1
|
Poding LH, Jägers P, Herlitze S, Huhn M. Diversity and function of fluorescent molecules in marine animals. Biol Rev Camb Philos Soc 2024; 99:1391-1410. [PMID: 38468189 DOI: 10.1111/brv.13072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 02/24/2024] [Accepted: 02/29/2024] [Indexed: 03/13/2024]
Abstract
Fluorescence in marine animals has mainly been studied in Cnidaria but is found in many different phyla such as Annelida, Crustacea, Mollusca, and Chordata. While many fluorescent proteins and molecules have been identified, very little information is available about the biological functions of fluorescence. In this review, we focus on describing the occurrence of fluorescence in marine animals and the behavioural and physiological functions of fluorescent molecules based on experimental approaches. These biological functions of fluorescence range from prey and symbiont attraction, photoprotection, photoenhancement, stress mitigation, mimicry, and aposematism to inter- and intraspecific communication. We provide a comprehensive list of marine taxa that utilise fluorescence, including demonstrated effects on behavioural or physiological responses. We describe the numerous known functions of fluorescence in anthozoans and their underlying molecular mechanisms. We also highlight that other marine taxa should be studied regarding the functions of fluorescence. We suggest that an increase in research effort in this field could contribute to understanding the capacity of marine animals to respond to negative effects of climate change, such as rising sea temperatures and increasing intensities of solar irradiation.
Collapse
Affiliation(s)
- Lars H Poding
- Department of General Zoology and Neurobiology, Institute of Biology and Biotechnology, Ruhr-University Bochum, Bochum, 44801, Germany
| | - Peter Jägers
- Department of General Zoology and Neurobiology, Institute of Biology and Biotechnology, Ruhr-University Bochum, Bochum, 44801, Germany
| | - Stefan Herlitze
- Department of General Zoology and Neurobiology, Institute of Biology and Biotechnology, Ruhr-University Bochum, Bochum, 44801, Germany
| | - Mareike Huhn
- Department of General Zoology and Neurobiology, Institute of Biology and Biotechnology, Ruhr-University Bochum, Bochum, 44801, Germany
| |
Collapse
|
2
|
Juhasz-Dora T, Lindberg SK, Karlsen A, Ortega S. Biofluorescent response in lumpfish Cyclopterus lumpus to a therapeutic stressor as assessed by hyperspectral imaging. Sci Rep 2024; 14:2982. [PMID: 38316938 PMCID: PMC10844216 DOI: 10.1038/s41598-024-53562-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 02/01/2024] [Indexed: 02/07/2024] Open
Abstract
The demand for lumpfish (Cyclopterus lumpus) as a biological control for salmon lice is increasing. However, lumpfish welfare is considered a limiting factor within aquaculture operations. Identifying a noninvasive parameter that measures subclinical stress in lumpfish is a key goal for improving their welfare. The lumpfish is documented to emit green and red biofluorescence within the blue shifted light of their environment. Here we show that lumpfish fluorescence responds to a therapeutic stressor within a controlled experiment. Lumpfish (n = 60) underwent a 3-h freshwater bath therapeutant to evaluate whether fluorescence spectra produced by the species respond to external stimuli. Lumpfish were quickly scanned under a hyperspectral camera (400-1000 nm spectral range) prior to and after treatment. The lumpfish were randomly divided into 3 groups with identical treatment. All groups increased fluorescence emissions, though the level of change depended on whether the averaged, red, or green spectra were analyzed; the control group (n = 20) remained constant. All lumpfish emitted green fluorescence (~ 590-670 nm) while a portion (49%) produced red fluorescence (~ 690-800 nm). As lumpfish fluorescence shifts in response to the applied stressor, this study provides insight into how fluorescence may be incorporated into the welfare management of lumpfish.
Collapse
Affiliation(s)
- Thomas Juhasz-Dora
- Bantry Marine Research Station, Bantry, P75 AX07, Ireland.
- School of Biological, Earth and Environmental Sciences, University College Cork, Cork, T23 N73K, Ireland.
| | | | | | | |
Collapse
|
3
|
Croce AC, Garbelli A, Moyano A, Soldano S, Tejeda-Guzmán C, Missirlis F, Scolari F. Developmental and Nutritional Dynamics of Malpighian Tubule Autofluorescence in the Asian Tiger Mosquito Aedes albopictus. Int J Mol Sci 2023; 25:245. [PMID: 38203417 PMCID: PMC10778832 DOI: 10.3390/ijms25010245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/19/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
Malpighian tubules (MTs) are arthropod excretory organs crucial for the osmoregulation, detoxification and excretion of xenobiotics and metabolic wastes, which include tryptophan degradation products along the kynurenine (KYN) pathway. Specifically, the toxic intermediate 3-hydroxy kynurenine (3-HK) is metabolized through transamination to xanthurenic acid or in the synthesis of ommochrome pigments. Early investigations in Drosophila larval fat bodies revealed an intracellular autofluorescence (AF) that depended on tryptophan administration. Subsequent observations documented AF changes in the MTs of Drosophila eye-color mutants genetically affecting the conversion of tryptophan to KYN or 3-HK and the intracellular availability of zinc ions. In the present study, the AF properties of the MTs in the Asian tiger mosquito, Aedes albopictus, were characterized in different stages of the insect's life cycle, tryptophan-administered larvae and blood-fed adult females. Confocal imaging and microspectroscopy showed AF changes in the distribution of intracellular, brilliant granules and in the emission spectral shape and amplitude between the proximal and distal segments of MTs across the different samples. The findings suggest AF can serve as a promising marker for investigating the functional status of MTs in response to metabolic alterations, contributing to the use of MTs as a potential research model in biomedicine.
Collapse
Affiliation(s)
- Anna Cleta Croce
- Institute of Molecular Genetics IGM CNR “Luigi Luca Cavalli-Sforza”, Via Abbiategrasso 207, 27100 Pavia, Italy; (A.G.); (A.M.); (S.S.)
- Department of Biology and Biotechnology, University of Pavia, Via Ferrata 9, 27100 Pavia, Italy
| | - Anna Garbelli
- Institute of Molecular Genetics IGM CNR “Luigi Luca Cavalli-Sforza”, Via Abbiategrasso 207, 27100 Pavia, Italy; (A.G.); (A.M.); (S.S.)
| | - Andrea Moyano
- Institute of Molecular Genetics IGM CNR “Luigi Luca Cavalli-Sforza”, Via Abbiategrasso 207, 27100 Pavia, Italy; (A.G.); (A.M.); (S.S.)
- Department of Biology and Biotechnology, University of Pavia, Via Ferrata 9, 27100 Pavia, Italy
| | - Sara Soldano
- Institute of Molecular Genetics IGM CNR “Luigi Luca Cavalli-Sforza”, Via Abbiategrasso 207, 27100 Pavia, Italy; (A.G.); (A.M.); (S.S.)
- Department of Biology and Biotechnology, University of Pavia, Via Ferrata 9, 27100 Pavia, Italy
| | - Carlos Tejeda-Guzmán
- Department of Physiology, Biophysics and Neuroscience, Cinvestav, Mexico City 07360, Mexico; (C.T.-G.); (F.M.)
| | - Fanis Missirlis
- Department of Physiology, Biophysics and Neuroscience, Cinvestav, Mexico City 07360, Mexico; (C.T.-G.); (F.M.)
| | - Francesca Scolari
- Institute of Molecular Genetics IGM CNR “Luigi Luca Cavalli-Sforza”, Via Abbiategrasso 207, 27100 Pavia, Italy; (A.G.); (A.M.); (S.S.)
- Department of Biology and Biotechnology, University of Pavia, Via Ferrata 9, 27100 Pavia, Italy
| |
Collapse
|
4
|
Milne N, Sáez-Sáez J, Nielsen AM, Dyekjaer JD, Rago D, Kristensen M, Wulff T, Borodina I. Engineering Saccharomyces cerevisiae for the de novo Production of Halogenated Tryptophan and Tryptamine Derivatives. ChemistryOpen 2023; 12:e202200266. [PMID: 36929157 PMCID: PMC10068768 DOI: 10.1002/open.202200266] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/28/2023] [Indexed: 03/18/2023] Open
Abstract
The indole scaffold is a recurring structure in multiple bioactive heterocycles and natural products. Substituted indoles like the amino acid tryptophan serve as a precursor for a wide range of natural products with pharmaceutical or agrochemical applications. Inspired by the versatility of these compounds, medicinal chemists have for decades exploited indole as a core structure in the drug discovery process. With the aim of tuning the properties of lead drug candidates, regioselective halogenation of the indole scaffold is a common strategy. However, chemical halogenation is generally expensive, has a poor atom economy, lacks regioselectivity, and generates hazardous waste streams. As an alternative, in this work we engineer the industrial workhorse Saccharomyces cerevisiae for the de novo production of halogenated tryptophan and tryptamine derivatives. Functional expression of bacterial tryptophan halogenases together with a partner flavin reductase and a tryptophan decarboxylase resulted in the production of halogenated tryptophan and tryptamine with chlorine or bromine. Furthermore, by combining tryptophan halogenases, production of di-halogenated molecules was also achieved. Overall, this works paves the road for the production of new-to-nature halogenated natural products in yeast.
Collapse
Affiliation(s)
- Nicholas Milne
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark.,Octarine Bio ApS, Lersø Parkallé 42, 1. Sal, 2100, Copenhagen, Denmark
| | - Javier Sáez-Sáez
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
| | - Annette Munch Nielsen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark.,Octarine Bio ApS, Lersø Parkallé 42, 1. Sal, 2100, Copenhagen, Denmark
| | - Jane Dannow Dyekjaer
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
| | - Daniela Rago
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
| | - Mette Kristensen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
| | - Tune Wulff
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
| | - Irina Borodina
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
| |
Collapse
|
5
|
Gribble GW. Naturally Occurring Organohalogen Compounds-A Comprehensive Review. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2023; 121:1-546. [PMID: 37488466 DOI: 10.1007/978-3-031-26629-4_1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
The present volume is the third in a trilogy that documents naturally occurring organohalogen compounds, bringing the total number-from fewer than 25 in 1968-to approximately 8000 compounds to date. Nearly all of these natural products contain chlorine or bromine, with a few containing iodine and, fewer still, fluorine. Produced by ubiquitous marine (algae, sponges, corals, bryozoa, nudibranchs, fungi, bacteria) and terrestrial organisms (plants, fungi, bacteria, insects, higher animals) and universal abiotic processes (volcanos, forest fires, geothermal events), organohalogens pervade the global ecosystem. Newly identified extraterrestrial sources are also documented. In addition to chemical structures, biological activity, biohalogenation, biodegradation, natural function, and future outlook are presented.
Collapse
Affiliation(s)
- Gordon W Gribble
- Department of Chemistry, Dartmouth College, Hanover, NH, 03755, USA.
| |
Collapse
|
6
|
Juhasz‐Dora T, Teague J, Doyle TK, Maguire J. First record of biofluorescence in lumpfish (Cyclopterus lumpus), a commercially farmed cleaner fish. JOURNAL OF FISH BIOLOGY 2022; 101:1058-1062. [PMID: 35781815 PMCID: PMC9796030 DOI: 10.1111/jfb.15154] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
This study is the first known observation of biofluorescence in the lumpfish (Cyclopterus lumpus). Individual lumpfish were illuminated with blue excitation lighting for photography with both hyperspectral and filtered multispectral cameras. All photographed juvenile lumpfish (n = 11) exhibited green biofluorescence. Light emissions were characterised with two peaks observed at 545 and 613 nm, with the greatest intensity along the tubercles of the high crest and the three longitudinal ridges. Further research on the dynamics of biofluorescence through the lifecycle of this species is required.
Collapse
Affiliation(s)
- Thomas Juhasz‐Dora
- Bantry Marine Research StationCorkIreland
- School of Biological, Earth and Environmental SciencesUniversity College CorkCorkIreland
| | - Jonathan Teague
- Interface Analysis Centre, School of PhysicsUniversity of BristolBristolUK
| | - Thomas K. Doyle
- School of Biological, Earth and Environmental SciencesUniversity College CorkCorkIreland
- Science Foundation Ireland Research Centre for Energy, Climate and Marine, Environmental Research CentreUniversity College CorkCorkIreland
| | | |
Collapse
|
7
|
Autofluorescent Biomolecules in Diptera: From Structure to Metabolism and Behavior. Molecules 2022; 27:molecules27144458. [PMID: 35889334 PMCID: PMC9318335 DOI: 10.3390/molecules27144458] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/08/2022] [Accepted: 07/08/2022] [Indexed: 02/04/2023] Open
Abstract
Light-based phenomena in insects have long attracted researchers’ attention. Surface color distribution patterns are commonly used for taxonomical purposes, while optically-active structures from Coleoptera cuticle or Lepidoptera wings have inspired technological applications, such as biosensors and energy accumulation devices. In Diptera, besides optically-based phenomena, biomolecules able to fluoresce can act as markers of bio-metabolic, structural and behavioral features. Resilin or chitinous compounds, with their respective blue or green-to-red autofluorescence (AF), are commonly related to biomechanical and structural properties, helpful to clarify the mechanisms underlying substrate adhesion of ectoparasites’ leg appendages, or the antennal abilities in tuning sound detection. Metarhodopsin, a red fluorescing photoproduct of rhodopsin, allows to investigate visual mechanisms, whereas NAD(P)H and flavins, commonly relatable to energy metabolism, favor the investigation of sperm vitality. Lipofuscins are AF biomarkers of aging, as well as pteridines, which, similarly to kynurenines, are also exploited in metabolic investigations. Beside the knowledge available in Drosophila melanogaster, a widely used model to study also human disorder and disease mechanisms, here we review optically-based studies in other dipteran species, including mosquitoes and fruit flies, discussing future perspectives for targeted studies with various practical applications, including pest and vector control.
Collapse
|
8
|
Akat E, Yenmiş M, Pombal MA, Molist P, Megías M, Arman S, Veselỳ M, Anderson R, Ayaz D. Comparison of Vertebrate Skin Structure at Class Level: A Review. Anat Rec (Hoboken) 2022; 305:3543-3608. [DOI: 10.1002/ar.24908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 02/14/2022] [Accepted: 02/21/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Esra Akat
- Ege University, Faculty of Science, Biology Department Bornova, İzmir Turkey
| | - Melodi Yenmiş
- Ege University, Faculty of Science, Biology Department Bornova, İzmir Turkey
| | - Manuel A. Pombal
- Universidade de Vigo, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía‐IBIV Vigo, España
| | - Pilar Molist
- Universidade de Vigo, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía‐IBIV Vigo, España
| | - Manuel Megías
- Universidade de Vigo, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía‐IBIV Vigo, España
| | - Sezgi Arman
- Sakarya University, Faculty of Science and Letters, Biology Department Sakarya Turkey
| | - Milan Veselỳ
- Palacky University, Faculty of Science, Department of Zoology Olomouc Czechia
| | - Rodolfo Anderson
- Departamento de Zoologia, Instituto de Biociências Universidade Estadual Paulista São Paulo Brazil
| | - Dinçer Ayaz
- Ege University, Faculty of Science, Biology Department Bornova, İzmir Turkey
| |
Collapse
|
9
|
Hughes B, Bowman J, Stock NL, Burness G. Using mass spectrometry to investigate fluorescent compounds in squirrel fur. PLoS One 2022; 17:e0257156. [PMID: 35192622 PMCID: PMC8863215 DOI: 10.1371/journal.pone.0257156] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 02/08/2022] [Indexed: 12/14/2022] Open
Abstract
While an array of taxa are capable of producing fluorescent pigments, fluorescence in mammals is a novel and poorly understood phenomenon. A first step towards understanding the potential adaptive functions of fluorescence in mammals is to develop an understanding of fluorescent compounds, or fluorophores, that are present in fluorescent tissue. Here we use Fourier transform-ion cyclotron resonance mass spectrometry (FT-ICR MS) of flying squirrel fur known to fluoresce under ultraviolet (UV) light to identify potentially fluorescent compounds in squirrel fur. All of the potentially fluorescent compounds we identified were either present in non-fluorescent fur or were not present in all species of fluorescent flying squirrel. Therefore, we suggest that the compounds responsible for fluorescence in flying squirrels may also be present in non-fluorescent mammal fur. Some currently unexplained factor likely leads to excitation of fluorophores in flying squirrel fur. A recently suggested hypothesis that fluorescence in mammals is widely caused by porphyrins is consistent with our findings.
Collapse
Affiliation(s)
- Bryan Hughes
- Department of Biology, Trent University, Peterborough, Ontario, Canada
| | - Jeff Bowman
- Ontario Ministry of Northern Development, Mines, Natural Resources and Forestry, Trent University DNA Building, Peterborough, Canada
| | - Naomi L. Stock
- Water Quality Centre, Trent University, Peterborough, Ontario, Canada
| | - Gary Burness
- Department of Biology, Trent University, Peterborough, Ontario, Canada
| |
Collapse
|
10
|
Maria M, Al-Razi H, Borzée A, Bin Muzaffar S. Biofluorescence in the herpetofauna of northeast Bangladesh. HERPETOZOA 2022. [DOI: 10.3897/herpetozoa.35.e76225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Fluorescence is a poorly documented phenomenon in vertebrates and has been suggested to play several biological roles. With increased study, the number of species in which biofluorescence has been identified is increasing steadily. We conducted a UV light survey for biofluorescence in the herpetofauna in Lawachara National Park, Bangladesh and found biofluorescence in one amphibian (Microhyla berdmorei) and three reptile species (Boiga cyanea, Cyrtodactylus tripuraensis and Hemidactylus platyurus).
Collapse
|
11
|
Perry CT, Pratte ZA, Clavere-Graciette A, Ritchie KB, Hueter RE, Newton AL, Fischer GC, Dinsdale EA, Doane MP, Wilkinson KA, Bassos-Hull K, Lyons K, Dove ADM, Hoopes LA, Stewart FJ. Elasmobranch microbiomes: emerging patterns and implications for host health and ecology. Anim Microbiome 2021; 3:61. [PMID: 34526135 PMCID: PMC8444439 DOI: 10.1186/s42523-021-00121-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/21/2021] [Indexed: 12/20/2022] Open
Abstract
Elasmobranchs (sharks, skates and rays) are of broad ecological, economic, and societal value. These globally important fishes are experiencing sharp population declines as a result of human activity in the oceans. Research to understand elasmobranch ecology and conservation is critical and has now begun to explore the role of body-associated microbiomes in shaping elasmobranch health. Here, we review the burgeoning efforts to understand elasmobranch microbiomes, highlighting microbiome variation among gastrointestinal, oral, skin, and blood-associated niches. We identify major bacterial lineages in the microbiome, challenges to the field, key unanswered questions, and avenues for future work. We argue for prioritizing research to determine how microbiomes interact mechanistically with the unique physiology of elasmobranchs, potentially identifying roles in host immunity, disease, nutrition, and waste processing. Understanding elasmobranch–microbiome interactions is critical for predicting how sharks and rays respond to a changing ocean and for managing healthy populations in managed care.
Collapse
Affiliation(s)
- Cameron T Perry
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA.
| | - Zoe A Pratte
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA.,Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA
| | | | - Kim B Ritchie
- Department of Natural Sciences, University of South Carolina Beaufort, Beaufort, SC, USA
| | - Robert E Hueter
- Sharks and Rays Conservation Research Program, Mote Marine Laboratory, Sarasota, FL, USA.,OCEARCH, Park City, UT, USA
| | - Alisa L Newton
- Disney's Animals, Science and Environment, Orlando, FL, USA
| | - G Christopher Fischer
- OCEARCH, Park City, UT, USA.,Marine Science Research Institute, Jacksonville University, Jacksonville, FL, USA
| | - Elizabeth A Dinsdale
- College of Science and Engineering, Flinders University, Bedford Park, SA, Australia
| | - Michael P Doane
- College of Science and Engineering, Flinders University, Bedford Park, SA, Australia
| | - Krystan A Wilkinson
- Sharks and Rays Conservation Research Program, Mote Marine Laboratory, Sarasota, FL, USA.,Chicago Zoological Society's Sarasota Dolphin Research Program ℅ Mote Marine Laboratory, Sarasota, FL, USA
| | - Kim Bassos-Hull
- Sharks and Rays Conservation Research Program, Mote Marine Laboratory, Sarasota, FL, USA
| | - Kady Lyons
- Research and Conservation Department, Georgia Aquarium, Atlanta, GA, USA
| | - Alistair D M Dove
- Research and Conservation Department, Georgia Aquarium, Atlanta, GA, USA
| | - Lisa A Hoopes
- Research and Conservation Department, Georgia Aquarium, Atlanta, GA, USA
| | - Frank J Stewart
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA.,Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA
| |
Collapse
|
12
|
Hamchand R, Lafountain AM, Büchel R, Maas KR, Hird SM, Warren M, Frank HA, Brückner C. Red Fluorescence of European Hedgehog (Erinaceus europaeus) Spines Results from Free-Base Porphyrins of Potential Microbial Origin. J Chem Ecol 2021; 47:588-596. [PMID: 33948884 DOI: 10.1007/s10886-021-01279-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/13/2021] [Accepted: 04/27/2021] [Indexed: 01/04/2023]
Abstract
Bioluminescence has been recognized as an important means for inter- and intra-species communication. A growing number of reports of red fluorescence occurring in keratinaceous materials have become available. The fluorophore(s) in these cases were shown to be, or suspected to be, free base porphyrins. The red fluorescence found in the downs of bustards was associated with inter-species signaling in mate selection. First reported in 1925, we confirm that spines of the European hedgehog (Erinaceus europaeus) when irradiated with UV (365-395 nm) light display red fluorescence localized in the light-colored sections of their proximal ends. Using reflectance fluorescence spectroscopy, we confirmed that the fluorophores responsible for the emission are free-base porphyrins, as suspected in the original report. Base-induced degradation of the spine matrix and subsequent HPLC, UV-vis, and ESI+ mass spectrometry analysis revealed the presence of a mixture of coproporphyrin III and uroporphyrin III as predominant porphyrins and a minor fraction of protoporphyrin IX. Investigation of the spine microbiome uncovered the abundant presence of bacteria known to secrete and/or interconvert porphyrins and that are not present on the non-fluorescing quills of the North American porcupine (Erethizon dorsatum). Given this circumstantial evidence, we propose the porphyrins could originate from commensal bacteria. Furthermore, we hypothesize that the fluorescence may be incidental and of no biological function for the hedgehog.
Collapse
Affiliation(s)
- Randy Hamchand
- Department of Chemistry, University of Connecticut, Unit 3060, Storrs, CT, 06269-3060, USA
| | - Amy M Lafountain
- Department of Chemistry, University of Connecticut, Unit 3060, Storrs, CT, 06269-3060, USA
| | - Rhea Büchel
- Department of Chemistry, University of Connecticut, Unit 3060, Storrs, CT, 06269-3060, USA
| | - Kendra R Maas
- Microbial Analysis, Resources, and Services (MARS), University of Connecticut, Unit-3032, Storrs, CT, 06269-3032, USA
| | - Sarah M Hird
- Department of Molecular and Cell Biology, University of Connecticut, Unit 3125, Storrs, CT, 06269-3125, USA
| | - Martin Warren
- Department of Biochemistry, University of Kent, Canterbury, CT2 7NJ, UK
| | - Harry A Frank
- Department of Chemistry, University of Connecticut, Unit 3060, Storrs, CT, 06269-3060, USA
| | - Christian Brückner
- Department of Chemistry, University of Connecticut, Unit 3060, Storrs, CT, 06269-3060, USA.
| |
Collapse
|
13
|
Gruber DF, Sparks JS. First Report of Biofluorescence in Arctic Snailfishes and Rare Occurrence of Multiple Fluorescent Colors in a Single Species. AMERICAN MUSEUM NOVITATES 2021. [DOI: 10.1206/3967.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- David F. Gruber
- Department of Natural Sciences, Baruch College and the Graduate Center, City University of New York
| | - John S. Sparks
- Sackler Institute for Comparative Genomics, American Museum of Natural History
| |
Collapse
|
14
|
Vivid biofluorescence discovered in the nocturnal Springhare (Pedetidae). Sci Rep 2021; 11:4125. [PMID: 33603032 PMCID: PMC7892538 DOI: 10.1038/s41598-021-83588-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 01/01/2021] [Indexed: 11/24/2022] Open
Abstract
Biofluorescence has been detected in several nocturnal-crepuscular organisms from invertebrates to birds and mammals. Biofluorescence in mammals has been detected across the phylogeny, including the monotreme duck-billed platypus (Ornithorhyncus anatinus), marsupial opossums (Didelphidae), and New World placental flying squirrels (Gluacomys spp.). Here, we document vivid biofluorescence of springhare (Pedetidae) in both museum specimens and captive individuals—the first documented biofluorescence of an Old World placental mammal. We explore the variation in biofluorescence across our sample and characterize its physical and chemical properties. The striking visual patterning and intensity of color shift was unique relative to biofluorescence found in other mammals. We establish that biofluorescence in springhare likely originates within the cuticle of the hair fiber and emanates, at least partially, from several fluorescent porphyrins and potentially one unassigned molecule absent from our standard porphyrin mixture. This discovery further supports the hypothesis that biofluorescence may be ecologically important for nocturnal-crepuscular mammals and suggests that it may be more broadly distributed throughout Mammalia than previously thought.
Collapse
|
15
|
Macel ML, Ristoratore F, Locascio A, Spagnuolo A, Sordino P, D’Aniello S. Sea as a color palette: the ecology and evolution of fluorescence. ZOOLOGICAL LETTERS 2020; 6:9. [PMID: 32537244 PMCID: PMC7288533 DOI: 10.1186/s40851-020-00161-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 05/21/2020] [Indexed: 06/11/2023]
Abstract
Fluorescence and luminescence are widespread optical phenomena exhibited by organisms living in terrestrial and aquatic environments. While many underlying mechanistic features have been identified and characterized at the molecular and cellular levels, much less is known about the ecology and evolution of these forms of bioluminescence. In this review, we summarize recent findings in the evolutionary history and ecological functions of fluorescent proteins (FP) and pigments. Evidence for green fluorescent protein (GFP) orthologs in cephalochordates and non-GFP fluorescent proteins in vertebrates suggests unexplored evolutionary scenarios that favor multiple independent origins of fluorescence across metazoan lineages. Several context-dependent behavioral and physiological roles have been attributed to fluorescent proteins, ranging from communication and predation to UV protection. However, rigorous functional and mechanistic studies are needed to shed light on the ecological functions and control mechanisms of fluorescence.
Collapse
Affiliation(s)
- Marie-Lyne Macel
- Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn Napoli, Villa Comunale, 80121 Naples, Italy
| | - Filomena Ristoratore
- Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn Napoli, Villa Comunale, 80121 Naples, Italy
| | - Annamaria Locascio
- Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn Napoli, Villa Comunale, 80121 Naples, Italy
| | - Antonietta Spagnuolo
- Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn Napoli, Villa Comunale, 80121 Naples, Italy
| | - Paolo Sordino
- Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn Napoli, Villa Comunale, 80121 Naples, Italy
| | - Salvatore D’Aniello
- Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn Napoli, Villa Comunale, 80121 Naples, Italy
| |
Collapse
|
16
|
Lamb JY, Davis MP. Salamanders and other amphibians are aglow with biofluorescence. Sci Rep 2020; 10:2821. [PMID: 32108141 PMCID: PMC7046780 DOI: 10.1038/s41598-020-59528-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 01/30/2020] [Indexed: 02/04/2023] Open
Abstract
Biofluorescence is the absorption of electromagnetic radiation (light) at one wavelength followed by its reemission at a lower energy and longer wavelength by a living organism. Previous studies have documented the widespread presence of biofluorescence in some animals, including cnidarians, arthropods, and cartilaginous and ray-finned fishes. Many studies on biofluorescence have focused on marine animals (cnidarians, cartilaginous and ray-finned fishes) but we know comparatively little about the presence of biofluorescence in tetrapods. We show for the first time that biofluorescence is widespread across Amphibia, with a focus on salamanders (Caudata), which are a diverse group with a primarily Holarctic distribution. We find that biofluorescence is not restricted to any particular family of salamanders, there is striking variation in their fluorescent patterning, and the primary wavelengths emitted in response to blue excitation light are within the spectrum of green light. Widespread biofluorescence across the amphibian radiation is a previously undocumented phenomenon that could have significant ramifications for the ecology and evolution of these diverse and declining vertebrates. Our results provide a roadmap for future studies on the characterization of molecular mechanisms of biofluorescence in amphibians, as well as directions for investigations into the potential impact of biofluorescence on the visual ecology and behavior of biofluorescent amphibians.
Collapse
Affiliation(s)
- Jennifer Y Lamb
- St. Cloud State University, Department of Biology, St. Cloud, Minnesota, 56301, USA.
| | - Matthew P Davis
- St. Cloud State University, Department of Biology, St. Cloud, Minnesota, 56301, USA.
| |
Collapse
|
17
|
Guo J, Zheng F, Song B, Zhang F. Tripeptide-dopamine fluorescent hybrids: a coassembly-inspired antioxidative strategy. Chem Commun (Camb) 2020; 56:6301-6304. [DOI: 10.1039/d0cc01882a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Coassembling peptides with dopamine molecules can construct hybrid nanostructures with a large Stokes shift green fluorescence, which is an effective antioxidative strategy for biomolecules.
Collapse
Affiliation(s)
- Jun Guo
- Terahertz Technology Innovation Research Institute
- Shanghai Key Laboratory of Modern Optical System
- Terahertz Science Cooperative Innovation Center University of Shanghai for Science and Technology
- Shanghai 200093
- China
| | - Fan Zheng
- Biomedical Nanocenter
- School of Life Science
- Inner Mongolia Agricultural University
- Hohhot
- China
| | - Bo Song
- Terahertz Technology Innovation Research Institute
- Shanghai Key Laboratory of Modern Optical System
- Terahertz Science Cooperative Innovation Center University of Shanghai for Science and Technology
- Shanghai 200093
- China
| | - Feng Zhang
- Terahertz Technology Innovation Research Institute
- Shanghai Key Laboratory of Modern Optical System
- Terahertz Science Cooperative Innovation Center University of Shanghai for Science and Technology
- Shanghai 200093
- China
| |
Collapse
|
18
|
Torrens-Spence MP, Liu CT, Weng JK. Engineering New Branches of the Kynurenine Pathway To Produce Oxo-(2-aminophenyl) and Quinoline Scaffolds in Yeast. ACS Synth Biol 2019; 8:2735-2745. [PMID: 31714755 DOI: 10.1021/acssynbio.9b00368] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The kynurenine pathway, named after its nonproteinogenic amino acid precursor l-kynurenine, is responsible for the de novo biosynthesis of nicotinamide adenine dinucleotide (NAD+) in eukaryotes. Oxo-(2-aminophenyl) and quinoline molecules downstream from l-kynurenine also serve as antagonists of several receptors of the central nervous system in mammals. In this study, we engineered new biosynthetic routes in yeast Saccharomyces cerevisiae to produce a suite of l-kynurenine-derived natural products. Overexpression of Homo sapiens l-tryptophan 2,3-dioxygenase (HsTDO2) in S. cerevisiae led to a marked increase in the production of l-kynurenine and downstream metabolites. Using this background, new branch points to the kynurenine pathway were added through the incorporation of a Psilocybe cubensis noncanonical L-aromatic amino acid decarboxylase (PcncAAAD) capable of catalyzing both decarboxylation and decarboxylation-dependent oxidative-deamination reactions of l-kynurenine and 3-hydroxy-l-kynurenine to yield their corresponding monoamines, aldehydes, and downstream nonenzymatically cyclized quinolines. The PcncAAAD-catalyzed decarboxylation products, kynuramine and 3-hydroxykynuramine, could further be converted to quinoline scaffolds through the addition of H. sapiens monoamine oxidase A (HsMAO-A). Finally, by incorporating upstream regiospecific l-tryptophan halogenases into the engineering scheme, we produced a number of halogenated oxo-(2-aminophenyl) and quinoline compounds. This work illustrates a synthetic biology approach to expand primary metabolic pathways in the production of novel natural-product-like scaffolds amenable for downstream functionalization.
Collapse
Affiliation(s)
| | - Chun-Ting Liu
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, Massachusetts 02142, United States
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Jing-Ke Weng
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, Massachusetts 02142, United States
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|