to contacts with subjects affected by COVID-19, 26.6% for work related reasons, 11.3% due to flu-like symptoms and 30.6% for other reasons. Only 5.8% of the enrolled patients received a diagnosis of COVID-19. Out of all the patients in our population who were diagnosed with COVID-19, 94.8% developed no symptoms and none of them needed hospitalization or intensive care. CONCLUSION The hypothesis that the HLADQ2 and/or DQ8 haplotype plays a protective role against SARS-CoV-2 infection, as against other viral infections, is intriguingly suggestive.KEY MESSAGESCOVID-19 as a public health emergency;SARS-CoV-2 and possible complications in coeliac disease;Role of HLA DQ2 and/or DQ8 in SARS-CoV-2 infection.
Collapse
Affiliation(s)
- N Greco
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - A Meacci
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - B Mora
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - A Vestri
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Rome, Italy
| | - A Picarelli
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
7
|
Abstract
BACKGROUND The coronavirus disease 2019 (COVID-19), an acute respiratory disease caused by a novel coronavirus (SARS-CoV-2), is emerging as a worldwide public health emergency. Several scientific contributions reported the potential relevance of human leukocyte antigen (HLA) polymorphism and susceptibility to viruses, such as SARS-CoV. In our study, we examined a population of coeliac subjects presenting the HLA haplotype DQ2 and/or DQ8. Our aim was to evaluate whether HLA DQ2 and/or DQ8 haplotype play a role in SARS-CoV-2-infection. The aim was also to evaluate the difficulty in following the gluten-free diet due to all the adversities produced by the pandemic, such as the food supply disruption, and the difficulties in managing the clinical follow-up. METHODS 191 consecutive coeliac patients completed a questionnaire on their current clinical status, psychological effects, and management of the gluten-free diet experienced during the COVID-19 pandemic and questions regarding possible SARS-CoV-2 infection. RESULTS Out of the 191 patients who participated in the study, 42 were full-blown coeliac and 149 were in remission. From the answers provided, 84.8% of patients declared that they no longer consider themselves vulnerable to COVID-19 as they suffer from coeliac disease; 94.2% of patients did not encounter any difficulties in managing the gluten-free diet or in acquiring specific foods and 64.9% of patients in our study underwent diagnostic testing for SARS-CoV-2. Out of this number, 31.5% did so due to contacts with subjects affected by COVID-19, 26.6% for work related reasons, 11.3% due to flu-like symptoms and 30.6% for other reasons. Only 5.8% of the enrolled patients received a diagnosis of COVID-19. Out of all the patients in our population who were diagnosed with COVID-19, 94.8% developed no symptoms and none of them needed hospitalization or intensive care. CONCLUSION The hypothesis that the HLADQ2 and/or DQ8 haplotype plays a protective role against SARS-CoV-2 infection, as against other viral infections, is intriguingly suggestive.KEY MESSAGESCOVID-19 as a public health emergency;SARS-CoV-2 and possible complications in coeliac disease;Role of HLA DQ2 and/or DQ8 in SARS-CoV-2 infection.
Collapse
Affiliation(s)
- N Greco
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - A Meacci
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - B Mora
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - A Vestri
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Rome, Italy
| | - A Picarelli
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
8
|
In silico analysis of SARS-CoV-2 spike protein N501Y and N501T mutation effects on human ACE2 binding. J Mol Graph Model 2022; 116:108260. [PMID: 35809511 PMCID: PMC9247859 DOI: 10.1016/j.jmgm.2022.108260] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 05/05/2022] [Accepted: 06/21/2022] [Indexed: 12/14/2022]
Abstract
The SARS-CoV-2 is an RNA-based virus and the most vital step of its survival is the attachment to hACE2 through its spike protein. Although SARS-CoV-2 has the ability to maintain high accurate replication and it can be accepted as a low mutation risked virus, it already showed more than nine thousand mutations in spike protein, of which 44 mutations are located within a 3.2 Å interacting distance from the hACE2 receptor. Mutations on spike protein, N501Y and N501T raised serious concerns for higher transmissibility and resistance towards current vaccines. In the current study, the mutational outcomes of N501Y and N501T on the hACE2-SARS CoV-2 spike protein complexation were analyzed by employing all-atom classic molecular dynamics (MD) simulations. These simulations revealed that both N501Y and N501T mutations increased the binding strength of spike protein to the host hACE2, predicted by binding free energy analysis via MM/GBSA rescoring scheme. This study highlights the importance of energy-based analysis for identifying mutational outcomes and will shed light on handling long-term and effective treatment strategies including repurposing anti-viral drugs, anti-SARS-CoV-2 antibodies, vaccines, and antisense based-therapies.
Collapse
|
9
|
Kulesza J, Kulesza E, Koziński P, Karpik W, Broncel M, Fol M. BCG and SARS-CoV-2-What Have We Learned? Vaccines (Basel) 2022; 10:1641. [PMID: 36298506 PMCID: PMC9610589 DOI: 10.3390/vaccines10101641] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/22/2022] [Accepted: 09/24/2022] [Indexed: 11/19/2022] Open
Abstract
Despite controversy over the protective effect of the BCG (Bacille Calmette-Guérin) vaccine in preventing pulmonary tuberculosis (TB) in adults, it has been used worldwide since 1921. Although the first reports in the 1930s had noted a remarkable decrease in child mortality after BCG immunization, this could not be explained solely by a decrease in mortality from TB. These observations gave rise to the suggestion of nonspecific beneficial effects of BCG vaccination, beyond the desired protection against M. tuberculosis. The existence of an innate immunity-training mechanism based on epigenetic changes was demonstrated several years ago. The emergence of the pandemic caused by the severe acute respiratory syndrome coronavirus (SARS-CoV-2) in 2019 revived the debate about whether the BCG vaccine can affect the immune response against the virus or other unrelated pathogens. Due to the mortality of the coronavirus disease (COVID-19), it is important to verify each factor that may have a potential protective value against the severe course of COVID-19, complications, and death. This paper reviews the results of numerous retrospective studies and prospective trials which shed light on the potential of a century-old vaccine to mitigate the pandemic impact of the new virus. It should be noted, however, that although there are numerous studies intending to verify the hypothesis that the BCG vaccine may have a beneficial effect on COVID-19, there is no definitive evidence on the efficacy of the BCG vaccine against SARS-CoV-2.
Collapse
Affiliation(s)
- Jakub Kulesza
- Department of Internal Diseases and Clinical Pharmacology, Medical University of Lodz, Kniaziewicza 1/5, 91-347 Lodz, Poland
| | - Ewelina Kulesza
- Department of Rheumatology and Internal Diseases, Medical University of Lodz, Żeromskiego 113, 90-549 Lodz, Poland
| | - Piotr Koziński
- Tuberculosis and Lung Diseases Outpatient Clinic, Health Facility Unit in Łęczyca, Zachodnia 6, 99-100 Łęczyca, Poland
| | - Wojciech Karpik
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| | - Marlena Broncel
- Department of Internal Diseases and Clinical Pharmacology, Medical University of Lodz, Kniaziewicza 1/5, 91-347 Lodz, Poland
| | - Marek Fol
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| |
Collapse
|
10
|
Kumar S, Dutta D, Ravichandiran V, Sukla S. Monoclonal antibodies: a remedial approach to prevent SARS-CoV-2 infection. 3 Biotech 2022; 12:227. [PMID: 35982759 PMCID: PMC9383686 DOI: 10.1007/s13205-022-03281-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 07/26/2022] [Indexed: 11/07/2022] Open
Abstract
SARS-CoV-2, the newly emerged virus of the Coronaviridae family is causing havoc worldwide. The novel coronavirus 2019 was first reported in Wuhan, China marked as the third highly infectious pathogenic virus of the twenty-first century. The typical manifestations of COVID-19 include cough, sore throat, fever, fatigue, loss of sense of taste and difficulties in breathing. Large numbers of SARS-CoV-2 infected patients have mild to moderate symptoms, however severe and life-threatening cases occur in about 5-10% of infections with an approximately 2% mortality rate. For the treatment of SARS-CoV-2, the use of neutralizing monoclonal antibodies (mAbs) could be one approach. The receptor binding domain (RBD) and N-terminal domain (NTD) situated on the peak of the spike protein (S-Protein) of SARS-CoV-2 are immunogenic in nature, therefore, can be targeted by neutralizing monoclonal antibodies. Several bioinformatics approaches highlight the identification of novel SARS-CoV-2 epitopes which can be targeted for the development of COVID-19 therapeutics. Here we present a summary of neutralizing mAbs isolated from COVID-19 infected patients which are anticipated to be a better therapeutic alternative against SARS-CoV-2. However, provided the vast escalation of the disease worldwide affecting people from all strata, affording expensive mAb therapy will not be feasible. Hence other strategies are also being employed to find suitable vaccine candidates and antivirals against SARS-CoV-2 that can be made easily available to the population.
Collapse
Affiliation(s)
- Sonu Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceuticals Education and Research, 168, Maniktala Main Road, Kolkata, 700054 West Bengal India
| | - Debrupa Dutta
- Department of Pharmacology and Toxicology, National Institute of Pharmaceuticals Education and Research, 168, Maniktala Main Road, Kolkata, 700054 West Bengal India
| | - Velayutham Ravichandiran
- Department of Natural Products, National Institute of Pharmaceuticals Education and Research, 168, Maniktala Main Road, Kolkata, 700054 West Bengal India
| | - Soumi Sukla
- Department of Pharmacology and Toxicology, National Institute of Pharmaceuticals Education and Research, 168, Maniktala Main Road, Kolkata, 700054 West Bengal India
| |
Collapse
|
11
|
Demir HB, Korucuk E, Miftari A, Turk Y. Have General Surgery Practices Decreased During the COVID-19 Pandemic? Cureus 2022; 14:e27270. [PMID: 36039204 PMCID: PMC9404371 DOI: 10.7759/cureus.27270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2022] [Indexed: 11/05/2022] Open
|
12
|
Wumba R, Mandina M, Nlandu Y, Makulo JR, Tshimpi A, Mbala P, Mbangama A, Kabututu P, Kayembe JM. SARS-CoV-2: Molecular Structure, Pathogenesis, Potential Therapeutic Targets, and Immune Response of the Infected Subject. Interdiscip Perspect Infect Dis 2022; 2022:7856659. [PMID: 35694045 PMCID: PMC9184234 DOI: 10.1155/2022/7856659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 05/05/2022] [Indexed: 12/15/2022] Open
Abstract
Background The pathogenic mechanisms and immune response of COVID-19 are far from clear. Through a documentary review of literature, the authors describe virological and molecular aspects of SARS-CoV-2, the intimate mechanisms of cell infection, and potential therapeutic targets. They also analyze the characteristics of immune response of the infected subject. Objectives Objectives of this study are to describe the state of knowledge on virological data, molecular and physiopathogenic mechanisms of SARS-CoV-2, with a view to a better understanding of the therapeutic targets, as well as the immune response of the infected subject. Methodology. This documentary review is a compilation of several meta-analyses, consistent with the methodology described in the PRISMA statement on literature data on SARS-CoV-2, published between March 22 and August 14, 2020 (Moher et al.). The search engines used for the selection of articles were as follows: PubMed, Google Scholar, Global Health, and WHO reports. Papers of interest were those addressing virological and molecular data on SARS-CoV-2, therapeutic aspects of COVID-19, and immunity of the infected subject. Of the 617 eligible papers, 417 could be retained after removing the duplicates. Ultimately, only 50 articles were retained for final evaluation. The data collected allowed the development of a two-armed model around the physiopathological aspects and potential therapeutic targets, as well as aspects of host immunity, respectively. The model was then compared to data from the HIV literature. Conclusion Reported data could contribute to a better understanding of molecular mechanisms of cellular infection by SARS-CoV-2 as well as to a more easy explanation of the action of pharmacological agents used for the treatment, while elucidating intimate mechanisms of the immunity of infected subject.
Collapse
Affiliation(s)
- R. Wumba
- Service of Parasitology, Department of Tropical Medicine, Infectious and Parasitic Diseases, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - M. Mandina
- Service of Infectious and Parasitic Diseases, Department of Internal Medicine, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - Y. Nlandu
- Service of Nephrology, Department of Internal Medicine, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - J. R. Makulo
- Service of Nephrology, Department of Internal Medicine, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - A. Tshimpi
- Service of Gastroenterology, Department of Internal Medicine, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - P. Mbala
- Service of Microbiology, Department of Medical Biology, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
- National Institute for Biomedical Research (INRB), Kinshasa, Democratic Republic of the Congo
| | - A. Mbangama
- Service of Obstetrical, Department of Gynecology and Obstetrical, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - P. Kabututu
- Service of Molecular Biology, Department of Basic Sciences, Faculty of Medicine, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - J. M. Kayembe
- Service of Pneumology, Department of Internal Medicine, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
| |
Collapse
|
13
|
Geng S, Pradhan K, Li L. Signal-Strength and History-Dependent Innate Immune Memory Dynamics in Health and Disease. Handb Exp Pharmacol 2022; 276:23-41. [PMID: 34085119 DOI: 10.1007/164_2021_485] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Innate immunity exhibits memory characteristics, reflected not only in selective recognition of external microbial or internal damage signals, but more importantly in history and signal-strength dependent reprogramming of innate leukocytes characterized by priming, tolerance, and exhaustion. Key innate immune cells such as monocytes and neutrophils can finely discern and attune to the duration and intensity of external signals through rewiring of internal signaling circuitries, giving rise to a vast array of discreet memory phenotypes critically relevant to managing tissue homeostasis as well as diverse repertoires of inflammatory conditions. This review will highlight recent advances in this rapidly expanding field of innate immune programming and memory, as well as its translational implication in the pathophysiology of selected inflammatory diseases.
Collapse
Affiliation(s)
- Shuo Geng
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Kisha Pradhan
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Liwu Li
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA.
| |
Collapse
|
14
|
Abstract
Toll-like receptors were discovered as proteins playing a crucial role in the dorsoventral patterning during embryonic development in the Drosophila melanogaster (D. melanogaster) almost 40 years ago. Subsequently, further research also showed a role of the Toll protein or Toll receptor in the recognition of Gram-positive bacterial and fungal pathogens infecting D. melanogaster. In 1997, the human homolog was reported and the receptor was named the Toll-like receptor 4 (TLR4) that recognizes lipopolysaccharide (LPS) of the Gram-negative bacteria as a pathogen-associated molecular pattern (PAMP). Identification of TLR4 in humans filled the long existing gap in the field of infection and immunity, addressing the mystery surrounding the recognition of foreign pathogens/microbes by the immune system. It is now known that mammals (mice and humans) express 13 different TLRs that are expressed on the outer cell membrane or intracellularly, and which recognize different PAMPs or microbe-associated molecular patterns (MAMPs) and death/damage-associated molecular patterns (DAMPs) to initiate the protective immune response. However, their dysregulation generates profound and prolonged pro-inflammatory immune responses responsible for different inflammatory and immune-mediated diseases. This chapter provides an overview of TLRs in the control of the immune response, their association with different diseases, including TLR single nucleotide polymorphisms (SNPs), interactions with microRNAs (miRs), use in drug development and vaccine design, and expansion in neurosciences to include pain, addiction, metabolism, reproduction, and wound healing.
Collapse
Affiliation(s)
- Vijay Kumar
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA.
| | - James E Barrett
- Drexel University College of Medicine, Philadelphia, PA, USA.
- Department of Neural Sciences, Centre for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA.
| |
Collapse
|
15
|
Philips CA, Rela M, Soin AS, Gupta S, Surendran S, Augustine P. Critical Update on the Diagnosis and Management of COVID-19 in Advanced Cirrhosis and Liver Transplant Recipients. J Clin Transl Hepatol 2021; 9:947-959. [PMID: 34966658 PMCID: PMC8666374 DOI: 10.14218/jcth.2021.00228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/15/2021] [Accepted: 08/30/2021] [Indexed: 02/06/2023] Open
Abstract
The novel coronavirus disease 2019 (COVID-19) pandemic has impacted health care worldwide, with specific patient populations, such as those with diabetes, cardiovascular disease, and chronic lung disease, at higher risk of infection and others at higher risk of disease progression. Patients with decompensated cirrhosis fall into the latter category and are a unique group that require specific treatment and management decisions because they can develop acute-on-chronic liver failure. In liver transplant recipients, the atypical immunity profile due to immunosuppression protects against downstream inflammatory responses triggered by COVID-19. This exhaustive review discusses the outcomes associated with COVID-19 in patients with advanced cirrhosis and in liver transplant recipients. We focus on the immunopathogenesis of COVID-19, its correlation with the pathogenesis of advanced liver disease, and the effect of immunosuppression in liver transplant recipients to provide insight into the outcomes of this unique patient population.
Collapse
Affiliation(s)
- Cyriac Abby Philips
- Department of Clinical and Translational Hepatology and The Monarch Liver Laboratory, The Liver Institute, Center of Excellence in Gastrointestinal Sciences, Rajagiri Hospital, Aluva, Kerala, India
| | - Mohamed Rela
- Institute of Liver Disease and Liver Transplantation, Dr. Rela Institute & Medical Centre, Bharath Institute of Higher Education and Research, Chennai, India
| | - Arvinder Singh Soin
- Institute of Liver Transplantation and Regenerative Medicine, Medanta, The Medicity, Gurgaon, India
| | - Subhash Gupta
- Max Centre for Liver and Biliary Sciences, Max Saket Hospital, New Delhi, India
| | - Sudhindran Surendran
- Gastrointestinal Surgery and Solid Organ Transplantation, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| | - Philip Augustine
- Gastroenterology and Advanced GI Endoscopy, Center of Excellence in Gastrointestinal Sciences, Rajagiri Hospital, Aluva, Kerala, India
| |
Collapse
|
16
|
Mihaescu G, Chifiriuc MC, Vrancianu CO, Constantin M, Filip R, Popescu MR, Burlibasa L, Nicoara AC, Bolocan A, Iliescu C, Gradisteanu Pircalabioru G. Antiviral Immunity in SARS-CoV-2 Infection: From Protective to Deleterious Responses. Microorganisms 2021; 9:2578. [PMID: 34946179 PMCID: PMC8703918 DOI: 10.3390/microorganisms9122578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 12/26/2022] Open
Abstract
After two previous episodes, in 2002 and 2012, when two highly pathogenic coronaviruses (SARS, MERS) with a zoonotic origin emerged in humans and caused fatal respiratory illness, we are today experiencing the COVID-19 pandemic produced by SARS-CoV-2. The main question of the year 2021 is if naturally- or artificially-acquired active immunity will be effective against the evolving SARS-CoV-2 variants. This review starts with the presentation of the two compartments of antiviral immunity-humoral and cellular, innate and adaptive-underlining how the involved cellular and molecular actors are intrinsically connected in the development of the immune response in SARS-CoV-2 infection. Then, the SARS-CoV-2 immunopathology, as well as the derived diagnosis and therapeutic approaches, will be discussed.
Collapse
Affiliation(s)
- Grigore Mihaescu
- Faculty of Biology, University of Bucharest, 030018 Bucharest, Romania; (G.M.); (C.O.V.); (L.B.)
| | - Mariana Carmen Chifiriuc
- Faculty of Biology, University of Bucharest, 030018 Bucharest, Romania; (G.M.); (C.O.V.); (L.B.)
- Life, Environmental and Earth Sciences Division, Research Institute of the University of Bucharest, 050096 Bucharest, Romania;
- The Romanian Academy, 25 Calea Victoriei, Sector 1, 010071 Bucharest, Romania
| | | | | | - Roxana Filip
- Faculty of Medicine and Biological Sciences, Stefan cel Mare University of Suceava, 720229 Suceava, Romania;
- Regional County Emergency Hospital, 720284 Suceava, Romania
| | - Mihaela Roxana Popescu
- Department of Cardiology, Elias Emergency University Hospital “Carol Davila”, University of Medicine and Pharmacy “Carol Davila”, 020021 Bucharest, Romania;
| | - Liliana Burlibasa
- Faculty of Biology, University of Bucharest, 030018 Bucharest, Romania; (G.M.); (C.O.V.); (L.B.)
| | - Anca Cecilia Nicoara
- Faculty of Pharmacy, University of Medicine and Pharmacy “Carol Davila”, 020021 Bucharest, Romania;
| | - Alexandra Bolocan
- General Surgery, University of Medicine and Pharmacy “Carol Davila”, 020021 Bucharest, Romania;
| | - Ciprian Iliescu
- National Institute for Research and Development in Microtechnologies—IMT, 077190 Bucharest, Romania;
- Faculty of Applied Chemistry and Materials Science, University “Politehnica” of Bucharest, 011061 Bucharest, Romania
- Academy of Romanian Scientists, 010071 Bucharest, Romania
| | | |
Collapse
|
17
|
Bakhtazad A, Garmabi B, Joghataei MT. Neurological manifestations of coronavirus infections, before and after COVID-19: a review of animal studies. J Neurovirol 2021; 27:864-884. [PMID: 34727365 PMCID: PMC8561685 DOI: 10.1007/s13365-021-01014-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 07/15/2021] [Accepted: 08/20/2021] [Indexed: 12/12/2022]
Abstract
Coronavirus disease 2019 (COVID-19) is an infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This virus, which was first identified in December 2019 in China, has resulted in a yet ongoing viral pandemic. Coronaviridae could potentially cause several disorders in a wide range of hosts such as birds and mammals. Although infections caused by this family of viruses are predominantly limited to the respiratory tract, Betacoronaviruses are potentially able to invade the central nervous system (CNS) as well as many other organs, thereby inducing neurological damage ranging from mild to lethal in both animals and humans. Over the past two decades, three novel CoVs, SARS-CoV-1, MERS-CoV, and SARS-CoV-2, emerging from animal reservoirs have exhibited neurotropic properties causing severe and even fatal neurological diseases. The pathobiology of these neuroinvasive viruses has yet to be fully known. Both clinical features of the previous CoV epidemics (SARS-CoV-1 and MERS-CoV) and lessons from animal models used in studying neurotropic CoVs, especially SARS and MERS, constitute beneficial tools in comprehending the exact mechanisms of virus implantation and in illustrating pathogenesis and virus dissemination pathways in the CNS. Here, we review the animal research which assessed CNS infections with previous more studied neurotropic CoVs to demonstrate how experimental studies with appliable animal models can provide scientists with a roadmap in the CNS impacts of SARS-CoV-2. Indeed, animal studies can finally help us discover the underlying mechanisms of damage to the nervous system in COVID-19 patients and find novel therapeutic agents in order to reduce mortality and morbidity associated with neurological complications of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Atefeh Bakhtazad
- Cellular and Molecular Research Center (CMRC), Iran University of Medical Sciences, 1449614535 Tehran, Iran
| | - Behzad Garmabi
- School of Medicine, Shahroud University of Medical Sciences, Haft-Tir Sq, University Blv, 3614773947 Shahroud, Iran
| | - Mohammad Taghi Joghataei
- Cellular and Molecular Research Center (CMRC), Iran University of Medical Sciences, 1449614535 Tehran, Iran
| |
Collapse
|
18
|
Chen J, Luo L, Tian R, Yu C. A review and update for registered clinical studies of stem cells for non-tumorous and non-hematological diseases. Regen Ther 2021; 18:355-362. [PMID: 34584912 PMCID: PMC8446785 DOI: 10.1016/j.reth.2021.09.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/20/2021] [Accepted: 09/02/2021] [Indexed: 12/23/2022] Open
Abstract
Objective To provide consultative information on selecting potential indications of stem cells in the treatment of non-tumorous and non-hematopoietic system conditions, we screened the clinical trials on website: http://www.clinicaltrials.gov. Methods A literature search was conducted using the National Institute of Health (NIH) website (http://www.clinicaltrials.gov) from May 10th, 2012 to Oct 13th, 2020 with stem cells as an intervention in human trials for non-tumorous and non-hematological conditions. There was no restriction for language, research location, and research race. Results and conclusion Search terms initially found a total of 3576 articles. Firstly, 138 terminated or suspended studies were excluded and further 24 repeated studies were excluded. Secondly, 987 tumorous and hematopoietic conditions-related studies were excluded. Lastly, 1218 studies were excluded without stem cell therapy as their primary purpose. A total of 1209 research studies were entered into the analysis and reviewed. The top 4 diseases were about motor system diseases 229 (19.28%). In addition, 206 (17.34%) studies were related to central nervous system (CNS) diseases. 140 (11.78%) were autoimmune diseases or graft-versus-host disease (GVHD) after organ transplantation. 129 (10.86%) were about respiratory system diseases, among them, 44.19% projects were about new coronary pneumonia (NCP). The main cell types used in various diseases are Mesenchymal Stem Cells (MSCs), bone marrow stem cells (BM-SCs), peripheral blood stem cells (PBSCs), hematopoietic stem cells (HSCs), adipose stem cell (ASCs) and precursor cells.
Collapse
Affiliation(s)
- Jianhua Chen
- Department of Pharmacology, School of Pharmacy, North Sichuan Medical College, China.,Institute of Materia Medica, North Sichuan Medical College, China
| | - Lijun Luo
- Department of Pharmacology, School of Pharmacy, North Sichuan Medical College, China.,Institute of Materia Medica, North Sichuan Medical College, China
| | - Ruimin Tian
- Department of Pharmacology, School of Pharmacy, North Sichuan Medical College, China.,Institute of Materia Medica, North Sichuan Medical College, China
| | - Chunlei Yu
- Department of Pharmacology, School of Pharmacy, North Sichuan Medical College, China.,Institute of Materia Medica, North Sichuan Medical College, China
| |
Collapse
|
19
|
Abstract
The immune (innate and adaptive) system has evolved to protect the host from any danger present in the surrounding outer environment (microbes and associated MAMPs or PAMPs, xenobiotics, and allergens) and dangers originated within the host called danger or damage-associated molecular patterns (DAMPs) and recognizing and clearing the cells dying due to apoptosis. It also helps to lower the tissue damage during trauma and initiates the healing process. The pattern recognition receptors (PRRs) play a crucial role in recognizing different PAMPs or MAMPs and DAMPs to initiate the pro-inflammatory immune response to clear them. Toll-like receptors (TLRs) are first recognized PRRs and their discovery proved milestone in the field of immunology as it filled the gap between the first recognition of the pathogen by the immune system and the initiation of the appropriate immune response required to clear the infection by innate immune cells (macrophages, neutrophils, dendritic cells or DCs, and mast cells). However, in addition to their expression by innate immune cells and controlling their function, TLRs are also expressed by adaptive immune cells. We have identified 10 TLRs (TLR1-TLR10) in humans and 12 TLRs (TLR1-TLR13) in laboratory mice till date as TLR10 in mice is present only as a defective pseudogene. The present chapter starts with the introduction of innate immunity, timing of TLR evolution, and the evolution of adaptive immune system and its receptors (T cell receptors or TCRs and B cell receptors or BCRs). The next section describes the role of TLRs in the innate immune function and signaling involved in the generation of inflammation. The subsequent sections describe the expression and function of different TLRs in murine and human adaptive immune cells (B cells and different types of T cells, including CD4+T cells, CD8+T cells, CD4+CD25+Tregs, and CD8+CD25+Tregs, etc.). The modulation of TLRs expressed on T and B cells has a great potential to develop different vaccine candidates, adjuvants, immunotherapies to target various microbial infections, including current COVID-19 pandemic, cancers, and autoimmune and autoinflammatory diseases.
Collapse
Affiliation(s)
- Vijay Kumar
- Children's Health Queensland Clinical Unit, School of Clinical Medicine, Faculty of Medicine, Mater Research, University of Queensland, Brisbane, QLD, Australia.
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia.
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center (UTHSC), Memphis, TN, USA.
| |
Collapse
|
20
|
Almazroa A, Alamri S, Alabdulkader B, Alkozi H, Khan A, Alghamdi W. Ocular transmission and manifestation for coronavirus disease: a systematic review. Int Health 2021; 14:113-121. [PMID: 34043796 PMCID: PMC8195065 DOI: 10.1093/inthealth/ihab028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/30/2021] [Accepted: 05/07/2021] [Indexed: 01/13/2023] Open
Abstract
Background There is currently a lack of information regarding ocular tropism and the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Globally, the cumulative number of coronavirus disease 2019 (COVID-19) cases is increasing daily. Thus the potential for ocular transmission and manifestations of SARS-CoV-2 requires more investigation. Methods A systematic search of electronic databases for ocular transmission and manifestations of SARS-CoV-2 was performed. Pooled cross-sectional studies were used for conducting a meta-analysis to estimate the prevalence of ocular transmission of SARS-CoV-2 to the respiratory system and ocular manifestations (associated symptoms) of SARS-CoV-2. Results The highest prevalence of SARS-CoV-2-positive tears using reverse transcription polymerase chain reaction was found to be 7.5%. However, the highest prevalence of ocular conjunctivitis associated with SARS-CoV-2 was 32%. Thus, SARS-CoV-2 can evidently infect the eye, as revealed in the conjunctival secretions of COVID-19 patients. Conclusion The available data reflect the influence of the ocular structure on SARS-CoV-2. The analysis showed that ocular manifestation is an indication for SARS-CoV-2, particularly conjunctivitis. Moreover, there is no evidence that the ocular structure can be an additional path of transmission for SARS-CoV-2, however, it warrants further investigation.
Collapse
Affiliation(s)
- Ahmed Almazroa
- Department of Imaging Research, King Abdullah International Medical Research Center, Riyadh, 11481, Saudi Arabia.,King Saud bin Abdulaziz University for Health Sciences, 14611, Riyadh, Saudi Arabia
| | - Suhailah Alamri
- Department of Imaging Research, King Abdullah International Medical Research Center, Riyadh, 11481, Saudi Arabia.,King Saud bin Abdulaziz University for Health Sciences, 14611, Riyadh, Saudi Arabia
| | - Balsam Alabdulkader
- Department of Optometry and Vision Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, 12372, Saudi Arabia
| | - Hanan Alkozi
- Department of Imaging Research, King Abdullah International Medical Research Center, Riyadh, 11481, Saudi Arabia.,King Saud bin Abdulaziz University for Health Sciences, 14611, Riyadh, Saudi Arabia
| | - Altaf Khan
- Department of Biostatistics and Bioinformatics, King Abdullah International Medical Research center, Riyadh, 11481, Saudi Arabia.,King Saud bin Abdulaziz University for Health Sciences, 14611, Riyadh, Saudi Arabia
| | - Walead Alghamdi
- Optometry Department, College of Applied Medical Sciences, Qassim University, Qassim, 51452, Saudi Arabia.,School of Optometry and Vision Science, University of New South Wales, Sydney, NSW 2033, Australia
| |
Collapse
|
21
|
COVID-19 vaccine hesitancy and related fears and anxiety. Int Immunopharmacol 2021; 97:107724. [PMID: 33951558 PMCID: PMC8078903 DOI: 10.1016/j.intimp.2021.107724] [Citation(s) in RCA: 201] [Impact Index Per Article: 67.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/12/2021] [Accepted: 04/24/2021] [Indexed: 02/07/2023]
Abstract
Background Vaccination is crucial to limit the pandemic spread of SARS-CoV-2/COVID-19. Therefore, besides the development and supply of vaccines, it is essential that sufficient individuals are willing to get vaccinated, but concerning proportions of populations worldwide show vaccine hesitancy. This makes it important to determine factors that are associated with vaccine acceptance. Methods 1779 adults of a non-probability convenience sample in Germany were assessed with an online survey in a cross-sectional survey period from 1st to 11th January 2021 (a few days after the beginning of vaccinations in Germany). Results 64.5% of the sample stated that they absolutely would accept the vaccination, 13.8% would rather accept it, 10.4% were undecided, and 5.2% would rather not and 6.0% absolutely not get vaccinated. COVID-19-related anxiety, and fears of infection and health-related consequences correlated significantly positively with vaccine acceptance (all p < .001). In contrast, social (p = .006) and economic fears (p < .001) showed significant negative associations with vaccination willingness. The broader constructs of unspecific anxiety and depressive symptoms were not significantly associated with vaccine acceptance. Vaccine acceptance differed between users/non-users of social media and official websites to gain information about the pandemic (p < .001). Conclusions COVID-19-related anxiety and health-related fears were associated with higher vaccine acceptance, whereas the fear of social and economic consequences showed the contrary direction. These findings highlight the need to differentiate between several types of fears and anxiety to predict their influence on vaccine acceptance, and provide important information and an essential base for future studies and interventions.
Collapse
|
22
|
David P, Hansen FJ, Bhat A, Weber GF. An overview of proteomic methods for the study of 'cytokine storms'. Expert Rev Proteomics 2021; 18:83-91. [PMID: 33849358 DOI: 10.1080/14789450.2021.1911652] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Introduction: The cytokine storm is a form of excessive systemic inflammatory reaction triggered by a myriad of factors that may lead to multi-organ failure, and finally to death. The cytokine storm can occur in a number of infectious and noninfectious diseases including COVID-19, sepsis, ebola, avian influenza, and graft versus host disease, or during the severe inflammatory response syndrome.Area covered: This review mainly focuses on the most common and well-known methods of protein studies (PAGE, SDS-PAGE, and high- performance liquid chromatography). It also discusses other modern technologies in proteomics like mass spectrometry, soft ionization techniques, cytometric bead assays, and the next generation of microarrays that have been used to get an in-depth understanding of the pathomechanisms involved during the cytokine storm.Expert opinion: Overactivation of leukocytes drives the production and secretion of inflammatory cytokines fueling the cytokine storm. These events lead to a systemic hyper-inflammation, circulatory collapse and shock, and finally to multiorgan failure. Therefore, monitoring the patient's systemic cytokine levels with proteomic technologies that are redundant, economical, and require minimal sample volume for real-time assessment might help in a better clinical evaluation and management of critically ill patients.
Collapse
Affiliation(s)
- Paul David
- Department of Surgery, Friedrich-Alexander University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Frederik J Hansen
- Department of Surgery, Friedrich-Alexander University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Adil Bhat
- Department of Pathology and Laboratory Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Georg F Weber
- Department of Surgery, Friedrich-Alexander University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| |
Collapse
|
23
|
Kumar V. Can proteomics-based approaches further help COVID-19 prevention and therapy? Expert Rev Proteomics 2021; 18:241-245. [PMID: 33929923 PMCID: PMC8127169 DOI: 10.1080/14789450.2021.1924684] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 04/28/2021] [Indexed: 12/24/2022]
Affiliation(s)
- Vijay Kumar
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center (UTHSC), Memphis, TN, USA
| |
Collapse
|
24
|
Kumar V. The Trinity of cGAS, TLR9, and ALRs Guardians of the Cellular Galaxy Against Host-Derived Self-DNA. Front Immunol 2021; 11:624597. [PMID: 33643304 PMCID: PMC7905024 DOI: 10.3389/fimmu.2020.624597] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 12/29/2020] [Indexed: 12/15/2022] Open
Abstract
The immune system has evolved to protect the host from the pathogens and allergens surrounding their environment. The immune system develops in such a way to recognize self and non-self and develops self-tolerance against self-proteins, nucleic acids, and other larger molecules. However, the broken immunological self-tolerance leads to the development of autoimmune or autoinflammatory diseases. Pattern-recognition receptors (PRRs) are expressed by immunological cells on their cell membrane and in the cytosol. Different Toll-like receptors (TLRs), Nod-like receptors (NLRs) and absent in melanoma-2 (AIM-2)-like receptors (ALRs) forming inflammasomes in the cytosol, RIG (retinoic acid-inducible gene)-1-like receptors (RLRs), and C-type lectin receptors (CLRs) are some of the PRRs. The DNA-sensing receptor cyclic GMP–AMP synthase (cGAS) is another PRR present in the cytosol and the nucleus. The present review describes the role of ALRs (AIM2), TLR9, and cGAS in recognizing the host cell DNA as a potent damage/danger-associated molecular pattern (DAMP), which moves out to the cytosol from its housing organelles (nucleus and mitochondria). The introduction opens with the concept that the immune system has evolved to recognize pathogens, the idea of horror autotoxicus, and its failure due to the emergence of autoimmune diseases (ADs), and the discovery of PRRs revolutionizing immunology. The second section describes the cGAS-STING signaling pathway mediated cytosolic self-DNA recognition, its evolution, characteristics of self-DNAs activating it, and its role in different inflammatory conditions. The third section describes the role of TLR9 in recognizing self-DNA in the endolysosomes during infections depending on the self-DNA characteristics and various inflammatory diseases. The fourth section discusses about AIM2 (an ALR), which also binds cytosolic self-DNA (with 80–300 base pairs or bp) that inhibits cGAS-STING-dependent type 1 IFN generation but induces inflammation and pyroptosis during different inflammatory conditions. Hence, this trinity of PRRs has evolved to recognize self-DNA as a potential DAMP and comes into action to guard the cellular galaxy. However, their dysregulation proves dangerous to the host and leads to several inflammatory conditions, including sterile-inflammatory conditions autoinflammatory and ADs.
Collapse
Affiliation(s)
- Vijay Kumar
- Children's Health Queensland Clinical Unit, School of Clinical Medicine, Faculty of Medicine, Mater Research, University of Queensland, St. Lucia, Brisbane, QLD, Australia.,School of Biomedical Sciences, Faculty of Medicine, University of Queensland, St. Lucia, Brisbane, QLD, Australia
| |
Collapse
|
25
|
Kloc M, Ghobrial RM, Lipińska-Opałka A, Wawrzyniak A, Zdanowski R, Kalicki B, Kubiak JZ. Effects of vitamin D on macrophages and myeloid-derived suppressor cells (MDSCs) hyperinflammatory response in the lungs of COVID-19 patients. Cell Immunol 2021; 360:104259. [PMID: 33359760 PMCID: PMC7738277 DOI: 10.1016/j.cellimm.2020.104259] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 12/03/2020] [Accepted: 12/05/2020] [Indexed: 12/13/2022]
Abstract
Vitamin D regulates homeostasis, anti-microbial response, and inflammation. The vitamin D receptors are expressed in the macrophages and other immune cells, regulating the transcription of many different genes, including those coding the anti-microbial peptides. One of the most severe complications of the SARS-CoV-2 infection is the acute respiratory distress syndrome (ARDS) caused by the hyperinflammatory response (commonly called cytokine storm) of the lung macrophages. Studies showed that Vitamin D deficiency increases the severity of the ARDS in COVID-19 infection. We discuss here how the vitamin D supplementation may influence macrophage and myeloid-derived suppressor cells (MDSCs) inflammatory response, subdue the hyperinflammatory response, and lessen the ARDS in COVID-19 patients.
Collapse
Affiliation(s)
- Malgorzata Kloc
- The Houston Methodist Research Institute, Houston, TX 77030, USA; The Houston Methodist Hospital, Department of Surgery, Houston, TX, USA; The University of Texas, M.D. Anderson Cancer Center, Department of Genetics, Houston, TX, USA.
| | - Rafik M Ghobrial
- The Houston Methodist Research Institute, Houston, TX 77030, USA; The Houston Methodist Hospital, Department of Surgery, Houston, TX, USA
| | - Agnieszka Lipińska-Opałka
- Military Institute of Medicine, Clinic of Paediatrics, Nephrology and Child Allergology, Central Clinical Hospital of the Ministry of National Defense, Warsaw, Poland
| | - Agata Wawrzyniak
- Military Institute of Medicine, Clinic of Paediatrics, Nephrology and Child Allergology, Central Clinical Hospital of the Ministry of National Defense, Warsaw, Poland
| | - Robert Zdanowski
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine (WIM), Warsaw, Poland
| | - Boleslaw Kalicki
- Military Institute of Medicine, Clinic of Paediatrics, Nephrology and Child Allergology, Central Clinical Hospital of the Ministry of National Defense, Warsaw, Poland
| | - Jacek Z Kubiak
- Laboratory of Regenerative Medicine and Cell Biology, Military Institute of Hygiene and Epidemiology (WIHE), Warsaw, Poland; UnivRennes, UMR 6290, CNRS, Institute of Genetics and Development of Rennes, Cell Cycle Group, Faculty of Medicine, Rennes, France.
| |
Collapse
|
26
|
Zhang YH, Li H, Zeng T, Chen L, Li Z, Huang T, Cai YD. Identifying Transcriptomic Signatures and Rules for SARS-CoV-2 Infection. Front Cell Dev Biol 2021; 8:627302. [PMID: 33505977 PMCID: PMC7829664 DOI: 10.3389/fcell.2020.627302] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 12/14/2020] [Indexed: 12/26/2022] Open
Abstract
The world-wide Coronavirus Disease 2019 (COVID-19) pandemic was triggered by the widespread of a new strain of coronavirus named as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Multiple studies on the pathogenesis of SARS-CoV-2 have been conducted immediately after the spread of the disease. However, the molecular pathogenesis of the virus and related diseases has still not been fully revealed. In this study, we attempted to identify new transcriptomic signatures as candidate diagnostic models for clinical testing or as therapeutic targets for vaccine design. Using the recently reported transcriptomics data of upper airway tissue with acute respiratory illnesses, we integrated multiple machine learning methods to identify effective qualitative biomarkers and quantitative rules for the distinction of SARS-CoV-2 infection from other infectious diseases. The transcriptomics data was first analyzed by Boruta so that important features were selected, which were further evaluated by the minimum redundancy maximum relevance method. A feature list was produced. This list was fed into the incremental feature selection, incorporating some classification algorithms, to extract qualitative biomarker genes and construct quantitative rules. Also, an efficient classifier was built to identify patients infected with SARS-COV-2. The findings reported in this study may help in revealing the potential pathogenic mechanisms of COVID-19 and finding new targets for vaccine design.
Collapse
Affiliation(s)
- Yu-Hang Zhang
- School of Life Sciences, Shanghai University, Shanghai, China
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Hao Li
- College of Food Engineering, Jilin Engineering Normal University, Changchun, China
| | - Tao Zeng
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Lei Chen
- College of Information Engineering, Shanghai Maritime University, Shanghai, China
| | - Zhandong Li
- College of Food Engineering, Jilin Engineering Normal University, Changchun, China
| | - Tao Huang
- Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yu-Dong Cai
- School of Life Sciences, Shanghai University, Shanghai, China
| |
Collapse
|
27
|
Stratton CW, Tang YW, Lu H. Pathogenesis-directed therapy of 2019 novel coronavirus disease. J Med Virol 2020; 93:1320-1342. [PMID: 33073355 DOI: 10.1002/jmv.26610] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 01/18/2023]
Abstract
The 2019 novel coronavirus disease (COVID-19) now is considered a global public health emergency. One of the unprecedented challenges is defining the optimal therapy for those patients with severe pneumonia and systemic manifestations of COVID-19. The optimal therapy should be largely based on the pathogenesis of infections caused by this novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Since the onset of COVID-19, there have been many prepublications and publications reviewing the therapy of COVID-19 as well as many prepublications and publications reviewing the pathogenesis of SARS-CoV-2. However, there have been no comprehensive reviews that link COVID-19 therapies to the pathogenic mechanisms of SARS-CoV-2. To link COVID-19 therapies to pathogenic mechanisms of SARS-CoV-2, we performed a comprehensive search through MEDLINE, PubMed, medRxiv, EMBASE, Scopus, Google Scholar, and Web of Science using the following keywords: COVID-19, SARS-CoV-2, novel 2019 coronavirus, pathology, pathologic, pathogenesis, pathophysiology, coronavirus pneumonia, coronavirus infection, coronavirus pulmonary infection, coronavirus cardiovascular infection, coronavirus gastroenteritis, coronavirus autopsy findings, viral sepsis, endotheliitis, thrombosis, coagulation abnormalities, immunology, humeral immunity, cellular immunity, inflammation, cytokine storm, superantigen, therapy, treatment, therapeutics, immune-based therapeutics, antiviral agents, respiratory therapy, oxygen therapy, anticoagulation therapy, adjuvant therapy, and preventative therapy. Opinions expressed in this review also are based on personal experience as clinicians, authors, peer reviewers, and editors. This narrative review linking COVID-19 therapies with pathogenic mechanisms of SARS-CoV-2 has resulted in six major therapeutic goals for COVID-19 therapy based on the pathogenic mechanisms of SARS-CoV-2. These goals are listed below: 1. The first goal is identifying COVID-19 patients that require both testing and therapy. This is best accomplished with a COVID-19 molecular test from symptomatic patients as well as determining the oxygen saturation in such patients with a pulse oximeter. Whether a symptomatic respiratory illness is COVID-19, influenza, or another respiratory pathogen, an oxygen saturation less than 90% means that the patient requires medical assistance. 2. The second goal is to correct the hypoxia. This goal generally requires hospitalization for oxygen therapy; other respiratory-directed therapies such as prone positioning or mechanical ventilation are often used in the attempt to correct hypoxemia due to COVID-19. 3. The third goal is to reduce the viral load of SARS-CoV-2. Ideally, there would be an oral antiviral agent available such as seen with the use of oseltamivir phosphate for influenza. This oral antiviral agent should be taken early in the course of SARS-CoV-2 infection. Such an oral agent is not available yet. Currently, two options are available for reducing the viral load of SARS-CoV-2. These are post-Covid-19 plasma with a high neutralizing antibody titer against SARS-CoV-2 or intravenous remdesivir; both options require hospitalization. 4. The fourth goal is to identify and address the hyperinflammation phase often seen in hospitalized COVID-19 patients. Currently, fever with an elevated C-reactive protein is useful for diagnosing this hyperinflammation syndrome. Low-dose dexamethasone therapy currently is the best therapeutic approach. 5. The fifth goal is to identify and address the hypercoagulability phase seen in many hospitalized COVID-19 patients. Patients who would benefit from anticoagulation therapy can be identified by a marked increase in d-dimer and prothrombin time with a decrease in fibrinogen. To correct this disseminated intravascular coagulation-like phase, anticoagulation therapy with low molecular weight heparin is preferred. Anticoagulation therapy with unfractionated heparin is preferred in COVID-19 patients with acute kidney injuries. 6. The last goal is prophylaxis for persons who are not yet infected. Potential supplements include vitamin D and zinc. Although the data for such supplements is not extremely strong, it can be argued that almost 50% of the population worldwide has a vitamin D deficiency. Correcting this deficiency would be beneficial regardless of any impact of COVID-19. Similarly, zinc is an important supplement that is important in one's diet regardless of any effect on SARS-CoV-2. As emerging therapies are found to be more effective against the SARS-CoV-2 pathogenic mechanisms identified, they can be substituted for those therapies presented in this review.
Collapse
Affiliation(s)
- Charles W Stratton
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Yi-Wei Tang
- Danaher Diagnostic Platform/Cepheid, Shanghai, China
| | - Hongzhou Lu
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| |
Collapse
|
28
|
Abstract
SARS-CoV2 infection or COVID-19 has created panic around the world since its first origin in December 2019 in Wuhan city, China. The COVID-19 pandemic has infected more than 46.4 million people, with 1,199,727 deaths. The immune system plays a crucial role in the severity of COVID-19 and the development of pneumonia-induced acute lung injury (ALI) or acute respiratory distress syndrome (ARDS). Along with providing protection, both innate and T cell-based adaptive immune response dysregulate during severe SARS-CoV2 infection. This dysregulation is more pronounced in older population and patients with comorbidities (Diabetes, hypertension, obesity, other pulmonary and autoimmune diseases). However, COVID-19 patients develop protective antibodies (Abs) against SARS-CoV2, but they do not long for last. The induction of the immune response against the pathogen also requires metabolic energy that generates through the process of immunometabolism. The change in the metabolic stage of immune cells from homeostasis to an inflammatory or infectious environment is called immunometabolic reprogramming. The article describes the cellular immunology (macrophages, T cells, B cells, dendritic cells, NK cells and pulmonary epithelial cells (PEC) and vascular endothelial cells) and the associated immune response during COVID-19. Immunometabolism may serve as a cell-specific therapeutic approach to target COVID-19.
Collapse
Affiliation(s)
- Vijay Kumar
- Children's Health Queensland Clinical Unit, School of Clinical Medicine, Faculty of Medicine, Mater Research, University of Queensland, Brisbane, Queensland, Australia.,School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
29
|
Kumar V. Toll-like receptors in sepsis-associated cytokine storm and their endogenous negative regulators as future immunomodulatory targets. Int Immunopharmacol 2020; 89:107087. [PMID: 33075714 PMCID: PMC7550173 DOI: 10.1016/j.intimp.2020.107087] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 10/04/2020] [Accepted: 10/08/2020] [Indexed: 12/15/2022]
Abstract
Sepsis infects more than 48.9 million people world-wide, with 19.7 million deaths. Cytokine storm plays a significant role in sepsis, along with severe COVID-19. TLR signaling pathways plays a crucial role in generating the cytokine storm. Endogenous negative regulators of TLR signaling are crucial to regulate cytokine storm.
Cytokine storm generates during various systemic acute infections, including sepsis and current pandemic called COVID-19 (severe) causing devastating inflammatory conditions, which include multi-organ failure or multi-organ dysfunction syndrome (MODS) and death of the patient. Toll-like receptors (TLRs) are one of the major pattern recognition receptors (PRRs) expressed by immune cells as well as non-immune cells, including neurons, which play a crucial role in generating cytokine storm. They recognize microbial-associated molecular patterns (MAMPs, expressed by pathogens) and damage or death-associate molecular patterns (DAMPs; released and/expressed by damaged/killed host cells). Upon recognition of MAMPs and DAMPs, TLRs activate downstream signaling pathways releasing several pro-inflammatory mediators [cytokines, chemokines, interferons, and reactive oxygen and nitrogen species (ROS or RNS)], which cause acute inflammation meant to control the pathogen and repair the damage. Induction of an exaggerated response due to genetic makeup of the host and/or persistence of the pathogen due to its evasion mechanisms may lead to severe systemic inflammatory condition called sepsis in response to the generation of cytokine storm and organ dysfunction. The activation of TLR-induced inflammatory response is hardwired to the induction of several negative feedback mechanisms that come into play to conclude the response and maintain immune homeostasis. This state-of-the-art review describes the importance of TLR signaling in the onset of the sepsis-associated cytokine storm and discusses various host-derived endogenous negative regulators of TLR signaling pathways. The subject is very important as there is a vast array of genes and processes implicated in these negative feedback mechanisms. These molecules and mechanisms can be targeted for developing novel therapeutic drugs for cytokine storm-associated diseases, including sepsis, severe COVID-19, and other inflammatory diseases, where TLR-signaling plays a significant role.
Collapse
Affiliation(s)
- V Kumar
- Children Health Clinical Unit, Faculty of Medicine, Mater Research, University of Queensland, ST Lucia, Brisbane, Queensland 4078, Australia; School of Biomedical Sciences, Faculty of Medicine, University of Queensland, ST Lucia, Brisbane, Queensland 4078, Australia.
| |
Collapse
|