1
|
Ohya Y, Ogiso Y, Matsuda M, Sakae H, Nishida K, Miki Y, Fox TE, Kester M, Sakamoto W, Nabe T, Kitatani K. Pronecroptotic Therapy Using Ceramide Nanoliposomes Is Effective for Triple-Negative Breast Cancer Cells. Cells 2024; 13:405. [PMID: 38474369 DOI: 10.3390/cells13050405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/16/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
Regulated necrosis, termed necroptosis, represents a potential therapeutic target for refractory cancer. Ceramide nanoliposomes (CNLs), considered potential chemotherapeutic agents, induce necroptosis by targeting the activating protein mixed lineage kinase domain-like protein (MLKL). In the present study, we examined the potential of pronecroptotic therapy using CNLs for refractory triple-negative breast cancer (TNBC), for which there is a lack of definite and effective therapeutic targets among the various immunohistological subtypes of breast cancer. MLKL mRNA expression in tumor tissues was significantly higher in TNBC patients than in those with non-TNBC subtypes. Similarly, among the 50 breast cancer cell lines examined, MLKL expression was higher in TNBC-classified cell lines. TNBC cell lines were more susceptible to the therapeutic effects of CNLs than the non-TNBC subtypes of breast cancer cell lines. In TNBC-classified MDA-MB-231 cells, the knockdown of MLKL suppressed cell death induced by CNLs or the active substance short-chain C6-ceramide. Accordingly, TNBC cells were prone to CNL-evoked necroptotic cell death. These results will contribute to the development of CNL-based pronecroptotic therapy for TNBC.
Collapse
Affiliation(s)
- Yuki Ohya
- Faculty of Pharmaceutical Sciences, Setsunan University, Hirakata 573-0101, Japan
| | - Yuri Ogiso
- Faculty of Pharmaceutical Sciences, Setsunan University, Hirakata 573-0101, Japan
| | - Masaya Matsuda
- Faculty of Pharmaceutical Sciences, Setsunan University, Hirakata 573-0101, Japan
| | - Harumi Sakae
- Faculty of Pharmaceutical Sciences, Setsunan University, Hirakata 573-0101, Japan
| | - Kentaro Nishida
- Faculty of Pharmaceutical Sciences, Setsunan University, Hirakata 573-0101, Japan
| | - Yasuhiro Miki
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Todd E Fox
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908-8735, USA
| | - Mark Kester
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908-8735, USA
| | - Wataru Sakamoto
- Research Center of Oncology, Ono Pharmaceutical, Co., Ltd., Osaka 618-8585, Japan
| | - Takeshi Nabe
- Faculty of Pharmaceutical Sciences, Setsunan University, Hirakata 573-0101, Japan
| | - Kazuyuki Kitatani
- Faculty of Pharmaceutical Sciences, Setsunan University, Hirakata 573-0101, Japan
| |
Collapse
|
2
|
Jamjoum R, Majumder S, Issleny B, Stiban J. Mysterious sphingolipids: metabolic interrelationships at the center of pathophysiology. Front Physiol 2024; 14:1229108. [PMID: 38235387 PMCID: PMC10791800 DOI: 10.3389/fphys.2023.1229108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 11/27/2023] [Indexed: 01/19/2024] Open
Abstract
Metabolic pathways are complex and intertwined. Deficiencies in one or more enzymes in a given pathway are directly linked with genetic diseases, most of them having devastating manifestations. The metabolic pathways undertaken by sphingolipids are diverse and elaborate with ceramide species serving as the hubs of sphingolipid intermediary metabolism and function. Sphingolipids are bioactive lipids that serve a multitude of cellular functions. Being pleiotropic in function, deficiency or overproduction of certain sphingolipids is associated with many genetic and chronic diseases. In this up-to-date review article, we strive to gather recent scientific evidence about sphingolipid metabolism, its enzymes, and regulation. We shed light on the importance of sphingolipid metabolism in a variety of genetic diseases and in nervous and immune system ailments. This is a comprehensive review of the state of the field of sphingolipid biochemistry.
Collapse
Affiliation(s)
- Rama Jamjoum
- Department of Pharmacy, Birzeit University, West Bank, Palestine
| | - Saurav Majumder
- National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health, Rockville, MD, United States
| | - Batoul Issleny
- Department of Pharmacy, Birzeit University, West Bank, Palestine
| | - Johnny Stiban
- Department of Biology and Biochemistry, Birzeit University, West Bank, Palestine
| |
Collapse
|
3
|
Thim EA, Fox T, Deering T, Vass LR, Sheybani ND, Kester M, Price RJ. Solid tumor treatment via augmentation of bioactive C6 ceramide levels with thermally ablative focused ultrasound. Drug Deliv Transl Res 2023; 13:3145-3153. [PMID: 37335416 PMCID: PMC11423265 DOI: 10.1007/s13346-023-01377-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/05/2023] [Indexed: 06/21/2023]
Abstract
Sparse scan partial thermal ablation (TA) with focused ultrasound (FUS) may be deployed to treat solid tumors and increase delivery of systemically administered therapeutics. Furthermore, C6-ceramide-loaded nanoliposomes (CNLs), which rely upon the enhanced-permeation and retention (EPR) effect for delivery, have shown promise for treating solid tumors and are being tested in clinical trials. Here, our objective was to determine whether CNLs synergize with TA in the control of 4T1 breast tumors. CNL monotherapy of 4T1 tumors yielded significant intratumoral bioactive C6 accumulation by the EPR effect, but tumor growth was not controlled. TA increased bioactive C6 accumulation by ~ 12.5-fold over the EPR effect. In addition, TA + CNL caused shifts in long-chain to very-long-chain ceramide ratios (i.e., C16/24 and C18/C24) that could potentially contribute to tumor control. Nonetheless, these changes in intratumoral ceramide levels were still insufficient to confer tumor growth control beyond that achieved when combining with TA with control "ghost" nanoliposomes (GNL). While this lack of synergy could be due to increased "pro-tumor" sphingosine-1-phosphate (S1P) levels, this is unlikely because S1P levels exhibited only a moderate and statistically insignificant increase with TA + CNL. In vitro studies showed that 4T1 cells are highly resistant to C6, offering the most likely explanation for the inability of TA to synergize with CNL. Thus, while our results show that sparse scan TA is a powerful approach for markedly enhancing CNL delivery and generating "anti-tumor" shifts in long-chain to very-long-chain ceramide ratios, resistance of the tumor to C6 can still be a rate-limiting factor for some solid tumor types.
Collapse
Affiliation(s)
- E Andrew Thim
- Department of Biomedical Engineering, University of Virginia, Box 800759, Charlottesville, VA, 22908, USA
| | - Todd Fox
- Department of Pharmacology, University of Virginia, Charlottesville, VA, 22908, USA
| | - Tye Deering
- Department of Pharmacology, University of Virginia, Charlottesville, VA, 22908, USA
| | - Luke R Vass
- Department of Pathology, University of Virginia, Charlottesville, VA, 22908, USA
| | - Natasha D Sheybani
- Department of Biomedical Engineering, University of Virginia, Box 800759, Charlottesville, VA, 22908, USA
| | - Mark Kester
- Department of Biomedical Engineering, University of Virginia, Box 800759, Charlottesville, VA, 22908, USA
- Department of Pharmacology, University of Virginia, Charlottesville, VA, 22908, USA
| | - Richard J Price
- Department of Biomedical Engineering, University of Virginia, Box 800759, Charlottesville, VA, 22908, USA.
| |
Collapse
|
4
|
Lazniewska J, Li KL, Johnson IRD, Sorvina A, Logan JM, Martini C, Moore C, Ung BSY, Karageorgos L, Hickey SM, Prabhakaran S, Heatlie JK, Brooks RD, Huzzell C, Warnock NI, Ward MP, Mohammed B, Tewari P, Martin C, O'Toole S, Edgerton LB, Bates M, Moretti P, Pitson SM, Selemidis S, Butler LM, O'Leary JJ, Brooks DA. Dynamic interplay between sortilin and syndecan-1 contributes to prostate cancer progression. Sci Rep 2023; 13:13489. [PMID: 37596305 PMCID: PMC10439187 DOI: 10.1038/s41598-023-40347-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 08/09/2023] [Indexed: 08/20/2023] Open
Abstract
Prostate cancer (PCa) development and progression relies on the programming of glucose and lipid metabolism, and this involves alterations in androgen receptor expression and signalling. Defining the molecular mechanism that underpins this metabolic programming will have direct significance for patients with PCa who have a poor prognosis. Here we show that there is a dynamic balance between sortilin and syndecan-1, that reports on different metabolic phenotypes. Using tissue microarrays, we demonstrated by immunohistochemistry that sortilin was highly expressed in low-grade cancer, while syndecan-1 was upregulated in high-grade disease. Mechanistic studies in prostate cell lines revealed that in androgen-sensitive LNCaP cells, sortilin enhanced glucose metabolism by regulating GLUT1 and GLUT4, while binding progranulin and lipoprotein lipase (LPL) to limit lipid metabolism. In contrast, in androgen-insensitive PC3 cells, syndecan-1 was upregulated, interacted with LPL and colocalised with β3 integrin to promote lipid metabolism. In addition, androgen-deprived LNCaP cells had decreased expression of sortilin and reduced glucose-metabolism, but increased syndecan-1 expression, facilitating interactions with LPL and possibly β3 integrin. We report a hitherto unappreciated molecular mechanism for PCa, which may have significance for disease progression and how androgen-deprivation therapy might promote castration-resistant PCa.
Collapse
Affiliation(s)
- Joanna Lazniewska
- Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia.
| | - Ka Lok Li
- Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | - Ian R D Johnson
- Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | - Alexandra Sorvina
- Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | - Jessica M Logan
- Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | - Carmela Martini
- Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | - Courtney Moore
- Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | - Ben S-Y Ung
- Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | - Litsa Karageorgos
- Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | - Shane M Hickey
- Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | - Sarita Prabhakaran
- Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia
- Department of Anatomical Pathology, College of Medicine and Public Health, Flinders University, Bedford Park, SA, 5042, Australia
| | - Jessica K Heatlie
- Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | - Robert D Brooks
- Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | - Chelsea Huzzell
- Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | - Nicholas I Warnock
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, 5000, Australia
| | - Mark P Ward
- Department of Histopathology, Trinity College Dublin, Dublin 8, Ireland
| | - Bashir Mohammed
- Department of Histopathology, Trinity College Dublin, Dublin 8, Ireland
| | - Prerna Tewari
- Department of Histopathology, Trinity College Dublin, Dublin 8, Ireland
| | - Cara Martin
- Department of Histopathology, Trinity College Dublin, Dublin 8, Ireland
| | - Sharon O'Toole
- Department of Histopathology, Trinity College Dublin, Dublin 8, Ireland
| | | | - Mark Bates
- Department of Histopathology, Trinity College Dublin, Dublin 8, Ireland
| | - Paul Moretti
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, 5000, Australia
| | - Stuart M Pitson
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, 5000, Australia
| | - Stavros Selemidis
- School of Health and Biomedical Sciences, STEM College, RMIT University, Bundoora, VIC, 3083, Australia
| | - Lisa M Butler
- South Australian ImmunoGENomics Cancer Institute and Freemasons Centre for Male Health and Wellbeing, University of Adelaide, Adelaide, SA, 5000, Australia
- Solid Tumour Program, Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA, 5000, Australia
| | - John J O'Leary
- Department of Histopathology, Trinity College Dublin, Dublin 8, Ireland
| | - Douglas A Brooks
- Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia.
| |
Collapse
|
5
|
Thim EA, Fox T, Deering T, Vass LR, Sheybani ND, Kester M, Price RJ. Solid Tumor Treatment via Augmentation of Bioactive C6 Ceramide Levels with Thermally Ablative Focused Ultrasound. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.23.532394. [PMID: 36993445 PMCID: PMC10055354 DOI: 10.1101/2023.03.23.532394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Sparse scan partial thermal ablation (TA) with focused ultrasound (FUS) may be deployed to treat solid tumors and increase delivery of systemically administered therapeutics. Further, C6-ceramide-loaded nanoliposomes (CNLs), which rely upon the enhanced permeation and retention (EPR) effect for delivery, have shown promise for treating solid tumors and are being tested in clinical trials. Here, our objective was to determine whether CNLs synergize with TA in the control of 4T1 breast tumors. CNL-monotherapy of 4T1 tumors yielded significant intratumoral bioactive C6 accumulation by the EPR effect, but tumor growth was not controlled. TA increased bioactive C6 accumulation by ∼12.5-fold over the EPR effect. In addition, TA+CNL caused shifts in long-chain to very-long-chain ceramide ratios (i.e., C16/24 and C18/C24) that could potentially contribute to tumor control. Nonetheless, these changes in intratumoral ceramide levels were still insufficient to confer tumor growth control beyond that achieved when combining with TA with control "ghost" nanoliposomes (GNL). While this lack of synergy could be due to increased "pro-tumor" sphingosine-1-phosphate (S1P) levels, this is unlikely because S1P levels exhibited only a moderate and statistically insignificant increase with TA+CNL. In vitro studies showed that 4T1 cells are highly resistant to C6, offering the most likely explanation for the inability of TA to synergize with CNL. Thus, while our results show that sparse scan TA is a powerful approach for markedly enhancing CNL delivery and generating "anti-tumor" shifts in long-chain to very-long-chain ceramide ratios, resistance of the tumor to C6 can still be a rate-limiting factor for some solid tumor types.
Collapse
Affiliation(s)
- E. Andrew Thim
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908
| | - Todd Fox
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908
| | - Tye Deering
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908
| | - Luke R. Vass
- Department of Pathology, University of Virginia, Charlottesville, VA 22908
| | - Natasha D. Sheybani
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908
| | - Mark Kester
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908
| | - Richard J. Price
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908
| |
Collapse
|
6
|
Li W, Zhou R, Zheng J, Sun B, Jin X, Hong M, Chen R. Chaihu-Shugan-San ameliorates tumor growth in prostate cancer promoted by depression via modulating sphingolipid and glycerinphospholipid metabolism. Front Pharmacol 2022; 13:1011450. [PMID: 36545317 PMCID: PMC9760688 DOI: 10.3389/fphar.2022.1011450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 11/24/2022] [Indexed: 12/12/2022] Open
Abstract
Background: Psychologic depression is a pivotal pathological characteristic and has been shown to promote prostate cancer (PCa) progression. Chaihu-Shugan-San (CSS), a well-known Chinese herbal decoction, exhibits efficacy in the treatment of stress-accelerated PCa. However, the underlying mechanism of CSS in resisting PCa growth is still unknown, and further study is needed. Objective: To evaluate the effects of CSS on stress-accelerated PCa in a BALB/C nude mice model and to investigate the underlying mechanisms. Methods: PC-3 cells were implanted into BALB/C nude mice, and the stressed mice were exposed to chronic unpredictable mild stress (CUMS) to study the effects of CSS. The PCa growth were evaluated by tumor volume and tumor weight. Analyses of depression-like behaviors were evaluated by sucrose consumption test, tail suspension test and open field test. Network pharmacology was used to analyze the potential targets and signaling pathways of CSS against PCa. Untargeted lipidomics were used to analyze the serum lipid profiles and further elucidate the possible mechanism. Results: In the CUMS stressed PCa mice, CSS can restrain tumor growth with reduced tumor volume and tumor weight, and depression-like behaviors with increased sucrose consumption, reduced immobility duration, and increased total distance and center distance. Network pharmacology suggested that the lipid metabolism-related pathways are the most likely potential targets of CSS against PCa. Using untargeted lipidomics analysis, 62 lipids were found to have significant changes in PCa mice under CUMS treatment. The levels of glycerophospholipids containing phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylinositol (PI) and phosphatidylglycerol (PG), except PC (18:0_22:6) and PC (18:0_20:4), were significantly increased. Likewise, the levels of all sphingolipids (including sphingomyelin (SM), ceramides (Cer) and hexosyl-1-ceramide (Hex1Cer)) and diglyceride (DG) (32:1e) were significantly increased. CSS water extract was found to contribute to restore 32 lipids including 6 sphingolipids, 25 glycerophospholipids and 1 glyceride. Conclusion: This study is the first to delineate the lipid profile of stressed PCa BALB/C nude mice using untargeted lipidomics analysis. CSS restrained tumor growth and ameliorated depression-like behaviors by reprogramming lipid metabolism. Intervention of lipid metabolism could be a preventive and therapeutic approach for PCa patients with depression.
Collapse
Affiliation(s)
- Wei Li
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China,Institute of TCM-Related Comorbid Depression, School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Runze Zhou
- Institute of TCM-Related Comorbid Depression, School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jie Zheng
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China,School of Medicine and Holistic Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Bo Sun
- Institute of TCM-Related Comorbid Depression, School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xin Jin
- Department of Pharmacy, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, China
| | - Min Hong
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ruini Chen
- School of Medicine and Holistic Medicine, Nanjing University of Chinese Medicine, Nanjing, China,*Correspondence: Ruini Chen,
| |
Collapse
|
7
|
Qi X, Wu F, Kim SH, Kaifi JT, Kimchi ET, Snyder H, Illendula A, Fox T, Kester M, Staveley-O'Carroll KF, Li G. Nanoliposome C6-Ceramide in combination with anti-CTLA4 antibody improves anti-tumor immunity in hepatocellular cancer. FASEB J 2022; 36:e22250. [PMID: 35294071 PMCID: PMC9297193 DOI: 10.1096/fj.202101707r] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/16/2022] [Accepted: 02/28/2022] [Indexed: 12/19/2022]
Abstract
Combination therapy represents an effective therapeutic approach to overcome hepatocellular cancer (HCC) resistance to immune checkpoint blockade (ICB). Based upon previous work demonstrating that nanoliposome C6‐ceramide (LipC6) not only induces HCC apoptosis but also prevents HCC‐induced immune tolerance, we now investigate the potential of LipC6 in combination with ICB in HCC treatment. We generated orthotopic HCC‐bearing mice, which have typical features in common with human patients, and then treated them with LipC6 in combination with the antibodies (Abs) for programmed cell death protein 1 (PD‐1) or cytotoxic T‐lymphocyte antigen 4 (CTLA4). The tumor growth was monitored by magnetic resonance imaging (MRI) and the intrahepatic immune profiles were checked by flow cytometry in response to the treatments. Realtime PCR (qPCR) was used to detect the expression of target genes. The results show that LipC6 in combination with anti‐CTLA4 Ab, but not anti‐PD‐1 Ab, significantly slowed tumor growth, enhanced tumor‐infiltrating CD8+ T cells, and suppressed tumor‐resident CD4+CD25+FoxP3+ Tregs. Further molecular investigation indicates that the combinational treatment suppressed transcriptional factor Krüppel‐like Factor 2 (KLF2), forkhead box protein P3 (FoxP3), and CTLA4. Our studies suggest that LipC6 in combination with anti‐CTLA4 Ab represents a novel therapeutic approach with significant potential in activating anti‐HCC immune response and suppressing HCC growth.
Collapse
Affiliation(s)
- Xiaoqiang Qi
- Department of Surgery, University of Missouri-Columbia, Columbia, Missouri, USA
| | - Feng Wu
- Department of Surgery, University of Missouri-Columbia, Columbia, Missouri, USA
| | - Sung Hoon Kim
- Department of Surgery, University of Missouri-Columbia, Columbia, Missouri, USA
| | - Jussuf T Kaifi
- Department of Surgery, University of Missouri-Columbia, Columbia, Missouri, USA.,Ellis Fischel Cancer Center, University of Missouri-Columbia, Columbia, Missouri, USA
| | - Eric T Kimchi
- Department of Surgery, University of Missouri-Columbia, Columbia, Missouri, USA.,Ellis Fischel Cancer Center, University of Missouri-Columbia, Columbia, Missouri, USA
| | - Helena Snyder
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA
| | - Anuradha Illendula
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA
| | - Todd Fox
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA
| | - Mark Kester
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA
| | - Kevin F Staveley-O'Carroll
- Department of Surgery, University of Missouri-Columbia, Columbia, Missouri, USA.,Ellis Fischel Cancer Center, University of Missouri-Columbia, Columbia, Missouri, USA
| | - Guangfu Li
- Department of Surgery, University of Missouri-Columbia, Columbia, Missouri, USA.,Ellis Fischel Cancer Center, University of Missouri-Columbia, Columbia, Missouri, USA.,Department of Molecular Microbiology and Immunology, University of Missouri-Columbia, Columbia, Missouri, USA
| |
Collapse
|
8
|
Ceramide Metabolism Enzymes-Therapeutic Targets against Cancer. ACTA ACUST UNITED AC 2021; 57:medicina57070729. [PMID: 34357010 PMCID: PMC8303233 DOI: 10.3390/medicina57070729] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 07/07/2021] [Accepted: 07/13/2021] [Indexed: 12/12/2022]
Abstract
Sphingolipids are both structural molecules that are essential for cell architecture and second messengers that are involved in numerous cell functions. Ceramide is the central hub of sphingolipid metabolism. In addition to being the precursor of complex sphingolipids, ceramides induce cell cycle arrest and promote cell death and inflammation. At least some of the enzymes involved in the regulation of sphingolipid metabolism are altered in carcinogenesis, and some are targets for anticancer drugs. A number of scientific reports have shown how alterations in sphingolipid pools can affect cell proliferation, survival and migration. Determination of sphingolipid levels and the regulation of the enzymes that are implicated in their metabolism is a key factor for developing novel therapeutic strategies or improving conventional therapies. The present review highlights the importance of bioactive sphingolipids and their regulatory enzymes as targets for therapeutic interventions with especial emphasis in carcinogenesis and cancer dissemination.
Collapse
|