1
|
Li Q, Ye J, Li Z, Xiao Q, Tan S, Hu B, Jin H. The role of neutrophils in tPA thrombolysis after stroke: a malicious troublemaker. Front Immunol 2024; 15:1477669. [PMID: 39606238 PMCID: PMC11598929 DOI: 10.3389/fimmu.2024.1477669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
Acute ischemic stroke represents a critical, life-threatening condition affecting the central nervous system. Intravenous thrombolysis with tissue plasminogen activator (tPA) remains a cornerstone for achieving vascular recanalization in such patients; however, its therapeutic utility is limited, with only approximately 10% of patients benefiting due to the narrow therapeutic window and significant risk of hemorrhagic transformation. Enhancing the efficacy of tPA thrombolysis is therefore imperative. Neutrophils have been identified as key modulators of thrombolytic outcomes, interacting with tPA post-stroke to influence treatment effectiveness. The binding of tPA to low-density lipoprotein receptor-related protein 1 (LRP-1) on neutrophil surfaces induces degranulation and formation of neutrophil extracellular traps (NETs). Conversely, neutrophils impede the thrombolytic action of tPA by obstructing its interaction with fibrin and activating platelets. These findings suggest that targeting neutrophils may hold promise for improving thrombolysis outcomes. This review explores the role of neutrophils in tPA-mediated thrombolysis following acute ischemic stroke, examines neutrophil-associated biomarkers, and outlines potential strategies for enhancing tPA efficacy.
Collapse
Affiliation(s)
| | | | | | | | | | - Bo Hu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of
Science and Technology, Wuhan, China
| | - Huijuan Jin
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of
Science and Technology, Wuhan, China
| |
Collapse
|
2
|
Luo L, Hu Q, Yan R, Gao X, Zhang D, Yan Y, Liu Q, Mao S. Alpha‑Asarone Ameliorates Neuronal Injury After Ischemic Stroke and Hemorrhagic Transformation by Attenuating Blood-Brain Barrier Destruction, Promoting Neurogenesis, and Inhibiting Neuroinflammation. Mol Neurobiol 2024:10.1007/s12035-024-04596-5. [PMID: 39531192 DOI: 10.1007/s12035-024-04596-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 10/25/2024] [Indexed: 11/16/2024]
Abstract
Recombinant tissue-type plasminogen activator (rt-PA), the primary drug for acute ischemic stroke (IS), has a narrow therapeutic window and carries a potential risk of hemorrhagic transformation (HT). Without rt-PA administration, patients may suffer permanent cerebral ischemia. Alpha-asarone (ASA), a natural compound derived from Acorus tatarinowii Schott, exhibits diverse neuropharmacological effects. This study aims to investigate whether ASA could improve outcomes in IS and be used to mitigate HT induced by rt-PA. We employed models of permanent middle cerebral artery occlusion (pMCAO) and photothrombotic cortical injury (PCI) to investigate both the therapeutic efficacy and underlying mechanisms of ASA during the acute and recovery periods following IS, respectively. Additionally, Sprague-Dawley rats were subjected to rt-PA treatment at 6-h post-PCI to mimic HT (rt-PA-HT). Our results revealed three key findings: (1) ASA demonstrated therapeutic effects in the acute phase of pMCAO rats by alleviating blood-brain barrier damage through inhibition of glial cell-mediated neuroinflammation; (2) administration of ASA 24 h after stroke ameliorated the neurological damage during the recovery phase in PCI mice by promoting neurogenesis via activation of the BDNF/ERK/CREB signaling pathway; (3) ASA attenuated rt-PA-HT injury by modulating the NLRP3/Caspase1/IL-1β and IL-18 pathways. Overall, our findings suggest that ASA mitigates neuronal injury following IS and HT, positioning it as a promising candidate for treating these conditions.
Collapse
Affiliation(s)
- Lijun Luo
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Qinrui Hu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Ruijie Yan
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Xiaofeng Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Di Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Yi Yan
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Qi Liu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Shengjun Mao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
3
|
Li Y, Wu J, Du F, Tang T, Lim JCW, Karuppiah T, Liu J, Sun Z. Neuroprotective Potential of Glycyrrhizic Acid in Ischemic Stroke: Mechanisms and Therapeutic Prospects. Pharmaceuticals (Basel) 2024; 17:1493. [PMID: 39598404 PMCID: PMC11597102 DOI: 10.3390/ph17111493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/01/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024] Open
Abstract
Background/Objectives: Ischemic stroke is a leading cause of disability and mortality worldwide, with current therapies limited in addressing its complex pathophysiological mechanisms, such as inflammation, oxidative stress, apoptosis, and impaired autophagy. Glycyrrhizic acid (GA), a bioactive compound from licorice (Glycyrrhiza glabra L.), has demonstrated neuroprotective properties in preclinical studies. This review consolidates current evidence on GA's pharmacological mechanisms and assesses its potential as a therapeutic agent for ischemic stroke. Methods: This review examines findings from recent preclinical studies and reviews on GA's neuroprotective effects, focusing on its modulation of inflammation, oxidative stress, apoptosis, and autophagy. Studies were identified from major scientific databases, including PubMed, Web of Science, and Embase, covering research from January 2000 to August 2024. Results: GA has demonstrated significant neuroprotective effects through the modulation of key pathways, including HMGB1/TLR4/NF-κB and Keap1/Nrf2, thereby reducing neuroinflammation, oxidative stress, and apoptosis. Additionally, GA promotes autophagy and modulates immune responses, suggesting it could serve as an adjunct therapy to enhance the efficacy and safety of existing treatments, such as thrombolysis. Conclusions: Current findings underscore GA's potential as a multi-targeted neuroprotective agent in ischemic stroke, highlighting its anti-inflammatory, antioxidant, and anti-apoptotic properties. However, while preclinical data are promising, further clinical trials are necessary to validate GA's therapeutic potential in humans. This review provides a comprehensive overview of GA's mechanisms of action, proposing directions for future research to explore its role in ischemic stroke management.
Collapse
Affiliation(s)
- Yanwen Li
- Department of Basic Medicine, Medical School, Kunming University of Science and Technology, Kunming 650500, China; (Y.L.); (J.W.); (F.D.); (T.T.)
| | - Juan Wu
- Department of Basic Medicine, Medical School, Kunming University of Science and Technology, Kunming 650500, China; (Y.L.); (J.W.); (F.D.); (T.T.)
| | - Fang Du
- Department of Basic Medicine, Medical School, Kunming University of Science and Technology, Kunming 650500, China; (Y.L.); (J.W.); (F.D.); (T.T.)
| | - Tao Tang
- Department of Basic Medicine, Medical School, Kunming University of Science and Technology, Kunming 650500, China; (Y.L.); (J.W.); (F.D.); (T.T.)
| | - Jonathan Chee Woei Lim
- Department of Medicine, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, UPM, Serdang 43400, Malaysia;
| | - Thilakavathy Karuppiah
- Department of Biomedical Sciences, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, UPM, Serdang 43400, Malaysia;
- Genetics and Regenerative Medicine Research Centre, Universiti Putra Malaysia, UPM, Serdang 43400, Malaysia
| | - Jiaxin Liu
- Department of Basic Medicine, Medical School, Kunming University of Science and Technology, Kunming 650500, China; (Y.L.); (J.W.); (F.D.); (T.T.)
| | - Zhong Sun
- Department of Biomedical Sciences, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, UPM, Serdang 43400, Malaysia;
| |
Collapse
|
4
|
Leng C, Lin K, Zhou M, Tao X, Sun B, Shu X, Liu W. Apolipoprotein E deficiency exacerbates blood-brain barrier disruption and hyperglycemia-associated hemorrhagic transformation after ischemic stroke. J Stroke Cerebrovasc Dis 2024; 33:107987. [PMID: 39218418 DOI: 10.1016/j.jstrokecerebrovasdis.2024.107987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 08/07/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND The polymorphism of the apolipoprotein E (ApoE) gene has been implicated in both the susceptibility to neurodegenerative disease and the prognosis of traumatic brain injury (TBI). However, the influence of ApoE on the risk of hemorrhagic transformation (HT) after acute ischemic stroke remains inconclusive. The present study aimed to investigate the potential impact of ApoE deficiency on the risk of hyperglycemia-associated HT and to elucidate the underlying mechanisms. METHODS Wild-type (WT) and ApoE knockout (ApoE-/-) mice were injected with 50 % glucose to induce hyperglycemia and subsequently subjected to 90 min of intraluminal middle cerebral artery occlusion (MCAO). The mortality, neurological function, HT incidence and HT grading-score were evaluated at 24 hours after reperfusion. To evaluate the integrity of blood-brain barrier (BBB), the immunoglobulin G (IgG) leakage and the protein expressions of tight junctions (TJs) were detected using immunofluorescent staining and western blotting. Finally, the levels of matrix metalloproteinases (MMP)-2/9, microglial activation and proinflammatory mediators were investigated using immunofluorescent staining and western blotting. RESULTS ApoE-/- mice exhibited increased mortality and exacerbated neurological impairment, concomitant with more severe hyperglycemia-associated HT 24 hours post-reperfusion. Meanwhile, ApoE deficiency exacerbated the disruption of BBB, characterized by increased leakage of IgG, aggravated degradation of TJs and microvascular basement membranes. Furthermore, ApoE deficiency further aggravated the upregulation of MMP-2/9 and microglia-triggered neuroinflammation. CONCLUSIONS Our findings demonstrate that the absence of ApoE exacerbates neurological impairment and hyperglycemia-associated HT in ischemic stroke mice, which is closely associated with MMP-2/9 signaling and neuroinflammation-mediated disruption of BBB.
Collapse
Affiliation(s)
- Changlong Leng
- Hubei Key Laboratory of Cognitive and Affective Disorder, Jianghan University, Wuhan, China; Institute of Cerebrovascular Disease, School of Medicine, Jianghan University, Wuhan, China.
| | - Kuan Lin
- Hubei Key Laboratory of Cognitive and Affective Disorder, Jianghan University, Wuhan, China; Institute of Cerebrovascular Disease, School of Medicine, Jianghan University, Wuhan, China.
| | - Mei Zhou
- Hubei Key Laboratory of Cognitive and Affective Disorder, Jianghan University, Wuhan, China; Institute of Cerebrovascular Disease, School of Medicine, Jianghan University, Wuhan, China.
| | - Xiaoqin Tao
- Hubei Key Laboratory of Cognitive and Affective Disorder, Jianghan University, Wuhan, China.
| | - Binlian Sun
- Hubei Key Laboratory of Cognitive and Affective Disorder, Jianghan University, Wuhan, China.
| | - Xiji Shu
- Hubei Key Laboratory of Cognitive and Affective Disorder, Jianghan University, Wuhan, China; Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, China.
| | - Wei Liu
- Hubei Key Laboratory of Cognitive and Affective Disorder, Jianghan University, Wuhan, China; Institute of Cerebrovascular Disease, School of Medicine, Jianghan University, Wuhan, China; Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, China.
| |
Collapse
|
5
|
Jiang W, Zhao Y, Liu R, Zhang B, Xie Y, Gao B, Shi K, Zou M, Jia D, Ding J, Hu X, Duan Y, Han R, Huang D, Van Kaer L, Shi FD. Histidine-rich glycoprotein modulates neutrophils and thrombolysis-associated hemorrhagic transformation. EMBO Mol Med 2024; 16:2146-2169. [PMID: 39148004 PMCID: PMC11393346 DOI: 10.1038/s44321-024-00117-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 07/18/2024] [Accepted: 07/29/2024] [Indexed: 08/17/2024] Open
Abstract
Intravenous thrombolysis using recombinant tissue plasminogen activator (tPA) remains the primary treatment for patients with acute ischemic stroke (AIS). However, the mechanism of tPA-related hemorrhagic transformation (HT) remains poorly understood. Elevation of histidine-rich glycoprotein (HRG) expression was detected by nano-liquid chromatography tandem mass spectrometry at 1 h following tPA infusion as compared to baseline prior to tPA infusion (discovery cohort, n = 10), which was subsequently confirmed in a validation cohort (n = 157) by ELISA. Surprisingly, no elevation of HRG was detected in individuals who subsequently developed HT. During in vitro experiments, HRG reduced neutrophil NETosis, inflammatory cytokine production, and migration across the blood-brain barrier induced by tPA. In a photothrombotic murine AIS model, HRG administration ameliorated HT with delayed thrombolysis, by inhibiting neutrophil immune infiltration and downregulating pro-inflammatory signaling pathways. Neutrophil depletion or NETosis inhibition also alleviated HT, whereas HRG siRNA treatment exacerbated HT. In conclusion, fluctuations in HRG levels may reflect tPA therapy and its associated HT. The inhibitory effect of HRG on neutrophils may counteract tPA-induced immune abnormalities and HT in patients with AIS.
Collapse
Affiliation(s)
- Wei Jiang
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Yuexin Zhao
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Rongrong Liu
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Bohao Zhang
- Department of Radiology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Yuhan Xie
- Department of Neurology, Tianjin NanKai Hospital, Tianjin, 300102, China
| | - Bin Gao
- Center for Neurological Diseases, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Kaibin Shi
- Center for Neurological Diseases, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Ming Zou
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Dongmei Jia
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Jiayue Ding
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Xiaowei Hu
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Yanli Duan
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Ranran Han
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - DeRen Huang
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Luc Van Kaer
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Fu-Dong Shi
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China.
- Center for Neurological Diseases, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
| |
Collapse
|
6
|
Zhang F, Pan L, Lian C, Xu Z, Chen H, Lai W, Liang X, Liu Q, Wu H, Wang Y, Zhang P, Zhang G, Liu Z. ICAM-1 may promote the loss of dopaminergic neurons by regulating inflammation in MPTP-induced Parkinson's disease mouse models. Brain Res Bull 2024; 214:110989. [PMID: 38825252 DOI: 10.1016/j.brainresbull.2024.110989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 05/12/2024] [Accepted: 05/27/2024] [Indexed: 06/04/2024]
Abstract
Parkinson's disease (PD) is a chronic neurodegenerative disease with unclear pathogenesis that involves neuroinflammation and intestinal microbial dysbiosis. Intercellular adhesion molecule-1 (ICAM-1), an inflammatory marker, participates in neuroinflammation during dopaminergic neuronal damage. However, the explicit mechanisms of action of ICAM-1 in PD have not been elucidated. We established a subacute PD mouse model by the intraperitoneal injection of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and observed motor symptoms and gastrointestinal dysfunction in mice. Immunofluorescence was used to examine the survival of dopaminergic neurons, expression of microglial and astrocyte markers, and intestinal tight junction-associated proteins. Then, we use 16 S rRNA sequencing to identify alterations in the microbiota. Our findings revealed that ICAM-1-specific antibody (Ab) treatment relieved behavioural defects, gastrointestinal dysfunction, and dopaminergic neuronal death in MPTP-induced PD mice. Further mechanistic investigations indicated that ICAM-1Ab might suppress neuroinflammation by inhibiting the activation of astrocytes and microglia in the substantia nigra and relieving colon barrier impairment and intestinal inflammation. Furthermore, 16 S rRNA sequencing revealed that the relative abundances of bacterial Firmicutes, Clostridia, and Lachnospiraceae were elevated in the PD mice. However, ICAM-1Ab treatment ameliorated the MPTP-induced disorders in the intestinal microbiota. Collectively, we concluded that the suppressing ICAM-1 might lead to the a significant decrease of inflammation and restore the gut microbial community, thus ameliorating the damage of DA neurons.
Collapse
Affiliation(s)
- Fen Zhang
- Department of Rehabilitation Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China; Department of Rehabilitation Medicine, The First People's Hospital of Foshan, Foshan, Guangdong, China; Zunyi Medical University, Zunyi, Guizhou, China
| | - Lixin Pan
- Department of Neurology, The First People's Hospital of Foshan, Foshan, Guangdong, China
| | - Changlin Lian
- Department of Neurology, The First People's Hospital of Foshan, Foshan, Guangdong, China
| | - Zhifeng Xu
- Department of Neurology, The First People's Hospital of Foshan, Foshan, Guangdong, China
| | - Hongda Chen
- Department of Rehabilitation Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Wenjie Lai
- Department of Neurology, The Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan, Guangdong, China
| | - Xiaojue Liang
- Department of Neurology, The First People's Hospital of Foshan, Foshan, Guangdong, China
| | - Qiyuan Liu
- Shantou University, Chaoshan, Guangdong, China
| | - Haomin Wu
- Department of Rehabilitation Medicine, The First People's Hospital of Foshan, Foshan, Guangdong, China
| | - Yukai Wang
- Department of Neurology, The First People's Hospital of Foshan, Foshan, Guangdong, China
| | - Pande Zhang
- Department of Rehabilitation Medicine, The First People's Hospital of Foshan, Foshan, Guangdong, China.
| | - Guohua Zhang
- Department of Neurology, The Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan, Guangdong, China.
| | - Zhen Liu
- Department of Rehabilitation Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China; Zunyi Medical University, Zunyi, Guizhou, China.
| |
Collapse
|
7
|
Qian Y, Li N, Li Y, Tao C, Liu Z, Zhang G, Yang F, Zhang H, Gao Y. Association between uric acid and the risk of hemorrhagic transformation in patients with acute ischemic stroke: a systematic review and meta-analysis. Front Neurol 2024; 15:1378912. [PMID: 39119562 PMCID: PMC11306017 DOI: 10.3389/fneur.2024.1378912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 07/16/2024] [Indexed: 08/10/2024] Open
Abstract
Background The relationship between hemorrhagic transformation (HT) and uric acid (UA) remains controversial. This study aimed to investigate the relationship between UA concentrations and the risk of HT following acute ischemic stroke (AIS). Methods Electronic databases were searched for studies on HT and UA from inception to October 31, 2023. Two researchers independently reviewed the studies for inclusion. STATA Software 16.0 was used to compute the standardized mean difference (SMD) and 95% confidence interval (CI) for the pooled and post-outlier outcomes. Heterogeneity was evaluated using the I2 statistic and the Galbraith plot. Additionally, sensitivity analysis was performed. Lastly, Begg's funnel plot and Egger's test were used to assess publication bias. Results A total of 11 studies involving 4,608 patients were included in the meta-analysis. The pooled SMD forest plot (SMD = -0.313, 95% CI = -0.586--0.039, p = 0.025) displayed that low UA concentrations were linked to a higher risk of HT in post-AIS patients. However, heterogeneity (I2 = 89.8%, p < 0.001) was high among the studies. Six papers fell outside the Galbraith plot regression line, and there exclusive resulted in the absence of heterogeneity (I2 = 52.1%, p = 0.080). Meanwhile, repeated SMD analysis (SMD = -0.517, 95% CI = -0.748--0.285, p = 0.000) demonstrated that the HT group had lower UA concentrations. Finally, Begg's funnel plot and Egger's test indicated the absence of publication bias in our meta-analysis. Conclusion This meta-analysis illustrated a substantial connection between UA concentrations and HT, with lower UA concentrations independently linked with a higher risk of HT post-AIS. These results lay a theoretical reference for future studies.Systematic review registration:https://www.crd.york.ac.uk/PROSPERO/CRD42023485539.
Collapse
Affiliation(s)
- Ying Qian
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing, China
| | - Na Li
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yuanyuan Li
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Chenxi Tao
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Zhenhong Liu
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing, China
| | - Guoxia Zhang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fan Yang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hongrui Zhang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing, China
| | - Yonghong Gao
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
8
|
Li J, Wang Z, Li J, Zhao H, Ma Q. HMGB1: A New Target for Ischemic Stroke and Hemorrhagic Transformation. Transl Stroke Res 2024:10.1007/s12975-024-01258-5. [PMID: 38740617 DOI: 10.1007/s12975-024-01258-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/27/2024] [Accepted: 05/01/2024] [Indexed: 05/16/2024]
Abstract
Stroke in China is distinguished by its high rates of morbidity, recurrence, disability, and mortality. The ultra-early administration of rtPA is essential for restoring perfusion in acute ischemic stroke, though it concurrently elevates the risk of hemorrhagic transformation. High-mobility group box 1 (HMGB1) emerges as a pivotal player in neuroinflammation after brain ischemia and ischemia-reperfusion. Released passively by necrotic cells and actively secreted, including direct secretion of HMGB1 into the extracellular space and packaging of HMGB1 into intracellular vesicles by immune cells, glial cells, platelets, and endothelial cells, HMGB1 represents a prototypical damage-associated molecular pattern (DAMP). It is intricately involved in the pathogenesis of atherosclerosis, thromboembolism, and detrimental inflammation during the early phases of ischemic stroke. Moreover, HMGB1 significantly contributes to neurovascular remodeling and functional recovery in later stages. Significantly, HMGB1 mediates hemorrhagic transformation by facilitating neuroinflammation, directly compromising the integrity of the blood-brain barrier, and enhancing MMP9 secretion through its interaction with rtPA. As a systemic inflammatory factor, HMGB1 is also implicated in post-stroke depression and an elevated risk of stroke-associated pneumonia. The role of HMGB1 extends to influencing the pathogenesis of ischemia by polarizing various subtypes of immune and glial cells. This includes mediating excitotoxicity due to excitatory amino acids, autophagy, MMP9 release, NET formation, and autocrine trophic pathways. Given its multifaceted role, HMGB1 is recognized as a crucial therapeutic target and prognostic marker for ischemic stroke and hemorrhagic transformation. In this review, we summarize the structure and redox properties, secretion and pathways, regulation of immune cell activity, the role of pathophysiological mechanisms in stroke, and hemorrhage transformation for HMGB1, which will pave the way for developing new neuroprotective drugs, reduction of post-stroke neuroinflammation, and expansion of thrombolysis time window.
Collapse
Affiliation(s)
- Jiamin Li
- Department of Neurology and Cerebrovascular Diseases Research Institute, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Beijing, China
| | - Zixin Wang
- Department of Neurology and Cerebrovascular Diseases Research Institute, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Beijing, China
| | - Jiameng Li
- Department of Neurology and Cerebrovascular Diseases Research Institute, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Beijing, China
| | - Haiping Zhao
- Department of Neurology and Cerebrovascular Diseases Research Institute, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Beijing, China.
| | - Qingfeng Ma
- Department of Neurology and Cerebrovascular Diseases Research Institute, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Beijing, China.
| |
Collapse
|
9
|
Wang X, Yu Z, Dong F, Li J, Niu P, Ta Q, Kan J, Ma C, Han M, Yu J, Zhao D, Li J. Clarifying the mechanism of apigenin against blood-brain barrier disruption in ischemic stroke using systems pharmacology. Mol Divers 2024; 28:609-630. [PMID: 36949297 DOI: 10.1007/s11030-023-10607-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 01/12/2023] [Indexed: 03/24/2023]
Abstract
Currently, recombinant tissue plasminogen activator (rtPA) is an effective therapy for ischemic stroke (IS). However, blood-brain barrier (BBB) disruption is a serious side effect of rtPA therapy and may lead to patients' death. The natural polyphenol apigenin has a good therapeutic effect on IS. Apigenin has potential BBB protection, but the mechanism by which it protects the BBB integrity is not clear. In this study, we used network pharmacology, bioinformatics, molecular docking and molecular dynamics simulation to reveal the mechanisms by which apigenin protects the BBB. Among the 146 targets of apigenin for the treatment of IS, 20 proteins were identified as core targets (e.g., MMP-9, TLR4, STAT3). Apigenin protects BBB integrity by inhibiting the activity of MMPs through anti-inflammation and anti-oxidative stress. These mechanisms included JAK/STAT, the toll-like receptor signaling pathway, and Nitrogen metabolism signaling pathways. The findings of this study contribute to a more comprehensive understanding of the mechanism of apigenin in the treatment of BBB disruption and provide ideas for the development of drugs to treat IS.
Collapse
Affiliation(s)
- Xu Wang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China
- School of Public Health, Jilin University, Changchun, 130021, Jilin, China
| | - ZiQiao Yu
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China
| | - Fuxiang Dong
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China
| | - Jinjian Li
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China
| | - Ping Niu
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China
| | - Qiyi Ta
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China
| | - JunMing Kan
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China
| | - Chunyu Ma
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China
| | - Moxuan Han
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China
| | - Junchao Yu
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China
| | - Dexi Zhao
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China.
| | - Jinhua Li
- School of Public Health, Jilin University, Changchun, 130021, Jilin, China.
| |
Collapse
|
10
|
Ma Y, Xu DY, Liu Q, Chen HC, Chai EQ. Nomogram prediction model for the risk of intracranial hemorrhagic transformation after intravenous thrombolysis in patients with acute ischemic stroke. Front Neurol 2024; 15:1361035. [PMID: 38515444 PMCID: PMC10956578 DOI: 10.3389/fneur.2024.1361035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 02/26/2024] [Indexed: 03/23/2024] Open
Abstract
Background Hemorrhagic transformation (HT) after intravenous thrombolysis (IVT) might worsen the clinical outcomes, and a reliable predictive system is needed to identify the risk of hemorrhagic transformation after IVT. Methods Retrospective collection of patients with acute cerebral infarction treated with intravenous thrombolysis in our hospital from 2018 to 2022. 197 patients were included in the research study. Multivariate logistic regression analysis was used to screen the factors in the predictive nomogram. The performance of nomogram was assessed on the area under the receiver operating characteristic curve (AUC-ROC), calibration plots and decision curve analysis (DCA). Results A total of 197 patients were recruited, of whom 24 (12.1%) developed HT. In multivariate logistic regression model National Institute of Health Stroke Scale (NIHSS) (OR, 1.362; 95% CI, 1.161-1.652; p = 0.001), N-terminal pro-brain natriuretic peptide (NT-pro BNP) (OR, 1.012; 95% CI, 1.004-1.020; p = 0.003), neutrophil to lymphocyte ratio (NLR) (OR, 3.430; 95% CI, 2.082-6.262; p < 0.001), systolic blood pressure (SBP) (OR, 1.039; 95% CI, 1.009-1.075; p = 0.016) were the independent predictors of HT which were used to generate nomogram. The nomogram showed good discrimination due to AUC-ROC values. Calibration plot showed good calibration. DCA showed that nomogram is clinically useful. Conclusion Nomogram consisting of NIHSS, NT-pro BNP, NLR, SBP scores predict the risk of HT in AIS patients treated with IVT.
Collapse
Affiliation(s)
- Yong Ma
- Ningxia Medical University, Yinchuan, China
- Cerebrovascular Disease Centre, Gansu Provincial People’s Hospital, Lanzhou, China
| | - Dong-Yan Xu
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Qian Liu
- Cerebrovascular Disease Centre, Gansu Provincial People’s Hospital, Lanzhou, China
| | - He-Cheng Chen
- Cerebrovascular Disease Centre, Gansu Provincial People’s Hospital, Lanzhou, China
| | - Er-Qing Chai
- Cerebrovascular Disease Centre, Gansu Provincial People’s Hospital, Lanzhou, China
| |
Collapse
|
11
|
Yao Y, Liu F, Gu Z, Wang J, Xu L, Yu Y, Cai J, Ren R. Emerging diagnostic markers and therapeutic targets in post-stroke hemorrhagic transformation and brain edema. Front Mol Neurosci 2023; 16:1286351. [PMID: 38178909 PMCID: PMC10764516 DOI: 10.3389/fnmol.2023.1286351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/13/2023] [Indexed: 01/06/2024] Open
Abstract
Stroke is a devastating condition that can lead to significant morbidity and mortality. The aftermath of a stroke, particularly hemorrhagic transformation (HT) and brain edema, can significantly impact the prognosis of patients. Early detection and effective management of these complications are crucial for improving outcomes in stroke patients. This review highlights the emerging diagnostic markers and therapeutic targets including claudin, occludin, zonula occluden, s100β, albumin, MMP-9, MMP-2, MMP-12, IL-1β, TNF-α, IL-6, IFN-γ, TGF-β, IL-10, IL-4, IL-13, MCP-1/CCL2, CXCL2, CXCL8, CXCL12, CCL5, CX3CL1, ICAM-1, VCAM-1, P-selectin, E-selectin, PECAM-1/CD31, JAMs, HMGB1, vWF, VEGF, ROS, NAC, and AQP4. The clinical significance and implications of these biomarkers were also discussed.
Collapse
Affiliation(s)
- Ying Yao
- Department of Neuroscience Intensive Care Unit, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Fei Liu
- Department of Neuroscience Intensive Care Unit, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhaowen Gu
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jingyu Wang
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Lintao Xu
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yue Yu
- Department of Neuroscience Intensive Care Unit, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jing Cai
- Department of Neuroscience Intensive Care Unit, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Reng Ren
- Department of Neuroscience Intensive Care Unit, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
12
|
Lee EJ, An HY, Lim J, Park KI, Choi SY, Jeong HY, Kang DW, Yang W, Kim JM, Ko SB, Lee SH, Yoon BW, Koh Y, Jung KH. Clonal Hematopoiesis and Acute Ischemic Stroke Outcomes. Ann Neurol 2023; 94:836-847. [PMID: 37532684 DOI: 10.1002/ana.26754] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 07/27/2023] [Accepted: 07/29/2023] [Indexed: 08/04/2023]
Abstract
OBJECTIVE The effect of clonal hematopoiesis of indeterminate potential (CHIP) on the manifestation and clinical outcomes of acute ischemic stroke (AIS) has not been fully elucidated. METHODS Patients with AIS were included from a prospective registry coupled with a DNA repository. Targeted next-generation sequencing on 25 genes that are frequently mutated in hematologic neoplasms was performed. The prevalence of CHIP was compared between patients with AIS and age-matched healthy individuals. A multivariate linear or logistic regression model was used to assess the association among CHIP and stroke severity, hemorrhagic transformation, and functional outcome at 90 days. RESULTS In total, 380 patients with AIS (mean age = 67.2 ± 12.7 years; 41.3% women) and 446 age-matched controls (mean age = 67.2 ± 8.7 years; 31.4% women) were analyzed. The prevalence of CHIP was significantly higher in patients with AIS than in the healthy controls (29.0 vs 22.0%, with variant allele frequencies of 1.5%, p = 0.024). PPM1D was found to be most significantly associated with incident AIS (adjusted odds ratio [aOR] = 7.85, 95% confidence interval [CI] = 1.83-33.63, p = 0.006). The presence of CHIP was significantly associated with the initial National Institutes of Health Stroke Scale (NIHSS) score (β = 1.67, p = 0.022). Furthermore, CHIP was independently associated with the occurrence of hemorrhagic transformation (65/110 clonal hematopoiesis positive [CH+] vs 56/270 CH negative [CH-], aOR = 5.63, 95% CI = 3.24-9.77, p < 0.001) and 90-day functional disability (72/110 [CH+] vs 99/270 [CH-], aOR = 2.15, 95% CI = 1.20-3.88, p = 0.011). INTERPRETATION CH was significantly associated with incident AIS. Moreover, particularly, sequence variations in PPM1D, TET2, and DNMT3A represent a new prognostic factor for AIS. ANN NEUROL 2023;94:836-847.
Collapse
Affiliation(s)
- Eung-Joon Lee
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Hong Yul An
- Genome Opinion Incorporation, Seoul, South Korea
| | - Jiwoo Lim
- Genome Opinion Incorporation, Seoul, South Korea
| | - Kyung-Il Park
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
- Department of Neurology, Seoul National University Healthcare System Gangnam Center, Seoul, South Korea
| | - Su-Yeon Choi
- Division of Cardiology, Department of Internal Medicine, Seoul National University Healthcare System Gangnam Center, Seoul, South Korea
| | - Han-Yeong Jeong
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Dong-Wan Kang
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Wookjin Yang
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Jeong-Min Kim
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Sang-Bae Ko
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Seung-Hoon Lee
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Byung-Woo Yoon
- Department of Neurology, Uijeongbu Eulji Medical Center, Uijeongbu-si, South Korea
| | - Youngil Koh
- Genome Opinion Incorporation, Seoul, South Korea
- Division of Hematology and Oncology, Department of Internal Medicine, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, South Korea
| | - Keun-Hwa Jung
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| |
Collapse
|
13
|
Yang M, Tang L, Bing S, Tang X. Association between fibrinogen-to-albumin ratio and hemorrhagic transformation after intravenous thrombolysis in ischemic stroke patients. Neurol Sci 2023; 44:1281-1288. [PMID: 36529794 DOI: 10.1007/s10072-022-06544-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 12/02/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND AND PURPOSE Hemorrhagic transformation (HT) is the most serious complication of intravenous thrombolysis in ischemic stroke patients. Inflammation plays a critical role in the pathological progression of HT. This study was to explore the relationship between fibrinogen-to-albumin ratio (FAR), a novel systemic inflammation biomarker, and HT after intravenous thrombolysis in patients with ischemic stroke. METHODS This retrospective study enrolled ischemic stroke patients who underwent intravenous thrombolysis between Jan 2017 to May 2022. The characteristic data of all patients at admission were retrospectively collected. The univariate and multivariate logistic regression analyses were performed to evaluate the correlation between FAR and HT after intravenous thrombolysis. The optimal cut-off value of FAR for predicting HT was determined by the receiver operating characteristic curve. RESULTS A total of 363 ischemic stroke patients were enrolled in the present study. Sixty-two patients had HT after intravenous thrombolysis. In multivariate regression analysis, FAR was significantly associated with HT (odds ratio [OR], 1.105; 95% confidential interval [CI], 1.029-1.186, P = 0.006). The receiver operating characteristic curve analysis indicated FAR predicts HT after intravenous thrombolysis with an AUC of 0.613 (95%CI, 0.530-0.695; P = 0.005) and an optimal cut-off value of 0.101. The correlation between FAR and HT after intravenous thrombolysis was still observed when patients were stratified according to FAR levels. A higher FAR level was independently related to the occurrence of HT after adjusting for the potential confounding factors. CONCLUSION Higher FAR level was independently associated with HT after intravenous thrombolysis in patients with ischemic stroke.
Collapse
Affiliation(s)
- Miaomiao Yang
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lisha Tang
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shijia Bing
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiangqi Tang
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
14
|
Li R, Zheng Y, Zhang J, Zhou Y, Fan X. Gomisin N attenuated cerebral ischemia-reperfusion injury through inhibition of autophagy by activating the PI3K/AKT/mTOR pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 110:154644. [PMID: 36634381 DOI: 10.1016/j.phymed.2023.154644] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 12/11/2022] [Accepted: 01/01/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Ischemic stroke is a major global cause of mortality and permanent disability. Studies have shown that autophagy is essential to maintain cell homeostasis and inevitably lead to neuronal damage after cerebral ischemia. Gomisin N (GN), lignin isolated from Schisandra chinensis, possesses multiple pharmacological activities. However, there is no research on the potential of GN for neuroprotection in ischemic stroke. PURPOSE The current work aimed to explore the potential therapeutic possibilities of GN on ischemic stroke and investigate the underlying molecular mechanisms. STUDY DESIGN The neuroprotective effects of GN on PC12 cells induced by oxygen glucose deprivation/reoxygenation (OGD/R) and mice with middle cerebral artery occlusion/reperfusion (MCAO/R) injury were investigated. METHODS On day 3 after ischemia, the infarct volume and neurological function were assessed. The level of autophagy was measured in vivo and in vitro using Transmission electron microscopy (TEM) and Monodansylcadaverine (MDC) staining. The interaction between GN and PI3K/AKT/mTOR pathway was investigated by molecular docking. Additionally, the expressions of critical proteins in the PI3K/AKT/mTOR signaling pathway and autophagy markers were determined by western blotting. RESULTS In compared to the Model group, GN might considerably improve the neurological and locomotor function following a stroke, as well as lower the volume of the cerebral infarct volume and the number of autophagosomes. GN therapy may suppress autophagy by activating the PI3K/Akt/mTOR signaling pathway in the penumbra. In vitro, MDC and TEM results showed that GN treatment obviously suppressed autophagy. Meanwhile, GN downregulated LC3II/LC3I expression ratio while upregulated the p62 expression level. In further studies, GN dramatically boosted the expression ratios of p-PI3K/PI3K, p-AKT/AKT, and p-mTOR/mTOR proteins in PC12 cells following OGD/R damage. However, the PI3K inhibitor (LY294002) reversed the increase of p-PI3K/PI3K, p-AKT/AKT, and p-mTOR/mTOR expression ratio induced by GN administration. Also, LY294002 significantly partially attenuated GN induced reduction of autophagy and increase of cell viability compared with GN treatment alone. CONCLUSIONS Here, we first demonstrate the neuroprotective effects of GN on MCAO mice and OGD/R induced PC12 cells injury. A possible mechanism by which GN prevents ischemic stroke is proposed: GN could restrain autophagy by stimulating the PI3K/AKT/mTOR signaling pathways. More effects and mechanisms of GN on the rehabilitation of ischemic stroke are worthy to be explored in the future.
Collapse
Affiliation(s)
- Ruoqi Li
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yingyi Zheng
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Jiaxue Zhang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yuan Zhou
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Xiang Fan
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| |
Collapse
|
15
|
Predictive Value of CT Perfusion in Hemorrhagic Transformation after Acute Ischemic Stroke: A Systematic Review and Meta-Analysis. Brain Sci 2023; 13:brainsci13010156. [PMID: 36672136 PMCID: PMC9856940 DOI: 10.3390/brainsci13010156] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/02/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Background: Existing studies indicate that some computed tomography perfusion (CTP) parameters may predict hemorrhagic transformation (HT) after acute ischemic stroke (AIS), but there is an inconsistency in the conclusions alongside a lack of comprehensive comparison. Objective: To comprehensively evaluate the predictive value of CTP parameters in HT after AIS. Data sources: A systematical literature review of existing studies was conducted up to 1st October 2022 in six mainstream databases that included original data on the CTP parameters of HT and non-HT groups or on the diagnostic performance of relative cerebral blood flow (rCBF), relative permeability-surface area product (rPS), or relative cerebral blood volume (rCBV) in patients with AIS that completed CTP within 24 h of onset. Data Synthesis: Eighteen observational studies were included. HT and non-HT groups had statistically significant differences in CBF, CBV, PS, rCBF, rCBV, and rPS (p < 0.05 for all). The hierarchical summary receiver operating characteristic (HSROC) revealed that rCBF (area under the curve (AUC) = 0.9), rPS (AUC = 0.89), and rCBV (AUC = 0.85) had moderate diagnostic performances in predicting HT. The pooled sensitivity and specificity of rCBF were 0.85 (95% CI, 0.75−0.91) and 0.83 (95% CI, 0.63−0.94), respectively. Conclusions: rCBF, rPS, and rCBV had moderate diagnostic performances in predicting HT, and rCBF had the best pooled sensitivity and specificity.
Collapse
|
16
|
Zhao Z, Pan Z, Zhang S, Ma G, Zhang W, Song J, Wang Y, Kong L, Du G. Neutrophil extracellular traps: A novel target for the treatment of stroke. Pharmacol Ther 2023; 241:108328. [PMID: 36481433 DOI: 10.1016/j.pharmthera.2022.108328] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/30/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
Stroke is a threatening cerebrovascular disease caused by thrombus with high morbidity and mortality rates. Neutrophils are the first to be recruited in the brain after stroke, which aggravate brain injury through multiple mechanisms. Neutrophil extracellular traps (NETs), as a novel regulatory mechanism of neutrophils, can trap bacteria and secret antimicrobial molecules, thereby degrading pathogenic factors and killing bacteria. However, NETs also exacerbate certain non-infectious diseases by activating autoimmune or inflammatory responses. NETs have been found to play important roles in the pathological process of stroke in recent years. In this review, the mechanisms of NETs formation, the physiological roles of NETs, and the dynamic changes of NETs after stroke are summarized. NETs participate in stroke through various mechanisms. NETs promote the coagulation cascade and interact with platelets to induce thrombosis. tPA induces the degranulation of neutrophils to form NETs, leading to hemorrhagic transformation and thrombolytic resistance. NETs aggravate stroke by mediating inflammation, atherosclerosis and vascular injury. In addition, the regulation of NETs in stroke, the potential of NETs as biomarker and the treatment of stroke targeting NETs are discussed. The increasing evidences suggest that NETs may be a potential target for stroke treatment. Inhibition of NETs formation or promotion of NETs degradation plays protective effects in stroke. However, how to avoid the adverse effects of NETs-targeted therapy deserves further study. In summary, this review provides a reference for the pathogenesis, drug targets, biomarkers and drug development of NETs in stroke.
Collapse
Affiliation(s)
- Ziyuan Zhao
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Zirong Pan
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Sen Zhang
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Guodong Ma
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Wen Zhang
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Junke Song
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Yuehua Wang
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Linglei Kong
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China.
| | - Guanhua Du
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
17
|
Yeh SJ, Chen CH, Lin YH, Tsai LK, Lee CW, Tang SC, Jeng JS. Serum amyloid A predicts poor functional outcome in patients with ischemic stroke receiving endovascular thrombectomy: a case control study. J Neurointerv Surg 2023; 15:75-81. [PMID: 35058315 DOI: 10.1136/neurintsurg-2021-018234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 12/18/2021] [Indexed: 01/08/2023]
Abstract
BACKGROUND Post-stroke inflammation contributes to poor outcomes, but its impact on patients with stroke receiving endovascular thrombectomy (EVT) remains unknown. METHODS We enrolled adult patients with stroke who received EVT, with blood sampling immediately before (T1) and after EVT (T2), and at 24 hours after EVT (T3). Non-stroke controls and patients with non-EVT stroke were also enrolled. The medical information, image findings and levels of serum amyloid A (SAA) and C-reactive protein (CRP) were analyzed to clarify the association with poor functional outcome (modified Rankin Scale 4-6) at 3 months after stroke. RESULTS A total of 93 patients with stroke receiving EVT, 51 non-stroke controls, and 64 with non-EVT stroke were enrolled in this study. The SAA and CRP levels at T1 to T3 in patients with stroke receiving EVT were higher compared with those in controls (all p<0.001), and their levels at T3 were significantly higher than those at T1 (both p<0.0001) while similar to those in patients with non-EVT stroke. The SAA levels at the three time points were significantly associated with poor functional outcome (p=0.003 to 0.009). Furthermore, adding SAA level at T3 significantly improved the basic prediction model for 3-month poor functional outcome by receiver operating characteristic (ROC) analysis (areas under ROC curves from 0.803 to 0.878, p=0.03). CONCLUSIONS Our findings demonstrate that plasma levels of SAA at an early stage are significant predictors for poor functional outcomes at 3 months in patients with stroke receiving EVT, indicating the substantial role of systemic inflammation in shaping stroke outcomes following EVT.
Collapse
Affiliation(s)
- Shin-Joe Yeh
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | - Chih-Hao Chen
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | - Yen-Heng Lin
- Department of Medical Imaging, National Taiwan University Hospital, Taipei, Taiwan
| | - Li-Kai Tsai
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
- Department of Neurology, National Taiwan University Hospital Hsin-Chu Branch, Hsin-Chu, Taiwan
| | - Chung-Wei Lee
- Department of Medical Imaging, National Taiwan University Hospital, Taipei, Taiwan
| | - Sung-Chun Tang
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | - Jiann-Shing Jeng
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
18
|
Li G, Hao Y, Wang C, Wang S, Xiong Y, Zhao X. Association Between Neutrophil-to-Lymphocyte Ratio/Lymphocyte-to-Monocyte Ratio and In-Hospital Clinical Outcomes in Ischemic Stroke Treated with Intravenous Thrombolysis. J Inflamm Res 2022; 15:5567-5578. [PMID: 36185640 PMCID: PMC9518842 DOI: 10.2147/jir.s382876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/07/2022] [Indexed: 11/25/2022] Open
Abstract
Objective Investigations on neutrophil-to-lymphocyte ratio (NLR) and lymphocyte-to-monocyte ratio (LMR) in patients with ischemic stroke are insufficient. We aimed to investigate the relationship of NLR and LMR with in-hospital clinical outcomes at different time points in ischemic stroke patients treated with intravenous tissues plasminogen activator (IV tPA). Methods We retrospectively enrolled patients who received IV tPA therapy within 4.5 hours from symptoms onset. Demographics, clinical characteristics, imaging measures, and the in-hospital clinical outcomes including early neurological improvement (ENI, defined as NIHSS score reduction within 24 hours ≥4 points or decreased to the baseline) and favorable functional outcome (defined as modified Rankin scale 0–1) were collected. Multivariable logistic regression analyses were performed to test whether NLR or LMR was an independent predictor for the in-hospital clinical outcomes. Results One hundred and two patients treated with IV tPA were included. NLR at 24 hours proved to be an independent predictor of ENI (adjusted OR=0.85, 95% CI=0.75–0.95, P=0.04). NLR at 48 hours and LMR at 48 hours proved to be independent predictors of mRS 0–1 at discharge (NLR at 48 hours: adjusted OR=0.64, 95% CI=0.49–0.83, P=0.01; LMR at 48 hours: adjusted OR=1.50, 95% CI=1.08–2.09, P=0.02). The AUC of NLR at 48 hours to predict favorable functional outcome at discharge was 0.79 (95% CI=0.70–0.88, P<0.001) and the optimal cut-off was 5.69 (sensitivity=0.52, specificity=0.63). Conclusion In our study, NLR at 24 hours was correlated with ENI. Both NLR and LMR at 48 hours were closely associated with favorable functional outcomes at discharge.
Collapse
Affiliation(s)
- Guangshuo Li
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Yahui Hao
- China National Clinical Research Center for Neurological Diseases, Beijing, People’s Republic of China
| | - Chuanying Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Shang Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, People’s Republic of China
- China National Clinical Research Center for Neurological Diseases, Beijing, People’s Republic of China
| | - Yunyun Xiong
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, People’s Republic of China
- China National Clinical Research Center for Neurological Diseases, Beijing, People’s Republic of China
- Chinese Institute of Brain Research, Beijing, People’s Republic of China
- Correspondence: Yunyun Xiong, China National Clinical Research Center for Neurological Diseases, Beijing, People’s Republic of China, Email
| | - Xingquan Zhao
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, People’s Republic of China
- Xingquan Zhao, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No. 119 Nansihuanxilu, Fengtai District, Beijing, 100070, People’s Republic of China, Email
| |
Collapse
|
19
|
Xu Y, Li X, Wu D, Zhang Z, Jiang A. Machine Learning-Based Model for Prediction of Hemorrhage Transformation in Acute Ischemic Stroke After Alteplase. Front Neurol 2022; 13:897903. [PMID: 35756919 PMCID: PMC9226411 DOI: 10.3389/fneur.2022.897903] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/19/2022] [Indexed: 12/02/2022] Open
Abstract
Hemorrhage transformation (HT) is the most dreaded complication of intravenous thrombolysis (IVT) in acute ischemic stroke (AIS). The prediction of HT after IVT is important in the treatment decision-making for AIS. We designed and compared different machine learning methods, capable of predicting HT in AIS after IVT. A total of 345 AIS patients who received intravenous alteplase between January 2016 and June 2021 were enrolled in this retrospective study. The demographic characteristics, clinical condition, biochemical data, and neuroimaging variables were included for analysis. HT was confirmed by head computed tomography (CT) or magnetic resonance imaging (MRI) within 48 h after IVT. Based on the neuroimaging results, all of the patients were divided into the non-HT group and the HT group. Then, the variables were applied in logistic regression (LR) and random forest (RF) algorithms to establish HT prediction models. To evaluate the accuracy of the machine learning models, the models were compared to several of the common scales used in clinics, including the multicenter stroke survey (MSS) score, safe implementation of treatments in stroke (SITS) score, and SEDAN score. The performance of these prediction models was evaluated using the receiver operating characteristic (ROC) curve (AUC). Forty-five patients had HT (13.0%) within 48 h after IVT. The ROC curve results showed that the AUCs of HT that were predicted by the RF model, LR model, MSS, SITS, and SEDAN scales after IVT were 0.795 (95% CI, 0.647–0.944), 0.703 (95% CI, 0.515–0.892), 0.657 (95% CI, 0.574–0.741), 0.660 (95% CI, 0.580–0.740) and 0.655 (95% CI, 0.571–0.739), respectively. The RF model performed better than the other models and scales. The top four most influential factors in the RF importance matrix plot were triglyceride, Lpa, the baseline NIHSS, and hemoglobin. The SHapley Additive exPlanation values made the RF prediction model clinically interpretable. In this study, an RF machine learning method was successfully established to predict HT in AIS patients after intravenous alteplase, which the sensitivity was 66.7%, and the specificity was 80.7%.
Collapse
Affiliation(s)
- Yanan Xu
- Department of Neurology, ZhongDa Hospital Southeast University (JiangBei) (NanJing DaChang Hospital), Nanjing, China
| | - Xiaoli Li
- Department of Neurology, Affiliated ZhongDa Hospital, Southeast University, Nanjing, China
| | - Di Wu
- Department of Neurology, Affiliated ZhongDa Hospital, Southeast University, Nanjing, China
| | - Zhengsheng Zhang
- Department of Neurology, Affiliated ZhongDa Hospital, Southeast University, Nanjing, China
| | - Aizhong Jiang
- Department of Neurology, ZhongDa Hospital Southeast University (JiangBei) (NanJing DaChang Hospital), Nanjing, China
| |
Collapse
|
20
|
Zhong Y, Gu L, Ye Y, Zhu H, Pu B, Wang J, Li Y, Qiu S, Xiong X, Jian Z. JAK2/STAT3 axis intermediates microglia/macrophage polarization during cerebral ischemia/reperfusion injury. Neuroscience 2022; 496:119-128. [DOI: 10.1016/j.neuroscience.2022.05.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 05/11/2022] [Accepted: 05/13/2022] [Indexed: 11/24/2022]
|
21
|
Weng ZA, Huang XX, Deng D, Yang ZG, Li SY, Zang JK, Li YF, Liu YF, Wu YS, Zhang TY, Su XL, Lu D, Xu AD. A New Nomogram for Predicting the Risk of Intracranial Hemorrhage in Acute Ischemic Stroke Patients After Intravenous Thrombolysis. Front Neurol 2022; 13:774654. [PMID: 35359655 PMCID: PMC8960116 DOI: 10.3389/fneur.2022.774654] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 02/07/2022] [Indexed: 11/16/2022] Open
Abstract
Background We aimed to develop and validate a new nomogram for predicting the risk of intracranial hemorrhage (ICH) in patients with acute ischemic stroke (AIS) after intravenous thrombolysis (IVT). Methods A retrospective study enrolled 553 patients with AIS treated with IVT. The patients were randomly divided into two cohorts: the training set (70%, n = 387) and the testing set (30%, n = 166). The factors in the predictive nomogram were filtered using multivariable logistic regression analysis. The performance of the nomogram was assessed based on the area under the receiver operating characteristic curve (AUC-ROC), calibration plots, and decision curve analysis (DCA). Results After multivariable logistic regression analysis, certain factors, such as smoking, National Institutes of Health of Stroke Scale (NIHSS) score, blood urea nitrogen-to-creatinine ratio (BUN/Cr), and neutrophil-to-lymphocyte ratio (NLR), were found to be independent predictors of ICH and were used to construct a nomogram. The AUC-ROC values of the nomogram were 0.887 (95% CI: 0.842–0.933) and 0.776 (95% CI: 0.681–0.872) in the training and testing sets, respectively. The AUC-ROC of the nomogram was higher than that of the Multicenter Stroke Survey (MSS), Glucose, Race, Age, Sex, Systolic blood Pressure, and Severity of stroke (GRASPS), and stroke prognostication using age and NIH Stroke Scale-100 positive index (SPAN-100) scores for predicting ICH in both the training and testing sets (p < 0.05). The calibration plot demonstrated good agreement in both the training and testing sets. DCA indicated that the nomogram was clinically useful. Conclusions The new nomogram, which included smoking, NIHSS, BUN/Cr, and NLR as variables, had the potential for predicting the risk of ICH in patients with AIS after IVT.
Collapse
Affiliation(s)
- Ze-An Weng
- Department of Neurology and Stroke Center, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
- Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Xiao-Xiong Huang
- Department of Neurology and Stroke Center, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
- Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
- Department of Neurology and Stroke Center, The Central Hospital of Shaoyang, Shaoyang, China
| | - Die Deng
- Department of Neurology and Stroke Center, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
- Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Zhen-Guo Yang
- Department of Neurology and Stroke Center, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
- Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Shu-Yuan Li
- Department of Neurology and Stroke Center, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
- Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Jian-Kun Zang
- Department of Neurology and Stroke Center, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
- Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Yu-Feng Li
- Department of Neurology and Stroke Center, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
- Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Yan-Fang Liu
- Department of Neurology and Stroke Center, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
- Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - You-Sheng Wu
- Department of Neurology and Stroke Center, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
- Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Tian-Yuan Zhang
- Department of Neurology and Stroke Center, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
- Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Xuan-Lin Su
- Department of Neurology and Stroke Center, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
- Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Dan Lu
- Department of Neurology and Stroke Center, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
- Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
- Dan Lu
| | - An-Ding Xu
- Department of Neurology and Stroke Center, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
- Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
- *Correspondence: An-Ding Xu
| |
Collapse
|
22
|
Tao W, Hu Y, Chen Z, Dai Y, Hu Y, Qi M. Magnolol attenuates depressive-like behaviors by polarizing microglia towards the M2 phenotype through the regulation of Nrf2/HO-1/NLRP3 signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 91:153692. [PMID: 34411834 DOI: 10.1016/j.phymed.2021.153692] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/19/2021] [Accepted: 07/28/2021] [Indexed: 06/13/2023]
Abstract
PURPOSE Magnolol (MA) exhibits anti-depressant effect by inhibiting inflammation. However, its effect on microglia polarization remains not fully understood. Herein, our study was performed to evaluate the effect of MA on microglia polarization in chronic unpredictable mild stress (CUMS)-induced depression and explore its potential mechanism. STUDY DESIGN The CUMS procedure was conducted, and the mice were intragastrically treated with MA. BV2 cells were pretreated with MA prior to LPS/ATP challenge. METHODS The levels of TNF-α, IL-1β, IL-6 and IL-4, IL-10 in brain and BV2 cells were examined by ELISA. The mRNA expressions of Arg1, Ym1, Fizz1 and Klf4 in brains were measured. ROS content was determined using flow cytometry. Immunofluorescence was employed to evaluate Iba-1 level, Nrf2 nuclear translocation, Iba-1+CD16/32+ and Iba-1+CD206+ cell population. The protein expressions of Nrf2, HO-1, NLRP3, caspase-1 p20 and IL-1β in brains and BV2 cells were investigated by western blot. Nrf2 siRNA was induced in experiments to explore the role of Nrf2 in MA-mediated microglia polarization. The ubiquitination of Nrf2 was visualized by Co-IP. RESULTS The treatment with MA notably relieved depressive like behaviors, suppressed pro-inflammatory cytokines, promoted anti-inflammatory cytokines and the transcription of M2 phenotype microglia-specific indicators. MA upregulated the expression of Nrf2, HO-1, downregulated the expression of NLRP3, caspase-1 p20, IL-1β both in vivo and in vitro. MA also reduced ROS concentration, promoted Nrf2 nucleus translocation and prevented Nrf2 ubiquitination. Nrf2 Knockdown by siRNA abolished the MA-mediated microglia polarization. CONCLUSION The present research demonstrated that MA attenuated CUMS-stimulated depression by inhibiting M1 polarization and inducing M2 polarization via Nrf2/HO-1/NLRP3 signaling.
Collapse
Affiliation(s)
- Weiwei Tao
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 220023, China
| | - Yuwen Hu
- Jiangsu Medical Device Testing Institute, Nanjing 220023, China
| | - Zhaoyang Chen
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yuxin Dai
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yue Hu
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Mingming Qi
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
23
|
Liu DL, Hong Z, Li JY, Yang YX, Chen C, Du JR. Phthalide derivative CD21 attenuates tissue plasminogen activator-induced hemorrhagic transformation in ischemic stroke by enhancing macrophage scavenger receptor 1-mediated DAMP (peroxiredoxin 1) clearance. J Neuroinflammation 2021; 18:143. [PMID: 34162400 PMCID: PMC8223381 DOI: 10.1186/s12974-021-02170-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 05/11/2021] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Hemorrhagic transformation (HT) is a critical issue in thrombolytic therapy in acute ischemic stroke. Damage-associated molecular pattern (DAMP)-stimulated sterile neuroinflammation plays a crucial role in the development of thrombolysis-associated HT. Our previous study showed that the phthalide derivative CD21 attenuated neuroinflammation and brain injury in rodent models of ischemic stroke. The present study explored the effects and underlying mechanism of action of CD21 on tissue plasminogen activator (tPA)-induced HT in a mouse model of transient middle cerebral artery occlusion (tMCAO) and cultured primary microglial cells. METHODS The tMCAO model was induced by 2 h occlusion of the left middle cerebral artery with polylysine-coated sutures in wildtype (WT) mice and macrophage scavenger receptor 1 knockout (MSR1-/-) mice. At the onset of reperfusion, tPA (10 mg/kg) was intravenously administered within 30 min, followed by an intravenous injection of CD21 (13.79 mg/kg/day). Neuropathological changes were detected in mice 3 days after surgery. The effect of CD21 on phagocytosis of the DAMP peroxiredoxin 1 (Prx1) in lysosomes was observed in cultured primary microglial cells from brain tissues of WT and MSR1-/- mice. RESULTS Seventy-two hours after brain ischemia, CD21 significantly attenuated neurobehavioral dysfunction and infarct volume. The tPA-infused group exhibited more severe brain dysfunction and hemorrhage. Compared with tPA alone, combined treatment with tPA and CD21 significantly attenuated ischemic brain injury and hemorrhage. Combined treatment significantly decreased Evans blue extravasation, matrix metalloproteinase 9 expression and activity, extracellular Prx1 content, proinflammatory cytokine mRNA levels, glial cells, and Toll-like receptor 4 (TLR4)/nuclear factor κB (NF-κB) pathway activation and increased the expression of tight junction proteins (zonula occludens-1 and claudin-5), V-maf musculoaponeurotic fibrosarcoma oncogene homolog B, and MSR1. MSR1 knockout significantly abolished the protective effect of CD21 against tPA-induced HT in tMCAO mice. Moreover, the CD21-induced phagocytosis of Prx1 was MSR1-dependent in cultured primary microglial cells from WT and MSR1-/- mice, respectively. CONCLUSION The phthalide derivative CD21 attenuated tPA-induced HT in acute ischemic stroke by promoting MSR1-induced DAMP (Prx1) clearance and inhibition of the TLR4/NF-κB pathway and neuroinflammation.
Collapse
Affiliation(s)
- Dong-Ling Liu
- Department of Pharmacology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, PR China
| | - Zhi Hong
- Department of Pharmacology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, PR China
| | - Jing-Ying Li
- Department of Pharmacology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, PR China
| | - Yu-Xin Yang
- Department of Pharmacology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, PR China.,Present address: The PRIVIS TECHNOLOGY Co., Ltd., Chengdu, 610041, PR China
| | - Chu Chen
- Sichuan Academy of Chinese Medicine Sciences, Chengdu, 610041, PR China
| | - Jun-Rong Du
- Department of Pharmacology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, PR China.
| |
Collapse
|
24
|
Liu C, Du L, Wang S, Kong L, Zhang S, Li S, Zhang W, Du G. Differences in the prevention and control of cardiovascular and cerebrovascular diseases. Pharmacol Res 2021; 170:105737. [PMID: 34147660 DOI: 10.1016/j.phrs.2021.105737] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/17/2021] [Accepted: 06/16/2021] [Indexed: 12/16/2022]
Abstract
At present, the prevention and control of cardiovascular diseases (CAVDs) has made initial advancements, although the prevention and control of cerebrovascular diseases (CEVDs) has not yet achieved the desired progress. In this paper, we review the prevention and control of CEVDs and CAVDs, and analyze the differences in prevention effects, and the pathological and physiological structures pertaining to CEVDs and CAVDs. Combined with the different effects of low-dose aspirin in the primary prevention of CEVDs and CAVDs by meta-analysis, aspirin plays a more important role in the primary prevention of CAVDs than CEVDs. We recognize the misunderstandings and blind spots concerning prevention and control of CEVDs, which can be summarized as follows: (1) CEVDs and CAVDs can be controlled by the same methods and drugs; (2) considering the same pathological factors for cardiovascular diseases; (3) a lack of understanding of the particularity of CEVDs; (4) a focus on platelets and neglect of cerebrovascular protection. In summary, our research clarifies the differences in the prevention measures and drugs used for CEVDs and CAVDs. Of particular concern is the serious lack of preventive drugs for CEVDs in clinical use. An ideal drug for the prevention of CEVDs should have protective effects on the blood, the vascular endothelium, the blood-brain barrier (BBB), and other related factors. Our review aims to highlight several issues in the current prevention of CEVDs and CAVDs, and to provide an optimized plan for preventive drug discovery.
Collapse
Affiliation(s)
- Chengdi Liu
- Beijing Key Laboratory of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Lida Du
- King's College Circle, Toronto, Ontario M5S1A8, Canada
| | - Shoubao Wang
- Beijing Key Laboratory of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Linglei Kong
- Beijing Key Laboratory of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Sen Zhang
- Beijing Key Laboratory of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Sha Li
- Beijing Key Laboratory of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Wen Zhang
- Beijing Key Laboratory of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Guanhua Du
- Beijing Key Laboratory of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
25
|
Wang C, Zhang Q, Ji M, Mang J, Xu Z. Prognostic value of the neutrophil-to-lymphocyte ratio in acute ischemic stroke patients treated with intravenous thrombolysis: a systematic review and meta-analysis. BMC Neurol 2021; 21:191. [PMID: 33975565 PMCID: PMC8111766 DOI: 10.1186/s12883-021-02222-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 04/26/2021] [Indexed: 12/19/2022] Open
Abstract
Background The relationship between the neutrophil-to-lymphocyte ratio (NLR) and poor prognostics in acute ischemic stroke (AIS) patients who receive intravenous thrombolysis (IVT) remains controversial. The purpose of this systematic review and meta-analysis was to evaluate the association between the NLR and poor prognosis after IVT. Furthermore, we aimed to determine whether the NLR at admission or post-IVT plays a role in AIS patients who received IVT. Methods The PubMed, Embase, Web of Science and China National Knowledge Infrastructure databases were searched for relevant articles until October 7, 2020. Cohort and case-control studies were included if they were related to the NLR in AIS patients treated with IVT. Odds ratios (ORs) and 95 % confidence intervals (95 % CIs) were pooled to estimate the relationship between NLR and poor prognosis after IVT. A random effects model was used to calculate the pooled data. Results Twelve studies, including 3641 patients, met the predefined inclusion criteria. Higher NLRs were associated with an increased risk of hemorrhagic transformation (HT) (OR = 1.33, 95 % CI = 1.14–1.56, P < 0.001) and a poor 3-month functional outcome (OR = 1.64, 95 % CI = 1.38–1.94, P < 0.001) in AIS patients who received IVT. Subgroup analysis suggested that the NLR at admission rather than post-IVT was associated with a higher risk of HT (OR = 1.33, 95 % CI = 1.01–1.75, P = 0.039). There was no statistically significant difference between higher NLRs and 3-month mortality (OR = 1.14, 95 % CI = 0.97–1.35, P = 0.120). Conclusions A high NLR can predict HT and poor 3-month functional outcomes in AIS patients who receive IVT. The NLR at admission rather than the post-IVT NLR was an independent risk factor for an increased risk of HT after IVT. Supplementary Information The online version contains supplementary material available at 10.1186/s12883-021-02222-8.
Collapse
Affiliation(s)
- Chengbing Wang
- Department of Neurology, China-Japan Union Hospital of Jilin University, Xiantai Street NO.126, Jilin, Changchun, China
| | - Qian Zhang
- Department of Cardiology, China-Japan Union Hospital of Jilin University, Jilin, Changchun, China
| | - Mingwei Ji
- Department of Neurology, China-Japan Union Hospital of Jilin University, Xiantai Street NO.126, Jilin, Changchun, China
| | - Jing Mang
- Department of Neurology, China-Japan Union Hospital of Jilin University, Xiantai Street NO.126, Jilin, Changchun, China.
| | - Zhongxin Xu
- Department of Neurology, China-Japan Union Hospital of Jilin University, Xiantai Street NO.126, Jilin, Changchun, China.
| |
Collapse
|
26
|
Kong L, Ma Y, Wang Z, Liu N, Ma G, Liu C, Shi R, Du G. Inhibition of hypoxia inducible factor 1 by YC-1 attenuates tissue plasminogen activator induced hemorrhagic transformation by suppressing HMGB1/TLR4/NF-κB mediated neutrophil infiltration in thromboembolic stroke rats. Int Immunopharmacol 2021; 94:107507. [PMID: 33657523 DOI: 10.1016/j.intimp.2021.107507] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/27/2021] [Accepted: 02/11/2021] [Indexed: 12/13/2022]
Abstract
Hemorrhagic transformation (HT) is a frequent complication of ischemic stroke after thrombolytic therapy and seriously affects the prognosis of stroke. Due to the limited therapeutic window and hemorrhagic complications, tissue plasminogen activator (t-PA) is underutilized in acute ischemic stroke. Currently, there are no clinically effective drugs to decrease the incidence of t-PA-induced HT. Hypoxia-inducible factor 1 (HIF-1) is an important transcription factor that maintains oxygen homeostasis and mediates neuroinflammation under hypoxia. However, the effect of HIF-1 on t-PA-induced HT is not clear. The aim of this study was to investigate the role of HIF-1 in t-PA-induced HT by applying YC-1, an inhibitor of HIF-1. In the present study, we found that HIF-1 expression was significantly increased in ischemic brain tissue after delayed t-PA treatment and was mainly localized in neurons and endothelial cells. Inhibition of HIF-1 by YC-1 improved infarct volume and neurological deficits. YC-1 inhibited matrix metalloproteinase protein expression, increased tight junction protein expression, and ameliorated BBB disruption and the occurrence of HT. Furthermore, YC-1 suppressed the release of inflammatory factors, neutrophil infiltration and the activation of the HMGB1/TLR4/NF-κB signaling pathway. These results demonstrated that inhibition of HIF-1 could protect BBB integrity by suppressing HMGB1/TLR4/NF-κB-mediated neutrophil infiltration, thereby reducing the risk of t-PA-induced HT. Thus, HIF-1 may be a potential therapeutic target for t-PA-induced HT.
Collapse
Affiliation(s)
- Linglei Kong
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Centre for Pharmaceutical Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yinzhong Ma
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Zhiyuan Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Nannan Liu
- Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Guodong Ma
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Centre for Pharmaceutical Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Chengdi Liu
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Centre for Pharmaceutical Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Ruili Shi
- Department of Physiology, Baotou Medical College, Baotou 014060, China.
| | - Guanhua Du
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Centre for Pharmaceutical Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|