1
|
Zhang J, Lin F, Xu Y, Sun J, Zhang L, Chen W. Lactylation and Ischemic Stroke: Research Progress and Potential Relationship. Mol Neurobiol 2025; 62:5359-5376. [PMID: 39541071 DOI: 10.1007/s12035-024-04624-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 11/09/2024] [Indexed: 11/16/2024]
Abstract
Ischemic stroke is caused by interrupted cerebral blood flow and is a leading cause of mortality and disability worldwide. Significant advancements have been achieved in comprehending the pathophysiology of stroke and the fundamental mechanisms responsible for ischemic damage. Lactylation, as a newly discovered post-translational modification, has been reported to participate in several physiological and pathological processes. However, research on lactylation and ischemic stroke is scarce. This review summarized the current function of protein lactylation in other diseases or normal physiological processes and explored their potential link with the pathophysiological process and the reparative mechanism of ischemic stroke. We proposed that neuroinflammation, regulation of metabolism, regulation of messenger RNA translation, angiogenesis, and neurogenesis might be the bridge linking lactylation and ischemic stroke. Our study provided a novel perspective for comprehending the role of protein lactylation in the pathophysiological processes underlying ischemic stroke. Lactylation might be a promising target in drug development of ischemic stroke.
Collapse
Affiliation(s)
- Jingyuan Zhang
- Department of Cerebrovascular Disease, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, Guangdong Province, China
| | - Feng Lin
- Department of Cerebrovascular Disease, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, Guangdong Province, China
| | - Yue Xu
- Department of Cerebrovascular Disease, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, Guangdong Province, China
| | - Jiaxin Sun
- Department of Cerebrovascular Disease, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, Guangdong Province, China
| | - Lei Zhang
- Department of Cerebrovascular Disease, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, Guangdong Province, China.
| | - Wenli Chen
- Department of Pharmacy, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, Guangdong Province, China.
| |
Collapse
|
2
|
Li Y, Zhang J, Lei Y, Chang M, Xu J, Tang S. Multi-omics approaches reveal the therapeutic mechanism of Naoxintong capsule against ischemic stroke. JOURNAL OF ETHNOPHARMACOLOGY 2025; 343:119435. [PMID: 39909118 DOI: 10.1016/j.jep.2025.119435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 01/22/2025] [Accepted: 01/31/2025] [Indexed: 02/07/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ischemic stroke (IS) is a leading cause of long-term disability and mortality worldwide. The Chinese Pharmacopeia 2020 lists Naoxintong Capsule (NXT), a traditional Chinese medicine prescription, as having demonstrated substantial therapeutic efficacy for IS. AIM OF THE STUDY Our study aimed to evaluate the mechanism by which NXT treats IS by integrating the microbiome, transcriptome, and metabolomics. MATERIALS AND METHODS In a middle cerebral artery occlusion (MCAO) mouse model, the infarction rate, neurological scores, lipopolysaccharide (LPS) levels, inflammatory factor levels (IL-1β, IL-17A, and IL-6), and intestinal permeability proteins (ZO-1, MUC2, and MUC4) were measured to confirm the effect of NXT on the brain and colon. 16S rRNA sequencing, transcriptomics analysis, and targeted amino acid (AA) metabolism were employed to evaluate the mechanism by which NXT treats IS. Furthermore, the neuroprotective effects of specific AAs, identified through targeted AA metabolism, were assessed in PC12 cells following oxygen-glucose deprivation (OGD) injury. In addition, the TLR4/NF-κB pathway was evaluated by Western blot (WB). RESULTS NXT administration substantially alleviated brain damage and colon injury by decreasing the infarction rate, neurological scores, LPS levels, and inflammatory factors, and increasing the expression of intestinal permeability protein. Transcriptomic analysis revealed that NXT regulated "inflammatory response," "Toll-like receptor signaling pathway,", and "NF-κB signaling pathway." Furthermore, WB confirmed that NXT inhibited the brain TLR4/NF-κB pathway. 16S rRNA sequencing indicated that NXT adjusted the intestinal microbiota composition and decreased the abundance of pathogenic bacteria, including Parasutterella_massiliensis and Ihubacter_excrementihominis. Targeted AA metabolism analysis demonstrated that NXT regulated the serum levels of serine, lysine, and proline in MCAO mice. Furthermore, serine, lysine, and proline inhibited the TLR4/NF-κB pathway to protect against OGD injury in PC12 cells. CONCLUSION Our study indicates that NXT reduces the abundance of Parasutterella_massiliensis and Ihubacter_excrementihominis, while increasing the levels of serine, lysine, and proline. These changes are significantly associated with neuroinflammation. Furthermore, NXT alleviates IS-induced neuroinflammation by inhibiting the TLR4/NF-κB pathway. Importantly, our study provides novel insights into the mechanisms underlying NXT's therapeutic effects on IS.
Collapse
Affiliation(s)
- Yu Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, 100700, Beijing, China
| | - Jing Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, 100700, Beijing, China
| | - Yuxin Lei
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, 100700, Beijing, China
| | - Mengli Chang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, 100700, Beijing, China
| | - Jing Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, 100700, Beijing, China.
| | - Shihuan Tang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, 100700, Beijing, China; State Key Laboratory for Quality Assurance and Sustainable Use of Dao-di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, 100700, Beijing, China.
| |
Collapse
|
3
|
Zhou X, He J, Song H, Zhao W, Li R, Han W, Li Q. Regulation of macrophage efferocytosis by the CLCF1/NF-κB pathway improves neurological and cognitive impairment following CO poisoning. Brain Behav Immun 2025; 127:126-146. [PMID: 40081779 DOI: 10.1016/j.bbi.2025.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 02/19/2025] [Accepted: 03/06/2025] [Indexed: 03/16/2025] Open
Abstract
Severe carbon monoxide (CO) poisoning can induce structural and functional damage to the nervous system, resulting in persistent cognitive impairments. Properly terminating inflammation caused by neuronal damage is essential for tissue repair. Macrophages clear cell corpses and fragments through efferocytosis and produce cytokines to coordinate the immune response, thus promoting neuronal repair and regeneration. However, within the microenvironment of the CO-affected nervous system, macrophage efferocytosis is disrupted. Our study found that macrophages regulate efferocytosis by releasing Cardiotrophin-like cytokine factor 1 (CLCF1), which modulates the NF-κB pathway in both macrophages and microglia, thereby controlling inflammation and promoting nervous system repair. Furthermore, efferocytosis regulates the secretion of cytokines such as TNF-α, IL-1β, and IL-10, promoting M2 polarization of macrophages, which aids in neuronal repair and regeneration. Regulating macrophage CLCF1 expression also leads to improvements in the memory, learning, and motor abilities of rats poisoned with CO.
Collapse
Affiliation(s)
- Xudong Zhou
- Emergency Department, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong 518060, PR China; The First Clinical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, PR China
| | - Jingjing He
- The First Clinical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, PR China
| | - Huiping Song
- Department of Traditional Chinese Medicine II, Rehabilitation University Qingdao Central Hospital, Qingdao, Shandong 266042, PR China
| | - Weiwei Zhao
- Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong 264100, PR China
| | - Rui Li
- Emergency Department, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong 518060, PR China
| | - Wei Han
- Emergency Department, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong 518060, PR China
| | - Qin Li
- Emergency Department, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong 518060, PR China; The First Clinical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, PR China.
| |
Collapse
|
4
|
Wang X, Yi Z, Zhang Y, Zhang J, Li X, Qi D, Wang Q, Chai X, Liu H, Wang G, Pan Y, Liu Y, Yu G. Identification and Therapeutic Potential of Polymethoxylated Flavones in Citri Reticulatae Pericarpium for Alzheimer's Disease: Targeting Neuroinflammation. Molecules 2025; 30:771. [PMID: 40005082 PMCID: PMC11857992 DOI: 10.3390/molecules30040771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/01/2025] [Accepted: 02/04/2025] [Indexed: 02/27/2025] Open
Abstract
Neuroinflammation is a significant driving force in the pathogenesis and progression of central nervous system (CNS) disorders. Polymethoxylated flavones (PMFs), the key lipid-soluble constituents in Citri Reticulatae Pericarpium (CRP), exhibit excellent blood-brain barrier permeability and anti-inflammatory properties, holding therapeutic potential for CNS disorders. However, the specific bioactive components and therapeutic effects of PMFs in treating CNS disorders are not well understood. This study employed a comprehensive sequential metabolism approach to elucidate the dynamic biotransformation of PMFs in vivo and identified seven brain-targeting components. Subsequently, network pharmacology and experimental validation were utilized to explore the potential mechanisms of PMFs. The results suggested that PMFs have potential therapeutic value for Alzheimer's disease (AD)-like mice, with the inhibition of neuroinflammation likely being a key mechanism of their anti-AD effects. Notably, sinensetin, tangeretin, nobiletin, and 3,5,6,7,8,3',4'-heptamethoxyflavone were identified as potent neuroinflammatory inhibitors. This research elucidated the chemical and therapeutic foundations of PMFs, indicating their potential as treatments or nutritional supplements for AD prevention and treatment. Moreover, the integrated triad approach of sequential metabolism, network pharmacology, and experimental validation may serve as a promising strategy for screening bioactive compounds in herbs or functional foods, as well as for elucidating their therapeutic mechanisms.
Collapse
Affiliation(s)
- Xinyu Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China; (X.W.); (Z.Y.); (X.L.); (D.Q.); (Q.W.); (X.C.); (H.L.)
| | - Zirong Yi
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China; (X.W.); (Z.Y.); (X.L.); (D.Q.); (Q.W.); (X.C.); (H.L.)
| | - Yiming Zhang
- Institute of Information on Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jing Zhang
- Institute of Information on Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xueyan Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China; (X.W.); (Z.Y.); (X.L.); (D.Q.); (Q.W.); (X.C.); (H.L.)
| | - Dongying Qi
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China; (X.W.); (Z.Y.); (X.L.); (D.Q.); (Q.W.); (X.C.); (H.L.)
| | - Qianqian Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China; (X.W.); (Z.Y.); (X.L.); (D.Q.); (Q.W.); (X.C.); (H.L.)
| | - Xiaoyu Chai
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China; (X.W.); (Z.Y.); (X.L.); (D.Q.); (Q.W.); (X.C.); (H.L.)
| | - Huan Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China; (X.W.); (Z.Y.); (X.L.); (D.Q.); (Q.W.); (X.C.); (H.L.)
| | - Guopeng Wang
- Zhongcai Health (Beijing) Biological Technology Development Co., Ltd., Beijing 101500, China;
| | - Yanli Pan
- Institute of Information on Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yang Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China; (X.W.); (Z.Y.); (X.L.); (D.Q.); (Q.W.); (X.C.); (H.L.)
| | - Guohua Yu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China
| |
Collapse
|
5
|
Yao M, Liu Y, Meng D, Zhou X, Chang D, Li L, Wang N, Huang Q. Hydroxysafflor yellow A attenuates the inflammatory response in cerebral ischemia-reperfusion injured mice by regulating microglia polarization per SIRT1-mediated HMGB1/NF-κB signaling pathway. Int Immunopharmacol 2025; 147:114040. [PMID: 39798476 DOI: 10.1016/j.intimp.2025.114040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 12/16/2024] [Accepted: 01/05/2025] [Indexed: 01/15/2025]
Abstract
BACKGROUND Hydroxysafflor yellow A (HSYA), an active component isolated from Carthamus tinctorius L., has demonstrated potent protective effects against cerebral ischaemia/reperfusion (I/R) injury. Microglial polarisation plays a crucial role in I/R. However, the mechanism by which HSYA regulates microglial polarisation remains unclear. OBJECTIVE To explore the mechanism of action of HSYA on the phenotypic polarisation of microglia stimulated by lipopolysaccharide (LPS) in a mouse model of I/R injury. METHODS BV2 cells injured by LPS and a modified middle cerebral artery occlusion/reperfusion (MCAO/R) model were used to mimic I/R in vitro and in vivo, respectively. BV2 cell morphology was assessed by optical microscopy, and cell viability was evaluated using the CCK-8 assay. The effect of HSYA on MCAO/R mice was assessed using the Longa assay, brain index, triphenyl tetrazolium chloride, and haematoxylin and eosin staining. LDH, NO, IL-6, TNF-α, and IL-10 levels were measured using corresponding ELISA kits following the manufacturers' protocols. M1 and M2 type microglia markers, including CD86, CD16/32, iNOS, YM1/2, TGF-β, and Arg, were detected by western blotting. M1 and M2 cell surface markers (CD86 and CD206) were detected using immunofluorescence. Molecular docking, DARTS, and CETSA were applied to investigate the interactions between HSYA and SIRT1. The role of HSYA in regulating the binding of HMGB1 to SIRT1 was tested using co-immunoprecipitation. Proteins related to the HMGB1/NF-κB pathway were also analysed by western blotting. RESULTS HSYA promoted microglial polarisation from M1 to M2 type in LPS-induced BV2 cells and MCAO/R mice. HSYA significantly reduced M1 polarisation markers, including IL-6, TNF-α, CD86, CD16/32, while increasing the expression of IL-10, Arg, YM1/2, TGF-β. Furthermore, compared to the MCAO/R group, HSYA significantly improved neurological scores, brain index, and infarct volume and normalised nucleolar arrangement. Molecular docking assessment showed that HSYA exhibited strong binding SIRT1 and significantly improved the interactions between SIRT1 and HMGB1. HSYA also decreased the expression of cytoplasm-HMGB1 and reduced the P-P65/P65 ratio. CONCLUSIONS HSYA attenuates LPS-induced and MCAO/R-induced inflammatory responses by modulating microglia polarisation. This effect is associated with the SIRT1-mediated HMGB1/NF-κB signalling pathway.
Collapse
Affiliation(s)
- Min Yao
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Yuting Liu
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Dongdong Meng
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Xian Zhou
- National Institute of Complementary Medicine, Western Sydney University, Westmead, NSW, Australia
| | - Dennis Chang
- National Institute of Complementary Medicine, Western Sydney University, Westmead, NSW, Australia
| | - Lili Li
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, China; Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei 230012, China.
| | - Ning Wang
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Anhui University of Chinese Medicine, Hefei,China; Institute for Pharmacodynamics and Safety Evaluation of Chinese Medicine, Anhui Academy of Traditional Chinese Medicine, Hefei, China.
| | - Qi Huang
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, China; Anhui Province Key Laboratory of Traditional Chinese Medicine Decoction Pieces of New Manufacturing Technology, Bozhou 236000, China.
| |
Collapse
|
6
|
Liu Y, Hu P, Cheng H, Xu F, Ye Y. The impact of glycolysis on ischemic stroke: from molecular mechanisms to clinical applications. Front Neurol 2025; 16:1514394. [PMID: 39926015 PMCID: PMC11802445 DOI: 10.3389/fneur.2025.1514394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 01/10/2025] [Indexed: 02/11/2025] Open
Abstract
Ischemic stroke (IS), a leading cause of disability and mortality worldwide, remains a significant challenge due to its complex pathogenesis. Glycolysis, a central metabolic pathway, plays a critical role in bridging the gap between metabolic dysfunction and neurological impairment. During ischemic conditions, glycolysis replaces oxidative phosphorylation as the primary energy source for brain tissue. However, in the ischemia-reperfusion state, neuronal cells show a particular reliance on aerobic glycolysis. Immune cells, such as monocytes, also contribute to atheromatous plaque formation and thrombi through increased aerobic glycolysis. Given glycolysis's involvement in various pathological stages of IS, it offers the potential for improved diagnosis, treatment, and prevention. This review comprehensively explores the role of glycolysis in different phases of IS, addresses existing controversies, and discusses its diagnostic and therapeutic applications. By elucidating the intricate relationship between glycolysis and IS, this review aims to provide novel insights for future research and clinical advancements.
Collapse
Affiliation(s)
- Yingquan Liu
- The First Clinical College of Anhui University of Chinese Medicine, Hefei, China
| | - Peijia Hu
- The Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Hongliang Cheng
- The Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Fangyuan Xu
- The First Clinical College of Anhui University of Chinese Medicine, Hefei, China
| | - Yu Ye
- Graduate School, Anhui University of Chinese Medicine, Hefei, Anhui, China
| |
Collapse
|
7
|
Yan Y, Wu L, Wang L, Wang D, Huang M, Peng J, Huang Y. αAsarone alleviates neuronal injury by facilitating autophagy via miR-499-5p/PDCD4/ATG5 signaling pathway in ischemia stroke. Front Pharmacol 2025; 16:1504683. [PMID: 39950112 PMCID: PMC11822255 DOI: 10.3389/fphar.2025.1504683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 01/07/2025] [Indexed: 02/16/2025] Open
Abstract
Introduction αAsarone, an essential oil derived from Acorus gramineus Aiton, which has been successfully used to treat epilepsy in traditional chinese medicine, and has also been reported to confer neuroprotective effects on stroke. However, its mechanism of action remains poorly understood. Methods The effects of αAsarone on autophagy were examined by WB, RT-qPCR, immunofluorescence colocalization, transmission electron microscope, and autophagic flux activity was measured by infecting HT22 cells with mRFP-GFP-LC3 adenovirus. And then, cells were transfected with both mimic-miR-499-5p and inhibit-miR-499-5p to investigate the role of miR-499-5p in regulating the effects of αAsarone on stroke. To further clarify the protective effect of αAsarone in vivo, TTC staining, neurological function score, H&E staining, Nissl staining, Laser speckle contrast imaging, transmission electron microscopy, immunofluorescence colocalization, WB and RT-qPCR were performed in the MCAO mice. Results αAsarone was observed to inhibit the apoptosis of neuronal cells, and enhance autophagy. In addition, αAsarone promoted the expression of miR-499-5p. Targeting miR-499-5p can negatively regulate PDCD4 expression and the results from the dual-luciferase reporter assay demonstrate the direct targeting of PDCD4 by miR-499-5p. Promoting miR-499-5p can decrease the expression of PDCD4, increase ATG5, and enhance the protective effect of αAsarone on OGD/R injury while inhibiting miR-499-5p can weaken the effect of αAsarone. In vivo experiments further confirmed that αAsarone improved mice MCAO as evidenced by the amelioration of the neurological deficits and facilitated neuronal autophagy. Furthermore, we found that αAsarone reversed the effect of chloroquine, an autophagy inhibitor, and enhanced neuronal autophagy via miR-499-5p/PDCD4/ATG5 signaling pathway. Discussion Our data suggest that αAsarone alleviates neuronal injury of stroke by facilitating neuronal autophagy through the miR-499-5p/PDCD4/ATG5 signaling pathway.
Collapse
Affiliation(s)
- Yonghuan Yan
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Linfang Wu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Lu Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Dandan Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Mengting Huang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Jinyong Peng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- College of Pharmacy, Dalian Medical University, Dalian, China
| | - Yingying Huang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, Hefei, China
- Institute for the Evaluation of the Efficacy and Safety of Chinese Medicines, Anhui Academy of Chinese Medicine, Hefei, China
| |
Collapse
|
8
|
Zhang G, Zhao A, Zhang X, Zeng M, Wei H, Yan X, Wang J, Jiang X, Dai Y. Glycolytic reprogramming in microglia: A potential therapeutic target for ischemic stroke. Cell Signal 2024; 124:111466. [PMID: 39419195 DOI: 10.1016/j.cellsig.2024.111466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/17/2024] [Accepted: 10/08/2024] [Indexed: 10/19/2024]
Abstract
Ischemic stroke is currently the second leading cause of mortality worldwide, with limited treatment options available. As resident immune cells, microglia promptly respond to cerebral ischemic injury, influencing neuroinflammatory damage and neurorepair. Studies suggest that microglia undergo metabolic reprogramming from mitochondrial oxidative phosphorylation to glycolysis in response to ischemia, significantly impacting their function during ischemic stroke. Therefore, this study aims to investigate the roles and regulatory mechanisms involved in this process, aiming to identify a new therapeutic target or potential drug candidate.
Collapse
Affiliation(s)
- Guangming Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Anliu Zhao
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiaolu Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Miao Zeng
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Huayuan Wei
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xu Yan
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jie Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xijuan Jiang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Yongna Dai
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
9
|
Zhao C, Bai X, Wen A, Wang J, Ding Y. The therapeutic effects of salvianolic acids on ischemic stroke: From molecular mechanisms to clinical applications. Pharmacol Res 2024; 210:107527. [PMID: 39615615 DOI: 10.1016/j.phrs.2024.107527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 11/11/2024] [Accepted: 11/27/2024] [Indexed: 12/20/2024]
Abstract
Ischemic stroke (IS), primarily caused by cerebrovascular occlusion, poses a significant public health challenge with limited effective therapeutic options. Evidence suggests that salvianolic acids (SAs), mainly from Salvia miltiorrhiza Bunge, have been formulated into injections and are widely used in clinical treatments for cardiovascular and cerebrovascular diseases, including stroke. The pharmacological properties of SAs include reducing neuroinflammation, alleviating oxidative stress injury, inhibiting cellular apoptosis, preserving endothelial function, maintaining blood-brain barrier integrity, and promoting angiogenesis. Salvianolic acids for injection (SAFI) serve as a safe and effective treatment option for cardiovascular and cerebrovascular conditions by influencing various signaling pathways and molecular targets associated with these diseases. In this review, we first discuss the pathogenesis of IS, then summarize the classification of SAs, elaborate detailed molecular mechanisms of their efficacy, and the related clinical applications of SAFI. We also emphasize the recent pharmacological advancements and therapeutic possibilities of this promising drug preparation derived from herbs for cerebrovascular conditions.
Collapse
Key Words
- Caffeic acid (PubChem CID 689043)
- Clinical applications
- Danshensu (PubChem CID 11600642)
- Ischemic stroke
- Lithospermic acid (PubChem CID 6441498)
- Molecular mechanisms
- Pathogenesis
- Protocatechualdehyde (PubChem CID 8768)
- Protocatechuic acid (PubChem CID 72)
- Rosmarinic acid (PubChem CID 5281792)
- Salvia miltiorrhiza
- Salvianolic acids
- Salvianolic acids A, B, C, D, E, and Y (PubChem CIDs 5281793, 11629084, 13991590, 75412558, 86278266, 97182154)
Collapse
Affiliation(s)
- Chao Zhao
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Xiaodan Bai
- Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi'an 710021, China
| | - Aidong Wen
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Jingwen Wang
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China.
| | - Yi Ding
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
10
|
Dai F, Hu C, Li X, Zhang Z, Wang H, Zhou W, Wang J, Geng Q, Dong Y, Tang C. Cav3.2 channel regulates cerebral ischemia/reperfusion injury: a promising target for intervention. Neural Regen Res 2024; 19:2480-2487. [PMID: 38526284 PMCID: PMC11090426 DOI: 10.4103/1673-5374.390966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/05/2023] [Accepted: 10/25/2023] [Indexed: 03/26/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202419110-00028/figure1/v/2024-03-08T184507Z/r/image-tiff Calcium influx into neurons triggers neuronal death during cerebral ischemia/reperfusion injury. Various calcium channels are involved in cerebral ischemia/reperfusion injury. Cav3.2 channel is a main subtype of T-type calcium channels. T-type calcium channel blockers, such as pimozide and mibefradil, have been shown to prevent cerebral ischemia/reperfusion injury-induced brain injury. However, the role of Cav3.2 channels in cerebral ischemia/reperfusion injury remains unclear. Here, in vitro and in vivo models of cerebral ischemia/reperfusion injury were established using middle cerebral artery occlusion in mice and high glucose hypoxia/reoxygenation exposure in primary hippocampal neurons. The results showed that Cav3.2 expression was significantly upregulated in injured hippocampal tissue and primary hippocampal neurons. We further established a Cav3.2 gene-knockout mouse model of cerebral ischemia/reperfusion injury. Cav3.2 knockout markedly reduced infarct volume and brain water content, and alleviated neurological dysfunction after cerebral ischemia/reperfusion injury. Additionally, Cav3.2 knockout attenuated cerebral ischemia/reperfusion injury-induced oxidative stress, inflammatory response, and neuronal apoptosis. In the hippocampus of Cav3.2-knockout mice, calcineurin overexpression offset the beneficial effect of Cav3.2 knockout after cerebral ischemia/reperfusion injury. These findings suggest that the neuroprotective function of Cav3.2 knockout is mediated by calcineurin/nuclear factor of activated T cells 3 signaling. Findings from this study suggest that Cav3.2 could be a promising target for treatment of cerebral ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Feibiao Dai
- Graduate School, Wannan Medical College, Wuhu, Anhui Province, China
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui Province, China
- Core Facility Center for Medical Sciences, The First Affiliated Hospital of USTC (Anhui Provincial Hospital), Hefei, Anhui Province, China
| | - Chengyun Hu
- Graduate School, Wannan Medical College, Wuhu, Anhui Province, China
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui Province, China
- Core Facility Center for Medical Sciences, The First Affiliated Hospital of USTC (Anhui Provincial Hospital), Hefei, Anhui Province, China
| | - Xue Li
- Graduate School, Wannan Medical College, Wuhu, Anhui Province, China
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui Province, China
- Core Facility Center for Medical Sciences, The First Affiliated Hospital of USTC (Anhui Provincial Hospital), Hefei, Anhui Province, China
| | - Zhetao Zhang
- Core Facility Center for Medical Sciences, The First Affiliated Hospital of USTC (Anhui Provincial Hospital), Hefei, Anhui Province, China
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui Province, China
| | - Hongtao Wang
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui Province, China
- Core Facility Center for Medical Sciences, The First Affiliated Hospital of USTC (Anhui Provincial Hospital), Hefei, Anhui Province, China
| | - Wanjun Zhou
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui Province, China
- Core Facility Center for Medical Sciences, The First Affiliated Hospital of USTC (Anhui Provincial Hospital), Hefei, Anhui Province, China
| | - Jiawu Wang
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui Province, China
- Core Facility Center for Medical Sciences, The First Affiliated Hospital of USTC (Anhui Provincial Hospital), Hefei, Anhui Province, China
| | - Qingtian Geng
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui Province, China
- Core Facility Center for Medical Sciences, The First Affiliated Hospital of USTC (Anhui Provincial Hospital), Hefei, Anhui Province, China
| | - Yongfei Dong
- Core Facility Center for Medical Sciences, The First Affiliated Hospital of USTC (Anhui Provincial Hospital), Hefei, Anhui Province, China
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui Province, China
| | - Chaoliang Tang
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui Province, China
- Core Facility Center for Medical Sciences, The First Affiliated Hospital of USTC (Anhui Provincial Hospital), Hefei, Anhui Province, China
| |
Collapse
|
11
|
Liu R, Chen Y, Zhang X, Cai Y, Xu S, Xu Q, Li X, Li W, Liu P, Liu W. Pharmacological efficacy study of the cardio-cerebral stasis transforming medicines on cerebral ischemia and myocardial infarction in rats. Heliyon 2024; 10:e39162. [PMID: 39640627 PMCID: PMC11620065 DOI: 10.1016/j.heliyon.2024.e39162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/05/2024] [Accepted: 10/08/2024] [Indexed: 12/07/2024] Open
Abstract
The purpose of this study was to investigate the efficacy and mechanisms of cardio-cerebral stasis transforming medicines (CCSTM) against cerebral infarction (CI) and myocardial infarction (MI). CI modeling was conducted using the refined Longa suture-occluded technique, while MI modeling was accomplished through the occlusion of the anterior descending branch of the left coronary artery. We found that compared with the model groups, CCSTM decreased the infarct size in models of CI and MI in a dose-dependent manner. After brain ischemia, CCSTM decreased the level of myeloperoxidase (MPO) and malondialdehyde (MDA), and increased the level of superoxide dismutase (SOD). Besides, CCSTM reduced the concentrations of lactate dehydrogenase (LDH), malondialdehyde MDA, and endothelin (ET) in the plasma of rats injured with MI. Histological examination of brain sections revealed that CCSTM alleviated cerebral damage after ischemia compared with the model group. CCSTM can reduce myocardial and cerebral infarction injury, and the oxidation level after myocardial and cerebral infarction in rats.
Collapse
Affiliation(s)
- Ruilian Liu
- Hunan University of Chinese Medicine, Changsha, 410208, Hunan Province, PR China
- The Hospital Affiliated to Hunan Academy of Chinese Medicine, Changsha, 410006, Hunan Province, PR China
- Hunan Key Laboratory of Druggability and Preparation Modification for Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan Province, PR China
| | - Yangchu Chen
- Beijing Jianhua Research Institute of Medicine, Beijing, 100000, PR China
| | - Xili Zhang
- Hunan University of Chinese Medicine, Changsha, 410208, Hunan Province, PR China
- Hunan Key Laboratory of Druggability and Preparation Modification for Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan Province, PR China
| | - Yuhan Cai
- Hunan University of Chinese Medicine, Changsha, 410208, Hunan Province, PR China
- Hunan Key Laboratory of Druggability and Preparation Modification for Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan Province, PR China
| | - Shuang Xu
- The Hospital Affiliated to Hunan Academy of Chinese Medicine, Changsha, 410006, Hunan Province, PR China
| | - Qian Xu
- The Hospital Affiliated to Hunan Academy of Chinese Medicine, Changsha, 410006, Hunan Province, PR China
| | - Xin Li
- Hunan University of Chinese Medicine, Changsha, 410208, Hunan Province, PR China
| | - Wenjiao Li
- Hunan University of Chinese Medicine, Changsha, 410208, Hunan Province, PR China
- Hunan Key Laboratory of Druggability and Preparation Modification for Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan Province, PR China
| | - Pingan Liu
- Hunan Academy of Chinese Medicine, Changsha, 410017, Hunan Province, PR China
- Hunan Key Laboratory of Druggability and Preparation Modification for Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan Province, PR China
| | - Wenlong Liu
- Hunan University of Chinese Medicine, Changsha, 410208, Hunan Province, PR China
- Hunan Key Laboratory of Druggability and Preparation Modification for Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan Province, PR China
| |
Collapse
|
12
|
Pu J, Han J, Yang J, Yu L, Wan H. Anaerobic Glycolysis and Ischemic Stroke: From Mechanisms and Signaling Pathways to Natural Product Therapy. ACS Chem Neurosci 2024; 15:3090-3105. [PMID: 39140296 DOI: 10.1021/acschemneuro.4c00371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024] Open
Abstract
Ischemic stroke is a serious condition that results in high rates of illness and death. Anaerobic glycolysis becomes the primary means of providing energy to the brain during periods of low oxygen levels, such as in the aftermath of an ischemic stroke. This process is essential for maintaining vital brain functions and has significant implications for recovery following a stroke. Energy supply by anaerobic glycolysis and acidosis caused by lactic acid accumulation are important pathological processes after ischemic stroke. Numerous natural products regulate glucose and lactate, which in turn modulate anaerobic glycolysis. This article focuses on the relationship between anaerobic glycolysis and ischemic stroke, as well as the associated signaling pathways and natural products that play a therapeutic role. These natural products, which can regulate anaerobic glycolysis, will provide new avenues and perspectives for the treatment of ischemic stroke in the future.
Collapse
Affiliation(s)
- Jia Pu
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Jin Han
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Jiehong Yang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Li Yu
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
- Center of Safety Evaluation and Research, Hangzhou Medical College, Hangzhou, Zhejiang 310053, China
| | - Haitong Wan
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| |
Collapse
|
13
|
Zhang X, Lei Y, Zhou H, Liu H, Xu P. The Role of PKM2 in Multiple Signaling Pathways Related to Neurological Diseases. Mol Neurobiol 2024; 61:5002-5026. [PMID: 38157121 DOI: 10.1007/s12035-023-03901-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 12/18/2023] [Indexed: 01/03/2024]
Abstract
Pyruvate kinase M2 (PKM2) is a key rate-limiting enzyme in glycolysis. It is well known that PKM2 plays a vital role in the proliferation of tumor cells. However, PKM2 can also exert its biological functions by mediating multiple signaling pathways in neurological diseases, such as Alzheimer's disease (AD), cognitive dysfunction, ischemic stroke, post-stroke depression, cerebral small-vessel disease, hypoxic-ischemic encephalopathy, traumatic brain injury, spinal cord injury, Parkinson's disease (PD), epilepsy, neuropathic pain, and autoimmune diseases. In these diseases, PKM2 can exert various biological functions, including regulation of glycolysis, inflammatory responses, apoptosis, proliferation of cells, oxidative stress, mitochondrial dysfunction, or pathological autoimmune responses. Moreover, the complexity of PKM2's biological characteristics determines the diversity of its biological functions. However, the role of PKM2 is not entirely the same in different diseases or cells, which is related to its oligomerization, subcellular localization, and post-translational modifications. This article will focus on the biological characteristics of PKM2, the regulation of PKM2 expression, and the biological role of PKM2 in neurological diseases. With this review, we hope to have a better understanding of the molecular mechanisms of PKM2, which may help researchers develop therapeutic strategies in clinic.
Collapse
Affiliation(s)
- Xiaoping Zhang
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yihui Lei
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Hongyan Zhou
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Haijun Liu
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Ping Xu
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China.
| |
Collapse
|
14
|
He Y, Jin W, Wan H, Zhang L, Yu L. Research progress on immune-related therapeutic targets of brain injury caused by cerebral ischemia. Cytokine 2024; 180:156651. [PMID: 38761715 DOI: 10.1016/j.cyto.2024.156651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/09/2024] [Accepted: 05/13/2024] [Indexed: 05/20/2024]
Abstract
Stroke is the second leading cause of death worldwide and a leading cause of disability. The innate immune response occurs immediately after cerebral ischemia, resulting in adaptive immunity. More and more experimental evidence has proved that the immune response caused by cerebral ischemia plays an important role in early brain injury and later the recovery of brain injury. Innate immune cells and adaptive cells promote the occurrence of cerebral ischemic injury but also protect brain cells. A large number of studies have shown that cytokines and immune-related substances also have dual functions of promoting injury, reducing injury, or promoting injury recovery in the later stage of cerebral ischemia. They can be an important target for treating cerebral ischemic recovery. Therefore, this study discussed the immune cells, cytokines, and immune-related substances with dual roles in cerebral ischemia and summarized the therapeutic targets of cerebral ischemia. To explore more effective methods to treat cerebral ischemia, promote the recovery of brain function, and improve the prognosis of patients.
Collapse
Affiliation(s)
- Yuejia He
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
| | - Weifeng Jin
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
| | - Haitong Wan
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
| | - Lijiang Zhang
- Key Laboratory of Drug Safety Evaluation and Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, Zhejiang, China.
| | - Li Yu
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; Key Laboratory of Drug Safety Evaluation and Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, Zhejiang, China.
| |
Collapse
|
15
|
Lin Y, Liu M, Deng P, Zhang J. TET1 mediated m5C modification of RelB aggravates cerebral ischemia/reperfusion-induced neuroinflammation through regulating microglia polarization. Cell Signal 2024; 120:111210. [PMID: 38705503 DOI: 10.1016/j.cellsig.2024.111210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/11/2024] [Accepted: 05/02/2024] [Indexed: 05/07/2024]
Abstract
Microglia mediated neuroinflammation is one of the major contributors to brain damage in cerebral ischemia reperfusion injury (CI/RI). Recently, RNA modification was found to contribute to the regulation of microglia polarization and the subsequent development of cerebral I/R neuroinflammation. Herein, we investigated the effect and mechanism of m5C RNA modification in the microglia induced CI/RI neuroinflammation. We found that the m5C RNA modification levels decreased in the primary microglia isolated from a mouse model of intraluminal middle cerebral artery occlusion/reperfusion (MCAO/R) and the BV2 microglial cells subjected to oxygen-glucose deprivation and reoxygenation (OGD/R), and this change was accompanied by an increase in the M1/M2 polarization ratio. Furthermore, the expression of m5C demethylase TET1 in microglia increased, which promoted M1 polarization but impeded M2 polarization. Mechanistically, the higher TET1 expression decreased the m5C modification level of RelB and enhanced its mRNA stability, which subsequently increased the M1/M2 polarization ratio. In conclusion, this study provides insight into the role of m5C RNA modification in the pathogenesis of cerebral I/R neuroinflammation and may deepen our understanding on clinical therapy targeting the TET1-RelB axis.
Collapse
Affiliation(s)
- Yan Lin
- Department of Neurology, Sichuan Provincial People's Hospital, School of Medicine, University of Elctronic Science and Technology of China, 32 2rd Setion of Yihuan Road West, Qingyang District, Chengdu, 610072, Sichuan Province, China
| | - Mei Liu
- Department of Neurology, The Six People's Hospital of Chengdu, Chengdu, Sichuan Province 610072, China
| | - Pinghuan Deng
- Department of Encephalopathy, Dechang County Hospital of Traditional Chinese Medicine, Dechang, Sichuan Province 615500, China
| | - Jinzhi Zhang
- Department of Neurology, Sichuan Provincial People's Hospital, School of Medicine, University of Elctronic Science and Technology of China, 32 2rd Setion of Yihuan Road West, Qingyang District, Chengdu, 610072, Sichuan Province, China..
| |
Collapse
|
16
|
Su D, Li Q, Lai X, Song Y, Li H, Ai Z, Zhang Q, Shao W, Yang M, Zhu G. Sargassum pallidum reduces inflammation to exert antidepressant effect by regulating intestinal microbiome and ERK1/2/P38 signaling pathway. Front Pharmacol 2024; 15:1424834. [PMID: 39092228 PMCID: PMC11291328 DOI: 10.3389/fphar.2024.1424834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 06/25/2024] [Indexed: 08/04/2024] Open
Abstract
Immune inflammation is one of the main factors in the pathogenesis of depression. It is an effective and active way to find more safe and effective anti-inflammatory depressant drugs from plant drugs. The purpose of this study is to explore the potential of marine plant Sargassum pallidum (Turn).C.Ag. (Haihaozi, HHZ) in the prevention and treatment of depression and to explain the related mechanism. Phytochemical analysis showed that alkaloids, terpenes, and organic acids are the main constituents. In vitro and in vivo activity studies showed the anti-neuroinflammatory and antidepressant effect of Sargassum pallidum, furthermore, confirmed that 7-Hydroxycoumarin, Scoparone, and Kaurenoic Acid are important plant metabolites in Sargasum pallidum for anti-neuroinflammation. Mechanism exploration showed that inhibition of ERK1/2/p38 inflammatory signaling pathway contributing to the antidepressant effect of Sargassum pallidum in reducing intestinal inflammatory levels. This study confirmed the value of Sargassum pallidum and its rich plant metabolites in anti-inflammatory depression, providing a new choice for the follow-up research and development of antidepressant drugs.
Collapse
Affiliation(s)
- Dan Su
- Key Laboratory of Evaluation of Traditional Chinese Medicine Efficcacy (Prevention and Treatment of Brain Disease with Mental Disorders), Key Laboratory of Depression Animal Model Based on TCM Syndrome, Jiangxi Administration of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Qianmin Li
- Key Laboratory of Evaluation of Traditional Chinese Medicine Efficcacy (Prevention and Treatment of Brain Disease with Mental Disorders), Key Laboratory of Depression Animal Model Based on TCM Syndrome, Jiangxi Administration of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Xin Lai
- Key Laboratory of Evaluation of Traditional Chinese Medicine Efficcacy (Prevention and Treatment of Brain Disease with Mental Disorders), Key Laboratory of Depression Animal Model Based on TCM Syndrome, Jiangxi Administration of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Yonggui Song
- Key Laboratory of Evaluation of Traditional Chinese Medicine Efficcacy (Prevention and Treatment of Brain Disease with Mental Disorders), Key Laboratory of Depression Animal Model Based on TCM Syndrome, Jiangxi Administration of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Huizhen Li
- Key Laboratory of Evaluation of Traditional Chinese Medicine Efficcacy (Prevention and Treatment of Brain Disease with Mental Disorders), Key Laboratory of Depression Animal Model Based on TCM Syndrome, Jiangxi Administration of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Zhifu Ai
- Key Laboratory of Evaluation of Traditional Chinese Medicine Efficcacy (Prevention and Treatment of Brain Disease with Mental Disorders), Key Laboratory of Depression Animal Model Based on TCM Syndrome, Jiangxi Administration of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Qi Zhang
- Key Laboratory of Evaluation of Traditional Chinese Medicine Efficcacy (Prevention and Treatment of Brain Disease with Mental Disorders), Key Laboratory of Depression Animal Model Based on TCM Syndrome, Jiangxi Administration of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Wenxiang Shao
- Key Laboratory of Evaluation of Traditional Chinese Medicine Efficcacy (Prevention and Treatment of Brain Disease with Mental Disorders), Key Laboratory of Depression Animal Model Based on TCM Syndrome, Jiangxi Administration of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Ming Yang
- Key Laboratory of Evaluation of Traditional Chinese Medicine Efficcacy (Prevention and Treatment of Brain Disease with Mental Disorders), Key Laboratory of Depression Animal Model Based on TCM Syndrome, Jiangxi Administration of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang, China
- Jiangxi Guxiang Jinyun Comprehensive Health Industry Co. Ltd., Nanchang, China
| | - Genhua Zhu
- Key Laboratory of Evaluation of Traditional Chinese Medicine Efficcacy (Prevention and Treatment of Brain Disease with Mental Disorders), Key Laboratory of Depression Animal Model Based on TCM Syndrome, Jiangxi Administration of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang, China
| |
Collapse
|
17
|
Ma L, Li H, Xu H, Liu D. The potential roles of PKM2 in cerebrovascular diseases. Int Immunopharmacol 2024; 139:112675. [PMID: 39024754 DOI: 10.1016/j.intimp.2024.112675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/06/2024] [Accepted: 07/10/2024] [Indexed: 07/20/2024]
Abstract
Pyruvate kinase M2 (PKM2), a key enzyme involved in glycolysis,plays an important role in regulating cell metabolism and growth under different physiological conditions. PKM2 has been intensively investigated in multiple cancer diseases. Recent years, many studies have found its pivotal role in cerebrovascular diseases (CeVDs), the disturbances in intracranial blood circulation. CeVDs has been confirmed to be closely associated with oxidative stress (OS), mitochondrial dynamics, systemic inflammation, and local neuroinflammation in the brain. It has further been revealed that PKM2 exerts various biological functions in the regulation of energy supply, OS, inflammatory responses, and mitochondrial dysfunction. The roles of PKM2 are closely related to its different isoforms, expression levels in subcellular localization, and post-translational modifications. Therefore, summarizing the roles of PKM2 in CeVDs will help further understanding the molecular mechanisms of CeVDs. In this review, we illustrate the characteristics of PKM2, the regulated PKM2 expression, and the biological roles of PKM2 in CeVDs.
Collapse
Affiliation(s)
- Ling Ma
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, Shandong 250033, China
| | - Huatao Li
- Department of Stroke Center, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250013, China
| | - Hu Xu
- Department of Stroke Center, Shandong Second Medical University, Weifang, Shandong 261000, China
| | - Dianwei Liu
- Department of Stroke Center, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250013, China; Department of Neurosurgery, XuanWu Hospital Capital Medical University Jinan Branch, Jinan, Shandong 250100, China.
| |
Collapse
|
18
|
Ayaz H, Aşır F, Korak T. Skimmianine Showed Neuroprotection against Cerebral Ischemia/Reperfusion Injury. Curr Issues Mol Biol 2024; 46:7373-7385. [PMID: 39057078 PMCID: PMC11276333 DOI: 10.3390/cimb46070437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/03/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
The aim of this study was to investigate the antioxidant and anti-inflammatory effects of skimmianine on cerebral ischemia-reperfusion (IR) injury. Twenty-four female Wistar albino rats were randomly divided into three groups: Sham, Ischemia-Reperfusion (IR), and IR + Skimmianine (40 mg/kg Skimmianine). Cerebral ischemia was induced using a monofilament nylon suture to occlude the middle cerebral artery for 60 min. Following 23 h of reperfusion, the animals were sacrificed 14 days later. The effects of skimmianine on brain tissue post-IR injury were examined through biochemical and immunochemical analyses. In silico analysis using the Enrichr platform explored skimmianine's potential biological processes involving IBA-1, IL-6, and NF-κB proteins. In the IR group, MDA levels increased, while SOD and CAT antioxidant enzyme activities decreased. In the IR + Skimmianine group, skimmianine treatment resulted in decreased MDA levels and increased SOD and CAT activities. Significant increases in IBA-1 expression were observed in the IR group, which skimmianine treatment significantly reduced, modulating microglial activation. High levels of IL-6 expression were noted in pyramidal neurons, vascular structures, and neuroglial cells in the IR group; skimmianine treatment reduced IL-6 expression, demonstrating anti-inflammatory effects. Increased NF-κB expression was observed in neurons and blood vessels in the gray and white matter in the IR group; skimmianine treatment reduced NF-κB expression. Gene Ontology results suggest skimmianine impacts immune and inflammatory responses via IBA-1 and IL-6, with potential effects on estrogen mechanisms mediated by NF-κB. Skimmianine may be a potential therapeutic strategy due to its antioxidant and anti-inflammatory effects on cerebral IR injury.
Collapse
Affiliation(s)
- Hayat Ayaz
- Department of Histology and Embryology, Medical Faculty, Dicle University, 21280 Diyarbakır, Turkey
| | - Fırat Aşır
- Department of Histology and Embryology, Medical Faculty, Dicle University, 21280 Diyarbakır, Turkey
| | - Tuğcan Korak
- Department of Medical Biology, Medical Faculty, Kocaeli University, 41001 Kocaeli, Turkey;
| |
Collapse
|
19
|
Liu M, Gong R, Ding L, Zhao Y, Yan X, Shi L, Zhang Y, Xu Z. Gastrodin combined with electroacupuncture prevents the development of cerebral ischemia via rebalance of brain-derived neurotrophic factor and interleukin-6 in stroke model rats. Neuroreport 2024; 35:664-672. [PMID: 38813905 PMCID: PMC11139233 DOI: 10.1097/wnr.0000000000002050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/01/2024] [Indexed: 05/31/2024]
Abstract
Traditional Chinese medicine (TCM) has long been used to treat various diseases, including cerebral ischemia. The specific molecular mechanism of TCM in the treatment of cerebral ischemia, however, is still unclear. This study investigated the effects of gastrodin, electroacupuncture and their combination on cerebral ischemic rats. We used Nissl staining, immunohistochemical staining and immunoblotting to detect the expression changes of brain-derived neurotrophic factor (BDNF) and interleukin-6 (IL-6) in the frontal cortex. The results showed that the combination therapy of gastrodin and electroacupuncture significantly increased the number of Nissl-positive neurons and improved cell morphology compared with other groups. Mechanistically, we found that the combination of gastrodin and electroacupuncture treatment group can restore the abnormal morphology of neuronal cells caused by cerebral ischemia by rebalancing the expression levels of BDNF and IL-6. Our research indicates that gastrodin combined with electroacupuncture has a significant protective effect on cerebral ischemic injury in rats, possibly by regulating the expression of BDNF and IL-6. This combination therapy is superior to single-drug or electroacupuncture therapy.
Collapse
Affiliation(s)
- Min Liu
- Department of Human Anatomy, School of Basic Medical Sciences, Wannan Medical College
| | - Rujie Gong
- Department of Ultrasound Medicine, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui
| | - Lina Ding
- Department of Obstetrics, Dongguan Songshan Lake Central Hospital, Dongguan Third People’s Hospital, Dongguan, Guangdong, China
| | - Yingdi Zhao
- Department of Human Anatomy, School of Basic Medical Sciences, Wannan Medical College
| | - Xili Yan
- Department of Human Anatomy, School of Basic Medical Sciences, Wannan Medical College
| | - Liangbin Shi
- Department of Human Anatomy, School of Basic Medical Sciences, Wannan Medical College
| | - Yegui Zhang
- Department of Human Anatomy, School of Basic Medical Sciences, Wannan Medical College
| | - Zhiliang Xu
- Department of Human Anatomy, School of Basic Medical Sciences, Wannan Medical College
| |
Collapse
|
20
|
Zhou W, Sun CJ, Fan RY, Xu Z, Su SL, Shang EX, Zhang W, Duan JA. Comparative pharmacokinetic study on phenolic acids and flavonoids in normal and microcirculation dysfunction rats plasma by UPLC-TQ/MS/MS after oral administration of Salvia miltiorrhiza stem-leaf extracts. Heliyon 2024; 10:e30910. [PMID: 38778933 PMCID: PMC11108815 DOI: 10.1016/j.heliyon.2024.e30910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 05/07/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024] Open
Abstract
According to the Standard of Chinese Medicinal Materials of Shaanxi Province (2015 edition), Salvia miltiorrhiza caulis et folium is the dried stems and leaves of Salvia miltiorrhiza, which could activate blood and dispell blood stasis, clear the mind and remove annoyance. In this study, the dynamic absorption changes of phenolic acids (FS) and phenolic acids-flavonoids (FT) in rats after oral administration were studied by UPLC-TQ/MS/MS, to elucidate the pharmacokinetics of seven major bioactive components of the stem-leaf of Salvia miltiorrhiza in vivo. The results showed that the pharmacokinetic parameters of FS and FT were significantly different in normal rats and model rats. Compared with the control group, after injecting 10 % polymer dextran 500 into the tail vein to establish a model of microcirculation disturbance, the Cmax of caffeic acid decreased. The Cmax of rosmarinic acid and lithospermic acid increased. Danshensu showed a decrease in CLz/F, accompanied by an increase in both AUC0-t and AUC0-∞. The AUC0-t of lithospermic acid was also increased. These results indicated that microcirculation disturbance could decrease the absorption of caffeic acid while increasing the absorption of danshensu, rosmarinic acid and lithospermic acid. After oral administration of FT, the Cmax of danshensu and the AUC0-t of caffeic acid were increased significantly, suggesting that the presence of flavonoids may promote the absorption and exposure of phenolic acids in vivo. This study provides a reference for the elucidation of the in vivo substances and the mechanisms of action of FS and FT from the stem-leaf of Salvia miltiorrhiza.
Collapse
Affiliation(s)
- Wei Zhou
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing, China
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing, China
| | - Cheng-jing Sun
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing, China
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing, China
| | - Ruo-ying Fan
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing, China
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing, China
| | - Zhuo Xu
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing, China
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing, China
| | - Shu-lan Su
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing, China
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing, China
| | - Er-Xin Shang
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing, China
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing, China
| | - Wen Zhang
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing, China
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing, China
| | - Jin-ao Duan
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing, China
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing, China
| |
Collapse
|
21
|
Chen T, Huang X, Zhao YX, Zhou ZW, Zhou WS. NEAT1 inhibits the angiogenic activity of cerebral arterial endothelial cells by inducing the M1 polarization of microglia through the AMPK signaling pathway. Cell Mol Biol Lett 2024; 29:62. [PMID: 38684954 PMCID: PMC11059773 DOI: 10.1186/s11658-024-00579-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 04/15/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND Enhancing angiogenesis may be an effective strategy to promote functional recovery after ischemic stroke. Inflammation regulates angiogenesis. Microglia are crucial cells that initiate inflammatory responses after various brain injuries. Long noncoding RNA nuclear paraspeckle assembly transcript 1 (NEAT1) plays a role in regulating brain injury. This study aimed to explore the effects of NEAT1-regulated microglial polarization on the neovascularization capacity of cerebrovascular endothelial cells and the underlying molecular regulatory mechanisms. METHODS Mouse cerebral arterial endothelial cells (mCAECs) were co-cultured with BV-2 cells in different groups using a Transwell system. NEAT1 expression levels were measured by fluorescence quantitative reverse transcription PCR. Levels of IL-1β, IL-6, TNF-α, Arg-1, IL-4, and IL-10 were determined using ELISA. Expression levels of CD86 and CD163 were detected by immunofluorescence. The neovascularization capacity of mCAECs was assessed using CCK-8, Transwell, Transwell-matrigel, and tube formation assays. Label-free quantification proteomics was carried out to identify differentially expressed proteins. Protein levels were measured by Western blotting. RESULTS NEAT1 overexpression induced M1 polarization in BV-2 cells, whereas NEAT1 knockdown blocked lipopolysaccharide-induced M1 polarization in microglia. NEAT1-overexpressing BV-2 cells suppressed the angiogenic ability of mCAECs, and NEAT1-knocking BV-2 cells promoted the angiogenic ability of mCAECs under lipopolysaccharide treatment. Label-free quantitative proteomic analysis identified 144 upregulated and 131 downregulated proteins that were induced by NEAT1 overexpression. The AMP-activated protein kinase (AMPK) signaling pathway was enriched in the Kyoto Encyclopedia of Genes and Genomes analysis of the differentially expressed proteins. Further verification showed that NEAT1 inactivated the AMPK signaling pathway. Moreover, the AMPK activator 5-aminoimidazole-4-carboxamide ribonucleotide reversed the effect of NEAT1 on BV-2 polarization and the regulatory effect of NEAT1-overexpressing BV-2 cells on the angiogenic ability of mCAECs. CONCLUSIONS NEAT1 inhibits the angiogenic activity of mCAECs by inducing M1 polarization of BV-2 cells through the AMPK signaling pathway. This study further clarified the impact and mechanism of NEAT1 on microglia and the angiogenic ability of cerebrovascular endothelial cells.
Collapse
Affiliation(s)
- Ting Chen
- Department of Neurology, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, 410005, China
| | - Xin Huang
- Department of Neurology, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, 410005, China
| | - Yi-Xuan Zhao
- Department of Neurology, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, 410005, China
| | - Zhi-Wen Zhou
- Department of Neurology, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, 410005, China.
| | - Wen-Sheng Zhou
- Department of Neurology, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, 410005, China.
| |
Collapse
|
22
|
Zheng Y, Hu Y, Yan F, Wang R, Tao Z, Fan J, Han Z, Zhao H, Liu P, Zhuang W, Luo Y. Dihydroergotamine protects against ischemic stroke by modulating microglial/macrophage polarization and inhibiting inflammation in mice. Neurol Res 2024; 46:367-377. [PMID: 38468466 DOI: 10.1080/01616412.2024.2328481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 03/03/2024] [Indexed: 03/13/2024]
Abstract
OBJECTIVES The search for drugs that can protect the brain tissue and reduce nerve damage in acute ischemic stroke has emerged as a research hotspot. We investigated the potential protective effects and mechanisms of action of dihydroergotamine against ischemic stroke. METHODS C57BL/6 mice were subjected to middle cerebral artery occlusion (MCAO), and dihydroergotamine at a dose of 10 mg/kg/day was intraperitoneally injected for 14 days. Adhesive removal and beam walking tests were conducted 1, 3, 5, 7, 10, and 14 days after MCAO surgery. Thereafter, the mechanism by which dihydroergotamine regulates microglia/macrophage polarization and inflammation and imparts ischemic stroke protection was studied using enzyme-linked immunosorbent assay, immunofluorescence staining, and western blotting. RESULTS From the perspective of a drug repurposing strategy, dihydroergotamine was found to inhibit oxygen-glucose deprivation damage to neurons, significantly improve cell survival rate, and likely exert a protective effect on ischemic brain injury. Dihydroergotamine significantly improved neural function scores and survival rates and reduced brain injury severity in mice. Furthermore, dihydroergotamine manifests its protective effect on ischemic brain injury by reducing the expression of TNF-α and IL-1β in mouse ischemic brain tissue, inhibiting the polarization of microglia/macrophage toward the M1 phenotype and promoting polarization toward the M2 phenotype. CONCLUSION This study is the first to demonstrate the protective effect of dihydroergotamine, a first-line treatment for migraine, against ischemic nerve injury in vitro and in vivo.
Collapse
Affiliation(s)
- Yangmin Zheng
- Institute of Cerebrovascular Disease Research, Xuanwu Hospital of Capital Medical University, Beijing, China
- Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China
| | - Yue Hu
- Institute of Cerebrovascular Disease Research, Xuanwu Hospital of Capital Medical University, Beijing, China
- Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China
| | - Feng Yan
- Institute of Cerebrovascular Disease Research, Xuanwu Hospital of Capital Medical University, Beijing, China
- Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China
| | - Rongliang Wang
- Institute of Cerebrovascular Disease Research, Xuanwu Hospital of Capital Medical University, Beijing, China
- Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China
| | - Zhen Tao
- Institute of Cerebrovascular Disease Research, Xuanwu Hospital of Capital Medical University, Beijing, China
- Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China
| | - Junfen Fan
- Institute of Cerebrovascular Disease Research, Xuanwu Hospital of Capital Medical University, Beijing, China
- Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China
| | - Ziping Han
- Institute of Cerebrovascular Disease Research, Xuanwu Hospital of Capital Medical University, Beijing, China
- Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China
| | - Haiping Zhao
- Institute of Cerebrovascular Disease Research, Xuanwu Hospital of Capital Medical University, Beijing, China
- Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China
| | - Ping Liu
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Wei Zhuang
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Yumin Luo
- Institute of Cerebrovascular Disease Research, Xuanwu Hospital of Capital Medical University, Beijing, China
- Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China
| |
Collapse
|
23
|
Zhang L, Xue S, Fei C, Yu C, Li J, Li Y, Wang N, Chu F, Pan L, Duan X, Peng D. Protective effect of Tao Hong Si Wu Decoction against inflammatory injury caused by intestinal flora disorders in an ischemic stroke mouse model. BMC Complement Med Ther 2024; 24:124. [PMID: 38500092 PMCID: PMC10946105 DOI: 10.1186/s12906-024-04417-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 02/27/2024] [Indexed: 03/20/2024] Open
Abstract
BACKGROUND AND AIMS Recent studies have shown that intestinal flora are involved in the pathological process of ischemic stroke (IS). The potential protective effect of the traditional Chinese prescription, Tao Hong Si Wu Decoction (THSWD), against inflammatory injury after IS and its underlying mechanisms of action were investigated in the current study. METHODS Fifty SPF(Specefic pathogen Free) male C57 mice were randomly assigned to sham operation, model, THSWD low-dose (6.5 g/kg), medium-dose (13 g/kg) and high-dose (26 g/kg) groups (10 mice per group). Mouse models of transient middle cerebral artery occlusion were prepared via thread embolism. Neurological function score, hematoxylin-eosin (HE) staining, immunohistochemistry, enzyme-linked immunosorbent assay (ELISA), 16S ribosomal DNA (rDNA) sequencing, quantitative reverse transcription PCR (qRT-PCR) and other methods were employed to elucidate the underlying molecular mechanisms. RESULTS Notably, THSWD induced a reduction in the neurological function score (P < 0.01) and neuronal injury in brain tissue, increase in protein expression of Claudin-5 and zonula occludens-1 (ZO-1) in brain tissue(P < 0.01), and decrease in serum lipopolysaccharide (LPS)(P < 0.01), diamine oxidase (DAO)(P < 0.01) and D-lactic acid(P < 0.01, P < 0.05) levels to a significant extent. THSWD also inhibited the levels of tumor necrosis factor-α (TNF-α)(P < 0.01) and interleukin - 1β (IL-1β)(P < 0.01) in brain tissue, and increased alpha and beta diversity in ischemic stroke mice, along with a certain reversal effect on different microflora. Finally, THSWD inhibited the polarization of microglia cells(P < 0.01) and decreased the protein and gene expression of toll-like receptor-4 (TLR-4)(P < 0.01, P < 0.05) and nuclear factor kappa B (NF-κB)(P < 0.01) in brain tissue. CONCLUSION Our data indicate that THSWD may interfere with inflammatory response in ischemic stroke by regulating intestinal flora and promoting intestinal barrier repair.
Collapse
Affiliation(s)
- Lijuan Zhang
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031, China
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Sujun Xue
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031, China
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Changyi Fei
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031, China
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Chao Yu
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031, China
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Jingjing Li
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031, China
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Yumeng Li
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031, China
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Ni Wang
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031, China
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Furui Chu
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031, China
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Lingyu Pan
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031, China
| | - Xianchun Duan
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031, China.
- Key Laboratory of Chinese Medicinal Formula Research, Anhui University of Chinese Medicine, Hefei, 230012, China.
| | - Daiyin Peng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China.
- Key Laboratory of Chinese Medicinal Formula Research, Anhui University of Chinese Medicine, Hefei, 230012, China.
| |
Collapse
|
24
|
Guo W, Xu X, Xiao Y, Zhang J, Shen P, Lu X, Fan X. Salvianolic acid C attenuates cerebral ischemic injury through inhibiting neuroinflammation via the TLR4-TREM1-NF-κB pathway. Chin Med 2024; 19:46. [PMID: 38468280 DOI: 10.1186/s13020-024-00914-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 02/26/2024] [Indexed: 03/13/2024] Open
Abstract
BACKGROUND Stroke is a leading cause of mortality and disability with ischemic stroke being the most common type of stroke. Salvianolic acid C (SalC), a polyphenolic compound found in Salviae Miltiorrhizae Radix et Rhizoma, has demonstrated therapeutic potential in the recovery phase of ischemic stroke. However, its pharmacological effects and underlying mechanisms during the early stages of ischemic stroke remain unclear. This study aimed to examine the potential mechanism of action of SalC during the early phase of ischemic stroke using network pharmacology strategies and RNA sequencing analysis. METHODS SalC effects on infarct volume, neurological deficits, and histopathological changes were assessed in a mouse model of transient middle cerebral artery occlusion (tMCAO). By integrating RNA sequencing data with a cerebral vascular disease (CVD)-related gene database, a cerebral ischemic disease (CID) network containing dysregulated genes from the tMCAO model was constructed. Network analysis algorithms were applied to evaluate the key nodes within the CID network. In vivo and in vitro validation of crucial targets within the identified pathways was conducted. RESULTS SalC treatment significantly reduced infarct volume, improved neurological deficits, and reversed pathological changes in the tMCAO mouse model. The integration of RNA sequencing data revealed an 80% gene reversion rate induced by SalC within the CID network. Among the reverted genes, 53.1% exhibited reversion rates exceeding 50%, emphasizing the comprehensive rebalancing effect of SalC within the CID network. Neuroinflammatory-related pathways regulated by SalC, including the toll-like-receptor 4 (TLR4)- triggering receptor expressed on myeloid cells 1 (TREM1)-nuclear factor kappa B (NF-κB) pathway, were identified. Further in vivo and in vitro experiments confirmed that TLR4-TREM1-NF-κB pathway was down-regulated by SalC in microglia, which was essential for its anti-inflammatory effect on ischemic stroke. CONCLUSIONS SalC attenuated cerebral ischemic injury by inhibiting neuroinflammation mediated by microglia, primarily through the TLR4-TREM1-NF-κB pathway. These findings provide valuable insights into the potential therapeutic benefits of SalC in ischemic stroke.
Collapse
Affiliation(s)
- Wenbo Guo
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- National Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, 314100, China
| | - Xiaojing Xu
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Jinhua Institute of Zhejiang University, Jinhua, 321999, Zhejiang, China
| | - Yulin Xiao
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jiatian Zhang
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Peiqiang Shen
- Zhejiang Engineering Research Center for Advanced Manufacturing of Traditional Chinese Medicine, Huzhou, 310058, China
| | - Xiaoyan Lu
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
- National Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, 314100, China.
- Jinhua Institute of Zhejiang University, Jinhua, 321999, Zhejiang, China.
| | - Xiaohui Fan
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
- National Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, 314100, China.
- Jinhua Institute of Zhejiang University, Jinhua, 321999, Zhejiang, China.
| |
Collapse
|
25
|
Zhang W, Xu H, Li C, Han B, Zhang Y. Exploring Chinese herbal medicine for ischemic stroke: insights into microglia and signaling pathways. Front Pharmacol 2024; 15:1333006. [PMID: 38318134 PMCID: PMC10838993 DOI: 10.3389/fphar.2024.1333006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 01/03/2024] [Indexed: 02/07/2024] Open
Abstract
Ischemic stroke is a prevalent clinical condition affecting the central nervous system, characterized by a high mortality and disability rate. Its incidence is progressively rising, particularly among younger individuals, posing a significant threat to human well-being. The activation and polarization of microglia, leading to pro-inflammatory and anti-inflammatory responses, are widely recognized as pivotal factors in the pathogenesis of cerebral ischemia and reperfusion injury. Traditional Chinese herbal medicines (TCHMs) boasts a rich historical background, notable efficacy, and minimal adverse effects. It exerts its effects by modulating microglia activation and polarization, suppressing inflammatory responses, and ameliorating nerve injury through the mediation of microglia and various associated pathways (such as NF-κB signaling pathway, Toll-like signaling pathway, Notch signaling pathway, AMPK signaling pathway, MAPK signaling pathway, among others). Consequently, this article focuses on microglia as a therapeutic target, reviewing relevant pathway of literature on TCHMs to mitigate neuroinflammation and mediate IS injury, while also exploring research on drug delivery of TCHMs. The ultimate goal is to provide new insights that can contribute to the clinical management of IS using TCHMs.
Collapse
Affiliation(s)
| | | | | | - Bingbing Han
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yimin Zhang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| |
Collapse
|
26
|
Li L, Zuo S, Liu Y, Yang L, Ge S, Ye F, Chai P, Lu L. Single-Cell Transcriptomic Sequencing Reveals Tissue Architecture and Deciphers Pathological Reprogramming During Retinal Ischemia in Macaca fascicularis. Invest Ophthalmol Vis Sci 2024; 65:27. [PMID: 38214685 PMCID: PMC10790672 DOI: 10.1167/iovs.65.1.27] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 12/27/2023] [Indexed: 01/13/2024] Open
Abstract
Purpose Acute retinal arterial ischemia diseases (ARAIDs) are ocular emergencies that require immediate intervention within a restricted therapeutic window to prevent blindness. However, the underlying molecular mechanisms contributing to the pathogenesis of ARAIDs remain enigmatic. Herein, we present the single-cell RNA sequencing (scRNA-seq) alterations during ischemia in the primate retina as a preliminary endeavor in understanding the molecular complexities of ARAIDs. Methods An ophthalmic artery occlusion model was established through ophthalmic artery ligation in two Macaca fascicularis. scRNA-seq and bioinformatics analyses were used to detect retinal changes during ischemia, which are further validated by immunofluorescence analysis. Western blot and flow cytometry assays were performed to measure the microglia polarization status. Results The findings of this study reveal notable changes in the retina under acute ischemic conditions. Particularly, retinal ischemia compromised mitochondrial functions of rod photoreceptors, partly leading to the rapid loss of healthy rods. Furthermore, we observed a noteworthy transcriptional alteration in the activation of microglia induced by ischemia. The targeted correction of the proinflammatory cytokine CXCL8 effectively suppresses microglia M1 polarization in retinal ischemia, ultimately reducing the proinflammatory transformation in vitro. In addition, retina ischemia induced the apoptotic inclination of endothelial cells and the heightened interaction with microglia, which signifies the influence of microglia in disrupting the retinal-blood barrier. Conclusions Our research has successfully identified and described the pathologic alterations occurring in several cell types during a short period of ischemia. These observations provide valuable insights for ameliorating retinal damage and promoting the restoration of vision.
Collapse
Affiliation(s)
- Lin Li
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, People's Republic of China
| | - Sipeng Zuo
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, People's Republic of China
| | - Yan Liu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, People's Republic of China
| | - Ludi Yang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, People's Republic of China
| | - Shengfang Ge
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, People's Republic of China
| | - Fuxiang Ye
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, People's Republic of China
| | - Peiwei Chai
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, People's Republic of China
| | - Linna Lu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, People's Republic of China
| |
Collapse
|
27
|
Gong L, Liang J, Xie L, Zhang Z, Mei Z, Zhang W. Metabolic Reprogramming in Gliocyte Post-cerebral Ischemia/ Reperfusion: From Pathophysiology to Therapeutic Potential. Curr Neuropharmacol 2024; 22:1672-1696. [PMID: 38362904 PMCID: PMC11284719 DOI: 10.2174/1570159x22666240131121032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 12/08/2023] [Accepted: 12/13/2023] [Indexed: 02/17/2024] Open
Abstract
Ischemic stroke is a leading cause of disability and death worldwide. However, the clinical efficacy of recanalization therapy as a preferred option is significantly hindered by reperfusion injury. The transformation between different phenotypes of gliocytes is closely associated with cerebral ischemia/ reperfusion injury (CI/RI). Moreover, gliocyte polarization induces metabolic reprogramming, which refers to the shift in gliocyte phenotype and the overall transformation of the metabolic network to compensate for energy demand and building block requirements during CI/RI caused by hypoxia, energy deficiency, and oxidative stress. Within microglia, the pro-inflammatory phenotype exhibits upregulated glycolysis, pentose phosphate pathway, fatty acid synthesis, and glutamine synthesis, whereas the anti-inflammatory phenotype demonstrates enhanced mitochondrial oxidative phosphorylation and fatty acid oxidation. Reactive astrocytes display increased glycolysis but impaired glycogenolysis and reduced glutamate uptake after CI/RI. There is mounting evidence suggesting that manipulation of energy metabolism homeostasis can induce microglial cells and astrocytes to switch from neurotoxic to neuroprotective phenotypes. A comprehensive understanding of underlying mechanisms and manipulation strategies targeting metabolic pathways could potentially enable gliocytes to be reprogrammed toward beneficial functions while opening new therapeutic avenues for CI/RI treatment. This review provides an overview of current insights into metabolic reprogramming mechanisms in microglia and astrocytes within the pathophysiological context of CI/RI, along with potential pharmacological targets. Herein, we emphasize the potential of metabolic reprogramming of gliocytes as a therapeutic target for CI/RI and aim to offer a novel perspective in the treatment of CI/RI.
Collapse
Affiliation(s)
- Lipeng Gong
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese Medicine and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Junjie Liang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese Medicine and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Letian Xie
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese Medicine and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Zhanwei Zhang
- Department of Neurosurgery, First Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Changsha, Hunan 410007, China
| | - Zhigang Mei
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese Medicine and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, College of Medicine and Health Sciences, China Three Gorges University, Yichang, Hubei 443002, China
| | - Wenli Zhang
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| |
Collapse
|
28
|
Yan W, He X, Wang G, Hu G, Cui B. Adipokine vaspin maintains angiogenesis and neurological function during cerebral ischemia-reperfusion via suppressing endoplasmic reticulum stress. Clin Hemorheol Microcirc 2024; 87:415-425. [PMID: 38517781 DOI: 10.3233/ch-232077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2024]
Abstract
INTRODUCTION Visceral adipose tissue-derived serine protease inhibitor (vaspin) is an adipokine. It has been reported that decreased serum vaspin levels are significantly associated with stroke severity and prognosis. OBJECTIVE This article aims to explore the theoretical feasibility of vaspin supplementation for cerebral ischemia-reperfusion (I/R) injury. METHODS The I/R mouse models were constructed by the middle cerebral artery occlusion (MCAO) method, and the effects of vaspin on cerebral infarction, neurological function, angiogenesis and endoplasmic reticulum (ER) stress were explored. To verify the mediation of ER stress in the regulation of vaspin, human brain microvascular endothelial cells (HBMECs) were subjected to ER stress agonist tunicamycin in vitro. The impacts of vaspin and tunicamycin on oxygen glucose deprivation/ recovery (OGD/R)-induced cell viability, apoptosis, and angiogenesis were examined. RESULTS Vaspin inhibited blood-brain barrier breakdown and infarction occurred in the brain tissue of the I/R mice. Vaspin also enhanced cerebral neovascularization and reduced the apoptosis. Additional tunicamycin increased the apoptosis of HBMECs and inhibited angiogenesis, reversing the protective effect of vaspin on cells. CONCLUSION Together, this study reveals that vaspin supplementation reduces cerebral infarction and works against neurological dysfunction. It maintains the survival and angiogenesis capacity of HBMECs by inhibiting ER stress.
Collapse
Affiliation(s)
- Wentao Yan
- Department of Stroke, Xuchang Central Hospital, Henan University of Science and Technology, Xuchang, Henan, China
| | - Xiuhua He
- Department of Cardiovascular Medicine, Xuchang Central Hospital, Henan University of Science and Technology, Xuchang, Henan, China
| | - Guanjun Wang
- Department of Neurosurgery, Xuchang Central Hospital, Henan University of Science and Technology, Xuchang, Henan, China
| | - Guochao Hu
- Department of Stroke, Xuchang Central Hospital, Henan University of Science and Technology, Xuchang, Henan, China
| | - Bin Cui
- Department of Neurosurgery, Aviation General Hospital, Beijing, China
| |
Collapse
|
29
|
Zhang Y, Zhao X, Guo C, Zhang Y, Zeng F, Yin Q, Li Z, Shao L, Zhou D, Liu L. The Circadian System Is Essential for the Crosstalk of VEGF-Notch-mediated Endothelial Angiogenesis in Ischemic Stroke. Neurosci Bull 2023; 39:1375-1395. [PMID: 36862341 PMCID: PMC10465432 DOI: 10.1007/s12264-023-01042-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 12/18/2022] [Indexed: 03/03/2023] Open
Abstract
Ischemic stroke is a major public health problem worldwide. Although the circadian clock is involved in the process of ischemic stroke, the exact mechanism of the circadian clock in regulating angiogenesis after cerebral infarction remains unclear. In the present study, we determined that environmental circadian disruption (ECD) increased the stroke severity and impaired angiogenesis in the rat middle cerebral artery occlusion model, by measuring the infarct volume, neurological tests, and angiogenesis-related protein. We further report that Bmal1 plays an irreplaceable role in angiogenesis. Overexpression of Bmal1 promoted tube-forming, migration, and wound healing, and upregulated the vascular endothelial growth factor (VEGF) and Notch pathway protein levels. This promoting effect was reversed by the Notch pathway inhibitor DAPT, according to the results of angiogenesis capacity and VEGF pathway protein level. In conclusion, our study reveals the intervention of ECD in angiogenesis in ischemic stroke and further identifies the exact mechanism by which Bmal1 regulates angiogenesis through the VEGF-Notch1 pathway.
Collapse
Affiliation(s)
- Yuxing Zhang
- Department of Neurology, The First Hospital of Hunan University of Chinese Medicine, Changsha, 410007, China
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Changsha, 410208, China
- Hunan University of Chinese Medicine, Changsha, 410006, China
| | - Xin Zhao
- Hunan University of Chinese Medicine, Changsha, 410006, China
| | - Chun Guo
- Department of Neurology, The First Hospital of Hunan University of Chinese Medicine, Changsha, 410007, China
| | - Ying Zhang
- Department of Neurology, The First Hospital of Hunan University of Chinese Medicine, Changsha, 410007, China
- Hunan University of Chinese Medicine, Changsha, 410006, China
| | - Fukang Zeng
- Department of Neurology, The First Hospital of Hunan University of Chinese Medicine, Changsha, 410007, China
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Changsha, 410208, China
- Hunan University of Chinese Medicine, Changsha, 410006, China
| | - Qian Yin
- Hunan University of Chinese Medicine, Changsha, 410006, China
| | - Zhong Li
- Department of Neurology, The First Hospital of Hunan University of Chinese Medicine, Changsha, 410007, China
| | - Le Shao
- Hunan University of Chinese Medicine, Changsha, 410006, China
- Laboratory of Prevention and Transformation of Major Diseases in Internal Medicine of Traditional Chinese Medicine, Changsha, 410007, China
| | - Desheng Zhou
- Department of Neurology, The First Hospital of Hunan University of Chinese Medicine, Changsha, 410007, China.
| | - Lijuan Liu
- Department of Neurology, The First Hospital of Hunan University of Chinese Medicine, Changsha, 410007, China.
| |
Collapse
|
30
|
Zheng T, Jiang T, Huang Z, Ma H, Wang M. Role of traditional Chinese medicine monomers in cerebral ischemia/reperfusion injury:a review of the mechanism. Front Pharmacol 2023; 14:1220862. [PMID: 37654609 PMCID: PMC10467294 DOI: 10.3389/fphar.2023.1220862] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/04/2023] [Indexed: 09/02/2023] Open
Abstract
Ischemia/reperfusion (I/R) injury is a pathological process wherein reperfusion of an ischemic organ or tissue exacerbates the injury, posing a significant health threat and economic burden to patients and their families. I/R triggers a multitude of physiological and pathological events, such as inflammatory responses, oxidative stress, neuronal cell death, and disruption of the blood-brain barrier (BBB). Hence, the development of effective therapeutic strategies targeting the pathological processes resulting from I/R is crucial for the rehabilitation and long-term enhancement of the quality of life in patients with cerebral ischemia/reperfusion injury (CIRI). Traditional Chinese medicine (TCM) monomers refer to bioactive compounds extracted from Chinese herbal medicine, possessing anti-inflammatory and antioxidative effects, and the ability to modulate programmed cell death (PCD). TCM monomers have emerged as promising candidates for the treatment of CIRI and its subsequent complications. Preclinical studies have demonstrated that TCM monomers can enhance the recovery of neurological function following CIRI by mitigating oxidative stress, suppressing inflammatory responses, reducing neuronal cell death and functional impairment, as well as minimizing cerebral infarction volume. The neuroprotective effects of TCM monomers on CIRI have been extensively investigated, and a comprehensive understanding of their mechanisms can pave the way for novel approaches to I/R treatment. This review aims to update and summarize evidence of the protective effects of TCMs in CIRI, with a focus on their role in modulating oxidative stress, inflammation, PCD, glutamate excitotoxicity, Ca2+ overload, as well as promoting blood-brain barrier repairment and angiogenesis. The main objective is to underscore the significant contribution of TCM monomers in alleviating CIRI.
Collapse
Affiliation(s)
| | | | | | | | - Manxia Wang
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, China
| |
Collapse
|
31
|
Lv QK, Tao KX, Wang XB, Yao XY, Pang MZ, Liu JY, Wang F, Liu CF. Role of α-synuclein in microglia: autophagy and phagocytosis balance neuroinflammation in Parkinson's disease. Inflamm Res 2023; 72:443-462. [PMID: 36598534 DOI: 10.1007/s00011-022-01676-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/27/2022] [Accepted: 12/12/2022] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Parkinson's disease (PD) is the second most common neurodegenerative disease, and is characterized by accumulation of α-synuclein (α-syn). Neuroinflammation driven by microglia is an important pathological manifestation of PD. α-Syn is a crucial marker of PD, and its accumulation leads to microglia M1-like phenotype polarization, activation of NLRP3 inflammasomes, and impaired autophagy and phagocytosis in microglia. Autophagy of microglia is related to degradation of α-syn and NLRP3 inflammasome blockage to relieve neuroinflammation. Microglial autophagy and phagocytosis of released α-syn or fragments from apoptotic neurons maintain homeostasis in the brain. A variety of PD-related genes such as LRRK2, GBA and DJ-1 also contribute to this stability process. OBJECTIVES Further studies are needed to determine how α-syn works in microglia. METHODS A keyword-based search was performed using the PubMed database for published articles. CONCLUSION In this review, we discuss the interaction between microglia and α-syn in PD pathogenesis and the possible mechanism of microglial autophagy and phagocytosis in α-syn clearance and inhibition of neuroinflammation. This may provide a novel insight into treatment of PD.
Collapse
Affiliation(s)
- Qian-Kun Lv
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, 215123, China
| | - Kang-Xin Tao
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, 215123, China
| | - Xiao-Bo Wang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, 215123, China
| | - Xiao-Yu Yao
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, 215123, China
| | - Meng-Zhu Pang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, 215123, China
| | - Jun-Yi Liu
- Department of Neurology, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, China
| | - Fen Wang
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China.
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, 215123, China.
| | - Chun-Feng Liu
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China.
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
32
|
Targeting Non-Coding RNA for CNS Injuries: Regulation of Blood-Brain Barrier Functions. Neurochem Res 2023; 48:1997-2016. [PMID: 36786944 DOI: 10.1007/s11064-023-03892-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/05/2023] [Accepted: 02/07/2023] [Indexed: 02/15/2023]
Abstract
Central nervous system (CNS) injuries are the most common cause of death and disability around the world. The blood-brain barrier (BBB) is located at the interface between the CNS and the surrounding environment, which protects the CNS from exogenous molecules, harmful agents or microorganisms in the blood. The disruption of BBB is a common feature of CNS injuries and participates in the pathological processes of secondary brain damage. Recently, a growing number of studies have indicated that non-coding RNAs (ncRNAs) play an important role in brain development and are involved in CNS injuries. In this review, we summarize the mechanisms of BBB breakdown after CNS injuries. We also discuss the effects of ncRNAs including long noncoding RNAs (lncRNAs), circular RNAs (circRNAs) and microRNAs (miRNAs) on BBB damage in CNS injuries such as ischemic stroke, traumatic brain injury (TBI), intracerebral hemorrhage (ICH) and subarachnoid hemorrhage (SAH). In addition, we clarify the pharmacotherapies that could regulate BBB function via ncRNAs in CNS injuries, as well as the challenges and perspectives of ncRNAs on modulation of BBB function. Hence, on the basis of these effects, ncRNAs may be developed as therapeutic agents to protect the BBB for CNS injury patients.
Collapse
|
33
|
Li Z, Zhao M, Zhang X, Lu Y, Yang Y, Xie Y, Zou Z, Zhou L, Shang R, Zhang L, Jiang F, Du D, Zhou P. TJ-M2010-5, a novel CNS drug candidate, attenuates acute cerebral ischemia-reperfusion injury through the MyD88/NF-κB and ERK pathway. Front Pharmacol 2022; 13:1080438. [PMID: 36588708 PMCID: PMC9797592 DOI: 10.3389/fphar.2022.1080438] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Background: Cerebral ischemia-reperfusion injury (CIRI) inevitably occurs after vascular recanalization treatment for ischemic stroke. The accompanying inflammatory cascades have a major impact on outcome and regeneration after ischemic stroke. Evidences have demonstrated that TLR/MyD88/NF-κB signaling contributes to CIRI. This study aimed to investigate the druggability of MyD88 in the central nervous system (CNS) and the neuroprotective and anti-neuroinflammatory effects of the MyD88 inhibitor TJ-M2010-5 on CIRI. Methods: A middle cerebral artery occlusion (MCAO) model was used to simulate CIRI in mice. BV-2 cells were stimulated with oxygen glucose deprivation/reoxygenation (OGD/R) or lipopolysaccharide, and SH-SY5Y cells were induced by OGD/R in vitro. Neurological deficit scores and cerebral infarction volumes were evaluated. Immunofluorescence staining was performed to measure neuronal damage and apoptosis in the brain. The anti-neuroinflammatory effect of TJ-M2010-5 was evaluated by analyzing the expression of inflammatory cytokines, activation of microglia, and infiltration of peripheral myeloid cells. The expression of proteins of the MyD88/NF-κB and ERK pathway was detected by Simple Western. The concentrations of TJ-M2010-5 in the blood and brain were analyzed by liquid chromatography-mass spectrometry. Results: The cerebral infarction volume decreased in mice treated with TJ-M2010-5, with the most prominent decrease being approximately 80% of the original infarction volume. Neuronal loss and apoptosis were reduced following TJ-M2010-5 treatment. TJ-M2010-5 inhibited the infiltration of peripheral myeloid cells and the activation of microglia. TJ-M2010-5 also downregulated the expression of inflammatory cytokines and inhibited the MyD88/NF-κB and ERK pathway. Furthermore, TJ-M2010-5 showed good blood-brain barrier permeability and no neurotoxicity. Conclusion: TJ-M2010-5 has an excellent therapeutic effect on CIRI as a novel CNS drug candidate by inhibiting excessive neuroinflammatory responses.
Collapse
Affiliation(s)
- Zeyang Li
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Minghui Zhao
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Xiaoqian Zhang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yiran Lu
- Wuhan Yangtze International School, Wuhan International Educational Center, Wuhan, China
| | - Yang Yang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Yalong Xie
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Zhimiao Zou
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Liang Zhou
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Runshi Shang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Limin Zhang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Fengchao Jiang
- Academy of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dunfeng Du
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China,*Correspondence: Dunfeng Du, dudunfeng@163; Ping Zhou,
| | - Ping Zhou
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China,*Correspondence: Dunfeng Du, dudunfeng@163; Ping Zhou,
| |
Collapse
|